
Rev
ie

w
 C

op
y

1/27 

Merging Workflows: A New Perspective on Connecting Business Processes 
 

Shuang Sun1, Akhil Kumar2, John Yen1

School of Information Sciences and Technology1, SMEAL College of Business2

Pennsylvania State University 
University Park, PA 16802 

Abstract 

This paper describes the concept of workflow-merge and methods for merging business processes.  

Our research goal is to improve the responsiveness of corporations’ business processes and fit 

them into dynamic business environments.  We grouped merges in four categories according to the 

type of merge: sequential, parallel, conditional, and iterative. By analyzing these categories, we 

found that a merge cannot always yield a sound result.  To avoid invalid merges, one should 

deliberately choose merge-points between which a sub-workflow, called a merge region, is well 

structured.  These findings are important for guiding other workflow-merge research.  We have 

identified various application areas where our techniques and results can be applied, such as: (1) 

simulations that can help decision makers to visualize merges for business processes; and (2) 

virtual enterprises that require flexibility in business operations.  The paper discusses fundamental 

concepts, models, and methods of workflow merging.  We leave issues of more complex merge 

problems, such as merge conflicts, semantic ambiguities and workflow splits for future research.  

Keywords: Workflow management; workflow merge; workflow modeling; business process 

reengineering; sequential; parallel; conditional; iterative.  

1. Introduction 

For agile business operation, modern corporations must make frequent business process changes 

as well as organizational changes through mergers and acquisitions.  In 2001, Hewlett-Packard 

Company and Compaq Computer Corporation announced a merger agreement to create an 87 

billion dollar global technology leader.  The merged company offers the most complete set of 

products and services in the IT industry with expected cost savings of approximately 2.5 billion 

dollar a year [10].  Many important issues arise in integrating the two giant organizations, one of 

them being how to integrate their business processes.  Since frequent changes in business 

processes and operations are becoming increasingly common, both through internal 

reorganizations and through mergers and acquisitions, we have conducted preliminary research on 

1 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

2/27 

how workflows can be modified dynamically to adapt to such changes. In addition, our research 

provides support for complex process composition, i.e., creating complex workflow processes 

from simple ones.  

A workflow may be modified at a schema level that defines a workflow process or at an instance 

level that represents a specific instance of an already defined process [12].  For example, a 

two-step workflow, “order” then “deliver”, represents a simple business process at the schema 

level. Within this process there maybe orders or instances of process “order” for a particular 

customer.  In this paper, we define the workflow-merge concept and methods focused at the 

schema level.  This research topic is important and has not been fully addressed by previous 

research efforts.  Process reengineering and evolution have been studied from different 

perspectives, such as business process integration [5, 17], using generic workflow modeling 

methods to ensure flexibility [2], describing methods for workflow evolution [12], improving 

workflow interoperability [4, 9, 11, 15], and enhancing exception handling capabilities [14, 19].  

Dealing with more than one process makes a workflow-merge different from other problems that 

commonly assume a single process, and makes existing methods inefficient for addressing 

workflow merging issues.  Therefore, this topic does not fit well into the existing research 

frameworks. For example, the classic process integration methods [5, 17] collaboratively bridge, 

adapt, and exchange information without actually modifying the processes of the business partners. 

By contrast, a workflow merge offers process level integration without considering how to connect 

the merged step pieces. Naturally, when company merges, both process integration and merger of 

processes are necessary for streamlining their operations.  

In the remainder of the paper, we first introduce a workflow modeling method with Petri nets.  

Next, in sections 3 and 4, we introduce the workflow-merge concept and validate our approach.  

Then, in section 5, we discuss merge-point detection, and other issues such as conflicts, semantic 

ambiguities, and impact of merges on organizational roles and resources. Finally, Section 6 gives 

brief concluding remarks. 

2. Workflow Modeling 

Many research efforts have investigated methods for modeling workflow processes, which define 

the steps of business operations.  Dumas and Hofstede tried to specify workflows with activity 

diagrams of the Unified Modeling Language (UML) [6]. They demonstrated that activity diagrams 

2 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

3/27 

can provide the expressive power that is required by most applications, and showed that an activity 

diagram is more powerful for express processes than most of the languages found in commercial 

workflow systems.  A recent study by Aalst and Kumar has demonstrated that the Extensible 

Markup Language (XML) can be used to model inter-organizational workflows [4].  The main 

contribution of that research is to support process exchange through the internet.  Aalst [1] has 

mapped the workflow concepts into Petri nets, giving a more formal way to represent and verify 

processes.  In this paper, we also use Petri nets to specify workflows and related concepts.  Dussart 

et al compared the workflow modeling methods including Petri-nets, WfMC, UML, ANSI, and 

EPC [7] on basis criteria such as  formal basis, executability, ease of visualization, etc.  Their study 

showed that Petri-nets satisfied most of the criteria, and were therefore desirable. However, the 

merge concept and algorithms are independent of modeling techniques, and not limited to 

Petri-nets. We choose Petri-nets mainly because they offer a formal basis that helps to determine 

soundness of a merge. In this section, we briefly introduce important Petri net concepts and how to 

use Petri nets to represent a workflow.  

Definition 1 (Petri net)  

A Petri net is a triple (P, T, F): 

- P is a finite set of places, 

- T is a finite set of transitions ( P T φ=∩ )

- ( ) ( )F P T T P⊆ × ×∪ is a set of arcs (flow relation) 

A place p is called an input place of a transition t if and only if there exists a directed arc from p to 

t . Place p is called an output place of transition t if and only if there exists a directed arc from t to 

p . We use • t (t• ) to denote the set of input (output) places for a transition t, while • p (p• ) is the 

set of transitions sharing p as an input (output) place.  Note that we restrict ourselves to arcs with 

weight 1.  In the context of workflow procedures it makes no sense to have other weights, because 

places correspond to conditions. 

Definition 2 (WF-net)  [1] 

A Petri net PN = (P, T, F) is a WF-net (WorkFlow net, or Workflow for short) if and only if 

3 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

4/27 

(i) PN has two special places: i and o. Place i iis a source place: i φ• = ; Place o  is a sink 

place: o φ• = .

(ii) If we add a transition t* to PN which connects place o with i, then the resulting Petri 

net is strongly connected. 

Thus, WF-nets are a special kind of Petri nets with the property that there is one source place and 

one sink place.  Places in the set P represent nodes that contain tokens; transitions in the set T 

correspond to tasks or activities.  By examining the locations of tokens, it is possible to determine 

the state of a Petri net, i.e., what tasks have been completed.  Places can also represent conditions, 

as when one of multiple branches emerging from a place has to be chosen in an or-split to be 

discussed shortly.  Further note that the requirements stated in Definition 2 are minimal 

requirements.  Even if these requirements are satisfied, a workflow process may still cause 

potential deadlocks.  Although a Petri-net does not have any notion of these constructs, we can use 

Petri-nets to model commonly used workflow constructs such as AND-splits, AND-joins, 

OR-splits and OR-joins.  Figure 1 shows each of these constructs as Petri net representations.  In a 

workflow context, an AND-split with n branches is supposed to represent parallelism among n

activities; an OR-split with n parallel branches is supposed to represent a choice among n possible 

activities.  An AND-split (OR-split) with n outgoing branches usually has a corresponding 

AND-join (OR-join) with n incoming branches.  For example, when creating a sales order, a 

condition of whether a customer is a preferred one may lead to different branches for preferred and 

regular customers.  This process may be represented as an OR-split with the customer type as the 

split condition. Moreover, after creating the order there may be two independent follow-up actions: 

sending an order confirmation to the customer and sending a delivery note to the warehouse. These 

parallel actions may be represented with an AND-split. 

4 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

5/27 

t2

p

tn

t

p2 pnp t

a) OR-split                   b) OR-join                        c) AND-split                    d) AND-join      

t1

t2 tnt1

p1

p2 pnp1

…

…

…

…

Figure 1: Petri-net representations of commonly used workflow constructs. 

A structured workflow is a workflow where each OR-split has a matching OR-join and each 

AND-split has a matching AND-join, and moreover, if multiple splits and joins are present, they 

are properly nested inside each other. A simple algorithm can be used to check if a workflow is 

structured in this way.  Our following definitions of structured WF-net and well-behaved WF-net 

are based on Kiepuszewski et al’s work on structured workflow modeling [13].  

Definition 3 (Structured WF-net)  

A structured WF-net is a WF-net where: 

1. A workflow consisting of a single activity is a SWF.  

2. The concatenation of two SWF workflows, X and Y, where the final activity of X has a 

transition to the initial activity of Y, is a SWF. (see Figure 2a) 

3. If  X1, …, X n are SWFs, they can be combined in parallel by a pair of and-split node and 

and-join nodes.  (see Figure 2b) 

4. If  X1, …, X n are SWFs, they can be combined in parallel by a pair of or-split and 

or-join nodes.  An or-split is also called a choice or decision node.  (see Figure 2c) 

5. If X and Y are SWFs, and j(s) are two-way or-join (or-split) nodes, then the workflow 

with transition X between j and s, and transition Y between s and j, is also a SWF. (see 

Figure 2d) 

5 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

6/27 

X

p0

Y

t0

p0 p1

p1

X

p1

Y

p2

X

P0’

Y

P1’

t1

X

p0

Y

p1

p0

a) Concatenation        b) Parallel                c) Choice    d) Iteration      

X Structured WF-net

Transition

Place

t

p

Figure 2: Combining structured WF-nets (X and Y) to create more complex structured WF-nets. 

Definition 4 (Well-behaved WF-net)  

A workflow model is well-behaved if it can never lead to deadlock nor can it result in multiple 

active instances of the same activity. Every structured workflow model is well-behaved [13]. 

3. Workflow-merge Concepts 

In this section we introduce workflow merging concepts, taxonomy, and general merging 

algorithms. 

3.1 Workflow Merging – Scenarios 

Scenario One: Organizational Merge 

Order

packing

Get Delivery 
Note

Delivery

Delivery 
Note

Company 
A

Company
B

Company
A After

Order

packing

Delivery

Figure 3: A scenario for merging two organizational processes. 

6 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

7/27 

Figure 3 shows the first scenario1 in which a computer manufacturer (company A) merges with its 

logistics services provider (company B), which is responsible for delivery.  Company A takes 

customer orders and packs computers, then it sends a delivery note to company B.  Upon receiving 

the delivery note, B will ship the computers to customers.  In an attempt to reduce costs, A decided 

to acquire company B and deliver computers by itself.  The merged result has three tasks: order, 

packing, and delivery. 

Scenario Two: Business Process Reengineering 

Order

Delivery

Company 
A Sales

Company
A Production

Company
A After

Order

Production

Delivery

Production

 

Figure 4: A business process reengineering scenario. 

In the second scenario (Figure 4), a sales process is merged with a production process.  Suppose 

company A is a computer manufacturer, and it has two functional departments, sales and 

production.  The sales department takes customers’ orders and ships finished products.  The 

production department schedules factory production according to sales forecasts.  In order to 

dynamically manage their production to meet market demand changes, company A decides to use 

a new production mode – make to order (MTO).  In the MTO mode, the production department 

only produces after new sales orders arrive.  In other words, the production process will have to be 

merged into the sales process.  

3.2 Concepts of Workflow Merge 

We define workflow-merge as the process of combining one workflow schema into another and 

removing redundant steps without losing necessary ones. In the first scenario, the workflow of 

 
1 The steps or transitions that are used in examples do not necessarily correspond to atomic business operations found 
in real business situations. They may correspond to a function that is abstracted from a group of sub-steps. For 
example, “order”, here, may correspond to a collection of transactions including request for quote, quotation, 
purchasing, and ordering. However viewing the steps as atomic steps or as abstract ones should not make any 
difference in understanding the concepts, algorithms, or other arguments presented in the paper. 

7 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

8/27 

company B is merged into the workflow of company A.  After the merge, for example, company A 

keeps all of the necessary steps such as order, packing, and delivery, while redundant steps such as 

sending and receiving delivery notes are removed.  We call the original workflows that are 

combined as merging workflows, and the resulting workflow the merged workflow.

Definition 5 (Workflow-merge)  

When a WF-net ' ( ', ', ')PN P T F= is combined with another WF-net ( , , )PN P T F= , we call the 

process a workflow-merge if and only if  

(i) the result is a new WF-net " ( ", ", ")PN P T F=

(ii) " 'T T T⊆ ∪

(iii) " ' mP P P P⊆ ∪ ∪ (where mP are new merge-points)  

(iv) " ' ( " ) ( ")m mF F F T P P T⊆ × ×∪ ∪ ∪

We call the merge function as ( , ')Merge PN PN 2, and we call PN the primary WF-net and 'PN the 

secondary WF-net.  

According to condition (ii), the merged workflow should not involve any new tasks that are not in 

the merging workflows; condition (iii) ensures that only result merge-points can include new 

conditions; condition (iv) states that dependencies in the merging workflows should be compliant 

with the ones in merged workflows.  More importantly, a workflow-merge should not violate the 

soundness properties [1].  In section 4, we show how to achieve a sound merge by keeping 

properties of well-structureness in a merge function.  

Definition 6 (Merge-point)  

When a primary WF-net, ' ( ', ', ')PN P T F= , is merged with a secondary WF-net, PN = (P, T, F), 

and the merged workflow is a WF-net, " ( ", ", ")PN P T F= , a place node such as p PN∈ ,

' 'p PN∈ or "mp PN∈ is called merge-point if and only if 

(i) if "p PN PN∈ ∩ , ( ( )) ( ')t t p p t PN∃ ∈ • • ∧ ∈∪ , or  

 
2 We use the operator symbol → to represent merge in diagrams. 

8 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

9/27 

(ii) if ' ' "p PN PN∈ ∩ , ( ( ' ' )) ( )t t p p t PN∃ ∈ • • ∧ ∈∪ , or

(iii) 'mp PN PN∉ ∪

The place nodes where two merging workflows, say wf1 and wf2, are connected are called 

merge-points. Merge-points are always in pairs and they are noted as (p/ 'p ) which means that 'p

from wf2 will merge with p from wf1. The result merge-points mp may be p as in (i), 'p as in (ii), 

or a new place as in (iii) which is different from p or 'p . mP , in Definition 5, is the set of result 

merge-points.  A merging workflow contains at least one merge-point. When two merge-points 

(p1 and p2) are specified in a merging workflow, if p1 is prior to p2, p1 is called beginning 

merge-point, and p2 is called ending merge-point. 

t1

t2

p1

p2

p0

t1’

p1’

p0’

t1

t2

p1

p2

p0

tx

p0’

PN PN’ PN”

t1

t2

p1

p0’

p0

t1’

p1’

PN”’

t1’

p1’

Figure 5: Workflow-merge example (a sequential merge). 

For example, Figure 5 depicts a merge function— ( , ')Merge PN PN , and the merged workflow 

is "PN . We call tx (in "PN ) an auxiliary transition node that helps to connect two places because, 

in a Petri net, two place nodes (such as p2 and 'p0 ) cannot be connected directly without a 

transition node in between. Unlike a normal WF-net node, an auxiliary node represents neither 

conditions nor tasks. By eliminating redundant nodes (p2) and auxiliary node (tx) we can reduce 

"PN into "'PN . This is a workflow simplification step.  Places p2 and 'p0 are the merge-points 

9 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

10/27 

and the resulting merge-point is 'p0 . We will explain auxiliary nodes and simplification further in 

section 3.3.2.

3.3 Workflow Merging Taxonomy 

We group workflow-merges according to two dimensions: lossy/lossless and merge pattern.  The 

first grouping method yields two types of merges: lossy merge or lossless merge. With the second 

dimension, we sort merges by their patterns: sequential, conditional, parallel, or iterative merges. 

3.3.1 Workflow Merging Taxonomy – lossless or lossy 

Definition 7 (Lossless merge)  

When a WF-net ' ( ', ', ')PN P T F= is merged with another WF-net PN= (P, T, F) and the result is a 

new WF-net '' ( '', '', '')PN P T F= , we call the merge lossless if and only if ' ''T T T⊆∪ . In a lossless 

merge, all tasks in the merging workflows are preserved. 

Definition 8 (Lossy merge)  

When a WF-net ' ( ', ', ')PN P T F= is merging with another WF-net PN=(P,T,F) and the result is a 

new WF-net '' ( '', '', '')PN P T F= , we call the merge lossy if and only if  ( ( ') '')t t T T t T∃ ∈ ∧ ∉∪ . A

lossy merge does not guarantee that all tasks are retained after merge. 

A lossy merge is not necessarily bad because it can often result in improvement of a process by 

merging two tasks into one, and thus pruning redundant tasks.  Determining what tasks in merging 

workflows are redundant requires more knowledge about the process and certainly is not a trivial 

problem that may easily to be automated.  On the other hand, if a lost task is not redundant, the 

lossy merge yields an incomplete process, which is undesirable. 

10 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

11/27 

t1

t2

p1

p2

p0

t1’

p1’

p0’

t1

t2’

p1’

p2’

p0

t2’

p2’

PN PN’ PN”

t1

t2

p1

p2

p0

t1’

p1’

p0’

t1’

t2

p1

p2

p0’

t2’

p2’

PN PN’ PN”’

Figure 6: Merge(PN, PN’). Figure 7: Merge(PN’, PN). 

A lossy merge must specify the merge direction because it is important to note that Merge 

(PN, 'PN )≠ Merge ( 'PN , PN). In Figure 6, for example, the merge direction is specified as 

Merge (PN, 'PN ), and the result is "PN . In Figure 7, however, the merge direction is specified as 

Merge ( 'PN , PN), and the result is '"PN , which is different from "PN 3.

We can either explicitly specify the merge direction, or infer it from a semantic understanding of 

the individual processes that are merged.  For example, in the first scenario of section 1, if 

company A merged with company B, one would infer that company B’s process occurs after 

company A’s because receiving a delivery note depends on the previous process of creating it. By 

inferring that B is after A, we can determine the merge direction as Merge (A, B).

3.3.2 Workflow Merging Taxonomy – by merging result pattern 

The second dimension of our taxonomy is based on the result patterns.  Workflows have basic 

process patterns, such as sequential, parallel, conditional, and iterative [3].  In basic merge 

situations, we assume that two merging workflows contain a single pattern in the merged 

workflow and two pairs of merge-points: a pair of beginning merge-points and a pair of ending 

merge-points.  In more complex situations, a merged workflow may contain multiple merge-points.  

However, a complex merge can be represented by combining simple merge patterns.  In the rest of 

this section, we define the types of merge and give algorithms of merge functions.  The merge 

 
3 Definition 9 and algorithm Merge_Seq explain how the merge results, '"PN and "PN , are obtained. 

11 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

12/27 

functions cannot guarantee that a merged workflow has a sound process.  We will discuss the issue 

of soundness in detail in section 4. 

Definition 9 (Sequential merge)  

When two workflows, PN and 'PN , merge at merge-points (p1/ 'p1 , p2/ 'p2 )4, if p1 is replaced 

by 'p1 and p2 by 'p2 , it is a sequential merge.  The processes of PN between p1 and p2 have been 

replaced by the processes in 'PN between 'p1 and 'p2 . No new places are created in a sequential 

merge. 

In a sequential merge, parts of one workflow merge with another in a sequential manner. There are 

two types of sequential merges: replacement merge and insertion merge. Figure 8 shows a 

replacement— Merge_Seq (PN, 'PN , p1, 'p0 ,p2, 'p1 ) where t2 is replaced by t1’. Figure 9 

shows an insertion— Merge_Seq (PN, 'PN ,p1, 'p1 ,p1, 'p2 ) where place p1, in the primary 

workflow, is both the start place and the end place. Recall that in Figure 3, the “Delivery” process 

of Company B was put after the “Packing” process of Company A in the merged new workflow 

called “Company A After”; so the organizational merge in Figure 3 is also an example of 

sequential merge.  

 
4 p1/ 'p1 and p2/ 'p2 are merge-points: p1/ 'p1 are beginning merge-points, and p2/ 'p2 are ending merge-points. 

12 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

13/27 

 

As mentioned before, a sequential merge involves two steps: initial merge and simplification. In 

the first step, merging workflows are combined through two pairs of auxiliary-node sets at the 

merging-points.  In Figure 8, an auxiliary-node, tx, is connected to the merge-point, p1, while 

another auxiliary-node 'tx is connected to p2. As discussed above, the auxiliary transition nodes 

are required to connect two place nodes in a Petri net. Between the auxiliary-node is the merge 

region of 'PN . The use of the auxiliary-nodes in the merge guarantees a sequential relation 

between the merging workflows.  

To simplify and make the workflow nets concise, we need to eliminate the redundant nodes and 

auxiliary transitions.  In Figure 8, the merge begins with p1, which contains condition(s) for task t2.

Task t2 will be eliminated after the merge, therefore p1 is redundant. In addition, 'p1 is also 

redundant because it is the post-condition of 't1 , a deleted transition. Task tx and 'tx are auxiliary 

transitions that indicate sequential merges and when fired, they will simply pass tokens to the 

output nodes.  In both Figure 8 and 9, "PN represents the result of the initial merge and '"PN is 

the result after simplification.  It is easy to find that "PN and '"PN is equivalent in the processes 

t1

t2

p1

p2

p0

t1’

p0’

t1

t1’

p0’

p2

p0

p1’

PN PN’ PN”

t3

p3

t3

p3

t1

t1’

p0’

p2

p0

PN”’

t3

p3

tx

p1

tx’

p1’

t1

t2

p1

p2

p0

t1’

p0’ t1

t1’

p0’

p1

p0

p1’

PN PN’ PN”

t2

p2

t1

t1’

p0’

p1

p0

PN”’

t2

p2

tx

p1

tx’

p1’

Figure 8: Replacement merge. Figure 9: Insertion merge. 

13 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

14/27 

they represent. Because the auxiliary nodes are not essential in the final merge result, we provide 

an algorithm that obtains the merged workflow without involving any auxiliary nodes. 

The sequential merge (see Figure 8) algorithm Merge_Seq (PN, 'PN ,p1, 'p1 ,p2, 'p2 ) is defined 

by the following steps:

1. Remove p1,  the arcs after p1, and the arcs before 'p1

2. Connect • p1 to 'p1 (i.e., connect the input  transitions of p1 to 'p1 with  new 

arcs) 

3. Remove • p2, arcs before p2, and arcs after 'p2

4. Connect  • 'p2 to p2 (i.e., connect all input transitions of place 'p2 to the place p2 

with  new arcs) 

5. The process that contains 'p1 and p2 is the merged workflow. 

Definition 10 (Parallel merge)  

When two workflows PN and 'PN merge at merge-points (p1/ 'p1 , p2/ 'p2 )5, if,  after the merge, 

p1 and 'p1 construct an AND-split and p2 and 'p2 construct an AND-join, it is a parallel merge, 

i. e., PN and 'PN have been connected at point p1/ 'p1 and p2/ 'p2 in parallel.  No new places 

are created in a parallel merge. 

A parallel merge (see Figure 10) algorithm Merge_Par (PN, 'PN ,p1, 'p1 ,p2, 'p2 ) is defined in 

the following steps: 

1. Remove the arcs before 'p1 and connect • p1 to 'p1

2. Remove the arcs after 'p2 and connect 'p2 to p2•

5 p1/ 'p1 and p2/ 'p2 are merge-points: p1/ 'p1 are beginning merge-points, and p2/ 'p2 are ending merge-points. 

14 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

15/27 

t1

t2

p1

p2

p0

t2’

p1’

t1

t2

p1

p2

p0

p2’

PN PN’ PN”

t3

p3

t3

p3

t2’

p1’

p2’

Figure 10: Parallel merge. 

Parallel merges are used when the causal order between the merging workflows is not relevant.  

Figure 10 shows a parallel merge where the order of tasks t2 and 't2 is not relevant.  

Definition 11 (Conditional merge) 

When two workflows PN and 'PN merge at merge-points (p1/ 'p1 , p2/ 'p2 )6, if p1 and 'p1

construct an OR-split and p2 and 'p2 construct an OR-join, it is a conditional merge, i.e., PN and 

'PN have been connected at point p1/ 'p1 and p2/ 'p2 with additional conditions.  A new place 

called a condition place will be created in a conditional merge. 

A conditional merge (see Figure 11) algorithm Merge_Cond (PN, 'PN ,p1, 'p1 ,p2, 'p2 , C) is 

defined by the following steps: 

1. Remove the arcs before 'p1 , and connect 'p1 • to p1 

2. Remove the arcs after 'p2 , and connect • 'p2 to p2 

3. Modify the conditions in p1 according to new choice conditions C and 'p1

6 p1/ 'p1 and p2/ 'p2 are merge-points: p1/ 'p1 are beginning merge-points, and p2/ 'p2 are ending merge-points; C
is the condition set that determines choices for the two processes. 

15 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

16/27 

t1

t2

p1

p2

p0

t2’

p1’

p2’

PN PN’ PN”

t3

p3

t1

t2

p1”

p2

p0

t3

p3

t2’

C

Figure 11: Conditional merge. 

Figure 11 is an example of conditional merge, Merge_Cond (PN, 'PN , p1, 'p1 ,p2, 'p2 , C). In 

the merged workflow, p1 and 'p1 have been merged into a new place called "p1 that contains 

conditions for choosing between tasks t2 and 't2 . Because the transitions after place 'p2 are not 

included in the result, the conditions in 'p2 are useless in the merged workflow. Therefore, the 

merge-point of the secondary merging workflow is removed. In the real world, conditional merges 

can be used to model the combination of two processes that requires satisfying certain criteria, 

such as C::=  if (order_value > discount_qualify)— to check whether a customer’s order is big 

enough to qualify for a discount. If it qualifies then one branch out of the condition place will be 

taken, and otherwise, the other one will be taken.  

Definition 12 (Iterative merge) 

When two workflows PN and 'PN merge at merge-points (p1/ 'p2 , p2/ 'p1 ) 7 , if p1 and 

'p2 construct an OR-join and p2 and 'p1 construct an OR-split, it is an iterative merge, i.e., PN 

and 'PN have been connected at point p1/ 'p2 and p2/ 'p1 with additional conditions.  A new 

place will be created in an iterative merge. 

Iterative merge (refer to Figure 12) algorithm Merge_Iterative (PN, 'PN ,p1, 'p2 ,p2, 'p1 , C) is 

defined in the following steps: 

1. Remove the arcs before 'p1 , and connect p2 to 'p1 •

16 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

17/27 

2. Remove the arcs after 'p2 , and connect • 'p2 to p1 

3. Modify the conditions in p2 according to new choice conditions C and p2 

 

t1

t2

p1

p2

p0

t4

p1’

p2’

PN PN’ PN”

t3

p3

t1

t2

p1

P2”

p0

t3

p3

t4

C

Figure 12: Iterative merge. 

Figure 12 is an example of iterative merge, Merge_Iterative (PN, 'PN , p1, 'p2 ,p2, 'p1 , C). In 

the merged workflow, "p2 is a new place that contains conditions for choosing between tasks t3 

and t4. To illustrate the need for an iterative merge, suppose PN is a purchase request process with 

the following steps: t1 is filling the form (by an employee); t2 is checking the form (by a secretary); 

t3 is approving the purchase request (by a manager). Sometimes, however, after task t2, the form 

may need to be modified (if it is incorrect or some information is missing). Therefore, another step, 

in this case task t4, modifying the form, (by the employee) may be added as shown in Figure 12. In 

general, t4 could be replaced by multiple tasks or a sub-workflow.  This shows how a workflow 

may be modified dynamically, while still maintaining its correctness.   

Definition 13 (Complex merge) 

When two merging workflow PN and 'PN merge at more than two pairs of merge-points, it is 

called a complex merge. 

7 p1/ 'p2 and p2 / 'p1 are merge-points: p1and 'p1 are beginning merge-points, and p2 and 'p2 are ending 
merge-points; C is the condition set that determines the ending conditions of the iterative processes. 

Legend: 
t1: fill order form
t2: check form 
t3: approve form 
t4: modify form  

17 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

18/27 

A complex merge may involve multiple merge patterns.  For example, Figure 13 shows that in a 

merge process, company A (primary workflow) has merged company B’s “check availability 

process” sequentially, and it has also merged company B’s “check stock” in parallel.  

Create 
Order

Create 
Delivery

Company 
A

Company
B

Company
A After

Credit 
OK

Check 
Credit

New 
sales

Order 
created

Create 
Order

Create 
Delivery

Stock 
enough

Check 
Stock

New 
sales

Order 
created

delivery 
created

delivery 
created

payment
received

Check 
payment

Stock 
Available

Check 
availability

Create 
Order

Create 
Delivery

Credit 
OK

Check 
Credit

New 
sales

Order 
created

Stock 
enough

Check 
Stock

Order 
created

delivery 
created

payment
received

Check 
payment

within
due date

Check 
availability

Figure 13: A complex merge scenario. 

A complex merge could be expressed formally with the following merge function: 

Merge_par( Merge_Seq (PNA, PNB, ‘new sales’, ‘new sales’ , ‘credit OK’, ‘within due 

date’),PNB, ‘order created’, ‘order created’, ‘payment received’, ‘stock enough’). 

This shows how the primitive merges discussed above can be combined to create more complex 

merges.  

4. Workflow-merge Analysis 

18 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

19/27 

Without properly chosen merge-points and merge function, two merging workflows cannot yield a 

sound result, even a syntactically sound one.  Figure 14, Merge_Seq (PN, 'PN ,p4, 'p6 ,p7, 'p1 ),

gives an example of an unsound merged workflow because node p5, after the merge, becomes 

dangling, and the whole workflow, "PN , is ill structured.  This problem leads us to investigating 

the situations where a sound merge is not possible.  In this section, we introduce the notions of 

sound and unsound merges, and analyze a workflow-merge at the structural level of a process.   

P0’

T1’

P1’

t6

p4 p5

p7

T1’

P0’

p7

P1

T2

P2

T3

t1

P0

p5

P1

T2

P2

T3

t1

P0

PN PN’ PN”

Figure 14: An unsound merged workflow. 

4. 1 Sound Merge vs. Unsound Merge 

If a workflow-merge yields a correct result, we call it a sound merge.  On the other hand, in some 

situations, two workflows cannot be merged correctly, and we call such merges unsound.  Figure 

14, shows an unsound merge.  Naturally, it is desirable to find rules that can ensure a sound merge.  

Therefore, we need some rules to distinguish between sound and unsound merges.  

4.2 Process Structure Level of Analysis 

From the process structure level of analysis, we obtained two theorems that can provide necessary 

conditions for sound merges.  A process structural level of analysis studies a merge by treating the 

process between merge-points as a whole entity.  We call the entity a merge region. 

Definition 14 (Merge region)  

19 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

20/27 

When two workflow PN and 'PN merge at merge-points (p1/ 'p1 , p2/ 'p2 ), merge (PN, 

'PN ,p1, 'p1 ,p2, 'p2 )8, the sub-process between p1 and p2 or 'p1 and 'p2 is called merge region.  

Merge regions for merging workflows can be obtained through the following algorithm: 

1. Remove • p1 and p2 • (or • 'p1 and 'p2 • )

2. The process that contains merge-points p1 and p2 (or 'p1 and 'p2 ) is the merge 

region for the merging workflow PN (or 'PN )

For example, the corresponding merge regions for PN and 'PN , shown in Figure 15, are MR and 

'MR respectively. It is easy to see that both these regions are structured, because they conform to 

the definition of a structured WF-net (see Definition 3). 

t2’

p1’

p2’

PN PN’ MR

t2

t2

p2

p4

p1

t4

p6

t3

p3

p5

t1

p0

t2’

p1’

p2’

t2

t2

p2

p4

p1

t4

p6

t3

p3

p5

MR’

 

Figure 15: Merge regions (MR and MR' for PN and PN') 

Theorem 1  If the merge regions of two merging workflows are structured WF-nets, the merged 

workflow constructed with sequential, parallel, conditional, and iterative merge functions is 

structured too. 

Proof: 

The proof is by construction and relies on Definition 3 where different forms of structured 

workflows are discussed.  All the merging functions described above are based on combining 

 
8 p1/ 'p1 and p2/ 'p2 are merge-points: p1/ 'p1 are beginning merge-points, and p2/ 'p2 are ending merge-points. 

20 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

21/27 

structured workflows to create new workflows that are also structured.  Thus, in performing a 

merge, we are taking a structured region from a workflow, and replacing it with another structured 

region.  The proof follows from a case by case analysis.   

Case (a): concatenate, insert, replace. In this case two workflows are merged by concatenation or 

insertion, or a structured workflow is replaced by another structured workflow.  Since each 

workflow is structured, the resulting workflow is also structured (by Definition 3(2)). 

Case (b): parallel merge. When two structured workflows are combined in parallel using 

AND-split and AND-join, the result workflow is also structured (by Definition 3(3)).  

Case (c): conditional merge. When two structured workflows are combined in parallel using 

OR-split and OR-join, the result workflow is also structured (by Definition 3(4)).  

Case (d): iterative merge. This is a variant of case (c), and here the OR-JOIN occurs first and it is 

followed by a matching OR-SPLIT.  Since the two component workflows that are merged are 

structured, it follow that the resulting workflow is structured (by Definition 3(5)).  

Thus, in all cases the workflow that results from the four types of merges is structured if the merge 

regions themselves are structured. ■

As discussed earlier, more complex merges can be created by combining these primitive merges as 

building blocks.  

Theorem 2 If the merge regions of two merging workflows are structured, the merged workflow 

constructed with sequential, parallel, conditional, and iterative merge functions is well-behaved. 

Proof: 

This follows from Theorem 1 and Definition 4, which states that every structured workflow is 

well-behaved.  Thus, we can conclude that Theorem 2 is true. ■

21 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

22/27 

t2’

p1’

t1

t2

p1

p2

p0

p2’

PN PN’ PN”

p5

t2’

p1’

t1

t2

p1

p2

p0

t4

p5

t3

p3

p4

t1

t2

p1

p2

p0

t4

p5

t2’

p1’

p4

PN”’

Figure 16: Example of choosing a proper merge-point. 

By choosing a proper merge-point, we can change an unsound merge to a sound one.  In Figure 16, 

Merge_Seq (PN, 'PN , p3, 'p1 ,p5, 'p2 ) result in "PN , which is not well-structured.  If we 

change a merge-point of PN from p5 to p4—thus, Merge_Seq (PN, 'PN , p3, 'p1 ,p4, 'p2 ), the 

new result "'PN is well-structured and sound.  Thus, unless two merging workflows have an 

inherent conflict in the sequencing of their activities, in most of the cases, one can achieve a sound 

merge by choosing merging points properly.  In the next section, we will discuss the issue of 

suitable merge-point detection.   

5. Discussion 

We have defined workflow-merge concepts, categories of merges, and studied how routing and 

process structures affect a workflow-merge. Here, we will briefly discuss merge-point detection 

methods and other issues such as conflicts, semantic ambiguities, and impact of merges on 

organizational roles and resources.  

5.1 Merge-point Detection 

22 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

23/27 

Order

packing

Get Delivery 
Notes

Delivery

print Delivery 
Note

Order

packing

Delivery 

Company 
A

Company
B

Company
A After

print Delivery
Note

Get Delivery
Notes

Delivery 
Notes

Redundant 
processes

Order

packing

Get Delivery 
Notes

Delivery

print Delivery 
Note

Order

packing

Delivery 

Company 
A

Company
B

Company
A After

print Delivery
Note

Get Delivery
Notes

Delivery 
Notes

Redundant 
processes

Figure 17: An example of merge point detection. 

Automatically finding merge-points and applying merge functions can greatly simplify a 

workflow-merge task.  The key step is to find out valid merge-points.  The process is called 

merge-point detection. Our hypothesis is that merge-points could be detected through certain 

means such as reasoning about process dependencies.  Because both merge-points’ position and 

number of merge-points affects a merge result, a merge-point detection function can be evaluated 

by using completeness that specifies if the function has identified all the merge-points accurately 

and whether there are any invalid merge-points.   

In Figure 17, delivery notes are generated in the step “print delivery note” and are fed into the step 

“get delivery notes”, so “get delivery note” is dependent on “print delivery notes”.  Hence, we 

know where the merge points are.  However, merging real workflows is much more complex than 

described here. Developing algorithms for automatic merge-point detection is a topic for future 

research. 

5.2 Other Workflow-merge Issues 

Workflow-merges are normally more complicated than the one described above.  Ambiguities and 

conflicts cause errors.  Multiple merge-points and constraints from organizational changes 

increase the complexity of a merge.  These issues arise in real-world merge scenarios and should 

be addressed in a computational workflow-merge model.  In this section, we will raise these issues, 

23 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

24/27 

but will not attempt to solve them.  Moreover, the issues listed here are not an exhaustive list; we 

expect that other issues will appear as more research is conducted. 

First, often merging workflows have conflicting dependencies between the same pair of tasks.  For 

example, Figure 19 shows two such processes in two companies.  Notice how the order of two 

processes, Packing and Delivery, in the two companies is reversed.  Therefore, this conflict must 

be resolved manually before performing a merge. 

Order

packing

Get Delivery 
Note

packing

Delivery 
Note

Company 
A

Company
B

Figure 18: Merge conflicts. 

Second, different companies may name workflow processes in their own way, so semantic 

meanings of the steps in the merging workflows should be clarified to avoid ambiguities.  For 

example, a general term “packing” can represent packing for a particular part on a production line.  

It can also represent packing finished products into a container before shipment.  If the difference 

in meaning is not noticed before the merge, the result will be wrong.  We can either manually 

check the semantics or let merging workflows follow certain standards, such as RosettaNet [17, 

18].  Moreover, two organizations may also use different workflow systems, which have very 

different ways of modeling business processes.  In such cases, it becomes even harder to merge the 

two workflows unless one is converted into the modeling scheme of the other, or both are 

converted into a common scheme.   

Next, the analytical method adopted in this research demands validation and evaluation in a real 

world application setting or in controlled simulation experiments. As discussed earlier, how to 

further generalize the merge concepts and algorithms may also be tested in such real applications. 

In such a setting, the interaction of factors such as throughput, reliability, flexibility and quality 

can be studied.  For example, throughput of a merged workflow relies on its flexibility, quality and 

reliability. Those problems are often hard to study with analytical models, while they can be 

tackled better by application or simulation. In addition to validating the research, such application 

24 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

25/27 

and experiments may also provide us with valuable insights into real problems that are 

encountered when workflows merge.   

Last, but not least, workflow splitting is another interesting topic of study.  A workflow split is the 

reverse of a workflow-merge.  Business units often split, or outsource parts of their processes to 

other companies.  In such situations, it is important to develop algorithms to split a process into 

two or more separate sub-processes.  A process split requires finding split points (as opposed to 

merge-points) and ensuring that the splitting is correct.  We expect that the research on the 

workflow split can benefit from some of our present results for workflow-merge. 

6. Conclusion 

This paper discussed fundamental concepts, models, and methods of various types of 

workflow-merge operations.  We formally defined what a workflow-merge is and we also 

proposed merge methods.  By the pattern of a merge result, we grouped merges in four categories: 

sequential, parallel, conditional, and iterative.  More importantly, we showed the conditions under 

which a merge will yield a sound result.  We believe this framework is very promising for 

developing applications to serve the business world.  Potential benefits lie in: (1) performing 

simulations that can help decision makers visualize merges for business processes, (2) creating 

virtual enterprises that make flexible business operations possible, and (3) planning merges that 

allow software agents share process knowledge. It also offers a systematic approach for building 

complex workflows from simple ones by incorporating changes and new sub-processes into them 

in a correct way.  Thus, this methodology also plays a useful role in workflow evolution.    

Decision makers can gain valuable experience through simulating their upcoming 

workflow-merge on a computer with workflow-merge applications.  The simulation results can 

provide crucial information to help them modify their merge plan and optimize working processes.   

Such an effort will eventually help to cut costs, increase throughput, and create more value.  

The research on workflow-merge also promises more flexible business models, such as virtual 

enterprises, to address dynamic business environments.  A virtual enterprise is a business model 

that dynamically organizes small companies into its business processes.  A virtual enterprise can 

provide more services in a flexible manner and lead to more efficiencies as compared to a single 

enterprise providing multiple services.  Moreover, such coalitions can disband when they are no 

25 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

26/27 

longer effective [16].  At present, coalition formation for virtual organizations is limited.  In the 

real world, organizations define norms to regulate the behaviors to reach common goals.  We 

anticipate that automation of coalition formation by using workflow-merge technologies will save 

both time and labor.  In complex settings, workflow-merge techniques may also be more effective 

at finding better coalitions than other technologies or manual methods.  

In a multi-agent environment, if a software agent’s plan (process) is incomplete, other agents may 

be able to help with the other parts of the solution.  Then the problem is how to assimilate such 

piecemeal solutions into the existing processes, which is equivalent to merging several plans[8].  

As defining workflows and plans are both based on process specifications and can use similar 

process representations, we assume workflow-merge technologies can shed some light on plan 

merging too. 

In summary, research on workflow-merge offers a new way to connect business processes.  This 

paper has highlighted the importance of the workflow-merge problem and also raised many 

unanswered questions (such as resolution of merge conflicts, semantic considerations, workflow 

split, etc.) for further studies.  

7. References 

1. Aalst, W.M.P.v.d. The Application of Petri Nets to Workflow Management. The Journal of 
Circuits, Systems and Computers, 8 (1). 21-66. 

2. Aalst, W.M.P.v.d., Generic Workflow Models: How to Handle Dynamic Change and 
Capture Management Information? in Conference on Cooperative Information Systems,
(1999), 115-126. 

3. Aalst, W.M.P.v.d., Hofstede, A.H.M.t., Kiepuszewski, B. and Barros, A.P. Workflow 
Patterns, Eindhoven University of Technology, Eindhoven, 2000, WP 47. 

4. Aalst, W.M.P.v.d. and Kumar, A. XML Based Schema Definition for Support of 
Inter-organizational Workflow. Information Systems Research, 14 (1). 23-47. 

5. Dan, A., Dias, D.M., Kearney, R., Lau, T.C., Nguyen, T.N., Parr, F.N., Sachs, M.W. and 
Shaikh, H.H. Business-to-business integration with tpaML and a business-to-business 
protocol framework. IBM Systems Journal, 40 (1). 68-90. 

6. Dumas, M. and Hofstede, A.H.M.t., UML Activity Diagrams as a Workflow Specification 
Language. in International Conference on the Unified Modeling Language (UML),
(Toronto, Canada, 2001), Springer Verlag. 

7. Dussart, A., Aubert, B.A. and Patry, M. An Evaluation of Inter-Organizational Workflow 
Modeling Formalisms. Journal of Database Management, 15 (2). 74-104. 

8. Foulser, D.E., Li, M. and Yang, Q. Theory and Algorithms for Plan Merging. Artificial 
Intelligence, 57 (2-3). 143-181. 

9. Gronemann, B., Joeris, G., Scheil, S., Steinfort, M. and Wache, H., Supporting 
Cross-Organizational Engineering Processes by Distributed Collaborative Workflow 

26 of 27

Monday , January  31, 2005

Elsevier



Rev
ie

w
 C

op
y

27/27 

Management - The MOKASSIN Approach. in 2nd Symposium on Concurrent 
Mulitdisciplinary Engineering (CME'99) / 3rd Int. Conf. on Global Engineering 
Networking (GEN'99), (Bremen, Germany, 1999). 

10. Hewlett-Packard and Compaq. Hewlett-Packard and Compaq Agree to Merge, Creating 
$87 Billion Global Technology Leader, 2001. 

11. Hoffner, Y., Ludwig, H., Gülcü, C. and Grefen, P., An Architecture for 
Cross-Organizational Business Processes. in Second International Workshop on Advance 
Issues of E-Commerce and Web-Based Information Systems (WECWIS 2000), (Milpitas, 
California, 2000). 

12. Joeris, G. and Herzog, O., Managing Evolving Workflow Specifications. in the 3 rd Int. 
IFCIS Conf. on Cooperative Information Systems (CoopIS'98), (New York, 1998), 
310-319. 

13. Kiepuszewski, B., Hofstede, A.H.M.t. and Bussler, C., On structured workflow modelling. 
in Int. Conference on Advanced Information Systems Engineering (CAiSE), (Stockholm, 
2000), Springer Verlag. 

14. Klein, M. and Dellarocas, C. A Knowledge-based Approach to Handling Exceptions in 
Workflow Systems. Computer Supported Cooperative Work, 9. 399-412. 

15. Lazcano, A., Alonso, G., Schuldt, H. and Schuler, C. The WISE approach to electronic 
commerce. International Journal of Computer Systems Science and Engineering, 15 (5). 
345-357. 

16. Luck, M., McBurney, P. and Preist, C. Agent Technology: Enabling Next Generation 
Computing - A Roadmap for Agent-Based Computing, AgentLink, 2003. 

17. RosettaNet. http://www.rosettanet.org, 2003.
18. Sayal, M., Casati, F., Dayal, U. and Shan, M.-C. Integrating Workflow Management 

Systems with Business- to-Business Interaction Standards, 2001. 
19. Strong, D.M. and Miller, S.M. Exceptions and exception handling in computerized 

information processes. ACM Transactions on Information Systems (TOIS), 13 (2). 206 - 
233. 

 

27 of 27

Monday , January  31, 2005

Elsevier


