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ABSTRACT 

To develop a general mathematical model for social networks is 

one of the fundamental tasks currently on demand within social 

network research. Ignoring the strength of the relationships, 

existing social network models simply use a Boolean value to 

describe the existence of relationships between peers. This 

shortage can be overcome by importing repeated social 

interactions into the model and building the model on a 

path-based link analysis. In doing this, the authors developed a 

new semi-random graph model, which offers a general description 

of the evolution of social networks, with substantial power, to the 

well accepted hypothesis of preferential attachment in social 

networks. In addition to these theoretical results, the authors 

created a quantitative description of the bonding role of social 

relationship in networks, a parameter within the model denoted as  . Empirical results indicate that the presented model has a 

degree of distribution in line with those of real-world networks, 

which is superior to those of major existing models, and the 

parameter  , which essentially represents the cohesiveness of 

social networks, makes an ideal indicator for the cohesion in 

social networks. 

Categories and Subject Descriptors 

J.4 SOCIAL AND BEHAVIORAL SCIENCES 

General Terms 

Measurement, Theory 

Keywords 
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1. INTRODUCTION 
Our society is now in the era of digitally connected village 

when people are increasingly sharing their personal interests, 

opinions, contacts, job information and other information online. 

People are influenced in turn by the relationships developed from 

their sharing. The emerging information technologies under the 

rubrics of Web 2.0 testify the power of online social networking. 

According to Forrester‟s recent report, “The Future of the Social 
Web,” the first objective in the development of an online social 
network is to exploit the social relationships among users, 

followed by developing social functionality to help users interact 

with their peers (Owyang et.al, 2009).  Because social network 

structures are important to online commerce, it is important to 

understand network formation process (Jackson and Rogers, 

2007). In online social networks, users are more concerned about 

online privacy. For example, Facebook users often hide their 

updates (Armano, 2009). This phenomenon does not actually 

mean that users are becoming less social, but it is likely that some 

users behave unfriendly toward strangers online. Will the 

friendliness between peers affect network growth?  

By modeling social network participants as nodes and their 

relationships as ties with a network graph, this study attempts to 

answer two questions: (1) How does a social network grow from 

repeated interactions between peers and (2) how does a member‟s 
relationship with his/her peers in the network affect the growth of 

a network? Supported by large-scale datasets, the authors propose 

a general network-growth model which offers a good indicator for 

the cohesion in social networks. 

2. THEORETICAL BACKGROUND 
A social network can be regarded as a set of actors and the 

links among them. From the perspective of graph theory, a social 

network can be viewed as a graph, with its actors and links being 

nodes and edges of the graph, respectively. Both the nodes and 

edges can be assigned a specific meaning in various situations. 

For example, in an academic collaboration network, researchers 

are nodes and collaborations among them are edges, or journal 

papers could be viewed as nodes and the citation relationship 

between two papers are edges. In the World Wide Web, nodes are 

billions of web pages and edges are the hyperlinks between two 

web pages.  

Developing a quantitative models to explain the formation of 

network is a fundamental task in social network research. One of 

the earliest investigations was conducted by Rapport et al. 

(Solomonoff and Rapport, 1951; Rapport, 1957) who proposed a 

random network model. Based on that, more rigorous studies were 

carried out by Erdos and Renyi several years later (1959; 1960; 
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1961). Since Erdos and Renyi named their random network model 

“random graph model,” the name was continually referred to by 
succeeding researches (Karonski, 1982; Molloy and Reed, 1995; 

Janson et.al., 1999; Bollobas, 2001).  

One advantage of random graph models is that they 

reproduce the small-world effect well (Watts and Strogatz, 1998), 

i.e. the distance between two nodes through the network is  nO log~ . However, random graph models have their 

weakness. For example, other network properties derived from 

random graph models do not match those of real-world networks, 

such as the scale-free distribution of degrees (Barabasi and Albert, 

1999; Strogatz, 2001; Dorogovtsev and Mendes, 2002). In 

addition, they assume entirely random mixing of patterns, and 

there is no correlation between degrees of adjacent nodes, no 

community structure, and navigation is impossible in a random 

graph using local algorithms (Newman, 2003).
 

While random graph models make a strong assumption of 

social networks, i.e., the randomness in the establishment of links 

among nodes, the differences between theoretical random 

networks and real-world networks suggest that they missed 

something important in modeling social networks. Many 

alternative network growth models have been proposed (Price, 

1965; Barabasi and Albert, 1999; Krapivsky and Redner, 2001; 

Pennock et. al., 2002; Jackson and Rogers, 2007). Network 

growth models are different from random graph models. They 

assume that the growth of a network is by gradual additions of 

nodes and edges in some manner. Growth models argue that it is 

the growth process that leads to the structural features of real 

networks. 

In the literature, network growth models share three basic 

assumptions: (1) the total number of nodes in a network increases 

as new nodes are added, (2) the formation of new links is a 

uniform distribution, and (3) preferential attachment is the 

mechanisms of new link formation. Among them, assumption 3 is 

of most importance. Preferential attachment means that the 

probability a node acquires a new link is proportional to the links 

the node already has (Barabasi and Albert, 1999; Price, 1965) 

After Barabasi and Albert‟s study (the BA model hereafter), many 
researchers have attempted to generalize their model (Krapivsky 

and Redner, 2001; Pennock et. al., 2002). Preferential attachment 

predicts network properties that are supported by many real-world 

networks.  

Taking into consideration both randomness and preferential 

attachment in link formation, Jackson and Rogers (2007) (the JR 

model hereafter) offered a new model which is consistent with the 

small-world effect and the scale-free degree distribution in large 

socially generated networks.  

Both BA models and the JR model rely on the assumption of 

preferential attachment. However, these models do not offer an 

explanation of why links are formed in this way. Because the 

underlying sociological reason of link formation is important to 

many researches, the lack of an in-depth explanation of why 

preferential attachment occurs is a major drawback of the existing 

network growth models. Furthermore, when extant network 

growth models use an adjacency matrix as a mathematical 

description of social networks, they treat links as binary. Such 

practice ignores another important nature of social relations, that 

social relationships are usually built on and maintained through 

repeated interactions rather than one-shot action. Therefore, it is 

of great theoretical importance to investigate beyond link 

formation and look into the link enhancement.  

The main social network growth models, their assumptions, 

and model characteristics can be summarized in Table 1, and key 

terminologies appeared in the literature is listed in Table 2. As 

discussed above, extant major models suffer the weakness of, 

dichotomizing link strength in network, ignoring the theoretical 

explanation of link formation with a focus on the degree 

distribution, and relying on an imperfect assumption of 

preferential attachment. Although random graphs do not exhibit 

the latter two shortcomings, they are criticized for being „too 
random to be true.‟ These shortcomings have motivated 
researchers to develop new semi-random graph models.  

Table 1． Important social network models 

Social 

Network 

Models 

Sources 

Modeling 

Link 

Strength 

Model 

Level 

Random 

graph 

Erdos & Renyi, 1959 No  Links  

Price‟s   
Model 

Price, 1965 No Degree 

distribution  

BA 

model 

Barabasi & Albert, 

1999  

No  Degree 

distribution 

Generaliz

ed BA 

models 

Dorogovtsev et. al., 

1999 

No Degree 

distribution 

Krapivsky & Redner, 

2001 

No Degree 

distribution 

Pennock et. al., 2002  No Degree 

distribution 

JR model 
Jackson & Rogers, 

2007  

No Degree 

distribution 

 

Table 2． Key terminologies in the literature 

Terminology Definition 

Degree The degree of a node in a 

network (sometimes referred to 

incorrectly as the connectivity) 

is the number of connections or 

edges the node has to other 

nodes. If a network is directed, 

meaning that edges point in 

one direction from one node to 

another node, then nodes have 

two different degrees, the 

in-degree, which is the number 

of incoming edges, and the 

out-degree, which is the 

number of outgoing edges. 
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Degree distribution The degree distribution P(k) of 

a network is then defined to be 

the fraction of nodes in the 

network with degree k. Thus if 

there are n nodes in total in a 

network and    of them have 

degree k, we have          . 

Accumulated degree 

distribution 

The degree distribution P(k) of 

a network is then defined to be 

the fraction of nodes in the 

network with degree no bigger 

than k. Thus if there are n 

nodes in total in a network and    of them have degree k, we 

have              . 

Random graph model A random graph is obtained by 

starting with a set of n vertices 

and adding edges between 

them at random. Different 

random graph models produce 

different probability 

distributions on graphs. 

Preferential attachment A preferential attachment 

process is any of a class of 

processes in which some 

quantity, typically some form 

of wealth or credit, is 

distributed among a number of 

individuals or objects 

according to how much they 

already have, so that those who 

are already wealthy receive 

more than those who are not. 

"Preferential attachment" is 

only the most recent of many 

names that have been given to 

such processes. They are also 

referred to under the names 

"Yule process", "cumulative 

advantage", "the rich get 

richer", and, less correctly, the 

"Matthew effect". 

 

We propose a model that offers a micro level explanation of 

link formation, taking into consideration both link formation and 

link enhancement. We also compare our model with existing 

models on various performance measures.  

3. MODEL DEVELOPMENT 
The core logic of our model follows two fundamental 

observations of social networks:  friendship between peers 

increases as more social interactions occur, and stronger 

friendship leads to a stronger peer influence. In modeling 

language, these principles can be stated as (1) tie strength between 

any two adjacent nodes increases as news links forms between the 

two nodes, and (2) the influence of one node on another increases 

as the tie strength increases. The rest of the section describes how 

the model is developed based on the two fundamental principles. 

3.1 Description of Networks 
In the proposed model, a social network is viewed as a 

directed graph, where nodes are actors in the social network and 

edges are links between actors. We assume that all nodes are 

added to the graph one by one and each node is assigned an index             representing its time of entry. N is the total 

number of nodes. In other words, at time t, there are t nodes in the 

graph. We will then define a few important concepts, including 

linkage coefficient, linkage influence and path influence. All 

variables are included in Table 3. 

Table 3． Variables in the model 

Notation Name Discription 

N Size of the network The total number of 

nodes in the 

network 

t Time step At time step t, there 

are t nodes in the 

network, one of 

which is new. 

i, j, k Node index Node i enters the 

network at time t.     Linkage coefficient The total times 

linkage occurs 

between i and j    Initial linkage 

coefficient 

   is introduced to 

represent the 

possibility of 

linkage between 

two nodes even 

when the nodes 

have not 

established a link 

yet.   Linkage influence        is the 

influence node i has 

on node j as a result 

of the link from j to 

i.   Linkage influence 

scalar 
      Bonding index The linkage 

influence        
when       

P Path A path        from 

node   to   is 

defined as a 

sequence of distinct 

nodes               
beginning with   

and ending with    
T Set of paths T      is the set of 

all paths from node   to node  . 
R Path influence      is the product 

of all the linkage 

influences along  . 
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  Network influence        is the sum of 

all the path 

influence from 

node   to node  . 
m Average links The average 

number of links a 

node in the network 

has 

 

 

(a) Linkage Coefficient  

A graph with   nodes can be expressed by a     

matrix          , where     is the linkage coefficient between 

nodes   and . Linkage coefficient     refers to how many times 

link occurs between nodes   and . Linkage coefficient marks the 

first difference from other models which considered the edge 

between two nodes to be binary. In the current model, a larger     
means that nodes   and   have a stronger linkage. 

An initial linkage coefficient    is introduced to represent 

the possibility of linkage between two nodes even when the nodes 

have not established a link yet. The introduction of    ensures 

that a node has a probability to establish a link with another nodes 

when it is added to a graph. It is reasonable to assume that the 

initial linkage coefficient is smaller than any existing link 

coefficient; therefore,       .  

(b) Linkage Influence and Path Influence 

For any given nodes   and , the linkage influence from   to   is 

defined as a function of its linkage coefficient    , i.e.,                                           (1) 

where    is the initial linkage coefficient defined above and is a 

scalar. When there is exactly one link from node   to node  , 
i.e.      , then the corresponding linkage influence is              , which is independent of    and   . Define           , then  refers to the linkage influence from one node to 

another when there is just one link. In networks with a large  , 

existing links can effectively help nodes gain a new link or 

enhance the existing linkage coefficient. In this sense, we call  as 

the bonding index of the network. Note that, for any models that 

use binary linkage coefficients, the definition of   holds valid and 

it represents the linkage influence with one link between two 

nodes. 

A path        from node   to   is defined as a sequence of 

distinct nodes               beginning with   and ending with  ,  and the path influence      of path                      
is defined as the product of all the linkage influences along this 

path, i.e.,                                            

  (2) 

Where       and        . The network influence  , or 

influence for short, from node   to node   is defined as the sum 

of the path influence of all the paths from node   to node  , which 

is,  

                                            

  (3) 

Where        is the set of all the paths from node   to node  .  

3.2 Establishment of Links 
A social network evolutes when new nodes join the network 

or when new links are established. The establishment of links is of 

much more importance. In this model, we hold that a link is 

established through a probabilistic process. We also hold that 

node   is added to the network at time  . 
We define     as the probability that node  establishes a 

new link to node   at time    . Between two nodes   to , a link 

might be established under the influence from   to   . For 

simplicity, suppose that        is proportional to    , i.e.,                                    

    (4) 

Meanwhile, node   could possibly establish a link with any 

one of the other   nodes. The probability     that node   
will establish a link with some node   is inversely 

proportion to the total number of nodes  , i.e.,                                        (5) 

From (4) (5) , we can have:                                         (6) 

where     is a scalar.  

3.3 Explanation of Preferential Attachment 
Most existing models assume the preferential attachment in 

the formation of new links (Barabasi and Albert, 1999; Krapivsky 

and Redner, 2001; Pennock et. al., 2002; Jackson and Rogers, 

2007). Preferential attachment means that the probability p of a 

node i establishing a link with a newly added node is proportional 

to   , the degree of node  . Our  model explains the preferential 

attachment as follows. 

Without losing generality, we suppose that each new node 

forms   links to old nodes when it joins the network, where   

is the average number of links a node in the network has. 

At time    , the new node     forms   links to 

existing nodes. According to (6), the probability that node     

forms a link to node   is                                       (7) 

Where          is defined by (3) and (4). For simplicity, 

we consider only the paths from     to   no longer than 2, and 

we have                                                               (8) 

Note that          holds for           , since node t+1 has 

no links to any existing node when it is first enters the network, 

and the in-degree of node i is             at time t+1. By 

reorganization of (8) we have                                     (9) 

 

 

Based on (7) and (9), the probability of node     

establishing a new link from     is                                          (10) 
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The first component of equation (10) is uniform to all nodes. 

It can be regarded as the uniformity in the formation of new links. 

The second component, 
              , is proportional to   , the 

in-degree of node  , which is exactly what preferential attachment 

implies. In summary, (10) is a more general expression of link 

formation by considering both the uniformity and preferential 

attachment process. 

It can be seen that assumption (2) and (3) of existing models 

listed in Table 1 are subsumed in our model. Based on this micro 

analysis of links, we can explain preferential attachment. Next we 

examine the degree distribution implied by our model. 

4. DEGREE DISTRIBUTION ANALYSIS 
Analysis of network evolution, especially when the structure 

of the network plays an important role in the evolution, is 

complicated. Here the authors use “mean-field” approximation to 
the evolution of social networks. On average, the earlier a node 

joins a network, the larger is its expected in-degree.  

If node     establishes a linkage to node       , the 

in-degree of  , namely   , increases by1; otherwise    remains 

the same. That is to say, the expectation of the increment of    is                             . Since    is related to time  , we use       to represent the in-degree of node   at time  , 
and thus at    ,                                                     (1

1) 

Denote        and             , then (11) can be 

rewritten as 

                                                                     

(12) 

By solving      , we get the degree distribution function as 

follows:  

-                      
                       (13) 

Where F(d) is the proportion of nodes with an in-degree no 

larger than  . Please refer to Appendix A for detailed deduction 

process.  

Of the   links node     forms,   links are independent of 

the existing links, while    links are directly related to the 

in-degree of the old nodes, which means these    links are 

formed owing to some existing paths. In this sense, we use   to 

represent the “random connectivity” of the network, and    the 

“transitive connectivity”. So “the randomness of the network” can 
be defined as      , which means the ratio of links formed by 

random connectivity and transitive connectivity. We can rewrite 

(13) as follows:                                        (14) 

From (14), it is clear that if the randomness of the network is 

defined as proportional to random connectivity and inversely 

proportional to transitive connectivity, the Degree distribution 

showed by (13) is to the same as the result of Jackson & 

Rogers(2007). The difference is that the new model is based on 

links between nodes, while the JR model (Jackson and Rogers, 

2007) is based on the assumption of preferential attachment. 

Given the equivalence of two models, it is reasonable to conclude 

that the new model is a more general mode being free from the 

assumption of preferential attachment and instead offers an 

in-depth explanation to preferential attachment.  

5. EMPRICAL DATA ANALYSIS 
To empirically test the applicability of our model, we fit this 

model to real-world networks. The datasets used are author 

networks in five academic fields including business, management, 

management science & operation research, information systems, 

and information science & library science. The data were 

collected from Web of Knowledge (WOK), the world‟s largest 
organization which stores journal and paper information in 

various disciplines. We collected the co-authorship of papers 

published in these fields over the past ten years from 1999 to 

2008. We then obtained the degree distribution and average 

degree m of each network, and fit the degree distribution 

function of expression 11, in which    is set to 0 for the five 

networks respectively. The results are shown in Table 3. 

Table 4. Results of fitting degree distribution to real-world 

networks 

Networks Nodes Avg. 

in-degree 
m  

Bonding 

Index   

Model 

fit 
2R  

Business 27724 3.311 0.333 0.985 

Management 36394 3.230 0.262 0.988 

Management 

Science and 

Operation 

Research 

44662 4.085 0.213 0.992 

Information 

Systems 
72470 5.251 0.114 0.995 

Information 

Science and 

Library Science 

23161 3.666 0.254 0.976 

Table 4 shows that for all five networks, the fit value 

measured by    is excellent, ranging from 0.976 to 0.995, 

indicating the degree distribution function in expression 13 fits 

these real networks well.  

We next compared the degree distribution predicted by our 

model with that of five major models summarize in Table 1. 

Please refer to Appendix B for degree distribution functions of 

these models.  

Table 5. Comparison of degree distributions of five major 

models 

Networks Price 

Model 

BA 

Model 

Generali

zed BA 

Model 

JR 

Model 

Our 

Model 

Business 0.741 0.846 0.974 0.985 0.985 

Management 0.789 0.857 0.969 0.988 0.988 

Management 

Science and 

Operation 

Research 

0.910 0.821 0.962 0.992 0.992 

Information 

Systems 
0.926 0.711 0.909 0.995 0.995 

Information 

Science and 

Library 

0.787 0.773 0.938 0.976 0.976 
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Science 

Note: Random graph model cannot estimate degree distribution 

 

Among them, the random graph model failed to produce any 

convergent result, hence not reported here . From these results, it 

is clear that our model excels the Price model and BA models. It 

is equivalent to the JR models. However, our model is based on 

the assumption of preferential attachment, but based on a more 

general assumption of influence.  

We also investigated the impact of bonding index on social 

networks. After calculating the bonding index, v, for author 

networks of 78 journals in the management category and 68 

journals in the business category, we examined the correlations 

between bonding index and scientific influence indices including 

2-year impact factor, 5-year impact factor, Eigenfactor and article 

influence. 2/5-year journal impact factor is the average number of 

times an average article in a journal has been cited two/five years 

since it was published. Eigenfactor measures the number of times 

articles from the journal published in the past five years have been 

cited in WOK‟s journal citation report year. Article influence is 
the journal's Eigenfactor score divided by the fraction of articles 

published by the journal. The four indices measure the influence 

of a journal. They represent the external influence of a journal.  

Results show that the bonding index has a significant 

correlated relationship with most of the influence indices. The 

negative correlation coefficients mean that more bonded by 

friends in social networks, the less network influence recognized 

by others. It has been noted that social relationship may be not 

always invested towards positive ends. "Bonding" groups can 

become isolated and disenfranchised from the rest of society 

without an appropriate balance with "bridging" relationships 

(Bolin et.al., 2004). As social relationship bonds and stronger 

homogeneous groups form, the likelihood of bridging social 

relationships is attenuated. Therefore, the strengthening of insular 

ties can lead to a cohesive community but a social isolation as 

well. The empirical evidence from author networks reveals the 

phenomenon and prove itself to be a good index to measure 

cohesiveness of social networks.  

Table 6: correlation between v and 2-year journal impact 

factor, 5-year journal impact factor, Eigenfactor and article 

influence 

Correlations 

Disciplines 

2-Year 

Impact 

Factor 

5-Year 

Impact 

Factor 

Eigenfactor 
Article 

Influence 

Management   

-0.286** 

  

-0.291** 
  -0.162   -0.179 

Business   

-0.292** 

  

-0.382*** 
  -0.161 

  

-0.304** 

Management 

+ Business 

  

-0.292*** 

  

-0.324*** 
  -0.155* 

  

-0.228** 

*: p<0.1; **: p<0.05; ***: p<0.01 

6. CONCLUSIONS  
In response to the call for deeper development into the micro 

details of link formation (Jackson and Rogers, 2007), the current 

investigation presented a model of network formation from the 

linkage level that exhibits features matching observed socially 

generated networks. The model is independent of the hypothesis 

that preferential attachment is the underlying mechanism in the 

process of new link formation. Nevertheless, the process of new 

link formation exhibits all the characteristics under the 

preferential attachment mechanism. Based on the linkage level 

analysis, we can explain preferential attachment as a result of 

network influence, while in prior studies the preferential 

attachment mechanism is a natural start-point. 

Fitting the model to data indicated a wide range in terms of 

the relative ratio of uniformly random versus network-based 

meetings in the process of link formation. In addition, the current 

model shows close fits of the model in terms of a variety of 

network properties. The authors also demonstrated that the degree 

distributions and clustering coefficients, coming from the model, 

fit actual situations well. This can be useful in further 

applications, since, if there is a well-structured relationship 

between degree, clustering, and payoffs, then we can relate the 

network formation process to total societal utility.  

The current model and analysis suggest a pressing and 

interesting answer regarding what accounts for the differences in 

the network formation process across applications and how 

preference bias forms.   

7. LIMITATIONS  
In this study our empirical results are based on the analysis 

of a historical co-authorship network. The network we analyzed to 

fit our theoretical model may be not relevant exactly. Fitting the 

model to friendship networks will be more supportive. 

Another limitation of this study is that we did not address the 

difference of power or strength among the nodes. Since our model 

is based on linkage influence, assuming all the nodes are equal in 

power may not capture full information of the network. 

We are to address these concerns in our future study. 
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9. APPENDIX 
Appendix A: Degree distribution function                       

 (13). 

To solve       in Eq(12):                           , a 

continue function      can be applied as a approximation to      . Assuming that      increases steadily between time   
and    , we can get the approximate form of Eq(12) as 

follows:                                          (L1) 

As   increases from   to  ,       increases from    to   , and accordingly      increases from    to  . When   is 

very large, we can safely assume that      . By (L1) we get                                             (L2) 

Solving (L2) we have:                                          (L3) 

Replace   with   , we can get the approximate form of 

(L3):                                          (L4) 

By (L4) we can rewrite the inequality       as                  
, and thus the proportion of nodes with an 

in-degree no bigger than  is:                      
                      (L5) 

Note that     , (L5) can be rewritten as                      
                     (L6) 

Now consider the relation between   and  . The 

expectation of the number of the links from node     is                                         , where           because each new node forms   links and hence 

the average in-degree of the network is  . Meanwhile, node      forms   links as well, and hence we have       , 

where     , therefore we get:                                        (L7) 

Now, by  (L6) and (L7), the degree distribution function 

can be expressed as                           
. Let      

and we get:                          
                       

(13) 

 

Appendix B: degree distribution functions of social network 

models 

Models Degree distribution function 

Random 

Graph 
                  

    

Price's Model                

BA Model 
                        

Generalized 

BA Model 
                             

 

JR Model 
                      

Our Model 
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