Principles of Artificial Intelligence
 
 | 
 Primary Text 
The primary text for the course is: Artificial
Intelligence: A Modern Approach, 3rd Edition, by Stuart Russell and
Peter Norvig. 
   
 
The course will draw on several additional texts and references.
 
Artificial Intelligence 
- 
Hawkins, J. and Blakeslee, S. On Intelligence. Times Books, 2004.
 
- 
Dean, T., Allen, J. & Aloimonos, Y., Artificial Intelligence
theory and practice. New York: Benjamin Cummings (1995).
 
- 
Ginsberg, M., Essentials of Artificial Intelligence. Palo Alto, CA: Morgan Kaufmann (1993).  
 
- 
Luger, G. F., Artificial Intelligence - Structures and Strategies for Complex Problem Solving. New York, NY: Addison Wesley, 6th edition (2008). 
 
- 
Poole, D., Mackworth, A. Artificial Intelligence - Foundations of Computational Agents.  New York: Cambridge University Press. 2nd Edition (2017).
 
- Nilsson, N. J. Artificial Intelligence - A Modern Synthesis. Palo Alto: Morgan Kaufmann. (1998).
 
- Nilsson, N. J., Principles of Artificial Intelligence. 
Palo Alto, CA: Tioga (1981).
 
- 
Rich, E., Knight, K.,  & Nair, S.
Artificial Intelligence. 3rd Edition.
New York: McGraw-Hill (2010).
 
- 
Tanimoto, S.,
The Elements of Artificial Intelligence Using Common Lisp. 2nd Edition.
New York, NY: Computer Science Press (1995).
 - 
Winston, P.H.,
Artificial Intelligence. 3rd Edition. New York, NY: Addison Wesley.
  
Knowledge Representation and Inference 
- 
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., & Patel-Schneider, P. 
The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003).
 
- 
Brachman, R. J. & Levesque, H. J. Knowledge Representation. New York: Elsevier (2004).
  
- 
Castillo, E., Gutierrez, J. M.,  Hadi, A. S. 
Expert Systems and Probabilistic Network Models. Berlin: Springer (1996).
 
- 
Cowell, R. G. Lauritzen, S. L., and   Spiegelhalter, D. J. 
Probabilistic Networks and Expert Systems
Berlin: Springer (2005). 
 
- 
Davis, E. Representations of Commonsense Knowledge. Palo Alto, CA: Morgan Kaufmann (1990).
 
- 
Darwiche, A. Modeling and Reasoning with Bayesian Networks. New York, NY: Cambridge University Press (2014).
 
- 
Dechter, R. Constraint Processing. Palo Alto, CA: Morgan Kaufmann. (2003).
 
Fagin, R., Halpern, J.Y., Moses, Y., & Vardi, M. Reasoning about knowledge. Cambridge, MA: MIT Press. (1995).
- 
Forbus, K. & De Kleer, J., Building Problem Solvers, Cambridge, MA: MIT Press (1993).
 
- 
Gasquet, O., Herzig, A., Said, B. & Schwartzentruber, F. Kripke's Worlds. An Introduction to Modal Logics via Tableaux. Berlin: Birkhauser (2014).
 
- 
Genesereth, M. R., & Nilsson, N. J., Logical Foundations of Artificial Intelligence. Palo Alto, CA: Morgan Kaufmann (1987).
 
- 
Gomez-Perez, A., Corcho, O., & Fernandez-Lopez, M. Ontological Engineering. Berlin: Springer (2004).
 
- 
Hitzler, P., Krotzsch, M., and Rudolph, S. Foundations of Semantic Web Technologies. Chapman and Hall. (2010).
 
- 
Klein, P. Coding the Matrix. Linear Algebra through Computer Science Applications. Newtonian Press. 2013.
 
- 
Koller, D. & Friedman, D. Probabilistic Graphical Models. Cambridge, MA: MIT Press (2009).
 
- 
Korb, K. & Nicholson, A. Bayesian Artificial Intelligence. New York, NY: Chapman & Hall/CRC (2003).
 
- 
Koski, T. & Noble, J.M. Bayesian Networks. New York: Wiley. (2009).
 
- 
Jensen, F. Bayesian Networks and Decision Graphs. Berlin: Springer (2002).
 
- 
Meyer, J-J. Ch. & van der Hoek, W. Epistemic Logic for AI and Computer Science, New York, NY: Cambridge University Press (2004).
 
- 
Newborn, M. Automated Theorem Proving: Theory and Practice. Berlin: Springer (2000).
 
- 
Pearl, J. Probabilistic Reasoning in Intelligent Systems. Palo Alto, CA: Morgan Kaufmann (1986)
 
- 
Pearl, J. Causality: Models, Reasoning, and Inference. New York: Cambridge University Press (2000).
 
- 
Santhanam, G., Basu, S., & Honavar, V. Representing and Reasoning with Qualitative Preferences. Morgan Claypool. 2016.
 
- 
Sowa, J. F. Knowledge Representation: Logical, Philosophical, and Computational Foundations, Pacific Grove, CA: Brooks Cole. (2000).
 
- 
Strang, G. Introduction to Linear Algebra. Fifth Edition. Wellesley-Cambridge Press. 2016.
 
 
Decision Making 
- 
Bather, J. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. New York: Wiley (2000).
 
- 
French, S.  Decision Theory - An Introduction to the Mathematics of Rationality, Mathematics and Its Applications. 1988. 
 
- 
Luce, D. & Raiffa, H. 
Games and Decisions: Introduction and Critical Survey. Dover Reprint (1989).
 
- 
Puterman, M. L.  Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley. (2005).
 
 
Learning 
- 
Abu-Mostafa, Y., Magdon-Ismail, M., and Lin, H-T. (2012). Learning from Data. AMLBook.com
 - 
Agrawal, D. & Chen, B-C. Statistical Methods for Recommender Systems. New York, NY: Cambridge University Press. (2016).
 - 
Baldi, P., Frasconi, P., Smyth, P.  Modeling the Internet and the Web - Probabilistic Methods and Algorithms. New York: Wiley. (2003).
 - 
Barber, D.  Bayesian Reasoning and Machine Learning.  Cambridge University Press. (2012)
 - 
Bishop, C. M. Neural Networks for Pattern Recognition. New York: Oxford University Press (1995).
 - 
Buhlmann, P. & van de Geer, S. Statistics for High-Dimensional Data Analysis. Berlin; Springer (2012).
 - 
Chakrabarti, S.  Mining the Web, Morgan Kaufmann. (2003).
 - 
Cowell, R.G., Dawid, A.P., Lauritzen, S.L., and Spiegelhalter,D.J.  Graphical Models and Expert Systems.Berlin: Springer. (1999)
 - 
Cristianini, N. and Shawe-Taylor, J.  An Introduction to Support Vector Machines. London: Cambridge University Press. (2000).
 - 
Devroye, Luc, Györfi, László, Lugosi, Gabor. A probabilistic theory of pattern recognition. Springer. (1996).
 - 
Duda, R., Hart, P., and Stork, D. Pattern Classification. New York: Wiley. (2001).
 - 
Goodfellow, I. & Benjio, Y.  Deep Learning. Cambridge, MA: MIT Press. (2017).
 - 
Hastie, T., Tibshirani, R., and Friedman, J.  The elements of Statistical Learning - Data Mining, Inference, and Prediction.  Berlin: Springer-Verlag. (2011)
 - 
Hastie, T., Tibshirani, R., and Wainwright, M. Statistical Learning with Sparsity. CRC Press. (2015).
 - 
Leskovec, U., Rajaraman, A., and Ullman, J.  Mining Massive Data Sets (2014)
 - Kearns, M. & Vazirani, U. Computational Learning Theory. Cambridge, MA: MIT Press. (1994).
 - 
Koller, D. & Friedman, N. Probabilistic Graphical Models. MIT Press. (2009)
 - 
Mitchell, T.  Machine Learning. New York: Mc Graw-Hill. (1997).
 - 
Mohri, M., Rostamzadehm A., and Talwalker, A. (2012). 
Foundations of Machine Learning
MIT Press, 2012.
 - 
Murphy, K.  Machine Learning: A probabilistic perspective. MIT Press.  (2012)
 - 
Natarjan, B.  Machine Learning: A Theoretical Approach. Kluwer. (2001)
 - 
Neapolitan, R. Learning Bayesian Networks. Prentice-Hall. (2004).
 - 
Skolkopf, B. & Smola, A. Learning with Kernels. MIT Press.  (2001)
 - 
Sutton, R. S. & Barto, A. G. Reinforcement Learning. Cambridge, MA: MIT Press (1998).
 - 
Tan, P-N., Steinbach, M., & Kumar, V.  Introduction to Data Mining. New York: Addison-Vesley. (2004).
 - 
Theodoridis, S.  Machine Learning.  Springer. (2015)
 - 
Uhr, L. Pattern Recognition, Learning, and Thought.  New York: Prentice Hall (1973).
Vapnik, V. (1998). Statistical Learning Theory. Wiley.
 - 
Vidyasagar, M. (2002). A theory of learning and generalization, with applications to Neural Networks. Springer.
 - 
Watt, J. and Borhani, R. Machine Learning Refined. New York, NY: Cambridge University Press.  (2016).
  
 
 Planning 
- 
Ghallab, M., Nau, D., & Traverso, P.
Automated Planning : Theory & Practice. Palo Alto: Morgan Kaufmann (2005).
 
- 
Yang, Q.  Intelligent Planning: A Decomposition and Abstraction Based Approach. Berlin: Springer (1998).
 
 
Perception 
- 
Fischler, M., & Firschein, O.,
Intelligence -- The Eye, the Brain, and the Computer.
New York: Addison-Wesley (1987).
 
- 
Forsyth, D. A., and Ponce, J. 
Computer Vision: A Modern Approach. New York: Prentice-Hall (2014).
 
- 
Davies, E. R.
Machine Vision : Theory, Algorithms, Practicalities. Palo Alto: Morgan Kaufmann (2004).
 
- 
Jain, R., Kasturi, R., & Schunck, B. G.
Machine Vision. New York: McGraw-Hill (1995). 
 
- 
Prince S.J.D. Computer Vision: Models, Learning, and Inference. (2012)
 
Shapiro, L.G. & Stockman, G.C. Computer Vision. Pearson. (2001).
- 
Snyder, W. E. and Qi, H.
Machine Vision.
London: Cambridge University Press. (2004).
 
Szeliski, R. Computer Vision. Berlin: Springer (2011).
 
Speech and Language Processing
 
- 
Baeza-Yates & Rebeiro-Neto. Modern Information Retrieval. New York: Addison-Wesley. (1999).
 
- 
Berry, M. W., & Browne, M. 
Understanding Search Engines: Mathematical Modeling and Text Retrieval.  SIAM, (1999).
 
- 
Charniak, E.  Statistical Language Learning. Cambridge, MA: MIT Press (1996).
 
- 
Chakrabarti, S.
Mining the Web: Analysis of Hypertext and Semi Structured Data. Palo Alto: Morgan Kaufmann (2002). 
 
- 
Jelinek, F. Statistical Methods for Speech Recognition. Cambridge, MA: MIT Press (1998).
 
- 
Jurafsky, M. & Martin, J. Speech and Language Processing. New York: Prentice-Hall (2000).
 
- 
Manning, C. & Schutze, H. Foundations of Statistical Natural Language Processing, Cambridge, MA: MIT Press (1999).
 
- 
Grossman, D.A. & Frieder, O. 
Information Retrieval: Algorithms and Heuristics. Berlin: Springer (2004).
 
- 
Salton, G.  & McGill, M. J. Introduction to Modern Information Retrieval. McGraw-Hill (1983).
  
Robotics 
- 
Arkin, A. Behavior-Based Robotics. Cambridge, MA: MIT Press (1998).
 
- 
Braitenberg, V. Vehicles: Experiments in Synthetic Psychology. Cambridge, MA: MIT Press (1986).
 
- 
Dudek, G., and Jenkin, M. 
Computational Principles of Mobile Robotics. Cambridge University Press (2000).
 
- 
Murphy, R. An Introduction to AI Robotics. Cambridge, MA: MIT Press (2000).
 
- 
Siegwart, R. and Nourbakhsh, I. R. 
Introduction to Autonomous Mobile Robots
Cambridge, MA: MIT Press (2004).
 
- 
Thrun, S., Burgard, W. & Fox, D. Probabilistic Robotics. Cambridge, MA: MIT Press (2005).
 
 
Multi-Agent Systems 
- 
Ferber, J.
Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence
New York: Addison Wesley. (1999).
 
- 
Minsky, M. Society of Mind. New York: Basic Books (1986).
 
- 
Weiss, G. 
Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge, MA: MIT Press (2000).
 
- 
Woolridge, M. 
Introduction to MultiAgent Systems. New York: Wiley (2002).
 
 
Artificial Intelligence Programming 
Java Books 
- 
Schildt, H. Java 2: A Beginner's Guide.  McGraw-Hill (2003).
 
- 
Sierra, K. and Bates, B. Head First Java.  O'Reilley (2003).
 
- 
Sikora, M. Java: A Practical Guide for Programmers. Morgan Kaufmann (2002).
  
Lisp Books 
- 
Forbus, K. D. & de Kleer, J. Building Problem Solvers. Cambridge, MA: MIT Press. (1993). 
 
- 
Graham, P. ANSI Common Lisp. Englewood Cliffs, NJ: Prentice Hall (1995). 
 
Graham, P. On Lisp (downloadable). Prentice Hall (1993).
- 
Norvig, P., Paradigms of Artificial Intelligence Programming -- Case Studies in Common Lisp. Palo Alto, CA: Morgan Kaufmann (1992). 
 
- 
Siebel, P. Practical Common LISP (downloadable).  Apress. (2005).
 
- 
Queinnec, C.  Lisp in Small Pieces. Cambridge University Press (2003).
 
 
Prolog Books 
- 
Blackburn, P., Bos, J. and Striegnitz, K. Learn PROLOG Now! College Publications (2006).
 
- 
Bramer, M. Logic Programming with Prolog. Springer (2005).
 
- 
Bratko, I. Prolog Programming for Artificial Intelligence. Addison Wesley. (2000).
 
- 
Clockskin, W. and Mellish, C. Programming in PROLOG. Springer (2003).
 
- 
Clocksin, W. Clause and Effect: PROLOG Programming for the Working Programmer. Springer (1997).
 
 
Philosophy of Mind and Philosophy of AI 
- 
Audi, R. Epistemology: A Contemporary Introduction. Routledge (2003).
 
- 
Barkow, J. H., Cosmides, L. & Tooby, J. The Adapted Mind. New York:
Oxford Univ. Press (1992).
 
- 
Bickerton, D. Language Species. University of Chicago Press (1992)
 
- 
Bringsjord, S. What Robots Can and Can't Be. Kluwer (1992).
 
- 
Boden, M. A., The Creative Mind. New York, NY: Basic Books (1990). 
 
- 
Calvin, W. H. The Cerebral Code. New York: Bantam Books (1990).
 
- 
Calvin, W. H. How Brains Think: Evolving Intelligence, Then and Now. New York: Basic Books (1997).
 
- 
Chomsky, N.  Language and the Mind. 3rd Edition. Cambridge University Press (2006).
 
- 
Churchland, P. Neurophilosophy: Toward a Unified Science of the Mind-Brain. Cambridge, MA: MIT Press (1989).
 
- 
Churchland, P. Brain-Wise: Studies in Neurophilosophy. Cambridge, MA: MIT Press (2002).
 
- 
Copeland, J. Artificial Intelligence: A Philosophical Introduction. Blackwell (1993). 
 
- 
Copeland, J. (ed). The Essential Turing. Oxford University Press (2004).
 
- 
Damasio, A. R. Descartes' Error -- Emotion, Reason, and the Human
Brain. New York: G. P. Putnam's Sons. (1994)
 
- 
Deacon, T. The Symbolic Species. New York: W. W. Norton. (1998).
 
- 
Deledalle, G. Charles Peirce's Philosophy of Signs. Indiana University Press (2000).
 
- 
Dennett, D.C. Kinds of Minds. New York: Basic Books (1996).
 
- 
Dennett, D.C. Darvin's Dangerous Idea. New York: Simon and Schuster (1995). 
 
- 
Dretske, F. I. Knowledge and the Flow of Information. CSLI Press, Stanford University (1999).
 
- 
Donald, M. D. Origins of the Modern Mind. Cambridge, Mass: Harvard
Univ. Press. (1992).
 
- 
Dreyfus, H. L., What Computers Can't Do. New York, NY: Harper & Row (1979). 
 
- 
Eco, U. Theory of Semiotics. Indiana University Press. (1979).
 
- 
Emmeche, C. The Garden in the Machine:
The Emerging Science of 
Artificial Life. Princeton, NJ: Princeton University Press (1994).
 
- 
Franklin, S. Artificial Minds. Cambridge, MA: MIT Press. (1995).
 
- 
Haugeland, J., Artificial Intelligence - The Very Idea. Boston, MA:MIT Press (1985). 
 
- 
Hawkins, J. On Intelligence. Times Books (2004).
 
- 
Heil, J. Philosophy of Mind. London: Routledge (2004).
 
- 
Holland, J. Origins of Order. New York, NY: Addison Wesley (1995).
 
- 
Kim, J. Philosophy of Mind. Westview Press (2005).
 
- 
Kurzweil, R. The Singularity Is Near: When Humans Transcend Biology. New York: Viking Books (2005)
 
- 
Lycan, W.
Philosophy of Language: A Contemporary Introduction
Routedge (1999).
 
- 
Maturana, H.R. & Varela, F.J.  The Tree of Knowledge. Boston:
Shambala (1992).
 
- 
McDowell, J. Mind and World. Harvard University Press (1996).
 
- 
Minsky, M. Society of Mind. New York: Basic Books (1986).  
 
- 
Moravec, H., Mind Children: The Future of Robot and Human Intelligence. Cambridge, MA: Harvard University Press (1988). 
 
- 
Pinker, S. The Language Instinct. New York: Pengin (1994)
 
- 
Quine, W. V. O. Ontological Relativity and Other Essays. Columbia University press. 1977.
 
- 
Quine, W. V. O. Quintessence. Basic Readings from the Philosophy of W. V. Quine.  Belknap Press (2004).
 
- 
Robinson, W. S. Computers, Minds, and Robots.
 Philadephia, PA: Temple University Press (1992). 
 
 
 - 
 Searle, J. 
Speech Acts: An Essay in the Philosophy of Language. Cambridge University Press (1969).
 
- 
Searle, J. Mind, Language, and Society : Philosophy in the Real World. Basic Books (2000).
 
- Simon, H. A., Sciences of the Artificial. Cambridge, MA: MIT Press (1981). 
 
- 
Skinner, B. F. Science and Human Behavior. Free Press (1965).
 
- 
Skinner, B. F. About Behaviorism. Vintage (1976).
 
 - 
 Varela, F.J., Thompson, E., & Rosch, E. The Embodied Mind.
 Cambridge: MIT Press. (1992).
 
 
 - 
 Von Neumann, J. Computer and the Brain. 2nd Edition. Yale University Press (2000).
 
 
 |