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Abstract

Neural networks have been widely adopted to address different real-world problems.
Despite the remarkable achievements in machine learning tasks, they remain vulnerable
to adversarial examples that are imperceptible to humans but can mislead the state-
of-the-art models. More specifically, such adversarial examples can be generalized to a
variety of common data structures, including images, texts and networked data. Faced
with the significant threat that adversarial attacks pose to security-critical applications,
in this thesis, we explore the good, the bad and the ugly of adversarial machine learning.
In particular, we focus on the investigation on the applicability of adversarial attacks in
real-world scenarios for social good and their defensive paradigms.

The rapid progress of adversarial attacking techniques aids us to better understand
the underlying vulnerabilities of neural networks that inspires us to explore their potential
usage for good purposes. In real world, social media has extremely reshaped our daily life
due to their worldwide accessibility, but its data privacy also suffers from inference attacks.
Based on the fact that deep neural networks are vulnerable to adversarial examples,
we attempt a novel perspective of protecting data privacy in social media and design
a defense framework called Adv4SG, where we introduce adversarial attacks to forge
latent feature representations and mislead attribute inference attacks. Considering that
text data in social media shares the most significant privacy of users, we investigate how
text-space adversarial attacks can be leveraged to protect users’ attributes. Specifically,
we integrate social media property to advance Adv4SG, and introduce cost-effective
mechanisms to expedite attribute protection over text data under the black-box setting.
By conducting extensive experiments on real-world social media datasets, we show that
Adv4SG is an appealing method to mitigate the inference attacks.

Second, we extend our study to more complex networked data. Social network is more
of a heterogeneous environment which is naturally represented as graph-structured data,
maintaining rich user activities and complicated relationships among them. This enables
attackers to deploy graph neural networks (GNNs) to automate attribute inferences from
user features and relationships, which makes such privacy disclosure hard to avoid. To
address that, we take advantage of the vulnerability of GNNs to adversarial attacks,
and propose a new graph poisoning attack, called AttrOBF to mislead GNNs into
misclassification and thus protect personal attribute privacy against GNN-based inference
attacks on social networks. AttrOBF provides a more practical formulation through
obfuscating optimal training user attribute values for real-world social graphs. Our
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results demonstrate the promising potential of applying adversarial attacks to attribute
protection on social graphs.

Third, we introduce a watermarking-based defense strategy against adversarial attacks
on deep neural networks. With the ever-increasing arms race between defenses and attacks,
most existing defense methods ignore fact that attackers can possibly detect and reproduce
the differentiable model, which leaves the window for evolving attacks to adaptively evade
the defense. Based on this observation, we propose a defense mechanism that creates
a knowledge gap between attackers and defenders by imposing a secret watermarking
process into standard deep neural networks. We analyze the experimental results of a
wide range of watermarking algorithms in our defense method against state-of-the-art
attacks on baseline image datasets, and validate the effectiveness our method in protesting
adversarial examples.

Our research expands the investigation of enhancing the deep learning model ro-
bustness against adversarial attacks and unveil the insights of applying adversary for
social good. We design Adv4SG and AttrOBF to take advantage of the superiority of
adversarial attacking techniques to protect the social media user’s privacy on the basis
of discrete textual data and networked data, respectively. Both of them can be realized
under the practical black-box setting. We also provide the first attempt at utilizing
digital watermark to increase model’s randomness that suppresses attacker’s capability.
Through our evaluation, we validate their effectiveness and demonstrate their promising
value in real-world use.
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Chapter 1 |
Introduction

1.1 Background
Deep learning has emerged as a strong framework that can be applied to a broad spectrum
of complex machine-learning (ML) tasks, ranging from computer vision [3–5], speech
recognition [6, 7] to natural language processing [8, 9] and healthcare [10]. With the
evolution of deep learning models and availability of high performance hardware for
complex computation, deep learning has made a remarkable progress in many traditional
fields and achieved unparalleled accuracy to benefit people’s daily life. Because of the
continuing advancement of deep learning techniques, extensive use of deep learning based
applications can also be seen in safety and security-critical environments, such as self
driving cars [11–13], malware detection [14–16], robotics [17,18] and etc. As deep learning
methods have found their way to being applied to real world, security and integrity of
the applications have attracted lots of attention [19].

Despite the remarkable achievement of deep learning, researchers found that deep
neural networks remain vulnerable to adversarial attacks that design special imperceptible
perturbations to the original samples to fool state-of-the-art models. In [20], Szegedy et
al. first revealed a quite astonishing view on neural networks that contradict commonly
held beliefs: there exists a ‘blind point’ in neural networks in the sense that some
imperceivable input perturbations to human eyes can fool the well-trained ML models
with high confidence [21]. Formally, given a valid input x and a target t ≠ F (x), it is often
possible to find a similar input x′ such that F (x′) = t yet x and x′ are close according to
specific distance metric, which is used to quantify the similarity between original and
adversarial examples. This type of crafted inputs are referred to as adversarial examples
and the methods to generate such adversarial inputs are called adversarial attacks in ML.
Adversarial examples pose severe security issues to the deep learning systems, especially
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+ 0.03× =

Figure 1.1: A demonstration of adversarial example generation applied to [1] on a sample
image. By adding a small perturbation whose elements are equal to the sign of the
elements of the gradient of the cost function with respect to the input, we can fool a
model pretrained on ImageNet to change the classification result. Here .03 corresponds
to the magnitude of the perturbation we introduce to the original image.

in safety sensitive areas. For example, Goodfellow et al. [1] demonstrated how to add a
small perturbation to an image of panda that causes it to be recognized as a gibbon with
high confidence. In a security-critical scenario, Evtimov et al. [22] successfully misled
a classifier to misclassify a stop sign with some physical perturbations, which can be
either the graffiti or black and white strips, as a Speed Limit 45 sign. See Figure 1.1 for
a demonstration on a sample image of a Labrador Retriever from 1. In the figure, the left
image is correctly classified as a Labrador Retriever by the model. However, when we
add a small crafted perturbation to the original image and then obtain the right image,
the model can be mislead to classify it as a Saluki, even though there is no recognition
difference for humans.

With adversarial examples attracting lots of attention, a quite number of adversarial
attacks are proposed to attack sophisticated deep learning models to bypass the model
protections. Szegedy et al. [20] first defines the problem as a constrained optimization
problem and finds the adversarial example through linear search. By contrast, Fast
Gradient Sign Method (FGSM) [1] is designed in a fast way that performs one-step
gradient update along the direction of the sign of gradient at each pixel. Followed by
this work, there arise lots of extensions [23–25] to upgrade the attacking capability.
DeepFool proposed in [26] aims to find the minimal Euclidean distance between the
adversarial example and the original input. Carlini and Wagner [27] launched C&W

1https://commons.wikimedia.org/
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attack to defeat many existing adversarial detecting defenses(XXX). The existence of
adversarial attacks has motivated proposals and evolutions for approaches that increase
the robustness of DNNs against adversarial examples. The majority of countermeasures
towards adversarial examples fall into two categorities: 1) proactive: improve models’
robustness against adversarial attacks and 2) reactive: detect malicious samples before
importing them into well-trained model. For the first type of methods, they tend to
manipulate model properties such as invariance through regularization scheme [23,28,29]
to make it harder to craft new adversarial examples. Data augmentation is another
typical way to improve model’s robustness by applying a couple of label-preserving
transformations, such as random cropping, flipping [5,30], masking out [31] or adding
Gaussian noise [32]. Adversarial training is a effective way to straightforwardly incorporate
new crafted adversarial examples into the retraining venue to enforce model to recognize
these malicious outliers [1] correctly. Although this type of method can significantly
improve model robustness against adversarial examples, how to employ it without hurting
clean data accuracy is under-explored. Besides, it requires more heuristics to determine
adversarial samples in the retraining pool. For the second category, data preprocessing-
based defenses are designed to filter out malicious samples or remove the modifications
introduced to the regular image in the testing stage [33–38]. Most of these work turns
out not reliable and have proved to be defeat by [27] with slight changes of loss function.

Despite the robustness of neural networks is greatly improved, these defense methods
fall far behind the arms race against the continuously evolving attacks. Most of these
strategies are easy to compromise due to their simplicity and differentiable nature, with
some impractical assumptions about the attacker’s knowledge of the target model. These
weaknesses leave the window for attackers and stimulate the generation of more capable
attacks to evade previously defenses. To reduce the dependency on targeted model, the
attacker even performs black-box attacks with little model knowledge and can succeed
under the extreme limited scenario [39,40]. Therefore, more investigation and exploration
on how to alleviate aforementioned challenges are required.

On the other hand, with the fast development of deep learning techniques and their
high performance on feature representation and pattern recognition, more and more
powerful tools are provided for researchers to do public data analysis and community
studies. However, they can also benefit the attackers for malicious purposes. This poses
significant threat to the data privacy. Especially in the age of Big Data, the worldwide
accessibility to the social media has drastically reshaped the world and allowed billions of
people all around the globe to conveniently perform numerous activities such as creating

3



Inference AttacksSocial Media Intents

Figure 1.2: Increasingly evolving inference attacks

online profiles, sharing personal information, and interacting with other people [41].
Social media creates a heterogeneous environment with rich source of user-oriented
data, which attracts not only researchers for legitimately studying and understanding
social communities and individuals, but also attackers for infiltrating users’ information
and inferring their sensitive and private attributes (e.g., age, gender, location, opinion,
etc.) to deliberately fulfill the economic, social, or political intents (e.g., stealing user
credentials, promoting unwanted advertisements, stalking and threatening users) [41–43],
which is illustrated in Figure 1.2. In particular, in the domain of social media data
privacy, inference attacks are increasingly deployed to reveal users’ private information
from public data on social media [44–47]. As such, plausible interventions are urgently
needed to address these privacy concerns.

As machine learning, especially deep learning, provides more and more powerful tools
for data analytics, it is increasingly deployed to learn latent feature representations from
raw data and thus perform automated attribute inferences in social media [44, 45, 47–52],
which enables considerable countermeasures to evade the traditional privacy protection
techniques, e.g., anonymization. In the meanwhile, as the adversarial attacks contiguously
evolve and make marvelous progress in the arms race with defenders, it is worth thinking
that if we can apply such cutting-edge knowledge to some meaningful tasks which do social
good instead. Also, inspired by the valuable observation of adversarial machine learning
that neural networks are vulnerable to adversarial attacks, we explore the applicability of
leveraging inherent learning challenge the model for protecting the privacy of data with
different structures. That is, we cast the problem of protecting social media privacy as
an adversarial attack formulation problem to defend against attribute inference attacks.

4



1.2 Motivation
With the everlasting development of adversarial attacks posing more and more challenges
to deep learning model robustness, while we invent new promising strategies to fix the
security issue, it also provides us with possibilities to investigate potential opportunities
of taking good advantage of adversarial examples in different scenarios rather than just
attacks. Social media has been enjoying explosive growth for a decade. Due to its
penetration, accessibility, and information richness, user-oriented data generated from
social media attracts not only developers for legitimately studying social communities to
better meet user needs, but also attackers for inferring users’ privacy information. In
particular, more and more powerful ML tools are provided that attackers can leverage to
realize their sophisticated inference purposes.

In order to mitigate machine learning-based inference attacks, some potential paradigms
have been developed, including game-theoretic optimization [41,53–56], differential pri-
vacy and its variant local differential privacy [57–61], and deep data obfuscation [62,63].
While existing research results are encouraging, most of these methods are either cost-
expensive, or leading to large data utility loss, which are not feasible in practical use. To
bridge the gap between user experiences and legitimate application functions, we may
choose a trade-off between privacy and utility: protecting social media user attributes
from inference assaults while still enabling the data that users are willing to provide
to be plausible. In the meantime, machine learning models are faced with the inherent
learning-security challenge of lacking adversarial robustness [1,20] despite their impressive
inference abilities, where they are vulnerable to adversarial attacks that carefully design
imperceptible perturbations to the input data, and thus taint the latent feature repre-
sentations and drastically degrade the corresponding inference performance. Inspired
by this observation that adversarial attacks are capable to fool the attribute inference
learning models into misclassification in a computationally tractable fashion with small
utility loss [41], in this thesis, we cast the problem of protecting social media data privacy
as an adversarial attack formulation problem over the data to defend against attribute
inference attacks. More specifically, adversarial attacks are formulated as a counterpart
to enforce attribute inference attacks as less effective as possible, which in return help
improve the resilience and obfuscation of the social media data and thus reduce the risk
and possibility of privacy breach.

As the social media is quite a complicated environment that involves a variety of
different forms of data, it is difficult to simply consider the data privacy protection
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problem as one general defense setting. We design our attribute protection methods from
diverse scenarios targeting on difficult specific data forms, such as texts, graphs. Besides,
a few recent works [41,47,64,65] showed that adversarial attacks have been starting to
be leveraged as defenses against inference attacks, which present great potentials for
data obfuscation. However, the prior works of this kind focus on the specific application
scenarios where their target is limited to continuous space. The investigation into
more challenging social media environment and the corresponding data of more diverse
properties (e.g., discrete text, graph structure) has been scarce. To assist with validating
the feasibility of turning adversarial attacks into protection for social media privacy, in
this thesis, we propose frameworks of integrating adversarial attack techniques in user
attribute protection tasks on the basis of discrete texts and social graphs in social media,
respectively.

From the perspective of resolving the adversarial threats, the everlasting arms race
between adversarial attacks and defenses in adversarial machine learning poses more and
more challenges for enhancing the robustness of ML models. Although a large body of
defense methods are proposed to protect DNNs against adversarial attacks, they fall
far behind of the competition with the fast growth of adversarial attackers and fail to
defend all type of adversarial examples. Due to the simplicity and differentiable nature,
most of these methods are straightforward to compromise. Also, the efficacy of many
defenses rely on some unreasonable assumptions about the attacker’s knowledge on
the target model. For instance, defenders can always achieve better protection results
in the black-box scenarios where the attackers only have limited accessibility on the
targeted model or system. However, it is hard to assume the attacker’s capability as
they have so many choices on the attacking methods and also are able to leverage model
extraction techniques to evade the protection. In reality, the information about the target
model is the key for most attack algorithms to craft adversarial examples, especially
for those gradient-based attacks that require this information to calculate gradients
through backpropagation. In this respect, we aim to find a way to either reduce the
knowledge of attackers on the protected model or increase the difficulty of them to access
the information about model components.

Randomization of the network layerwise structure or inputs has been discussed in a
few studies to have the potential to obfuscate gradients information and thus decrease
adversarial vulnerability as the attackers can hardly reproduce the gradients. This natu-
rally encourages us to use the randomization paradigm to raise the attacker’s uncertainty
about the target model, preventing them from modifying the model information and
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rendering the generated adversarial examples as ineffective as feasible. In our work,
we propose a practical defense framework by introducing input randomness to DNNs
with the digital watermarking techniques in the context of image classification. Digital
watermarking is a technique that embeds watermark information into the host image
by modifying visually non-significant pixels, which is transparent, imperceptible, and
robust. For the watermarking techniques, if a user has no embedding information, the
watermark is very challenging to be detected and extracted [66]. In this respect, the
attacker needs to craft adversarial examples from their self-trained surrogate models as it
is not realistic for them to reproduce the defense model without confidential embedded
information. The lack of knowledge about the defense system leads to the discrepancy
and stochasticity between the surrogate and real models, making it more challenging
for the attacker to successfully evade the defense model. Our proposed defense method
enables us to train a DNN model that would not only preserve the inference performance
on regular data, but also benefit from knowledge gap and randomization imposed on the
learned protocol for better robustness against adversarial attacks.

1.3 Research Goals
In this section, we first summarize our research goals over our study and then provide
a quick tour of our three research work in this dissertation. We present our work from
two perspectives; (1) the Good: explore the applicability of adversarial machine learning
and (2) the Bad: enhance the robustness of deep neural networks against adversarial
attacks. In the first two work, we explore and discuss the applicability of adversarial
machine learning. Both of them seek to intervene in social media privacy threats, and
gain deeper insight how adversarial attacks can serve as protection to obfuscate users’
attributes. In particular, the first work focuses on the protection of language models in
natural language processing (NLP) domain, while the second work considers the social
graph privacy in more complicated networked space to achieve a good balance between
data privacy and utility. Faced with the challenges in adversarial machine learning, the
third work we present is a defense method against adversarial attacks in the domain of
image classification.
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1.3.1 The Good: Exploring the Applicability of Adversarial Attacks

The development of adversarial attacking techniques and the vulnerability of deep
learning models provide us with new angle in taking advantage of adversarial examples.
In particular, we aim to explore how to apply adversarial attacks to social good scenarios,
i.e., data privacy protections. With the development of deep learning, it provides more
and more convenient tools that benefit attackers to attack data privacy in social media.
Based on the observation that deep learning systems are vulnerable to carefully-designed
adversarial examples, we want to find a way to convert the problem of protecting user’s
data privacy as an adversarial attack formulation problem over the social media. In
this respect, the other research goal in this dissertation is to explore the applicability of
adversarial attacks for social good.

1.3.1.1 Adv4SG: Text-based Adversarial Attack for Attribute Privacy

In social media environment, users tend to post text data for sharing; such text data may
indicate their sensitive information, and thus easily expose the users to the attackers
who can access the texts and infer the private attributes of interest to fulfill the harmful
intents [64]. Our goal in this work is to protect users’ private attribute against such
inference attacks. Specifically, we take advantage of the vulnerabilities of deep language
models to adversarial examples and design a cost-effective end-to-end framework to
automatically modify the social media textual post to mislead the inference attackers.
Our key intuitions are that: (1) text data in social media share the significant information
of users’ privacy for protection; (2) deep neural networks are widely used by attackers
among those powerful attribute inference attacks [67–70]; (3) Such learning models have
been shown to be vulnerable to adversarial attacks. We briefly go through the method
design in the following parts.
Private Attribute Recognition. As we put our framework under the practical black-
box setting, where the devised adversarial attack is not aware of the threat model
architecture, parameters, or training data, but capable of querying the threat model with
text inputs and retrieving the output predictions for the attributes and their confidence
scores [71]. Based on the defined threat model, we will first build the NLP-based
inference attack model on the collected data that is able to recognize attribute labels
yi = {v1, v2, · · · , vk} for each private attribute from the set Y = {y1, y2, · · · , ym}. In
particular, the semi-automatic attribute inference subroutine is to collect users’ public
data under each attribute firstly; then build language models using deep neural networks
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over the collected data by minimizing the inference errors on labeled data. Consequently,
we can apply the trained attribute recognition model to new users and perform inference
attacks.
Leverage Adversarial Examples as Defense against Inference Attacks. Given an
inference attack target (i.e., one attribute to infer), we formulate text-space adversarial
attacks as defenses that attempt to automatically perturb the texts to obfuscate that
attribute and prevent threat models from correctly identifying their private attribute
values. As aforementioned, we consider the black-box setting such that our formulation is
applicable to evade a wide range of attribute inference models. Formally, for an original
text x, the purpose of a text-space adversarial attack is to modify x with assigned label
yt to a text x̂ that is classified to any other label ŷt ∈ Y t, ŷt ̸= yt through adding a
perturbation δ. In black-box settings, exiting gradient-based methods are no longer
eligible to compute perturbations in the feature space. In addition, to formulate a feasible
text-space adversarial attack, we have to comply with some essential constraints on the
modification of the texts.

These are two key challenges that we aim to solve in our method design. Faced with
the first challenge, we leverage a genetic algorithms to design a method called Adversarial
attack for Social Good, called Adv4SG, to protect personal attribute privacy against
NLP-based attribute inferences over social media text data. It exploits population-
based gradient-free optimization which releases the limitation on gradient information.
Moreover, we self-train a surrogate model to mimic the attack model and take advantage
of the transferability [72] of adversarial examples to conduct the protection. To resolve
the second challenge, we design a series of constraints taking account of text syntax,
semantics, user preferences and etc. In this regard, we construct a sequence of plausible
perturbations to automatically craft the adversarial text with preserved semantics.
Attribute-obfuscating Attack for Social Networks’ User Privacy. In real world,
social media is composed of complex networked data rather than single data format of
texts or images. For such graph-structured data, graph neural networks have shown the
great potential in learning and integrating its hidden information. Specifically, graph
convolutional networks (GCNs) [73] take the connectivity structure of the graphs as the
filter to perform neighborhood information aggregation so as to extract high-level features
from the nodes and their neighborhoods, which have thus boosted the state-of-the-arts
for a variety of tasks (e.g., node classification, clustering, and matching) over graphs.
In this work, we adopt graph neural networks to model the networked data in social
media for better learning tasks, and investigate how to jointly leverage adversarial attacks
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against graph neural networks to protect social media data privacy. Our key intuitions
are that: (1) social media is a complex heterogeneous data environment that is composed
of diverse graph-structured data; (2) graph neural networks have high capability in
representation learning of networked data and provide benefit for attackers to conduct
more sophisticated inference attacks on social networks; (3) in social media, a large
amount of data labels are expensive and impractical to collect, while GCNs can conduct
semi-supervised learning to solve node classification task where only a small number of
nodes are labeled; (4) graph neural networks are vulnerable to well designed adversarial
attacks.

1.3.1.2 AttrOBF: GNN-based Adversarial Attack for Attribute Privacy

Inspired by its great success of graph neural networks on representation learning of the
networked data, we will apply semi-supervised learning using GNNs to recognize social
relation attributes over graph-structured data. More specifically, GNNs can be denoted
as:

Z = softmax
(
Ã(l) · · · σ

(
Ã(1)X(0)W(1)

)
· · ·W(l)

)
(1.1)

where at layer i, X(i) is feature matrix, W(i) is weight matrix, A(i) is adjacency matrix,
Ã(i) = D− 1

2 (A(i) + I)D− i
2 , and D is the diagonal degree matrix of A(i) + I. To train

this model to recognize attribute yi = {v1, v2, · · · , vk} for data D, the softmax function
normalizes the final output matrix Z, where each row represents the probability of k

labels for a node. The cross-entropy loss L = −∑
d∈Dtr

log Zd,vd
can be accordingly

evaluated between the output and the corresponding ground truth, while the weights are
updated using some gradient descent optimization algorithms. The unknown data will
be automatically labeled after training. Considering that social networks are generally
represented as graph-structured data, in this work, we assume that the attackers would
take advantage of user features and relationships to train GNN models so as to achieve
their attribute inference goals. Correspondingly, adjacency matrix A(i) represents the
interactions between different users, which can be the follower-followee relationships in
social media or distance relationships measured by some similarity metric. Input X
indicates the user features including profiles, images, textual posts and etc, while the
model outputs are the private attribute that the attacker aims to predict.
Adversarial Obfuscation Attack on Social Graph. In this work, we design a graph
adversarial poisoning attack AttrOBF to protect attribute privacy against GNN-based
inferences on social networks. The goal of our method is to shift a small fraction of
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optimal training users’ labels so as to maximally decrease the overall performance of
GNN-based attribute inferences trained on the modified graph. That is, given a target
attribute with either binary or multiple labels, the goal is to have the test users classified
as any label different from the true label.

To achieve that, we need to solve a couple of challenges in designing such an applicable
framework. The first challenge is that a large amount of training set with labels are not
available. Traditional graph neural networks cannot work due to the lack of labeled data
in real-world scenarios. However, GNNs such as graph convolutional network (GCN) can
conduct semi-supervised inference training on a small set of nodes with labels. Second, we
have no information about the GNN model used by inference attackers, including model
choice, architecture, and parameters. To defend against them, we self-train a proxy model
to substitute the attacker and optimally identify the node labels to modify. It is worth
noting that using a surrogate model to simulate attackers under the black-box setting is
popular in previous study. The third challenge is that our attribute-obfuscating attack on
GNNs is essentially a bi-level optimization problem, where an outer optimization involves
another inner optimization as constraint. This bi-level problem is however non-convex
and intractable to solve [74]. To solve this challenge, we utilize the approximation of sub-
model and transform the bi-level problem to single level. Last but not least, the training
label data and the action space of the label perturbation are discrete, which prohibits
us from computing the gradients through back-propagation as the label operations are
non-differential. In this regard, we use a sampling method called Gumbel estimator [2] to
approximately use continuous components to substitute the discrete components during
optimization.

1.3.2 The Bad: Enhancing the Robustness of DNNs Against Adver-
sarial Attacks

As the existence of adversarial attacks poses severe threat to the security of deep neural
networks, it is critical for us to design more secure deep learning systems. The existing
defense methods are not able to effectively protect against all kinds of adversarial
examples due to their simplicity or impractical assumptions. While among the proposed
adversarial attack methods, the knowledge of attacker to target models tends to be the
key of attacking success. With this in mind, our research goal in this dissertation is to
improve the model’s privacy by restricting the attacker’s knowledge and design defense
methods to correspondingly enhance the robustness of DNN models.
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1.3.2.1 Watermarking-based Defense over DNNs

As adversarial attacks pose significant threat to the safety of deep neural networks in
image classification domain, in this work, we consider the most practical scenario about
adversarial attacks and propose a defense method by introducing random watermark
information to DNN models to incur knowledge gap between the attacker and the
defender. Our key intuitions underlying our design are that: (1) attackers’ knowledge
disadvantage over the target model can restrict their attacking capabilities, especially for
the mainstream gradient-based attacks; (2) leveraging some randomization paradigm on
model or data can potentially increase attackers’ uncertainty and model’s confidentiality;
(3) digital watermarking is a technique that embeds secret watermark information into
the host image by modifying visually non-significant pixels, which is transparent and
challenging for the attacker to detect and obtain.
Generate Knowledge Gap through Watermarking Input. Digital watermarking
can be defined as a practice of undetectably altering a work to embed a secret message.
In this technique, the secret payload (i.e., watermark) is embedded in multimedia
elements using specific watermarking algorithm that should be invisible and robust.
In our framework, we insert a designed watermarking subroutine to the regular DNN
architectures. The purpose is to introduce the secret watermarking information to
create such knowledge gap between the attacker and the defender. In our watermarking
subroutine, we would encode an input using some secret watermark message which serves
as the encoding key to prevent eavesdroppers to decode the watermarked message [75].
Therefore, in our method, adversaries are unable to extract the embedded information
and cannot reproduce the defense system to adaptively craft adversarial example targeted
the defense model. To contiguously increase the model uncertainty, we randomly divide
the training set into different parts and embed each part of them with different key
images. In this respect, the lack of knowledge about the watermarking process enlarges
the discrepancy between the attacker and the defender, and make it difficult for the
attacker to circumvent the defense strategy.

More specifically, in most real-world scenarios, when crafting adversarial examples,
the attacker cannot customize the defense model directly due to the limited access but
instead has to use their own trained model. As investigated, adversarial examples may
be transferable, so that some adversarial examples generated for a model may cause
misclassification on another model as well [72]. Such a property allows the attacker to
train a model as a surrogate model by themselves, the purpose of which is to imitate
and replace the target model to craft attack samples. However, the surrogate model is a
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rough approximation of the target distribution. There is always a discrepancy between
the approximation and the real one, which we consider as our defense space and our
goal is to irreversibly enlarge such space. The introduced secret watermarking module
expands the discrepancy and make it difficult for the attacker to circumvent the defense
using the adversarial examples generated from the surrogate model. That is to say,
the watermarking procedure prevents the attacker from customizing the defense model,
and the DNN model embedded with secret watermarking information may explicitly
change its classification boundary, and thus be resilient against the attacker’s generated
adversarial examples.

1.4 Thesis Organization
In this thesis, we mainly focus on enhancing the robustness of deep neural networks and
investigating the applicability of adversarial attacks for social good. Correspondingly,
we present three of our research work. The first two work explore the applicability
of adversarial attacks for social good in different fields. The first one applies textual
adversarial examples to the social media data privacy. In the second work we present,
we discuss the practicability of using adversarial attacks in social networks attribute
protection. The third work takes into account the bad impact that adversarial attacks
bring to machine learning securities, we present is a defense technique which protects the
deep neural networks against adversarial attacks in the context of image classification.

The rest of the thesis is organized as follows. We present the related work in Chapter
2. Chapter 3 discusses the good role the adversarial attacks play in different privacy
protection scenarios in social media, including textual data privacy protections and
networked data privacy protections; while Chapter 4 shows the detailed design of a
defensive watermarking-based framework against adversarial attacks over DNNs from
perspective of resolving the bad threat of adversaries. In Chapter 5, we discuss the
limitations of our work and the challenges ahead. Finally, we conclude the thesis in
Chapter 6.
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Chapter 2 |
Related Work

In this chapter, we first review the related work about existing adversarial attacks and
defenses in the domain of image classification. Then we discuss the related work in the
perspective of using adversarial attacks for social good. Specifically, we show the existing
work about inference attacks and defenses of data privacy-perserving in social networks.
Also, We briefly review the literature of adversarial attacks in discrete textual space as
well as the structural graphs.

2.1 Adversarial Machine Learning
Adversarial machine learning has been attracted lots of attention recent years due to the
threats it pose to our day-to-day applications. It considers those scenarios when machine
learning systems may face potential adversarial attacks, who intentionally manipulate
regular input data with small perturbations to mislead the well-trained model to make
mistake. The earliest research discuss adversarial machine learning on a more general area
that reveals and resolves the security issue in machine learning systems. However, recent
studies place more emphasis on how those carefully crafted imperceptible perturbations
on the inputs may lead to drastic mistakes in deep learning fields. In our thesis, the
problems we pay attention to are also referred to cases in the later scenarios. To protect
deep learning models against adversarial attacks, a large body of methods are proposed
to resolve the security challenges. However, the existence of defenses also stimulates the
evolution of attacking methods.
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2.1.1 Attacks

To date, a taxonomy of adversarial attacks has been proposed. There are different
ways to categorize these attacks. Usually, adversarial attacks can be defined as targeted
and non-targeted attacks. The central confusion between two settings is whether the
attack targets on a particular input or output [76]. One the other hand, they also can
be divided into white-box and black-box attack according to the knowledge that the
attacker possesses about the classifier. In a white-box attack [1, 20,26,77], the attacker
has full access to the targeted model to craft adversarial examples, which is not available
to black-box attackers. In this type of attack methods, the attacker would be able to
find gradient information of the model with respect to the inputs to craft adversarial
examples. Although white-box attacks can be very effective, the settings that they can
have full knowledge of the classifier may seem impractical in most real-world scenarios.
Black-box attacks are proposed to solve such challenges. As the attacker cannot directly
obtain the information needed due to the inaccessibility, he would take advantage of the
transferability of the adversarial examples to make attacks possible. Transferability is an
astonishing property observed by early studies that an adversarial example for model
can often transfer to be an an adversarial on a different model [1, 20,72,76].

In particular, Szegedy et al. [20] first found adversarial examples against DNNs
in 2014. They proposed to use L-BFGS method to generate adversarial examples.
This method defines the problem as a constrained optimization problem and finds the
adversarial example of minimum distance through time-consuming linear search. By
contrast, Fast Gradient Sign Method (FGSM) [1] is designed to be fast to find adversarial
examples. They only performed one-step gradient update along the direction of the sign of
gradient at each pixel. Accordingly, there aroused a series of variants to boost adversarial
attacks [23–25, 78], among which iterative FGSM proposed by Kurakin et al. [23] is
considered as a stronger extension of this attack. It introduces a finer optimization for
multiple iterations of FGSM and can be applied to physical world directly. To change a
small portion of the sample instead of updating the whole input, Papernot et al. [77]
designed a Jacobian-based saliency map attack (JSMA) to only perturb the features of
inputs that made most significant changes to the output. DeepFool proposed in [26]
aims to find the minimal Euclidean distance between the adversarial example and the
original input by iteratively projecting the input x onto the nearest class boundaries.
However, it’s computationally expensive due to the sophisticated formulation. Carlini and
Wagner [27] launched C&W attack to defeat almost all of existing adversarial detecting
defenses.
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2.1.2 Defenses

The existence of adversarial attacks has motivated proposals and evolutions for approaches
that increase the robustness of DNNs against adversarial examples. The majority of
countermeasures towards adversarial examples fall into two categorities: 1) proactive:
improve models’ robustness against adversarial attacks and 2) reactive: detect malicious
samples before importing them into well-trained model.

For the first type of methods, they tend to manipulate model properties such as
invariance through regularization scheme [23, 28, 29] to make it harder to craft new
adversarial examples. Regularization is a standard practice to penalize the model complex
in machine learning. Data augmentation is another typical way to improve model’s
robustness by strengthening the training process. Usually, people can apply a couple of
label-preserving transformations to expand the training set, such as random cropping,
flipping [5, 30], masking out [31] or adding Gaussian noise [32]. Adversarial training
is a effective way to straightforwardly incorporate new crafted adversarial examples
into the retraining venue to enforce model to recognize these malicious outliers [1, 23]
correctly. Although this type of method can significantly improve model robustness
against adversarial examples, how to employ it without hurting clean data accuracy is
under-explored. Besides, it requires more heuristics to determine adversarial samples in
the retraining pool.

For the second category, data preprocessing-based defenses are designed to filter out
malicious samples or remove the modifications introduced to the regular image in the
testing stage [33–38]. Despite the great efforts, these proposed defending techniques,
though were claimed to be robust, have already been verified vulnerable. For instance,
Carlini and Wagner [27] conclude that these detection-based adversarial learning tech-
niques are not reliable and have proved to be defeat by C&W attack with slight changes
of loss function.

2.2 Adversarial Attacks for Social Good
The arms race between attacks and defenses in adversarial machine learning is still
severe. Our pursue of more powerful attacking and defending strategies may form an
infinite loop [76]. While we devote ourselves to the absolute security and totally clear
up the risk of adversarial examples, it is also worth studying and exploring the usage of
adversarial learning in some areas. This naturally leads to our research question: can we
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take advantage of the superiority of adversarial attacks and apply them to applications
for social good?

2.2.1 Inference Attacks and Defenses

Social media has been enjoying explosive growth for a decade. Such a complex user-
oriented environment contains luxuriant information, which is why it is always the target
to inference attackers. In inference attacks, the attacker can infiltrate personal attributes
that people are unwilling to disclose from the public data for their malicious purposes.
Such attacks on attributes such as gender, political views, and religious views have been
studied in decades [44, 79]. To protect the user-oriented private data, various protection
techniques have been proposed to protest inference attacks. Anonymizations [43,64,80–84]
have been conventionally developed to anonymize and protect user identifiable information
on social media. However, they are inefficient and impossible to anonymize the information
of all aspects due to the unprecedented increasing levels of social interactions and the
enforced utility loss [42,85,86]. while they are still vulnerable to specific types of data
leakage [87, 88]. Some works focus on obfuscating users’ interactions by studying the
relationship between privacy and utility to hide their actual intentions and prevent
profiling [89,90].

Unfortunately, as machine learning, especially deep learning, provides more and
more powerful tools for data analytics, it is increasingly deployed to learn latent feature
representations from raw data (anonymized or not) and thus perform automated attribute
inferences in social media [44, 45, 47–52], which enables considerable countermeasures
to evade the static and straightforward anonymization techniques. Regarding to this,
some promising defense methods have been thus presented to alleviate such inference
attacks, such as differential privacy [61], deep data obfuscation [62], and game-theoretic
optimization [41,54], but they are still suffering from limitations of either cost-expensive,
large utility loss, or introducing additional privacy concerns.

Recent studies also validate that privacy-conscious federated learning is threatened
by various inference attacks [91–93]. In this respect, some promising paradigms have
been accordingly presented to alleviate machine learning based inference attacks, in-
cluding game-theoretic optimization [41, 53–56], differential privacy and its variant local
differential privacy [57–61], and deep data obfuscation [62,63]. While existing research
results are encouraging, most of these methods are either cost-expensive, or leading to
large data utility loss, which are not feasible in practical use. As the development of
adversarial learning, some recent works [41, 47, 64, 65] started to leverage adversarial
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attacking techniques as protection strategies to defend against inference attacks and
revealed great potentials of them for data obfuscation.

2.2.2 Adversarial Attacks in Text Domain

Adversarial examples are firstly found in the domain of image classification. Therefore,
most early studies focus on conducting adversarial attacks in the continuous space. Later
on, in the field of natural language processing (NLP), deep learning models are revealed
to suffer from the similar vulnerability to adversarial examples.

A bunch of adversarial methods are proposed to craft textual adversarial examples.
Papernot et al. [94] firstly attempt to use a white-box gradient-based attack inherited
from the strategies from image domain to repeatively modify the input sequence until
trick deep neural text classifiers. Ebrahimi et al. [95] propose to change one word token
to another using the gradients of the model with respect to the input. Some methods
pay more attention to the design of perturbation rules involved in the adversarial text
generation. For instance, Samanta et al. [96] design heuristic driven rules to find the close
words to substitute the original word tokens. People also find those out-of-vocabulary
words can be effective in misleading DNN models [97–99]. Usually, they can be mapped to
“Unknown” vectors in the embedding space and thus introduce damage to the semantics
and syntax of texts. Apart from the token-level perturbations, [97–99] show that NLP
models can be attacked through different scale of character-level manipulations. However,
this type of methods are sometimes not practical due to the expensive computations.

There also have been a few attempts of leveraging back-translation [100] or exploiting
machine-generated rules [101] to generate adversarial examples for language tasks. In [98],
Gao et al. score the word importance by removing it from text and computing the
influence to the classification results; then perturbs words at a character level in the
descending order regarding to word importance scores. In [102], Li et al. also compute
the word importance for greedy token selection, but proceeds by substituting the selected
words with the optimal bug from candidates, including similar words in embedding space
and word transformations. To avoid the limitations of gradient-based attack methods,
some genetic algorithms are designed to perform black-box adversarial attacks [71,95,103].
For instance, Alzantot et al. [71] uses population-based optimization algorithm to generate
adversarial examples with semantically similar candidates, where population sampling is
performed in a random way at each generation.
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2.2.3 Graph Adversarial Attacks

Embedding (or dimentional reduction) has been studied extensively for decades as a
fundamental effort for networked data. The early study pays more attention to the
graph embedding for better feature extraction. In the era of social networks, graphs
have become a powerful tool to learn knowledge from network data, where nodes denotes
instances that are often characterized by rich attributes, and edges encode relationships
between nodes. In particular, deep learning philosophy has lately been successfully
integrated with graph embedding, such as graph neural networks (GNNs).

Consequently, GNNs have been attracting increasing attention due to their great
success in graph representation learning where models can embed graph data into low-
dimensional space that preserves the graph structure and other inherent information.
Specifically, GNNs provide more and more powerful techniques for graph understanding
and mining [73, 104–106]. In general, GNN models take the connectivity structure of the
graphs as the filter to perform neighborhood information aggregation so as to extract
high-level features from the nodes and their neighborhoods [107], which have boosted
the state-of-the-arts for a variety of downstream tasks (e.g., node classification, link
prediction and network embedding) over graphs.

The fast development of the graph embedding methods and their high capability of
information representation leaves the window for inference attackers to disclose sensitive
information of the networks. To date, there has only been a few attempts to prevent
inference attacks through directly sanitizing the graph data. Cai et al. [108] first leverage
the mixture of non-sensitive public attribute and link relationship to conduct an inference
attack to infer the private attribute. Then, they design a privacy-preserving method
which removes or perturbs the accessible user attribute and links that play an important
role in inferring private attribute. In [41], Jia et al. use adversarial attacks to generate
a set of noise and randomly perturb the graph with selected noise to fool the inference
attacker. [109] designs a data-sanitization strategy to obfuscate the attribute information
in graph and discuss the trade off between privacy and utility.

Due to the intractability of link manipulations, it is not practical to directly modify
either graph structures or node features of graphs. Recent studies [110–114] have shown
that GNNs remain vulnerable to adversarial attacks that can easily fool the models into
misclassification by performing small perturbations to graph structures and/or node
features. Adversarial attacks targeted to social graphs from their network typologies
and node features have been increasingly launched. We can briefly divide these method
in this line into two groups, namely, (1) graph poisoning which focuses on modifying
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the original graph [115]; (2) graph evasion that conducts attacks during the testing
test [114]. However, the study in this field has not been well investigated and there exit
rare work in taking advantage of the property of adversarial graph for social network
protections. In [116], Kumar et al. carry this idea in a different direction and leverage
the vulnerabilities of graph towards adversarial examples to protect kinship privacy.
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Chapter 3 |
The Good: Exploring the Appli-
cability of Adversarial Attacks for
Social Good

In this chapter, we present two work of our studies from the good aspect of adversarial
machine learning. That is, we search for a variety of potential benefits of adversarial
machine learning in different application scenarios. For instance, the intriguing learning
capabilities of diverse deep learning systems provide powerful tools for software security
area to automate the non-trivial processes where could require too much human labor
and expert knowledge. Also, the fast and effective ways while generating new adversarial
examples could be used to solve the data scarcity and time-consuming learning problems.
In our work, we leverage the vulnerabilities of deep learning systems and explore the
applicability of adversarial machine learning in settling different kinds of data privacy
issues in social media.

3.1 Adversary for Social Good: Leveraging Adversarial
Attacks to Protect Personal Attribute Privacy
Social media has drastically reshaped the world that allows billions of people to engage
in such interactive environments to conveniently create and share content with the
public. Among them, text data (e.g., tweets, blogs) maintains the basic yet important
social activities and generates a rich source of user-oriented information. While those
explicit sensitive user data like credentials has been significantly protected by all means,
personal private attribute (e.g., age, gender, location) disclosure due to inference attacks
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is somehow challenging to avoid, especially when powerful natural language processing
(NLP) techniques have been effectively deployed to automate attribute inferences from
implicit text data. This puts users’ attribute privacy at risk. To address this challenge,
in this paper, we leverage the inherent vulnerability of machine learning to adversarial
attacks, and design a novel text-space Adversarial attack for Social Good, called
Adv4SG. In other words, we cast the problem of protecting personal attribute privacy
as an adversarial attack formulation problem over the social media text data to defend
against NLP-based attribute inference attacks. More specifically, Adv4SG proceeds with
a sequence of word perturbations under given constraints such that the probed attribute
cannot be identified correctly. Different from the prior works, we advance Adv4SG by
considering social media property, and introducing cost-effective mechanisms to expedite
attribute obfuscation over text data. Extensive experiments on real-world social media
datasets have demonstrated that our method can substantially mitigate the impacts of
attribute inference attacks with less computational cost.

3.1.1 Introduction

Social media has been enjoying explosive growth for a decade, while its worldwide
accessibility has drastically reshaped the world that allows billions of people all around the
globe to conveniently perform numerous activities such as creating online profiles, sharing
personal posts, and interacting with other people. Such a heterogeneous environment
generates a rich source of user-oriented data, which enables researchers to study and
understand social communities and individual behaviors. For example, during the
COVID-19 pandemic, a surge of solutions have been presented to leverage social media
data for risk assessment [117]. However, these apparent benefits also attract attackers
to retrieve users’ sensitive information and fulfill their malicious intents (e.g., unwanted
advertising, user tracing) [42,43] as illustrated in Figure 3.1. Take Facebook data privacy
scandal [118] as an example, the Cambridge Analytica harvested the personal data
of millions of people from Facebook without their permission and used it for political
advertising purposes. In fact, such privacy risk is not rare on social media, and could be
quickly transmitted and propagated [116].

In response to these privacy concerns, social media generally takes action to protect
those explicit sensitive user data like credentials by all means. However, with the rapid
development in machine learning, and especially the revolutionary learning structures
and capabilities raised by deep learning, it is highly probable for the attackers to
launch automated attribute inferences from implicit data, which cause unintentional
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Intents

Figure 3.1: Attribute inference attacks over social media.

user attribute information leakage and threaten social media privacy [44–46]. For
instance, a user’s tweets can be fed to a well-trained machine learning model to infer the
user’s various private attributes, such as gender, age, and location [41]. Despite their
remarkable inference ability, machine learning models are suffering from the inherent
learning vulnerability to adversarial attacks [1, 119]. It has shown that by adding small
perturbations to the input data, these pre-trained models can be easily fooled into
misclassification. To this end, if we take advantage of such a vulnerability, social media
privacy protection problem can be reduced to a feasible adversarial attack formulation
problem against attribute inference attacks.

Some recent works [41,47,64,65] showed that adversarial attacks have been starting
to be leveraged as defenses against inference attacks, which present great potentials to
help data obfuscation and privacy protection. However, the prior attempts of this kind
focus on the specific application scenarios where their target is limited to continuous data.
The investigation into more challenging text data of discrete property has been scarce.
In fact, text data is an important component of social media, which shares the most
significant privacy of users. On the other hand, natural language processing (NLP)-based
models have been widely and effectively used to parse information of text data from
different perspectives [67–69]. Therefore, in this work, we would like to focus on text
data to investigate how text-space adversarial attacks can be formulated to obfuscate
users’ attributes and enforce NLP-based inference attacks as less effective as possible for
privacy disclosure.

More specifically, we present a text-space adversarial attack as defense, or AaaD for
short, against NLP-based attribute inferences over social media data. AaaD proceeds by
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Gender Inference

Original tweet – Gender label: Male; Confidence: 52.82%

I quite like the look of the joker. It's something we haven't seen before.

Adversarial tweet – Gender label: Female; Confidence: 86.60%

I quite love the look of the jokor. It's something we haven't seen before.

Figure 3.2: Attribute obfuscation by AaaD.

iteratively perturbing the source text originated from social media, such that its specific
attribute label is changed, while the underlying constraints conformable to text-space
attacks are satisfied. This naturally leads to the following two goals for AaaD: (1)
constructing a sequence of constrained perturbations to automatically craft plausible
adversarial texts, and (2) making the inference attack model fail to predict correct
attribute values from the perturbed input texts. As an example, Figure 3.2 shows two
perturbations performed by AaaD on a tweet. The first perturbation changes “like” to a
semantically similar word “love”, while the second one replaces “joker” with a visually
similar word “jokor”, both of which follow our defined constraints and successfully
obfuscate the target attribute. Though there are challenges for attribute annotation
on social media data, we believe that our work has implications on the applicability of
adversarial attacks for undermining NLP-based inference threats and improving privacy
protection in practice.

In summary, this work has the following major contributions:

• A novel and practical paradigm of protecting personal attribute privacy on social
media that leverages adversarial learning to mislead attribute inference attacks.

• An adversarial attack is designed to obfuscate users’ private attribute on more
challenging text data of discrete property. Adv4SG is regulated by a reformed
population-based optimization algorithm over perturbation subroutines that con-
form to text-space attack constraints, which can achieve better success rate in
misclassifying attributes with less computational cost.

• The practical black-box setting is considered for Adv4SG’s formulation, where the
transferability of the proposed method is investigated to validate its applicability
in real-world privacy protection scenarios.
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• Extensive experimental evaluations on three real-world social media datasets (tweets
and blogs) with different attributes to demonstrate the effectiveness of Adv4SG on
attribute obfuscation and privacy protection.

The rest of the paper is organized as follows. Section 3.1.2 defines the problem of
attack model for attribute inferences and adversarial attack for attribute protection.
Section 3.1.3 presents our detailed technical steps of text-space adversarial attack Adv4SG
for attribute privacy protection on social media. Section 3.2.4 evaluates the effectiveness
of Adv4SG and the impact of different settings. Section 3.1.5 discusses the applicability
and limitations of our work.

3.1.2 Methods and Technical Solutions

In this section, we first provide the problem definition of the attack model for attribute
inferences, and then adversarial attack for attribute protection before technically detailing
our proposed model Adv4SG in the following section.

3.1.2.1 Attack Model for Attribute Inferences

Social media enables users to post text data for social engagements. This data expose
users’ information to public where the attackers can take advantage of them to conduct
inference attacks for their harmful purposes [64]. Considering that social media generally
takes action to protect the explicit and identifiable information, in this work, we assume
that the attackers would take advantage of the implicit information from text data
to train NLP models so as to achieve their attribute inference goals. Without loss of
generality, we denote social media text data D to be of the form D = {di, yt

i}n
i=1 of

n texts, where each text d ∈ D is associated with a ground-truth label yt ∈ Y t for
an attribute t ∈ T ; Y t is the label set of the attribute t and T is the attribute set.
For instance, T can be specified as T = {gender, age, location, · · · }, Taking location
attribute (main four U.S. regions) as an example: Y can be accordingly specified as
Y = {0:Northeast, 1:Midwest, 2:South, 3:West}. We follow the general NLP routine to
deal with discrete text data by mapping each text d into a k-dimensional feature vector
x = ϕ(d) where ϕ is a feature representation function ϕ : D → X ⊆ Rn×k in which n× k

is the dimension of the embedding space. In this respect, we can derive the predicted
label of text x using the following formula

y∗ = argmax
y∈Y

ly(x) (3.1)
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where ly(x) is the confidence score of predicting sample text x as attribute label y using
an NLP model l (e.g., convolutional neural network (CNN), long short-term memory
(LSTM), and Transformer). From Eq. (3.1), we can see that the final attribute label
assigned to the input sample is the one with the highest confidence score.

3.1.2.2 Adversarial Attack for Attribute Protection

In the text-space, we aim to design an adversarial attack on textual data to defend against
attribute inference attackers. In practical, our designed defender can be a software on the
client side for social media users. In our setting, we assume that the defender can perturb
user’s public textual data such as tweets or blogs once the user gives that permission to
the defender. In this regard, given an attribute to protect, a text-space adversarial attack
attempts to perturb the texts to obfuscate that attribute and prevent inference attack
models from correctly identifying their private attribute values. That is, the defender
modifies an original text x with assigned attribute label yt to a text x̂ that is classified
to any other label ŷt ∈ Y t (ŷt ̸= yt) through adding a small perturbation δ. Therefore,
we define our objective function as follows.

f(x + δ) = lyt(x + δ)−max
i ̸=yt
{li(x + δ)} (3.2)

where x is classified as a member of ŷt if and only if f(x + δ) < 0 [120]. δ represents the
distance between original text and adversarial text, which is required to be imperceptible
in the studies of continuous data to evade human detection. In our setting, it shares the
similar constraint as to guarantee the text quality. The majority of adversarial attack
methods [1, 26, 27, 121] intuitively perform a gradient-based adversarial attack in the
general feature space by solving the following optimization problem:

δ∗ = arg min
δ∈Rk

f(x + δ)

s.t. ∥δ∥p < ϵ and f(x + δ) < 0
(3.3)

However, these gradient-driven adversarial attack methods from image domain cannot
be directly applied to text space. Compared to image classification, defining adversarial
textual input is more challenging as there is no simple notion of metric between utterances
measuring perturbations. Lp-norm distance metric typically works on continuous feature
space, but is not capable of bounding the expected perturbation on texts represented as
discrete tokens. Besides, gradients computed from the feature space are hard to define
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in text space due to its discrete property. In addition, a valid and realistic text-space
adversarial attack for social good has to comply with some essential underlying constraints
on the modification of the texts. These challenges need to be addressed in Adv4SG.

3.1.3 Adversary for Attribute Privacy Protection

In this section, we first identify the black-box setting and underlying constraints con-
formable to text-space attacks; guided by our formulation, we detail our adversary idea
of how we formulate an adversarial attack Adv4SG to protect attribute privacy against
NLP-based inferences over social media text data. The overview of our proposed method
Adv4SG is illustrated in Figure 3.10.

3.1.3.1 Black-box Attack

Considering the challenge that we are unable to access attacker’s inference models, we
put our work under the black-box setting, where the devised adversarial attack is not
aware of any information about the inference model, including model choice, architecture,
parameters, and training data. Compared to the assumptions made in [71,102,121,122]
that the attacks are able to retrieve the prediction scores by querying the target model
with inputs, our black-box setting is more practical. In the real-world social media
scenario, inference attackers have a variety of model choices, and it is impossible to
specify one out of many. To this end, we self-learn a surrogate NLP model l to perform
attribute inference and craft adversarial texts. Similar to the attackers, we can train
such an inference model using the public data and attribute values from the users. Due
to transferability in adversarial machine learning [72], the adversarial texts optimized to
mislead the surrogate model are very likely to evade the real attackers’ inference models.

3.1.3.2 Text-space Attack Constraints

Not like image perturbations, small modifications on text can be visually noticeable to
human viewers and even incur severe semantic loss on humans understanding. Also,
properties of text data, e.g., grammars, writings, are adjustable and flexible in specific
scenarios. For instance, we can simply copy the words from another text with different
attribute labels for impersonation, or heavily obfuscating the source text for evasion.
These adversarial attacks, however, suffer from semantic loss, generate implausible text,
and have a noticeable effect on a human viewer. Also, perturbations over feature space
may not be able to be mapped to admissible token values in text space, so the generation

27



of text-space adversarial attacks for social good should comply with some essential
constraints to guarantee their validity and applicability. As such, we define a set of
constraints to guide our text-space adversarial attack and clarify its strengths.

• End-to-end learnability. In order to generate a practical text-space adversarial
text, the first and basic requirement to be achieved is the end-to-end learnability,
which enforces iterative perturbations to be performed from text space to text space.
In other words, the text-space adversarial attacks need to follow the transformation
flow D → D, where d 7→ d̂ takes an original text d and generates an adversarial
version d̂. Since the feature representation function ϕ is generally not invertible,
the challenge becomes to find a way to apply transformations δ on d to generate
d̂, so that ϕ(d̂) is as close to x̂ as possible [123]. This suggests that the word
perturbations on text d should not be arbitrary, but guided by the misclassification
of the target attribute.

• Visual similarity. Modifications on texts are hard to be imperceptible to human
eyes. However, in order to increase the text validity and reduce the utility loss to
facilitate its applicability in the social media environment, the generated adversarial
texts should be perceptibly similar to the original ones as much as possible. This
requirement can be satisfied by either perturbing the texts using the visually similar
words, or restricting the number of words that are allowed to be modified.

• Text plausibility. When we modify the text, usually we can substitute the original
tokens with any other legal tokens in word corpus because they are syntactically
correct and readable to human. We consider this validity requirement as text
plausibility. For our problem, text plausibility is important as the adversarial text
would not only fool attribute inference attack models, but might also be posted in
social media for displaying. For this reason, artifacts, which easily reveal that an
adversarial text is invalid (e.g., garbled text, words with symbols), will not included.
However, due to the fast-sharing and informal-writing property of textual posts in
social media, it may tolerate words with small misspellings or distortions, which
are still plausible to humans. In this respect, we design more diverse perturbation
rules to construct adversarial texts.

• Semantic preservability. Preserving semantics is also one of our goals when
generating high-quality adversarial texts in the context of social media. To achieve
that, we use distance metrics from different perspectives to guarantee the small
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distance in the feature space that preserves semantics for texts. On the text
level, the edit distance (e.g., the number of perturbed words) between the original
text d and the adversarial text d̂ we restrict for virtual similarity can also help
seek the semantic equivalence. Moreover, we add constraint on the text distance
for the word level. For instance, we limit the Euclidean distance between the
original and perturbed word vectors to ensure that each word transformation is as
semantic-preserving as possible.

• Attack automaticity. To be applied in practical use, the perturbations performed
during the adversarial attack procedure need to be completely automated without
human intervention. This requires that the possible and available changes made to
the text d exclude any transformations that are hand-crafted or need re-engineering
on different datasets. In this way, the adversarial attack can be feasible to protect
different attributes on different data scenarios without extra update efforts to the
overall framework.

3.1.3.3 Overview of Adv4SG

The aforementioned real-world limitation and main types of constraints on text-space
adversarial attacks raise significant challenges to the design of our attack method Adv4SG.
To address these challenges, we propose Adv4SG to directly perturb the tokens in the text
with guidance towards the misclassification of the target attribute through a self-trained
NLP model, where the end-to-end learnability constraint and the black-box setting are
naturally satisfied. Generally, tokens can be represented in the forms of words and
characters, but in our attack formulation, we focus on perturbing the texts at word-level
for two reasons: (1) the implicit information of the texts can be better encoded from the
latent representations using word embedding than characters, which meets the assumption
that the attackers would utilize the implicit information to train NLP-based models for
attribute inferences; (2) the search space of possible changes over words is much smaller
than characters, such that word-level perturbation is significantly more computationally
tractable than character-level perturbation. Accordingly, we use edit distance metric in
terms of the number of word changes to control the size of modifications so as to ensure
the ability of fooling the threat model while remaining imperceptible. The overview of
Adv4SG is illustrated in Fig. 3.10.

To this end, the feature-space adversarial attacks defined in Eq. (3.3) can be updated
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to a text-space optimization problem as follows:

δ∗ = arg min
δ∈W

f(ϕ(d + δ))

s.t. d̂ = d + δ, s(d̂, d) < ϵ and f(ϕ(d̂)) < 0
(3.4)

where + implies the high-level word change, s(d̂, d) denotes the number of different
words between d̂ and d, and W is the set of plausible and semantic-preserving word
candidates for perturbation. Based on Eq. (3.4), Adv4SG proceeds with a sequence of
word perturbations, where each perturbation takes the current text d, replaces a chosen
word with the optimized candidate, and generates a new version d̂ such that d and d̂ are
semantically equivalent, until the attribute label is changed or the maximum allowed
perturbation ϵ is reached. Note that, since all the operations and optimizations do not
require manual intervention, and candidate constructions and word perturbations are
defined and performed on the fly, we can accordingly ensure the automaticity for our
attack.

3.1.3.4 Perturbation and Optimization

For a text-space adversarial attack, it is significant to elaborate word perturbations
and devise an effective optimization algorithm to guide the transformations towards
the specified target [122]. Some existing works [71,98,102] have thus delivered promis-
ing results in adversarial text generation. Even so, there are still some downsides in
these attack methods: (1) word perturbations are limited to either semantically similar
candidate replacements or character transformations while ignoring each other; and
(2) it is computationally expensive to find an optimal solution using greedy search or
genetic algorithm with random population sampling. Differently, we advance Adv4SG by
considering social media property, and introducing both semantically and visually similar
word candidates for perturbations and an upgraded population-based optimization to
force attribute inference models to misbehave faster. We present the technical details of
our proposed model Adv4SG in the following separate subsections.
Scoring Word Importance. The original genetic attack proposed by Alzantot et
al. [71] repeatedly performed perturbation on randomly selected word to formulate the
population members at each generation, which may suffer from the vast search space of
possible words and easily include those insignificant words. As such, we would like to
first score the importance of words in the text to guide the population sampling that
touches the important words and thus expedite the adversarial text generation.
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Table 3.2: Nearest neighbors for target words using different embeddings: antonym and
synonym example pairs are highlighted as red and blue respectively

Embedding high red similar

GloVe
low blue same

higher yellow different
highest purple particular

Counter-fitting
highest rojo equivalent
supreme flushed same
higher cardinal like

Under our black-box setting, self-training NLP model allows us to compute the
partial derivative of the confidence score regarding the predicted attribute label at each
input word to approximate the word importance. Specifically, we assume the input text
d = (w1, w2, · · · , wm), and the scoring function that determines the importance of i-th
word in d can be denoted as:

rwi
(d, yt) = ∂lyt(ϕ(d))

∂wi

(3.5)

where lyt(·) is the confidence score of attribute label yt. Eq. (3.5) implies that the more
important word has more impact on the model output, which is more likely to be modified
to mislead inference model. Considering the fact that there exist some stop words (e.g.,
to, the, a, and it) or irrelevant words in a text that make little sense to tamper with, we
further use softmax function to normalize the importance scores to serve as word selection
probabilities for population sampling. In this regard, we give priority to modifying the
more important words in the sentences.
Constructing Word Candidates. We focus on perturbing the texts at word-level;
that is, we need to construct a set of word candidates for each selected word to perturb
or replace. In order to satisfy the constraints that the generated adversarial text
retains semantic equivalence and syntactic coherence with the original one and visually
imperceptible to human viewers on social media, we design two different types of
word candidates for perturbation: semantically similar candidates and visually similar
candidates.

• Semantically similar candidates. We obtain a set of words by searching the
nearest neighbors of the ready-to-perturb word according to the distance in word
embedding space. Here we define a threshold η to filter out candidates with distance
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greater than η such that the semantic preservability requirement could be less
violated. GloVe is a context-aware word embedding space [124], but it tends to
coalesce the notions of semantic similarity and conceptual association and thus
fails to distinguish synonyms from antonyms [125]. Examples of such anomalies
can be seen in Table 3.2, where words such as “high” and “low”, and “similar” and
“different” are deemed similar in GloVe embedding space; replacing such words
with each other would completely change the semantics of the text. By contrast,
counter-fitting embedding provided by Mrkšić et al. [125] leverages synonym and
antonym relations to fine-tune GloVe vectors (shown in Table 3.2), which is a better
choice for our problem. Therefore, we use counter-fitting embedding to search for
the nearest neighbors for the given word.

• Visually similar candidates. Apart from legitimate candidates from vocabulary,
we also expand the candidate pool with slightly perturbed words. The reasons
behind this are that (1) social media, as a fast-sharing and informal-writing
environment, is highly misspelling-tolerant, where satiric or deliberate misspellings
are not uncommon; (2) words with small character changes are imperceptibly to
human eyes and have no significant impact on semantics [126], and (3) would
also very likely enforce the selected word to be out of dictionary with “unknown”
embedding such that the output may change [98, 102]. To guarantee the text
plausibility, we restrict that only small changes can be performed on the original
word to create visually similar candidates, and those modified words will not be
selected for a second perturbation. We present different word transformation
methods as follows1:

1. Add a space or a random character into the word.

2. Remove a random character from the word.

3. Swap any two adjacent characters.

4. Substitute a character in the word with a randomly selected character.

5. Substitute a character or a substring to a visually (or aurally) similar number,
such as l 7→ 1, o 7→ 0, z 7→ 2, and straight 7→ str8. These are some deliberate
formulations or slang on social media for user convenience or a rhetorical
purpose.

1Both the first and last positions in the original word will not be modified for better perturbation
invisibility.
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Algorithm 1: Perturbation subroutine.
Function PerturbSub(d, y, l, p, n):

w = WordSelect(d, 1, p);
candsS = SemanticConstructor(w, n);
candsV = VisualConstructor(w);
for ci ∈ candsS + candsV do

d(i) ← replace w with ci in d;
score(i) = ly(ϕ(d(i)));
if ci ∈ candsS then

pf , sf ← a word before/after ci in d;
gscore(i) = GoogleLM(pf , ci, sf);

end
end
tscore ← top n/2 in gscore;
Remove score(i) ∀ ci ∈ candsS and ci ̸∈ tscore;
c = arg maxci

score(i);
return d(c);

end

Determining Best Candidate for Replacement. Based on the constructed word
candidates, we can observe that the semantically similar candidates may not be always
used in the same contexts. To address this issue, we proceed with filtering out those
candidates that do not fit within the context by using Google language model [127] to
further ensure the semantic correctness. The rest are then integrated with visually similar
ones to form the final candidates. Afterwards, we choose the best candidate among them
that will maximize the confidence score of the target attribute ŷt (ŷt ̸= yt) prediction
when it replaces the ready-to-perturb word in d. Then we perturb the text with the
optimal candidate and generate a new text as a population member.
Population-based Optimization. Equipped with the above three steps, we can
formulate a perturbation subroutine that accepts an input text (either perturbed or
original), perturbs one selected word, and generates a perturbed-version text towards
the misclassification of the target attribute, which is illustrated in Algorithm 1. In this
way, we are ready to generate a set of these perturbations for the given text. We aim to
minimize the number of word perturbations, which makes the adversarial text less likely
to be perceived. Therefore, instead of using greedy search [98,102], we follow the work
by Alzantot et al. [71] and leverage population-based optimization to chain the word
perturbations together.

The population-based optimization performs by sampling the population at each
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Algorithm 2: Adv4SG for attribute privacy protection.
Input: d: a text sample, yt: label for t, l(·): inference model, ϵ: maximum

perturbations, n: neighbor number.
Output: d̂: an adversarial text.
selectprob = Normalize(rw(d, yt));
ŷt ← label other than yt;
P0 = {PerturbSub(d, ŷt, l, selectprob, n)}N

i=1;
for g = 1→ I do

for i = 1→ N do
score(i) = l

ŷt(ϕ(Pg−1
i ));

end
p = arg maxi score(i), d̂ = Pg−1

p ;
if s(d, d̂) ≥ ϵ then

return None;
end
if arg maxi li(ϕ(d̂)) == ŷt then

return d̂;
else
Pg = {d̂}, sampleprob = Normalize(score);
for i = 2→ N do

c = PopSample(Pg−1, 2, sampleprob);
Pg = Pg ∪ PerturbSub(c, ŷt, l, selectprob, n);

end
end

end
return None;

iteration, searching for those population members that achieve better performances,
and taking them as “parents” to produce next generation [71]. This procedure can
be summarized into three main operators. (1) Mutate(d): select a word from the
given input text d using the normalized word importance score as the probability, and
perform a perturbation subroutine on d. (2) Sample(P): sample a text di from the
population P = {d1, d2, ..., dN} using the confidence score lŷ(di) as the probability. (3)
Crossover(d1, d2): construct a child text c = (w1, w2, ..., wm) where wi is randomly chosen
from {wd1

i , wd2
i }. Based on these operators, population-based optimization first generates

an initial population P0 = {Mutate(d)1, Mutate(d)2, Mutate(d)N}. At each iteration t,
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the next generation of population will be generated in the following operation batch:

d̂t = argmax
d∈Pt−1

lŷ(d),

ct
i = Crossover(Sample(P t−1), Sample(P t−1)),

P t = {d̂t, Mutate(ct
1), ..., Mutate(ct

N−1)}

(3.6)

The optimization will terminate when an adversarial text is found and returned, or
the maximum allowed iteration number is reaches. Algorithm 2 illustrates our proposed
text-space adversarial attack Adv4SG. Different from the prior work, we improve the
success rate of population samplings by choosing those ready-to-perturb words of high
importance scores, while visually similar candidates introduced further expedite the
adversarial text generation. Through Adv4SG, we can turn adversarial attacks into
protection for personal attribute privacy on social media against the attribute inference
attacks.

3.1.4 Experimental Results and Analysis

3.1.4.1 Experimental Setup

Datasets. We test our method on three real-world social media datasets: GeoText [128],
user gender tweets2, and blog authorship corpus [129], which are good representatives for
social media data as tweets and blogs are posted by different users, and easily accessed
by attackers to uncover their private attributes. Specifically, GeoText is a tweet set from
9, 500 users with geographical coordinates in United States. We map each user into one
of the main four U.S. regions defined by the Census Bureau3 and collect 9, 281 valid
tweets with four locations (west, midwest, northeast and south). User gender tweets are
collected from Kaggle. We filter out those with gender confidence score less than 0.5,
and obtain 13, 926 tweets with two genders (female and male). For blog data, it consists
of 19, 320 documents, each of which contains the posts provided by a single user. We
extract 25, 176 blogs with two attributes: (1) gender (female and male), and (2) age
(teenagers (age between 13-18) and adults (age between 23-45)). Note that, age-groups
19-22 are missing in the original data. The data statistics are summarized in Table 3.7.
Text-space adversarial attack baselines. We compare Adv4SG with four other
state-of-the-art text-space adversarial attack methods, which can be specified as follows:

2https://www.kaggle.com/crowdflower/twitter-user-gender-classification
3https://www2.census.gov/geo/pdfs/maps-data/maps/reference/us_regdiv.pdf
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Table 3.3: Comparing statistics of the three datasets

Dataset Attribute #Posts #Classes #Vocabulary

Twitter_g Gender 13,926 2 17k
Twitter_l Location 9,281 4 16k

Blog Gender, Age 25,176 2 22k

• Genetic attack [71]: this attack uses population-based optimization algorithm
to generate adversarial examples with semantically similar candidates, where
population sampling is performed in a random way at each generation.

• Greedy attack: this method greedily performs perturbation subroutine of our
method on one word at each iteration. We aim to evaluate the performance of
perturbation crafted by our subroutine and validate the effect of population-based
optimization.

• WordBug [98]: this attack scores word importance by removing it from text, and
perturbs words in the descending order regarding word importance scores using
character transformations.

• TextBugger [102]: this method also scores the word importance for greedy token
selection, but proceeds by substituting the selected words with the optimal bug from
candidates, including similar words in embedding space and word transformations.

Parameter setting. We use euclidean distance as distance metric to construct semantic-
similar candidates from embedding space, and the distance threshold is set to η = 0.5 to
filter out those less similar ones. The size of candidate pool for each word is set as 8,
where we choose the best one for replacement. We also limit the maximum allowed word
perturbations to 25% of the text length, and we further evaluate its impact on attack
performance in Section 3.1.4.2. We randomly select 80% of the samples for training,
while the remaining 20% is used for testing, and we report the mean inference accuracy
and attack success rate of four attribute inference settings runs on test samples for the
evaluation results.
Attack model for attribute inference attacks. An attribute inference attack aims
to disclose private attributes of users by learning a model on the public data. Since we
do not know the attacker’s model, we self-train bidirectional LSTM (BiLSTM) [130],
multi-layer GRU (M-GRU) [131], ConvNets [132], and CNN-LSTM (C-LSTM) [133] to
perform the tasks. We mainly use BiLSTM to evaluate the effectiveness of Adv4SG, while
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the comparisons among these four models are leveraged for transferability evaluation in
Section 3.2.4.4. All models read in 250 words, where the dimension of each LSTM or
GRU hidden unit is 128. We use GloVe [124] to map each word into a 300-dimensional
embedding space. Note that, an inference attacker would deploy more robust models
to evade adversarial attacks. As adversarial training is considered as one of the most
empirically robust methods against adversarial attacks [65, 134], we build up a robust
model using adversarial training and further discuss the effectiveness of Adv4SG under
this setting in Section 3.1.4.5.

3.1.4.2 Evaluation of Adv4SG

In this section, we validate the effectiveness of Adv4SG against attribute inference attacks
and the impacts of different parameters. To evaluate our method, we perturb the correctly
classified text examples from the test data of four attribute settings.
Effectiveness. In our experiments, we evaluate Adv4SG under different population sizes
and iterations as they play a crucial role to determine the degree of sample perturbation
and computational cost. In particular, we test the results of our generated adversarial
texts with population size N ∈ {10, 20, 30, 40, 50} respectively against different inference
attacks, while the maximum iteration I is ranging in {10, 20, 30} correspondingly. The
experimental results are shown in Figure 3.4. As we can see from the results, the inference
accuracy for Twitter-location, Twitter-gender, blog-age, and blog-gender on clean data is
47.76%, 62.25%, 72.92%, and 69.20%, which are relatively close to the state-of-the-art
results on each dataset. Adv4SG drastically decreases all these accuracies and achieves
the goal of obfuscating attributes and protecting social media text data privacy. Averagely,
our method reduces the accuracy of Twitter-location and Twitter-gender inference attacks
from 47.76% to 2.19% and from 62.25% to 18.42% respectively; for the larger and longer
blog data, we degrade inference accuracy of gender and age from 69.20% to 9.66% and
from 72.92% to 13.65% respectively. We present some of our generated adversarial texts
in Figure 3.3. It is clear that Adv4SG can subtly perturb important words towards the
misclassification target in a plausible and semantic-preserving manner (e.g., “queso” 7→
“cheese”, “awesome” 7→ “amazing” and “should” 7→ “shou1d”).
Impact of population size and iteration. Generally, when we enlarge the population
size, the success rate of generating adversarial samples increases and the accuracy of
the inference models thus decreases, while the required perturbation number tends to
go up as well. However, due to the perturbation limit for each text, the actual attack
performance might not always improve for larger population size. We can observe that
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Task: Twitter-location. Original label: South (confidence=76.88%).
New label: Northeast (confidence=61.66%)
They use the white queso cheese dip from farm fresh. I have seen cases
of it in the kitchen.
Task: Twitter-gender. Original label: Male (confidence=53.46%).
New label: Female (confidence=84.36%)
That awesome amazing moment when you check chechk your bank
account and your parents send you more than you thought.
Task: Blog-age. Original label: Adults (confidence=76.08%). New
label: Teens (confidence=60.31%)
Helloooooo! Well, in case you haven’t guessed by the lack l@ck of
my blogs, I have been on holiday nowhere nowhare nice just sitting at
home. But I thought I should shou1d take a break from computers as
well. I have lots of catching up to do, good news, bad news and lots of
events things to tell you all about. So stay tuned for the updates!!
Task: Blog-gender. Original label: Female (confidence=78.29%).
New label: Male (confidence=54.43%)
So it starts a blog bl0g on the internet ready for writing. I’m gonna
use utilize this a lot over the next future two weeks to let you know
what my theatre class is doing, the cute guys I’m meeting and all the
rest enjoy.

Figure 3.3: Adversarial texts generated by Adv4SG under different inference tasks and
their original texts.

the inference accuracy for all settings drops to the worst at N = 40 and then either
slightly increases or stays flat when N changes from 40 to 50. On the other hand, the
larger iteration provides more improvement space for Adv4SG when the population size is
small. For example, when N = 10, Adv4SG degrades the inference accuracy for blog-age
setting from 21.23% (I = 10) to 12.02% (I = 30). Nevertheless, such inference accuracy
difference among different iteration settings tends to be more statistically insignificant as
the population size increases. As shown in Figure 3.4, Adv4SG achieves the comparable
performance under all four inference settings at N = 40 with I varying in {10, 20, 30}.
The reason behind this is that the larger population size more likely enforces the optimal
solutions at earlier iteration, while most of the failed population samples would stay in
the loop at later iteration. Considering that the larger iteration may introduce more
computational cost, while the larger population size can significantly enhance Adv4SG,
we use N = 40 and I = 10 throughout the following evaluations to keep a good trace-off
between the effectiveness and efficiency.
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(a) Iteration I = 10 (b) Iteration I = 20

(c) Iteration I = 30

Figure 3.4: Evaluation results: (a), (b) and (c) specify the inference accuracy of Adv4SG
with different population sizes and iterations.

Impact of maximum allowed perturbation (ϵ). Different choices of ϵ could affect the
performance of Adv4SG, since ϵ not only limits the number of word perturbations allowed
to impact on the attack ability, but also significantly reflects the similarity between the
generated adversarial texts and the original texts, and thus has direct impact on the
semantic preservability and plausibility of the adversarial texts. We use the cumulative
distribution function (CDF) of attack success rate regarding the number of ϵ to illustrate
the evaluation results. From the results shown in Figure 3.6, we can observe that as ϵ

increases, the attack success rate increases as well because of the larger modification space,
but the mean sentence semantics quality would decease. Actually, using Adv4SG, most
of the generated adversarial texts manage to evade the inference models after perturbing
very few words in the texts. More specifically, for Twitter-location inference, about
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Figure 3.5: the confidence score distribution of the perturbed texts under four inference
settings.

57% of the testing texts evade the inference model by perturbing only one word, while
this success rate increases to 88% when ϵ ≤ 3. For Twitter-gender inference, Adv4SG
successfully crafts 57% and 76% of the adversarial texts from the original with at most
one word and three word perturbations respectively. For blog-gender inference, the attack
success rates are 38% with ϵ ≤ 1 and 63% with ϵ ≤ 3. For blog-age inference, these two
rates are 9% and 30%, which apparently underperforms other settings because of the
longer text length. When Adv4SG is allowed to perturb at most 5 words, the attack
success rate immediately rises to over 50%. All these results imply that (1) Adv4SG
enables most of adversarial texts to be similar to the original texts; (2) the number
of perturbations relatively relies on the length of the texts: the average lengths of the
texts used for Twitter-location, Twitter-gender, blog-gender, and blog-age are 31, 15, 51
and 61, while the average perturbations are 1.8, 1.4, 2.9, and 5.2 for the corresponding
inference tasks.
Other observations. In addition, we can also find some more interesting observations
from the evaluation results in Figure 3.4 and Figure 3.6: (1) Adv4SG tends to perform
worse on binary attributes (e.g., age and gender) than multi-class attributes (e.g.,
location). It is not difficult to understand that adversarial attacks on binary attributes
can be considered as targeted attacks that might take more effort to perturb the texts
and enforce misclassification to a specified target class (inverse to the original), while
adversarial attacks on multi-class attributes fall into non-targeted attacks that have to
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Figure 3.6: Evaluation on maximum allowed perturbation (ϵ) via cumulative distribution
of attack success rate.

simply cause the source texts to be misclassified, which is obviously easier. (2) The
learning ability of the inference model may also have a potential impact on the Adv4SG’s
attack effectiveness against it, as small perturbations on the texts more likely lead to
evasion for inference models that underperform than others. For example, the inference
accuracy for Twitter-location is 47.76%, while Adv4SG successfully reduces it to 2.19%
with 7.65% mean perturbation rate. The similar results can be found between blog-age
and blog-gender. (3) The age attribute seems more difficult to be obfuscated than others
due to relatively higher model inference ability and longer text length, where Adv4SG
performs more word perturbations for adversarial text generation.

Furthermore, we show the confidence distributions of those generated adversarial
texts that can successfully fool the inference attackers under different deployment settings
in Figure 3.5. It indicates the consistent findings with what we observe from other results.
For instance, the average confidence values of the perturbed texts for the age attribute
are distributed slightly above the borderline (i.e., 50%), which reveals the difficulty in
obfuscating age attribute for blog dataset. Differently, the overall scores of other three
tasks have been explicitly moved to the misclassification direction, which lead to better
attack effectiveness. In addition, the performance of Adv4SG for long texts (i.e., blogs)
seems to be more stable than short twitter texts. We guess it correspondingly relates to
the different inference capability of the attackers on these datasets.

3.1.4.3 Comparisons with Other Attack Baselines

Attack performance. We compare Adv4SG with the other baselines including Genetic
attack [71], Greedy attack, WordBug [98], and TextBugger [102]. Specifically, we randomly
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Table 3.4: Comparisons of different text-space adversarial methods

Inference task Metric Adv4SG Genetic Greedy WordBug TextBugger

Twitter-location
Success Rate 97.40% 85.71% 76.62% 55.84% 82.91%
Median Ptb Rate 5.26% 6.25% 8.33% 10.53% 7.85%
Mean Ptb Rate 7.65% 9.00% 10.73% 18.75% 11.58%

Twitter-gender
Success Rate 74.03% 55.84% 45.45% 32.47% 62.34%
Median Ptb Rate 9.09% 14.29% 14.64% 27.27% 16.67%
Mean Ptb Rate 12.18% 16.28% 16.73% 29.56% 21.37%

Blog-age
Success Rate 82.28% 72.15% 72.15% 17.72% 59.49%
Median Ptb Rate 11.92% 11.11% 12.19% 31.21% 19.64%
Mean Ptb Rate 13.53% 13.96% 14.06% 27.94% 23.89%

Blog-gender
Success Rate 88.61% 84.81% 70.89% 54.43% 77.22%
Median Ptb Rate 5.08% 4.21% 7.45% 17.86% 12.31%
Mean Ptb Rate 8.38% 8.61% 10.33% 19.07% 16.03%

sample 50% of correctly classified examples from the testing tweets and blogs to measure
the performance of attacks. The comparative results are illustrated in Table 3.4, where
Genetic attack achieves better attack success rate and perturbs less words than Greedy
attack, WordBug, and TextBugger in most settings, while TextBugger produces the
comparable or slightly better performance on tweet attribute obfuscation; Adv4SG
outperforms all baselines with marginally higher median perturbation rate than Genetic
attack on blog attribute inferences. From the results, we can observe that (1) projecting
an important word into “unknown” may enforce inference models to misbehave, while
ignoring semantically similar candidates would also miss good evasion chances, and
(2) leveraging word importance to facilitate population-based optimization expedites
adversarial example generation. When we look into the generated adversarial texts, we
find that Greedy attack fails in some of those adversarial texts with more modifications
required over long blogs, and hence obtains a smaller perturbation number on average in
results. By contrast, Adv4SG either converts those failed texts from Genetic, Greedy,
WordBug and TextBugger to adversarial examples, decreases the number of required
perturbations, or raise the confidence scores of the perturbed texts, which significantly
advances the text-space adversarial attack with respect to effectiveness and efficiency.
Thus, Adv4SG can be a feasible paradigm in a real social media environment on attribute
obfuscation and privacy effectiveness.
Computational cost. From the results of Table 3.4, we can validate that our method
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Figure 3.7: Computational cost between Adv4SG and Genetic.

obviously outperforms other state-of-the-arts by obfuscating the private attribute values
with smaller word perturbations and higher success rate. Among them, the performance
of Genetic method is relatively close to our strategy, both of which enforce attack
effectiveness improvement of a large margin against others. Meanwhile, our method and
Genetic attack both deploy population-based optimization that performs an evolution
process by selecting population candidates to breed the next generation towards better
solutions. Thus, here we would like to evaluate the advancement of our method against
genetic method from the perspective of computational cost. To be comparable, we use
single TITAN Xp for each experiment. We measure the average runtime for different
inference settings on Genetic and Adv4SG, respectively. The results are presented
in Figure 3.7. We can see from the results that Adv4SG can drastically reduce the
computational cost compared to Genetic. For inference tasks such as Twitter-gender and
Blog-age, Genetic method costs nearly twice the time of our method. On average, Adv4SG
can save 36.85% computational time against the Genetic, which further justifies the
advantage of word importance and visually similar candidates we introduce in Adv4SG.

3.1.4.4 Transferability

Under the black-box attack setting, as Adv4SG is implemented through self-trained NLP
model, it is necessary to evaluate its transferability to validate if those adversarial texts
generated for one model are likely to be misclassified by others. In this evaluation, we
deploy Adv4SG to generate adversarial texts on four inference settings for four different
NLP models: BiLSTM [130], multi-layer GRU (M-GRU) [131], ConvNets [132], and
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CNN-LSTM (C-LSTM) [133]. Then, we evaluate the attack success rate of the generated
adversarial texts against other models. To ensure our results are comparable, we build
up these models with the same parameter settings (different dropout rates) and training
data. Accordingly, we build a cross-model transferability table, where each table unit
(i, j) holds the percentage of adversarial texts crafted to mislead model i (row index)
that are misclassified by model j (column index).

From Table 3.5, we can see that the cross-model transferability for Adv4SG is a
strong but heterogeneous phenomenon: (1) between same model pairs, the percentage
numbers are higher than 80%, most of which are close or beyond 90%; (2) between
pairs of different models, some enjoy good transferability (e.g., 76.67% for M-GRU and
BiLSTM on blog-gender setting), while some only have moderate one (e.g., 31.03% for
ConvNets and M-GRU on blog-age setting). The results also imply that the complexity
of the surrogate model and the intrinsic adversarial vulnerability of the target model
contributes to attack transferability (e.g., all models against ConvNets achieve relatively
higher transferability than others). Adversarial texts generated from more complicated
surrogate model tends to have better attack success rates on other target models. We
believe it is because models with complex structures enjoy high capability of regularization
on malicious perturbations wherefore adversaries need to enlarge the input mutations
to fool the model. In real-world scenarios, since the target models are uncontrollable
and inaccessible, social media may need to elaborate the surrogate model for better
transferability when applying Adv4SG for attribute privacy protections.

3.1.4.5 Adversarial Training

Attribute inference attackers may detect adversarial examples or defenses in place and
train more robust models to evade such protection and thus enhance the inference
accuracy. In this respect, we investigate a more robust target model based on adversarial
training, which is considered as one of the most empirically effective ways to improve the
model robustness against adversarial attacks [1], to further evaluate the effectiveness of
Adv4SG. More specifically, in this part we study if adversarial training can strengthen
the inference attack and lower the success rate of our defense method. We use Adv4SG
to generate adversarial texts from random 50% of correctly classified training data, and
incorporate these crafted adversarial examples into the training process, with which,
we retrain the BiLSTM inference model under the same parameter setting described
in Section 3.1.4.1. Afterwards, we follow the same paradigm to perform Adv4SG over
adversarially trained models to test the success rate under four inference tasks.
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Table 3.6: Success rates on models with (Adv_model) and without adversarial training
(Ori_model)

Model Twitter-location Twitter-gender Blog-age Blog-gender

Ori_model 97.40% 74.03% 82.28% 88.61%
Adv_model 97.40% 71.82% 75.95% 89.87%

The results are illustrated in Table 3.6. From our results, we can observe that
adversarial training barely improves the robustness of inference models against our
adversarial attack Adv4SG. The updated success rates of Adv4SG over the inference
models after adversarial training are 97.40%, 71.82%, 75.95% and 89.87% on Twitter-
location, Twitter-gender, blog-age, and blog-gender, respectively, which yield no significant
difference from the success rates over the original models. These results demonstrate
the resilience of the perturbations generated by Adv4SG and the difficulty for inference
attackers in defending against our adversarial attack. On the other hand, the relatively
weak learning ability of the inference model we deploy in our experiments may somewhat
contribute to the success of Adv4SG. This inspires our future work in increasing the
learning robustness and capability of NLP models and the advance of adversarial attacks
against them.

3.1.5 Applicability and Limitations

As our work is motivated to protect users’ attribute privacy in social media, it is more
important for us to discuss how to put it in real use and bring practical impact to our
life. For its applicability, Adv4SG should be an easy-to-use service provided on users’
social media client side, so that its privacy protection functionality would be realized
in practice. For example, Adv4SG can be developed as an API that is integrated into
social media posting and editing systems to allow users to choose the adversarial text
according to their provided attribute and text content. An conceptual example of such
an attribute obfuscation service devised in Facebook is illustrated in Figure 3.8, which
can change the private attribute that people are unwilling to disclose (i.e., age) of a post
to wrong results. Once users give privileges to this adversarial perturbation, the posting
data will be obfuscated and updated on behalf of the users. Although not all users might
consistently accept the obfuscation feature, we think the possibility of conveniently and
proactively perturbing public data can also promisingly increase the uncertainty and
difficulty to the attackers. From this perspective, our designed method Adv4SG can
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Teen option

Figure 3.8: An example of attribute obfuscation service.

serve as a valid function to exhaustively obfuscate the social media data before making
it publicly available.

Nonetheless, our approach also poses some challenges and limitations which we discuss
as follows. (1) We successfully perform Adv4SG over the annotated public data in this
work, while the real social media lacks the ground truth, which disables Adv4SG from
generating the adversarial texts in a real-time fashion. To better obfuscate the attributes,
we may need to first recognize the targets. Though attribute recognition is irrelevant for
the scope of our work, it is an interesting future work to leverage attribute recognition for
better protection solutions. (2) In our experiments, we simply train some regular attack
models for attribute inferences. Though Adv4SG has been validated to be transferable
and resilient against adversarial training, the attackers could take advantage of more
advanced and robust learning models (e.g., spelling checking, and graph learning) to
infer attributes and thus deteriorate Adv4SG. We acknowledge this limitation and leave
the investigation on this arms race as our future work, yet it does not impact the great
value and general validity of our new insight on the adversarial attacks for attribute
obfuscation and privacy protection in practice, as advanced and robust models could
always be evaded by more complicated and sophisticated adversarial techniques.

3.2 Adversary for Social Good: Leveraging Attribute-
Obfuscating Attack to Protect Social Networks’ User
Privacy
As social networks become indispensable for people’s daily lives, inference attacks pose
significant threat to users’ privacy where attackers can infiltrate users’ information and
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infer their private attributes (e.g., gender, age, location, career, and political views). In
particular, social networks are generally represented as graph-structured data, maintaining
rich user activities and complex relationships among them. This enables attackers to
deploy state-of-the-art graph neural networks (GNNs) to automate attribute inferences
from user features and relationships, which makes such privacy disclosure hard to
avoid. To address this challenge, in this work, we leverage the vulnerability of GNNs
to adversarial attacks, and propose a new graph poisoning attack, called Attribute-
Obfuscating Attack (AttrOBF) to mislead GNNs into misclassification and thus protect
personal attribute privacy against GNN-based inference attacks on social networks.
Different from the prior attacks using perturbations on the either graph structure or node
features, AttrOBF provides a more practical formulation through obfuscating optimal
training user attribute values for real-world social graphs, and also advances the attribute-
obfuscating attack by solving the problems regarding unavailability of test attribute
annotations, black-box setting, bi-level optimization, and non-differentiable obfuscating
operation. We demonstrate the effectiveness of our proposed attack method AttrOBF on
user private attribute obfuscation by extensive experiments over three real-world social
network datasets. We believe our work yields great potential of applying adversarial
attacks to attribute protection on social networks.

3.2.1 Introduction

Social networks have emerged as an indispensable part of our daily lives through enor-
mous websites and apps, which allow us to conveniently share personal ideas for social
engagements. Such an interactive environment generates a large amount of user-oriented
data. Due to its accessibility and information richness, this data attracts not only
researchers to study and understand social communities and individual behaviors, but
also attackers to disclose users’ sensitive information to fulfill their malicious intents
(e.g., unwanted advertising, user tracing) [42, 43]. This puts users’ privacy at risk. In
fact, with the rapid development in machine learning, and especially the revolutionary
learning structures and capabilities raised by deep learning, such privacy risk is not rare
on social networks, and could be quickly transmitted and propagated through attribute
inference attacks in an automatic fashion [44–46,67,70,116].

In particular, social networks are naturally represented as graph-structured data,
maintaining individual user activities and complex relationships among them. For
example, nodes in these social graphs usually encode users’ information with respect to
their profiles, posts, photos, or other statuses, while graph edges connect users with their
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Figure 3.9: GNN-based inference attack example and graph adversarial attack leading to
attribute obfuscation (i.e., attribute of target user gets misclassified) through traditional
perturbation on graph structure/node feature or our proposed attribute obfuscating
operation.

friendships, kinships, or follower-followee relationships. On the other hand, graph neural
networks (GNNs) provide more and more powerful techniques for graph understanding
and mining [73,104–106]. These GNNs take the connectivity structure of the graphs as
the filter to perform neighborhood information aggregation so as to extract high-level
features from the nodes and their neighborhoods [107], which have boosted the state-of-
the-arts for a variety of downstream tasks (e.g., node classification and link prediction)
over graphs. Therefore, a surge of effective inference attacks utilize GNNs to reveal
personal attributes (e.g., age, gender, location, career, and political views) that people are
unwilling to disclose on social networks [135–137]. The idea is visualized as an example
on the left-hand side of Figure 3.9 illustrating that the attribute of the target user can
be correctly identified by leveraging GNNs over graph structure and user features.

In this work, we simply demonstrate an attribute privacy threat on social networks as
the scenario that an attacker trains a well-performed GNN model to infer users’ private
attributes from graph-structured data such as Facebook friendship networks and Twitter
follower-followee networks. With this in mind, some previous attempts have paid close
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attention to protect these attributes against inference attacks [41,43,47,64,85,116,138,138],
which, however, still suffer from either large computational cost and utility loss with
graph anonymization [43,85], or specific application scenarios limited to visual or textual
data [41,47,64,138,138]. Thus, our goal here is to generalize the investigation to more
challenging graph-structured data, and protect personal attribute privacy in this regard
from a novel and practical adversarial learning perspective.

Despite great success, GNNs are still faced with the inherent learning-security challenge
of lacking adversarial robustness existing in regular machine learning models [1, 20,119].
Recent studies [110–114,114,115] have shown that GNNs remain vulnerable to adversarial
attacks that can easily fool the models into misclassification by performing small pertur-
bations to graph structures and/or node features, which is shown in Figure 3.9 (the upper
one on the right-hand side). As the effectiveness of attribute inference attacks depends
on high learning performance from GNN model while adversarial attacks substantially de-
crease its performance, this observation accordingly inspires us to take advantage of such
a vulnerability and cast personal attribute privacy protection problem on social networks
as an adversarial attack formulation problem against GNN-based attribute inference
attacks. To achieve this goal, we face two challenges: (1) as inference attackers have a
variety of choices in GNN construction, it is impossible for us to access the inference
models for crafting graph adversarial attacks; (2) gathering sufficient amount of labeled
data from social media can be expensive and time-consuming which adds more challenge
for the expansion of graph neural networks towards users’ attribute protection; (3) due
to multimodality of user representations and intractability of relationship manipulations,
modifications on either graph structures or node features cannot guarantee the validity
of adversarial social networks, which are impractical in the real-world settings.

To address the above challenges, in this work, we design a black-box adversarial
poisoning attack, called attribute-obfuscating attack (AttrOBF), to deteriorate GNNs
into misclassification and thus protect personal attribute privacy against GNN-based
attribute inferences on social network data. Different from the regular label based attacks
strictly limited to binary labels [74,139], AttrOBF is more general to deal with either
binary (e.g., gender attribute) or multi-class (e.g., location attribute) classification tasks.
Given a social network, AttrOBF proceeds by modifying a small fraction of optimal
training users’ attribute values, while the obfuscated attribute information can propagate
along the whole graph through layer-wise neighborhood aggregations, such that the
overall performance of attribute inferences by a self-trained GNN model is drastically
degraded. Figure 3.9 (the lower one on the right-hand side) illustrates the goal of our
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work.
Due to transferability in adversarial machine learning [72], the obfuscated attribute

over social networks is very likely to mislead the real attackers’ inference GNN models.
Furthermore, to solve the labeled data shortage, we leverage GNNs such as graph
convolutional network (GCN) to conduct semi-supervised learning for node classification
task on only a small number of labeled nodes. Then we obtain the prediction results of
testing data to serve as the ground truth for our optimizations. More importantly, it is
necessary for inference attackers to collect initial attribute annotations for training, while
users’ annotating on social networks generally relies on their self-reporting; therefore,
attribute obfuscating can be conveniently and proactively realized by users and data
publishers, and also easily passed to subsequent inference attacks. These advantages
allow a refined paradigm to effectively and efficiently mitigate the impacts of GNN-based
inference attacks on attribute disclosure and enhance personal privacy protection in
practice. In summary, our major contributions of this work are listed as follows:

• We explore a novel and practical perspective of protecting personal attribute
privacy on social networks that leverages adversarial attacks to mitigate GNN-
based attribute inference attacks.

• We propose a new adversarial attack AttrOBF for users’ private attribute protection
on social networks. To avoid the NP-hard search, AttrOBF employs gradient-based
method to obfuscate optimal training attribute values in a cost-efficient manner,
where the problems regarding unavailability of test attribute annotations, black-
box setting, bi-level optimization between attacks and GNNs, and non-differential
obfuscating operation are specially addressed.

• We conduct extensive experimental evaluations on three real-world social network
datasets with different attributes to demonstrate the effectiveness of AttrOBF on
attribute obfuscation and privacy protection.

3.2.2 Overview

In this section, we first introduce the attack model for attribute inferences, and adversarial
attack for attribute protection before diving into the technical details of AttrOBF in the
following section.
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Figure 3.10: The overview of our attribute-obfuscating attack AttrOBF for protecting
personal attribute privacy on social networks.

3.2.2.1 Graph Neural Network for Attribute Inference

Social networks may indicate users’ sensitive information, and thus easily expose them
to the attackers who can access the data and infer the private attributes of interest to
deliberately fulfill the economic, social, or political intents [64]. Considering that social
networks are generally represented as graph-structured data, in this work, we assume
that the attackers would take advantage of user features and relationships to train GNN
models so as to achieve their attribute inference goals [135–137].

Without loss of generality, we denote social network data G to be of the form
G = (V, E, X), where V (n = |V |) is the set of user nodes, E is the set of edges
specifying relationships among users, and X ∈ Rn×d is feature matrix. Nodes V can
be further divided into annotated node set Vl (nl = |Vl|) and unannotated node set Vu

(nu = |Vu|), where each annotated node is associated with a ground-truth attribute value
y ∈ Y = {0, 1, · · · , k − 1}. For instance, for gender attribute, Y = {0:male, 1:female}.
Edges E can be encoded as an adjacency matrix A ∈ Rn×n and Aij = {0, 1}. That is, if
(vi, vj) ∈ E, then Aij = 1; otherwise, Aij = 0. Given A, X, and Vl with attribute values
yl, a GNN model Z = fW(A, X) (Z ∈ Rn×k and k = |Y |) is well trained to predict the
attribute value for each node in Vu by minimizing the training loss as follows

W∗ = argmin
W

Lgnn(fW(A, X), yl) = argmin
W

l(Zl, yl) + λ∥W∥2
2 (3.7)

where W is the trainable weight matrix, and l(·, ·) is the loss function (e.g., cross-entropy
loss). Here, a GNN model fW(A, X) can be specified as graph convolutional networks
(GCNs) [73], graph attention networks (GATs) [140], or others [104, 105, 141]. GNNs
can be applied under inductive and transductive settings. In this work, we focus on
transductive inferences where all node connections and features are accessible during
training.
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3.2.2.2 Graph Adversarial Attack for Attribute Protection

Given a private attribute, a graph adversarial attack attempts to perturb the graph to
obfuscate that attribute and prevent GNN-based inference attack models from correctly
identifying users’ private attribute values. Generally, it modifies an original graph
G with respect to its graph structure and/or node features to an adversarial graph
Ĝ = (Â, X̂) [110, 113,114], such that the test loss over nodes in Vu can be maximized as
follows

max
Â,X̂
Latk(fW∗(Â, X̂), yu)

s.t. W∗ = argmin
W

Lgnn(fW(Â, X̂), yl), ∥G− Ĝ∥0 ≤ ∆
(3.8)

where a budget constraint ∆ is imposed on the perturbations to limit the number of
changes over node features and edges and ensure the imperceptibility of attacks.

Clearly, this is a challenging bi-level optimization problem: the attacker aims to
maximize the test loss achieved after optimizing the model parameters on the modified
graph Ĝ. Maximizing the test loss by modifying graph components is not straightforward
as the graph parameters are constrained already. While perturbing graph would affect
the optimized graph parameters computed in the prior step that makes this problem hard
to solve; also, the action space of the attacker from G to Ĝ are discrete, enforcing vast
combinatorial search [114]. Even worse, these attacks based on either graph structure
or node feature manipulations are impractical to be applied in real-world social graph
setting: (1) user nodes usually encode multi-modal data (e.g., profiles, posts, and other
activities), where perturbations computed from the feature space are hard to map into
user information space in an end-to-end manner; (2) due to limited access to large-scale
social networks (especially for ones built on private interactions like Facebook), it is
unreasonable to assume that users can alter any relationship as they wish. By contrast,
users’ attribute values can be much easier to manipulate through users’ self-reporting.
It is necessary for inference attackers to collect initial attribute values for training,
while these attribute values on social networks generally come from users’ self-reporting.
Therefore, attribute value manipulation has a direct impact on the model training and
effectiveness for GNN-based inference attacks. Recent studies [74, 139] showed that
flipping a few training labels successfully dragged down the node classification accuracy
to a great extent for graph-learning models, which, however, can merely apply to binary
classification tasks. To this end, in this project, we would like to formulate an attack-
effective yet cost-efficient attribute-obfuscating attack on social graphs to protect users’
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private attributes in practice, which specifically addresses the aforementioned challenges.

3.2.3 Attribute-Obfuscating Attack for User Privacy Protection

In this section, we first identify attribute-obfuscating attack goal with four underlying
challenges for the problem formulation; to solve these challenges, we detail our technical
steps of how we craft a graph adversarial poisoning attack AttrOBF to protect attribute
privacy against GNN-based inferences on social networks. The overview of our proposed
method AttrOBF is illustrated in Figure 3.10.

3.2.3.1 Attack Goal and Challenges

In our application setting, AttrOBF is designed to obfuscate a small fraction of optimal
training users’ attribute values so as to maximally decrease the overall performance of
GNN-based attribute inferences trained on the modified graph. More specifically, given a
target attribute with either binary or multiple classes, the goal is to have the test users
classified as any attribute value different from the true one. In this regard, we can update
the general graph adversarial attacks in Eq. (3.8), and the final objective function of
AttrOBF has the following form

min
Φ(yl)
− Latk(fW∗(A, X), yu)

s.t. W∗ = argmin
W

Lgnn(fW(A, X), Φ(yl))

∥Φ(yl)− yl∥0 ≤ ϵnl

(3.9)

where Φ(yl) denotes the attribute obfuscating operation on the training attribute values
yl, and ϵ is the obfuscating rate to nl to ensure that AttrOBF is unnoticeable. Eq. (3.9)
indicates the objective of AttrOBF that directly relates to the loss maximization on the
test attribute values yu. Also, AttrOBF only performs changes to the training attribute
values yl; hence we treat the graph structure A and node features X as two constants
during our attack formulation. Accordingly, Eq. (3.9) poses four unique challenges to the
design of our attack AttrOBF as follows.

• Unavailability of Test Attribute Annotations. AttrOBF tries to decrease the
generalization performance of GNNs on the unannotated node set with respect to a
specific private attribute. Obviously, the test attribute values yu are not available
for the straightforward leverages. In other words, we cannot directly optimize the
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test loss using the ground truth. One way to approach this is to select subset of
training attribute values as test ones, but this may lead to a suboptimal solution
with optimal training attribute values being potentially excluded for obfuscating
operation.

• Black-box setting. AttrOBF is put under the black-box setting, where it is not
aware of the GNN model fW(·, ·) used by the inference attackers, including model
choice, architecture, and parameters. As AttrOBF is a data poisoning attack while
we aim to prevent inference attackers from disclosing users’ private attribute values
on our modified social networks, it is reasonable to assume that AttrOBF has access
to the social graph data with respect to A, X, and yl, which will be collected by
inference attackers after attribute obfuscating in the real-world scenarios.

• Bi-level optimization. The problem formulation in Eq. (3.9) is of bi-level nature:
the optimization on the attack loss Latk is achieved after the optimization on the
classification loss Lgnn. In this respect, maximizing the test loss to obtain the
optimal attribute obfuscating operation Φ(yl) requires retraining the GNN model,
while the GNN model parameters W∗ is constrained by the obfuscating operation
Φ(yl) on the training attribute values. Optimizing such a bi-level problem is highly
challenging by itself.

• Non-differentiable obfuscating operation. In our graph setting, the training
attribute data and the action space of the attribute obfuscating are discrete: the
training attribute values are yl = {0, 1, · · · , k − 1}nl , and the possible actions
are attribute value changes from the current one to any others. This makes the
action space of the problem vast: given the maximum allowed training attribute
value changes ϵnl, the number of possible attacks is in O((k− 1)ϵnlnϵnl

l ); exhaustive
search is clearly infeasible, while greedy search easily leads to sub-optimal solution.
Gradient-based methods can avoid the combinatorial search; however, discrete
obfuscating operation Φ(yl) is non-differentiable in the attack objective, preventing
AttrOBF from directly applying gradients to optimize the test loss.

3.2.3.2 Test Attribute Value Prediction

Transductive inferences over a graph imply that all node connections and features are
accessible during training. Thus, we can use those annotated data to learn a GNN model
described in Eq. (3.7) to estimate attribute values yu of the unannotated or test nodes
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Vu:
yu ≈ y∗

u = argmax
i∈Y

Zu,i, Z = fW(A, X) (3.10)

The advantage yielded here is that we can designate the surrogate model, which will be
introduced in Section 3.2.3.3, as fW(A, X) in Eq. (3.10) to estimate yu; if the adversarial
attack formulated in a self-learning manner (i.e., using these predicted attribute values)
has a high test error, it is very possible to also generalize poorly with the same surrogate
model used to perform AttrOBF over the same graph. It is worth noting that only the
attribute values yl of the training nodes Vl are used to optimize the GNN model, while
the test attribute annotations yu from estimation are only used to maximize the test loss
for attack formulation.

3.2.3.3 Surrogate Model

Under the black-box setting, we use two-layer Simple Graph Convolution (SGC) [142] as a
surrogate model to perform our attribute-obfuscating attack on social graphs. Specifically,
SGC is a linearized two-layer GCN:

Z = fW(A, X) = softmax(Â2XW), Z ∈ Rn×k (3.11)

where Â = D− 1
2 ÃD− 1

2 , Ã = A + I, and D is the diagonal degree matrix defined on Ã,
i.e., Dii = ∑n

j=1 Ãij.
There are three reasons behind this surrogate model choice: (1) SGC removes the non-

linearity between GCN layers, which not only makes the model more tractable with less
unnecessary complexity, but also captures the idea of graph convolutions (as demonstrated
in [142], compared to those regular GNNs like GCN [73], GAT [140], FastGCN [107], SGC
achieves the comparable or better test accuracy on different classification tasks); (2) SGC
has been widely deployed as surrogate model in some successful graph adversarial attack
formulations [74,113,114]; (3) SGC of linearity provides a simple closed form solution for
W∗, and thus transforms the bi-level optimization in Eq. (3.9) into single-level, which will
be discussed in the following subsection. Due to transferability in adversarial machine
learning [72], the attribute obfuscating operation optimized to mislead the surrogate
model is very likely to degrade the real attackers’ inference models.
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3.2.3.4 Closed Form Solution

To solve the aforementioned bi-level optimization, nettack [113] trains a fixed surrogate
model to reduce the attack to the problem simply built upon Latk; metattack [114]
approximates the attack by choosing Lgnn as an alternate of Latk, arguing that a model of
high training loss very likely misclassifies test nodes; some other attacks [74,139] compute
the closed form of graph learning models and transform the bi-level optimization into
single-level. Here, we leverage the closed form transformation idea to obtain W∗ and
simplify the optimization on Latk.

Based on Eq. (3.7), Eq. (3.9), and Eq. (3.11), W∗ can be rewritten as

W∗ = argmin
W

l((Â2X)lW, Φ(yl)) + λ∥W∥2
2 (3.12)

After replacing the loss function l(·, ·) with mean square loss function, and considering
attribute obfuscating operation Φ(yl) as an nl × k-dimensional matrix where each row is
a one-hot vector specifying new attribute value, Eq. (3.12) can be further updated as

W∗ = argmin
W

1
nl

∥(Â2X)lW− Φ(yl)∥2
2 + λ∥W∥2

2 (3.13)

In this way, we can approximately obtain the closed form of W∗ through the derivation
as follows.

1
nl

∂

∂W
(∥(Â2X)lW− Φ(yl)∥2

2 + λ∥W∥2
2) = 0

=⇒ (Â2X)T
l ((Â2X)lW− Φ(yl)) + λW = 0

=⇒ (Â2X)T
l (Â2X)lW + λW = (Â2X)T

l Φ(yl)

=⇒ W∗ = ((Â2X)T
l (Â2X)l + λI)−1(Â2X)T

l Φ(yl)

=⇒ W∗ = KΦ(yl)

(3.14)

where we use K = ((Â2X)T
l (Â2X)l + λI)−1(Â2X)T

l for the sake of simplicity. Given the
closed form of W∗, the bi-level optimization of AttrOBF in Eq. (3.9) can be updated as
the following single-level optimization on Φ(yl).

min
Φ(yl)
− Latk(fW∗(A, X), yu)⇒

min
Φ(yl)
− l((Â2X)uKΦ(yl), yu) + λ∥Φ(yl)∥2

2

s.t. ∥Φ(yl)− yl∥0 ≤ ϵnl

(3.15)
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Figure 3.11: Relation between the Gumbel-Softmax distributions and one-hot-encoded
categorical distribution: when τ → 0, samples from Gumbel-Softmax distributions are
identical to the one from categorical distribution, i.e., one-hot vectors. When increasing
temperatures, Gumbel-Softmax samples are more close to uniform [2].

3.2.3.5 Gumbel Estimator

To solve the optimization problem in Eq. (3.15), the attribute obfuscating operation
Φ(yl) is the key component; however, as discussed in Section 3.2.3.1, Φ(yl) is discrete
thus non-differentiable, which means that we cannot directly use gradient-based methods
to make updates on Φ(yl). Categorical variables are a natural choice for representing
discrete structure in the world [2]. Therefore, to facilitate closed form solution in
Section 3.2.3.4, we consider Φ(yl) as an nl × k-dimensional matrix, each row of which is
represented as a one-hot vector to indicate the new attribute value changed from others
or self. From the probabilistic perspective, we can model each attribute obfuscating
operation as a categorical distribution, and this one-hot vector can be then sampled from
k label probabilities (p0, p1, · · · , pk−1), where the position of 1 (i.e., the best obfuscating
operation) is decided by the highest probability: one_hot(argmaxi[pi]).

In other words, given the categorical distribution P ∈ Rnl×k, the test loss of AttrOBF
defined in Eq. (3.15) is an expectation over categorical variables.

min
P
− Latk(P)⇒ min

P
− EΦ(yl)∼Pl((Â2X)uKΦ(yl), yu) + λ∥P∥2

2 (3.16)

The categorical sampling Φ(yl) ∼ P is still non-differentiable, which is not able to
backpropagate through samples. To solve Eq. (3.16), we need to find a good gradient
estimator to replace the non-differentiable samples with differentiable ones. To this end,
we use Gumbel estimator [2] to draw samples Φ(yl) from P in a simple and efficient
way. Different from performing argmax to search for the maximal probability, the
Gumbel estimator utilizes Gumbel-Softmax function to generate continuous differentiable
approximation to argmax. Specifically, let ϕ (one row of Φ(yl)) be sampled from the
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corresponding categorical distribution p (one row of P); ϕ is approximated as

ϕi = h(p, g) = exp ((log(pi) + gi)/τ)∑k−1
j=0 exp ((log(pj) + gj)/τ)

, for i = 0, 1, · · · , k − 1 (3.17)

where g ∼ Gumbel(0, 1) is Gumbel distribution, and τ is the temperature controlling
the steepness of softmax function. As the temperature increases, the expected value
converges to a uniform distribution over the categories; on the contrary, as τ approaches
0, samples from the Gumbel-Softmax distribution become one-hot, which is illustrated
in Figure 3.11. Monte Carlo sampling from g makes Gumbel estimator unbiased and low
variance [139]. Let G = [g0, ..., gk−1]T ; by replacing Φ(yl) with h(P, G), the final test
loss of AttrOBF is updated as

min
P
− Latk(P)⇒ min

P
− EGl((Â2X)uKh(P, G), yu) + λ∥P∥2

2 (3.18)

Accordingly, the derivative of −Latk(P) regarding the categorical distribution P can be
computed in an approximate way.

−∂Latk(P)
∂P

≈ − ∂

∂P
[
l((Â2X)uKh(P, G), yu) + λ∥P∥2

2

]
(3.19)

The problem in Eq. (3.19) is differentiable and tractable. Therefore, it can be easily
solved by gradient-based methods (e.g., stochastic gradient descent, Adam).

After the categorical distribution P is optimally updated, the attribute obfuscating
operation Φ(yl) is uniquely defined as

Φ(yl) = one_hot (argmax (P, axis = 1)) (3.20)

Note that, Φ(yl) indicates the obfuscating operation on the whole training attribute
values yl. As specified in Eq. (3.9) and Eq. (3.15), to ensure the imperceptibility of
attack, the attribute obfuscating operation is constrained by ∥Φ(yl)− yl∥0 ≤ ϵnl. That
is, the number of maximum allowed training attribute value changes is ϵnl. As such,
we leverage Φ(yl) and P to decide the actual attribute obfuscating: we first collect
all new training attribute values from Φ(yl) that are different from the original and
their corresponding probabilities from P, and then use those new attribute values with
top ϵnl highest probabilities to update yl so as to guarantee the optimal operation.
Algorithm 3 illustrates our proposed attribute-obfuscating attack AttrOBF to protect
attribute privacy on social networks. As graph structure A and node features X are
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Algorithm 3: AttrOBF for attribute privacy protection.
Input: G = (A, X): Social graph G with graph structure A and user features X,

Vl: nl training user nodes with attribute values yl, Vu: nu test user nodes
without attribute values, ϵ: obfuscating rate, τ : temperature parameter,
T : epochs.

Output: yl: the obfuscated training attribute values.
Train a GNN model using A, X and yl through Eq. (3.11);
Estimate yu for the unannotated nodes Vu;
Pre-calculate Â2X;
Pre-calculate K = ((Â2X)T

l (Â2X)l + λI)−1(Â2X)T
l ;

for each epoch t ≤ T do
Sample G ∼ Gumbel(0, 1);
Calculate h(P, G) using Eq. (3.17);
Calculate test loss −Latk(P) ≈ −l((Â2X)uKh(P, G), yu) + λ∥P∥2

2;
Update P by minimizing −Latk(P);

end
Φ(yl) = one_hot (argmax (P, axis = 1));
Update yl using new attribute values in Φ(yl) with top ϵnl highest probabilities
in P;

constants during attribute-obfuscating attack, we can pre-calculate Â2X and K using
O(max(n3, d3)), which significantly decreases the time complexity for each optimization
iteration to O(nlnud) (k ≪ d). Therefore, this efficient attack strategy has implications
on its applicability for attribute protection on large social networks in practice.

3.2.4 Experiments

In this section, we evaluate the effectiveness of AttrOBF for protecting users’ attribute
privacy on social networks, and compare it with other baselines. We also investigate the
impacts of the hyperparameters and the transferability of AttrOBF on different models.

3.2.4.1 Experimental Setup

Datasets. We collect three real-world social network datasets to conduct our experiments:
Polblogs [143], Yale [144], and Rochester [144]. Polblogs represents a political blog network
where their attribute values indicate political view of each user. Yale and Rochester
datasets collect all the facebook friendships of Yale University and Rochester University
as well as some user attributes, in which career, gender, class year serve as private
attributes in our setting. To make our results comparable, we closely follow the data
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Table 3.7: Comparing statistics of the three social network datasets with total five
attribute settings.

Dataset Attr. Nodes Edges Classes Train./Val./Test

Polblogs Politics 1,490 19,025 2 40/500/950

Yale Career 8,578 405,450 2 20× classes/500/1000Class-year 6

Rochester Gender 4,563 167,653 2 20× classes/500/1000Class-year 5

setting in previous works [73,140,145]: we train the GNN models with all node features
and 20 annotated nodes per class, and use another 500 annotated nodes as validation
set. For testing, we randomly sample 1,000 nodes to evaluate the performance. Table 3.7
presents the statistics of the datasets.
Baseline methods and parameter settings. To the best of our knowledge, graph
adversarial attacks via modifications on multi-class annotations have not yet been
explored. Thus, we formulate two baselines in this regard to compare against our method
AttrOBF: (1) Random attribute-obfuscating attacks (Rand-obf) where we randomly
select a number of training nodes and obfuscate their attribute values to a random
one. (2) Degree-based attribute-obfuscating attacks (Deg-obf) where we obfuscate the
training nodes with the highest degrees because we believe these nodes play a more
important role in the information propagation for GNNs than those with lower degrees;
similarly, for all inference settings, we modify the attribute values of the selected nodes
to a random one. Note that, as we only focus on attribute obfuscating, those attacks
manipulating graph structure or node features (e.g., nettack [113] and metattack [114])
are not comparable here. Following the baseline designs in [74], in order to investigate
how different components affect the performance of our proposed method, we further
formulate two variants by replacing surrogate model and loss function: (1) AttrOBF-lp
follows the same attack steps of AttrOBF except that we use label propagation as our
surrogate model, which accordingly updates the closed form in Eq. (3.14) and single-level
optimization in (3.15). (2) AttrOBF-cse replaces mean square error in loss function
to cross-entropy, which updates the final test loss of AttrOBF in Eq. (3.18). In our
parameter settings, we set the optimization epoch in AttrOBF as 1,000 and training
epoch of GNN models as 200. The temperature parameter for Gumbel estimator τ

introduced in Eq. (3.17) is set as 0.2 and λ = 0.01 for optimization.
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Attack model for attribute inference attacks. Attackers conduct attribute inference
attacks to disclose private attributes of users by learning a GNN model on public social
network data. They have a variety of choices on graph neural networks when learning
a model to perform inference attacks. In our work, we consider the most practical
black-box scenario when protecting users’ privacy from attackers. That is, we assume
that we have no access to attacker’s model. As explained in Section 3.2.3.3 and 3.2.3.4,
we use SGC to solve black-box setting and closed form for AttrOBF. In our experimental
setting, we train simple graph convolution (SGC) [142], graph convolutional network
(GCN) [73], graph attention network (GAT) [140], and GCN-based label propagation
network (GCN-LP) [146] to perform the inference attack. We mainly use GCN to
evaluate the effectiveness of AttrOBF and the impacts of different parameters, while
the comparisons among these four models are leveraged for transferability evaluation in
Section 3.2.4.4. To be comparable, these four GNN models are of two-layer structure and
the dimension of the hidden layer is set as 16. All other model parameters align with
their original works [73,140,142,146].

3.2.4.2 Evaluation of AttrOBF

In this section, we evaluate the effectiveness of AttrOBF against attribute inference
attacks and the impacts of different parameters under five attribute settings.
Effectiveness. In our experiments, we evaluate the effectiveness of AttrOBF under
different attribute obfuscating rate ϵ as it plays the important role to determine the
number of training nodes to modify in our adversarial attack. In particular, we test the
results of five inference settings (i.e., Polblogs-politics, Yale-career, Yale-class, Rochester-
class, Rochester-gender) while using AttrOBF to obfuscate the training attribute values
with obfuscating rate ϵ ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}, where 0.0 means no attack in
place. In this experiment, we use test accuracy to evaluate attribute privacy protection
performance. The lower test accuracy represents the better performance of our method.
The experimental results are shown in Figure 3.12. As we can see from the results, the
attribute inference accuracy for Polblogs-politics, Yale-career, Yale-class, Rochester-class
and Rochester-gender on clean data is 81.1%, 88.1%, 84.5%, 82.8%, and 71.4%, which
are relatively close to the state-of-the-art results on each dataset. Obviously, AttrOBF
drastically decreases all the accuracy of inference attacks and thus achieves the goal of
protecting users’ attribute privacy on social networks.
Impact of attribute obfuscating rate ϵ. Intuitively, when we enlarge the ϵ, the
number of the training node attribute values obfuscated by AttrOBF increases and
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Figure 3.12: Test accuracy of all inference tasks on different attribute obfuscating rate ϵ.

the accuracy of inference attacks should decrease. The results in Figure 3.12 confirm
this point: as the obfuscating rate increases from 0.0 to 0.5, the inference accuracy
of attack model drops 45.3% for Polblogs-politics, 57.6% for Yale-career, 41.2% for
Yale-class, 41.3% for Rochester-class, and 44.2% for Rochester-gender. We can also
observe that AttrOBF obtains better performance on binary inference settings such as
Polblogs-politics, Yale-career and Rochester-gender than multi-class inference tasks like
Yale-class and Rochester-class. The reason behind this could be that attacking space on
multi-class social graphs is larger, which leads to more uncertainty and difficulty than
binary classification problems that simply flipping annotations can directly impact on
neighborhoods and thus more easily mislead the GNN model.
Impact of temperature for Gumbel estimator τ . The temperature τ for Gumber
estimator is an important parameter in our method that controls the effectiveness of the
one-hot sampling. We gradually increase the value of τ in AttrOBF to analyze its impact
to the attack performance. In the experiments, we assess the effectiveness of AttrOBF
with temperature τ ∈ {0.2, 0.5, 1.0, 5.0, 10.0} in five inference settings when ϵ = 0.5. We
show the results in Figure 3.13. We can see from the figure that AttrOBF achieves the
best performance when τ = 0.2 for all inference tasks. As τ increases, the capability of
our adversarial attack in alleviating the inference models is degraded. This is because
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Figure 3.13: Evaluation results of AttrOBF under different values of temperature param-
eter τ .

when we continuously amplify the τ value, Gumbel-Softmax distribution becomes closer
to uniform distribution, which more significantly deviates from one-hot sampling and
thus affects the effectiveness of attribute obfuscating operation. There is a trade-off
between near-zero temperatures, where samples are identical to one-hot but the variance
of the gradients is large as well. Based on this fact, we use τ = 0.2 throughout the
following evaluations.
Impact of test attribute annotations yu. Test labels are not easily accessible in
real-world scenarios. Considering the practicability of our attack method, we use the
prediction results of the surrogate model to estimate the test attribute values in all of our
evaluations. In this part, we assume that we know the true test attribute annotations
and investigate the impact of them on the performance of AttrOBF. We conduct the
corresponding experiments over different inference tasks with the obfuscating rate ϵ = 0.5
and results are shown in Table 3.8. We can observe that integrating true test attribute
annotations in our objective loss function can obtain better attack results than the
estimated ones, as the estimation might introduce extra loss between predictions and
true attribute values. However, the inference accuracy difference between using true and
estimated test attribute annotations seems not very significant. The reason behind this
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Table 3.8: Evaluation on the impact of using true or estimated test attribute annotations
(inference accuracy).

Test labels Pol-politics Yale-career Yale-class Roch-class Roch-gender
True 33.1% 29.3% 43.0% 40.9% 25.7%
Estimated 35.7% 30.5% 43.3% 41.5% 27.1%

could be that the surrogate model’s inference accuracy for different attribute settings
is relatively high (i.e., 81.1%, 88.1%, 84.5%, 82.8%, and 71.4% for Polblogs-politics,
Yale-career, Yale-class, Rochester-class and Rochester-gender respectively), which makes
the estimation closer to ground truth. This implies that our method is not tightly coupled
with true test attribute annotations, and can be easily feasible in practical applications.

3.2.4.3 Comparisons with Other Attack Baselines

In this section, we compare our method AttrOBF against two baselines: Rand-obf and
Deg-obf. For all methods, we set the obfuscating rate ϵ as 0.5, and use GCNs as the
attack model to assess the inference accuracy. The results of five inference settings
are presented in Table 3.9. We can observe that our method AttrOBF significantly
outperforms Rand-obf on all inference tasks. Under Rand-obf attack, the inference
accuracy only slightly decreases even when we obfuscate half of the training attribute
values, which indicates that GCNs are quite robust to random label noise. This also
benefits from the powerful learning capability of GCNs on graph data of embracing both
node features and graph topological structure. Therefore, GCNs are resilient against
random node obfuscating operations but still vulnerable to our well-designed adversarial
attacks. AttrOBF also achieves better performance than Deg-obf attack, especially for
multi-class inference problems. For instance, AttrOBF reduces the inference accuracy to
43.3% and 41.5% for Yale-class and Rochester-class while the results of Deg-obf attack are
53.1% and 54.2%, respectively. This is due to the fact that adversarial attribute values
generated by AttrOBF are specifically derived from the goal of misleading the learning
model, which are much more effective to degrade the performance of node classification,
while Deg-obf identifies the degree information of nodes as the only influential factor for
graph learning but ignores other conditions (e.g., node features) leveraged by GCNs.

Regarding to two variants, AttrOBF achieves better results than AttrOBF-lp for
all classification settings. Compared to graph neural networks, label propagation only
aggregates the label information from nodes’ neighbors without considering the important
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Table 3.9: Comparisons with other attack baselines and variants (inference accuracy).

Setting Rand-obf Deg-obf AttrOBF-lp AttrOBF-cse AttrOBF

Pol-politics 55.7% 37.0% 42.5% 36.5% 35.7%
Yale-career 61.2% 47.2% 49.4% 38.6% 30.5%
Yale-class 72.0% 53.1% 45.5% 43.8% 43.3%
Roch-class 69.6% 54.2% 43.5% 42.1% 41.5%
Roch-gender 46.7% 42.1% 39.9% 31.0% 27.1%

feature information. Therefore, choosing SGC to be our surrogate model to compute the
closed form solution is more reasonable and effective. Another similar variant AttrOBF-
cse can achieve comparable results but still slightly underperforms our method. The
reason behind this small performance difference could be that mean square error can
better formalize the discrepancy between ground truth and prediction results in the
embedding space.

3.2.4.4 Transferability of AttrOBF

Under the black-box setting, we don’t know what model the attacker is using to infer
private attributes. This naturally leads us to the question: can our attack strategy
generalize to other inference attack models? To answer this question, in this evaluation,
we explore the transferability of our method AttrOBF. Specifically, we deploy AttrOBF
to obfuscate the training attribute values and generate adversarial graph on five attribute
inference settings. Then we test the inference results of the poisoned data against four
state-of-the-art GNN models, including SGC [142], GCN [73], GAT [140] and GCN-
LP [146] under five obfuscating rates (i.e., ϵ = {0.1, 0.2, 0.3, 0.4, 0.5}). To ensure our
results are comparable, we build up these models with the same parameter and data
settings.

The results presented in Figure 3.14 show that the adversarial attack performed by
AttrOBF can successfully transfer to different graph neural networks. Our AttrOBF
method learned on a linearized GCN (i.e., SGC) presents the similar effectiveness against
different GNN models under the same inference setting. For example, when ϵ is set as
0.5, AttrOBF reduces the accuracy of SGC, GCN, GCN-LP to 35.6%, 35.7% and 36.4%
on polblogs-politics inference attack and 33.5%, 27.1% and 34.2% on Rochester-gender
inference setting. For Yale-career, the inference accuracy of all GNN models drops over
30% when increasing ϵ from 0.1 to 0.5. While for Yale-class and Rochester-class inference
settings, the transferability of AttrOBF on four GNN models are very close and slightly
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(a) SGC (b) GCN

(c) GAT (d) GCN-lp

Figure 3.14: Evaluation results: (a), (b), (c) and (d) specify the inference accuracy of
SGC, GCN, GAT and GCN-lp while conducting AttrOBF on our surrogate model over
different data settings; lower inference accuracy indicates better attack transferability.
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underperform other inference tasks. On the other hand, the results also imply that
the complexity of the surrogate model and the intrinsic adversarial vulnerability of the
target model contribute to attack transferability: the attack results on SGC and GCN
outperform those with more complex model structure such as GAT and GCN-LP. Since
the target models are uncontrollable, when applying AttrOBF in practice, we may need
to elaborate the surrogate model for better transferability. We leave it as our future
exploration.

3.2.5 Impact, Applicability and Limitation

Our previous method formulation and experimental evaluations demonstrate the impact
of our proposed graph adversarial attack solution for attribute privacy protection on
social networks: (1) AttrOBF introduces low computational cost, which is feasible in large
real-world social networks; (2) as graph structure and node features are not perturbed, the
utilities of social networks regarding user activities and relationships are well preserved
without any influence on other downstream tasks; (3) mere small yet optimal training
annotation changes can effectively mitigate attribute inference attacks; (4) attribute
obfuscating is easy to operate for both data publishers and users. Therefore, in practice,
AttrOBF can work as an easy-to-use API provided on the social network server side that
enables data publishers to either locally or globally manipulate user attribute values
before making the social graphs publicly available, or warn users of potential attribute
privacy threats such that users can proactively change their attribute information on the
client side. In fact, users’ self-obfuscating operations not only protect themselves from
attribute disclosure but also contribute to other users’ attribute obfuscation through
social graph settings. Note that, some users are more willing to disclose their information
rather than “mispresent” themselves; in this case, these attributes may not be strictly
considered as privacy for them to protect.

Nonetheless, our approach also poses a limitation which we discuss as follows. We
successfully perform AttrOBF on the annotated public social graph data in this work,
while the real social media lacks the ground truth, which disables Adv4SG from generating
the adversarial texts in a real-time fashion. To better obfuscate the attributes, we may
need to first recognize the targets. Though attribute recognition is irrelevant for the
scope of our work, it is an interesting future work to leverage attribute recognition for
better protection solutions. In our experiments, we train some regular GNN-based attack
models for attribute inferences on social networks. Though AttrOBF has been validated
to be transferable to these GNNs, the attackers could take advantage of more advanced
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and robust GNN models (e.g., adversarial training via latent perturbation [147]) to infer
attributes and thus deteriorate AttrOBF. We acknowledge this limitation and leave the
investigation on this arms race as our future work, yet it does not impact the great value
and general validity of our new insight about leveraging adversarial attacks for attribute
obfuscation and privacy protection on social networks in practice, as graph learning
models of inherent vulnerability could always be evaded by more complicated and more
sophisticated adversarial techniques.
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Chapter 4 |
The Bad: Enhancing the Robust-
ness of DNNs Against Adversarial
Attacks

In this chapter, we discuss the bad aspect that adversarial machine learning brings to
us. On the one hand, the existence of adversarial examples drives us to design more and
more powerful attacks; on the other hand, it stimulates the appearance of new defense
strategies and leads us to pursue more robust models or systems. In this respect, we
introduce our work that focuses on improving the robustness of deep neural networks
against adversarial attacks.

4.1 Watermarking-based Defense against Adversarial At-
tacks on Deep Neural Networks
The vulnerability of deep neural networks to adversarial attacks has posed significant
threats to real-world applications, especially security-critical ones. Given a well-trained
model, slight modifications to the input samples can cause drastic changes in the
predictions of the model. Many methods have been proposed to mitigate the issue.
However, the majority of these defenses have proven to fail to resist all the adversarial
attacks. This is mainly because the knowledge advantage of the attacker can help to
either easily customize the information of the target model or create a surrogate model
as a substitute to successfully construct the corresponding adversarial examples. In
this work, we propose a new defense mechanism that creates a knowledge gap between
attackers and defenders by imposing a designed watermarking system into standard deep
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neural networks. The embedded watermark is data-independent and non-reproducible to
an attacker, which improves randomization and security of the defense model without
compromising performance on clean data, and thus yields knowledge disadvantage to
prevent an attacker from crafting effective adversarial examples targeting the defensive
model. We evaluate the performance of our watermarking defense using a wide range of
watermarking algorithms against four state-of-the-art attacks on different datasets, and
the experimental results validate its effectiveness.

4.1.1 Introduction

Deep Neural Networks (DNNs) have been widely adopted in a variety of machine-learning
tasks, ranging from computer vision, speech recognition [3,4] to natural language pro-
cessing and healthcare [9, 10]. Despite the remarkable performance these applications
have achieved, DNNs remain vulnerable to adversarial attacks that design special imper-
ceptible perturbations to the original inputs to fool state-of-the-art models. For example,
Goodfellow et al. [1] demonstrated how to add a small perturbation to an image of panda
that causes it to be recognized as a gibbon with high confidence. In a security-critical
scenario, Evtimov et al. [22] successfully misled a classifier to misclassify a stop sign with
some physical perturbations, which can be either graffiti or black and white strips, as a
Speed Limit 45 sign.

In order to alleviate adversarial attacks, researchers have proposed a large body of
defensive work. Some of them try to manipulate model properties through augmentation
or regularization [1, 23, 28], or attempt to filter malicious examples by detecting or
removing perturbations introduced to original examples [33, 34]. Most of these strategies
are easy to compromise due to their simplicity and differentiable nature, with some
impractical assumptions on the attacker’s knowledge of the target model. In fact, the
information about the target model is the key for most attack algorithms to craft adver-
sarial examples, especially for those gradient-based attacks that require this information
to calculate gradients through backpropagation. Recent studies [148,149] have shown
that randomization over the network layerwise structure or inputs enjoy the potential of
obfuscating the gradients and thus mitigate the adversarial vulnerability. This naturally
inspires us to take advantage of the randomization paradigm and increase the attacker’s
uncertainty to the target model to significantly hinder them from customizing the model
information, such that the generated adversarial examples could be rendered as less
effective as possible.

Based on the above observation, in this work, we consider the practical scenario about
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the adversarial attacks, and design a defense mechanism by introducing the randomness
and confidentiality of digital watermark to DNN models to incur the possible knowledge
gap between the attacker and the defender. In this regard, we can lead to the attacker’s
knowledge disadvantage by introducing the secret watermarking scheme into the standard
DNN model. Digital watermarking is a technique that embeds watermark information
into the host image by modifying visually non-significant pixels, which is transparent,
imperceptible, and robust. For the watermarking techniques, if a user has no embedding
information, the watermark is very challenging to be detected and extracted [66]. In this
respect, the attacker needs to craft adversarial examples from their self-trained surrogate
models as it is not realistic for them to reproduce the defense model without confidential
embedded information. The lack of knowledge about the defense system leads to the
discrepancy and stochasticity between the surrogate and real models, making it more
challenging for the attacker to successfully evade the defense model. Our proposed defense
method enables us to train a DNN model that would not only preserve the inference
performance on regular data, but also benefit from knowledge gap and randomization
imposed on the learned protocol for better robustness against adversarial attacks. In
summary, our work has the following major merits:

• We creatively leverage the concept of knowledge gap by introducing a watermarking
system into the DNN model to obstruct the adversarial attacker from accessing
the model gradient information. To the best of our knowledge, this is the first
investigation to use watermarking techniques to counter adversarial attacks.

• The proposed watermarking-based defense improves the robustness of learning
model against adversarial attacks while not compromising its performance on regular
data. It is convenient for implementation without many additional computations
and extra training or tuning requirements, and applicable to serve as a general
defensive system for different learning models and networks.

• We systematically evaluate our method against adversarial attack algorithms in
different scenarios and analyze the impacts of digital watermark on adversarial
perturbations. We show that our proposed defense can effectively resist adversarial
examples, especially for sophisticated ones.
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4.1.2 Overview

4.1.2.1 Deep Neural Networks

A deep neural network (DNN) is a function y = f(x) that accepts an input x ∈ Rn and
produces an output y ∈ Rm, where in most of the cases, m is equal to the number of
classes. where f significantly relies on model parameters θ. The output of the network is
computed using the softmax function, which ensures that the output vector y satisfies
0 ≤ yi ≤ 1 and y1 + y2 + ... + ym = 1. The output vector y is thus treated as a probability
distribution. In our notation, we define F to be the full neural network including the
softmax function, and a neural network typically consists of layers,

f(x) = softmax(σn(Wnσn−1(...σ1(W1x))) (4.1)

where, at each layer i, Wi corresponds to the model parameters and σi is an activation
function, usually non-linear, with 1 ≤ i ≤ n. In our experiments, we focus primarily on
networks that use a ReLU [150] activation function, as it is the most widely used one.

4.1.2.2 Adversarial Examples

Given a valid input x, it is possible to find a similar input x′ such that f(x′) ̸= f(x) yet
x and x′ are close according to specific distance metric. As such, various adversarial
attack methods have been proposed. Fast Gradient Sign Method (FGSM) is designed to
fast craft adversarial examples [1]. which is easily implemented, but cannot guarantee to
generate close ones all the time. An example of FGSM attack with respect to a source
input x and true label y is

x′ = x + ϵ · sign(▽xl(x, y)) (4.2)

where l(x, y) is the loss function used to train the classifier, and ϵ > 0 is a small constant
that governs the magnitude of distortions. For each pixel in the image, it will take one
step of size ϵ in the direction of gradient sign. Projected Gradient Descent algorithm
(PGD) is a successful extension of FGSM, Iterative FGSM is one of successful extensions
of FGSM, which is also known as Projected Gradient Descent algorithm (PGD), which
iteratively applies the small FGSM update, with the result being clipped by a sufficiently
small constant. Specifically, it begins by setting x0 = x, and then on each iteration k, xk

is updated as
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xk = xk−1 + ϵ · sign(▽xk−1l(xk−1, y)) (4.3)

where k = 1, ..., K, and x′ = xK . The number of iterations K is determined such that
f(x′) ̸= f(x). DeepFool [26] is another state-of-the-art adversarial example generation
approach that projects input x onto the nearest class boundaries iteratively to minimize
the Euclidean distance between the input and adversarial examples. In addition, as it
has been shown to be very effective in other works, the CW-L2 attack method proposed
by [27] is an optimization-based attack that uses L2-penalty term as its distance metric
to find a minimum distortion δ for a given input:

min
δ

[∥ δ ∥2 +λcf(x + δ)]

s.t. 0 ≤ xi + δi ≤ 1 ∀i = 1, ..., N
(4.4)

λc is a suitable constant chosen by binary search, x+δ represents the adversarial example
x′ we would like to find, and f(·) is an effective objective function

f(x′) = max(−κ, max{Z(x′)f(x) : t ̸= f(x)} − Z(x′)t) (4.5)

where κ denotes a margin parameter that controls the confidence in result, and Z(x)t is
the logit (the value before the softmax layer) corresponding to class t.

4.1.2.3 Digital Watermark

Digital watermarking is a technique used for the protection of digital work such as video,
audio, and image [151]. In this technique, a secret payload (i.e., watermark) is embedded
to the work using some watermarking algorithm that should be imperceptible, robust,
and of high fidelity. Specifically, a watermarking algorithm consists of a watermark
structure and an embedding algorithm. According to the modified value of the carrier,
digital watermarking is divided into two major areas: spatial domain watermarking and
frequency domain watermarking. For the sake of the imperceptibility and robustness,
current image watermarking research mainly focuses on frequency domain watermarking
techniques, where the image is represented as the form of frequency, and the watermark
is embedded into the coefficients of the transformed image. In general, the frequency
domain transform is considered to be more robust than that in spatial domain. Therefore,
we explore a couple of frequency domain watermarking transforms in our defensive
strategy.
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4.1.3 Method Design

In this section, we present the detailed approach of how to design a watermarking-based
defense and how to enhance the target model’s robustness against adversarial attacks
based on such strategy.

4.1.3.1 Knowledge Gap

Given a DNN model f , the output label y for an input x is presented by y = arg maxi fi(x),
where fi(x) is the confidence score of the predicted label i. Any adversarial attack that
aims to alter the output label y of the model regarding the input sample x needs to
change the confidence score fy(x) by adding the perturbation δ to x, such that the output
prediction is changed by a fixed lower bound ε: ∥fy(x)− fy(x + δ)∥2 ≥ ε. According to
the first-order approximation [152] and the DNN model’s linear characteristics around
the input samples [153], the difference caused by perturbation δ on fy(x) can be denoted
as fy(x + δ) − fy(x) ≈ ⟨∇xfy, δ⟩. Therefore, the minimal lp-norm perturbation δ̂p

(p ∈ [1,∞)) required to change the output prediction by ε can be approximated using
Hölder inequality and lp-norm projection as [152]:

δ̂p ≈ ( ε

∥∇xfy∥q

)∂(∥∇xfy∥q) (4.6)

where lp-norm and lq-norm are dual-norm with 1
p

+ 1
q

= 1, and ∂(·) is the subgradient
of the argument. Dabouei et al. [152] provided us with a more detailed solution of
∂(∥∇xfy∥q), such that Eq. (4.6) can be rewritten as [152]:

δ̂p ≈ ( ε

∥∇xfy∥q

)( |∇xfy|q−1 ⊙ sign(∇xfy)
∥∇xfy∥q−1

q

) (4.7)

Clearly, we can gain the insight from Eq. (4.7) that the model gradient ∇xfy plays a very
important role in the success of the adversarial attacks; it is essential to obfuscate ∇xfy

to defend against such attacks. With this in mind, some significant efforts have been
made in this regard to enforce useless gradients for generating adversarial examples [134],
while randomized defenses [148,149] with randomization over the network structure or
inputs can restrain the attacker from correctly estimating the true gradient and thus
failing to effectively mislead the model.

More specifically, due to the stochastic gradient caused by randomized model structure
or inputs, the attacker cannot directly customize the defense model f(x) but train their
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own model f̂(x̂) to compute the gradient ∇x̂f̂ŷ. As investigated, adversarial examples
may be transferable so that some adversarial examples generated from f̂(x̂) may lead
to misclassification on f(x) as well [72]. Such a property allows the attacker to take
f̂(x̂) as a surrogate model to craft attack samples. However, since the surrogate model
is a rough approximation of the target distribution (i.e., ∇x̂f̂ŷ ̸= ∇xfy), there is always
a discrepancy between the approximation and the real one, which we consider as the
defense space. Our goal is to enlarge such space, deviate ∇x̂f̂ŷ from ∇xfy, and make the
adversarial perturbation less effective. Different from the previous studies, here we devise
a fine-grained watermarking system to the DNN model to increase the knowledge gap
between the attacker and the defender. As the watermark is transparent and undetectable
with secret payload message and capacity, the embedded watermark information may
cause the inputs x and the corresponding gradient ∇xfy randomized, and expand the
discrepancy between f(x) and f̂(x̂). The DNN model f(x) could thus explicitly change
its classification boundary, and be resilient against the attacker’s adversarial examples
generated through the untrue estimation f̂(x̂).

4.1.3.2 Watermarking-based Defense

For defenses that employ randomized transformations to the inputs, Athalye et al. [134]
demonstrated that Expectation over Transformation (EOT) can be deployed to compute
the gradient over the expected transformation to the inputs by optimizing the expectation
over the transformation Et∼T f(t(x)) (i.e., t(·) sampled from a distribution of transforma-
tions T ). However, the distribution T can merely model perceptual transformations, such
as image cropping, viewpoint shifts and geometric changes. Different from the regular
input transformations, watermark embedding, which imposes the random and secret
payload message to the inputs in the abstract frequency domain, is imperceptible and
irreversible for the attacker, and its distribution T is thus difficult to be formulated. Even
if some of the watermarked data is accidentally intercepted by the attacker, they are still
unable to detect and extract all the watermark keys for reproduction. In this respect, the
gradient obfuscation and knowledge gap caused by watermarking are effective to prevent
adversarial attacks from directly or indirectly calculating model gradients.

In order to generate additional randomization benefits, instead of applying water-
marking to the inputs (either clean or adversarial) using an unique payload message, we
design our watermarking defense paradigm in an ensemble manner, the overview of which
is illustrated in Figure 4.1. (1) In the training stage, we randomly split the training data
into k sets; for each set, we embed a watermark key into all inputs; different sets use
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Figure 4.1: The overview of our defense framework devising a watermark system between
the input and the DNN structure.

different keys, while all inputs enjoy the same embedder (a watermarking algorithm).
All watermarked sets are leveraged for DNN model training. (2) Complying to the
watermarking routine, we add small Gaussian noise with the interval of [−0.1, 0.1] to each
watermarked input and then rescale it to increase the difficulty of watermark detection.
(3) In the testing stage, we feed the test data through watermarking system using k

specified watermark keys, and the trained DNN model to obtain k different outputs
respectively, which are aggregated later using voting method to approximate the final
result. This may generate some regularization effect beyond randomization provided by
model training. Algorithm 4 illustrates our proposed watermarking-based defense.

It’s worth noting that the embedded secret watermark has no significant impact on
the performance of the DNN model on regular classification task in our observation.
In addition, the watermark keys are images randomly selected from the large image
database (e.g., ImageNet [154]), which is independent from the input data. We further
resize the watermark images into the same shape as the input data before embedding
them. Following the second Kerckhoffs’ cryptographic principle [155], we err on the side
of overestimating the attacker’s capability and excessively relax the limitation on the
attacker’s knowledge about the defense model (i.e., the worst-case where the watermarking
algorithm and the watermark image database are also known to the attacker). As such,
the attacker tends to search for the potential watermark keys to craft effective adversarial
examples. The computational space for watermark searching would be as large as
k × 256h×w×d, where 256 is the range of image pixel and [h, w, d] represents the image
shape. It forces the attacker to take an extremely long time and effort to evade the
target model. Therefore, it is computationally infeasible to generate adversarial examples
in such a cost-expensive fashion. Unlike the low-level image transformations [149], the
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Algorithm 4: Watermarking-based defense.
Input: Dtr: training data, Dts: test data (clean or adversarial), f : a standard

DNN model, {w}k
i=1: k random watermark images, g: a watermarking

algorithm, µ: Gaussian noise.
Output: f̂ : a defense model; y: output class.
{w}k

i=1 ← convert {w}k
i=1 to gray-scale images;

//For the training stage;
{Dtr}k

i=1 ← split Dtr into k sets;
for i = 1→ k do

for j = 1→ |Di
tr| do

x̂j = g(xj, wj) + µ;
end

end
Train DNN model f using the watermarked D̂tr as f̂ ;
//For the testing stage;
for i = 1→ |Dts| do

for j = 1→ k do
x̂ij = g(xi, wj) + µ;
yij = f̂(x̂ij);

end
yi ← aggregation using voting on {yij}k

j=1;
end
return The trained model f̂ and the test classes y;

watermarking also implicitly preserves the specific structure and meaningful pattern,
which codes better with the uniqueness of the input images in our defense model and
generates a better advantage to avoid the attacker’s mimicry.

4.1.3.3 Watermarking Implementation

When embedding a watermark to different images, we have to adopt a specific water-
marking strategy for implementation. In this work, we investigate five different frequent
domain watermarking algorithms in our watermarking system as follows.

• Discrete Fourier Transform (DFT) [156] decomposes an image in sine and cosine
form. Since the magnitude and phase hold some information of the transformed
image, we can accordingly modify them to embed the watermark. DFT is robust
against geometric distortion and translation invariant.

• Discrete Wavelet Transform (DWT) [157] gives a multi resolution representation
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of the image. When applying DWT to an image, it divides the image into two
quadrants, i.e., high-frequency quadrant and low-frequency quadrant. This process
repeats until the signal has been entirely decomposed. We embed the watermark
into low-frequency coefficients as they contain the details of the original images.

• Singular Value Decomposition (SVD) is one of the most potent numeric analysis
techniques that has been widely applied to digital image applications [158]. Given
an image matrix, it can be transformed into three components. In the embedding
procedure, the most significant coefficients in the component are modified to
embed a watermark. After watermarking, it inversely transforms to reconstruct
the watermarked image.

• DWT_SVD based watermarking algorithm [159] develops the DWT and SVD
methods, which is a technique that clubs the properties of DWT and SVD. It not
only increases the limited capacity of SVD but also reduce time consumption.

• DWT_DCT_SVD based watermarking algorithm [160] combines the properties of
DWT, DCT and SVD algorithms and is robust against all sorts of attacks.

Besides the watermarking algorithms, the implementation of watermarking also
significantly relies on the property of the data, e.g., the dimension of the image. The
gray-scale image watermarking is convenient for implementation since all the intrinsic
information of the gray-scale images is simply abstracted as pixels in a single component.
Differently, the color image are generally represented as a red-green-blue (RGB) triplet,
while the RGB values are more complex and are the only feasible data from them [161].
Considering that these three components are inter-correlated and RGB triple is also
a biased representation of the color images, processing the RGB color information in
parallel for each color component independently while ignoring the intrinsic properties
contained in the interaction of different color channels may easily enforce information
loss and thus lead to model performance degradation. To address this issue, we attempt
two mapping solutions to transfer the color information into independent components
instead of the R−G−B components.

The first one is inspired by the work [162], where we employ Karhunen–Loeve
Transform (KLT) to decorrelate RGB information of the color images. To apply KLT,
each image is represented as a set of vectors vi of size d (e.g., d = 32×32 if the dimension
of the color image is 32 × 32), with 1 ≤ i ≤ 3. As such, it is possible to calculate the
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expected value of three vectors as follows:

m = E[vi], (4.8)

which would further facilitate computing the covariance matrix of size 3 × 3 of the
centered vectors (vi −m):

C = E[(vi −m) · (vi −m)T ], (4.9)

where the eigenvectors ai and their associated eigenvalues λi of the matrix C can be
obtained to formulate a matrix A by descending order of the eigenvalues as A =
(a1

T , a2
T , a3

T ). The KLT of a vector vi can be defined as

ui = A · (vi −m), (4.10)

and these vectors are uncorrelated [162]. Here we embed the watermark into the first
component u1 after KLT transformation as it generally contains the most information,
and then an inverse KLT is performed to reconstruct the watermarked images in the way:

vi = A−1 · ui + m. (4.11)

The second solution is mapping correlated RGB components to HSV [163], a color space
designed to more closely align with the way human vision perceives color. HSV describes
colors in terms of Hue, Saturation, and Value. Considering that HSV is a less correlated
color space than RGB while objects in images have distinct hues and luminosities so that
these features can be used to separate different image areas, we choose to convert RGB
triple to HSV, embed the watermark to the Hue value, and then map HSV components
back to RGB to construct the watermarked images.

4.1.4 Evaluation

In this section, we evaluate the efficacy of our proposed watermarking based defense
model through performing experiments on benchmark image classification tasks, and
compare our model with a wide variety of state-of-the-art approaches.
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4.1.4.1 Experimental Setup

Datasets. We test our model on three benchmark image classification datasets from
the AI Science community: MNIST [164], Fashion-MNIST [165] and CIFAR-10 [166].
MNIST is a set of hand-written digits that contains 10 classes, 60,000 training and 10,000
test gray-scale images of the size 28× 28, while Fashion-MNIST [165] is another standard
dataset with more complex and diverse object structures, which also consists of 10 classes,
60,000 training and 10,000 test gray-scale images of 28× 28. CIFAR-10 is composed of
60,000 32× 32 colour images in 10 classes. To be consistent with the previous work, we
scale each pixel value to be in the range [0, 1].
DNN model and watermarking. The DNN model trained in our experiments is a
standard CNN classifier with 8 layers [167]. The architecture of our deployed model is
not complicated because our ultimate goal is not to achieve the state-of-the-art image
classification accuracy on the chosen dataset but measure the performance of classifying
adversarial examples in the same settings. The overall classifier performance is calculated
by the test accuracy. We evaluate our defensive method on four state-of-the-art adversarial
attacks, i.e., FGSM [1], PGD [23], DeepFool [26] and CW-L2 [168]. We set the number
of watermarking embedders k in our system as 5. The watermark images used in either
the attack model or the defense model are randomly selected from the ImageNet [154]
with more than 14 million images, and processed through the watermarking system upon
the dataset. For each watermarking path, we apply specific watermarking algorithm
as the embedder to process the watermark embedding process to all the images in the
dataset. To verify if watermarked training has any impact on the learning performance,
we test the classification accuracy of our trained DNN system on the regular image
data. We found that the classification results of different training dataset over different
watermarking algorithms are consistent with the benchmark in standard case, where the
test accuracy reaches 99.30% over MNIST, 91.49% over Fashion-MINIST and 88.30%
over CIFAR-10 on average.
Attack ability. In our work, we assume the attacker could obtain most of the essential
information about the target model, such as DNN structure, training raw data D,
hyperparameters θ used for model training, and the classification output, but is incapable
of probing the internal variables of the network to gain access to the watermark image
or the watermarked input in the continuous workflow. This assumption is reasonable
taking account of the modern protected computing systems and it is typical in domains,
for example, biometric and digital watermarking applications. We evaluate our defense

82



Proxy
ModelT1:

D 

(θ) 

T2:

D 

Watermarking 
system

keysa 

Proxy
Model

(θ) 
ClassifierAdversarial 

examples

ModelWatermarking 
system

T1

T2

Output

keysd  

(a) (b) 

Figure 4.2: (a): Two threat models (zero knowledge threat model T1 and partial knowledge
threat model T2); (b): the evaluation workflow where the defense model is trained on
watermarked data and different attack models generate adversarial examples to attack
the defender.

Table 4.1: Classification accuracy (%) of defense model against attack T1

Watermarking MNIST Fashion-MNIST
FGSM PGD DeepFool CW-L2 FGSM PGD DeepFool CW-L2

− 4.8 0.6 1.0 0.6 6.4 5.2 6.8 6.3
DFT 60.7 48.3 94.5 92.3 47.9 40.6 79.5 81.4
DWT 58.9 28.5 95.6 93.3 21.7 14.4 82.6 81.9
SVD 56.6 13.7 94.7 82.2 24.5 18.8 80.0 74.7

DWT_SVD 53.2 26.3 93.6 90.4 28.7 26.6 82.0 81.9
DWT_DCT_SVD 49.3 23.6 94.1 91.9 37.0 37.4 84.3 82.0

strategy against the attackers with different amounts of knowledge about our defense
method. As watermarking color images is a challenge compared to gray-scale images, we
place color watermarking defense in a separate experimental section.

4.1.4.2 Evaluation of Watermarking-based Defense

Defense against Zero Knowledge Attack T1. In the first scenario, we consider
a very straightforward attack type T1 (Figure 4.2(a)), where the attacker has zero
knowledge about defense. Intuitively, the attacker utilizes the obtained training set D

and hyperparameters θ from the observation, and trains a surrogate DNN model within
their knowledge for the same image recognition task as the target model does.

The whole evaluation process is illustrated in Figure 4.2(b), where the attacker
generates adversarial examples from the trained threat model T1 to attack the defense
classifier, while the classifier contains a watermarking system and a well-trained DNN
model, i.e., the adversarial examples will be first processed with the watermarking
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Table 4.2: Classification accuracy (%) of defense model against attack T2

Watermarking MNIST Fashion-MNIST
FGSM PGD DeepFool CW-L2 FGSM PGD DeepFool CW-L2

− 4.8 0.6 1.0 0.6 6.4 5.2 6.8 6.3
DFT 62.7 44.2 90.1 84.6 48.3 39.3 78.3 71.5
DWT 51.9 29.5 91.7 80.9 19.7 12.8 80.4 70.9
SVD 42.7 13.3 94.6 86.8 22.9 16.8 81.2 75.2

DWT_SVD 49.4 22.9 92.1 88.9 26.2 23.5 78.8 70.1
DWT_DCT_SVD 43.1 27.6 95.4 93.4 34.0 36.9 83.4 76.4

system before fed for classification. In this part of experiments, we compare the results
of our method encoded with five different watermarking embedders including DFT,
DWT, SVD, DWT_SVD and DWT_DCT_SVD with a standard DNN classifier without
watermarking defense, trained on the original input image set, whose results also serve
as the baseline. We craft 1,000 adversarial examples, and compute the test accuracy of
our defense model on these generated adversarial examples. The results are shown in
Table 4.1. We can observe that:

• DFT can effectively decrease the classification error of adversarial examples for
all types of considered attacks. Specifically, it enhances the model’s test accuracy
on adversarial examples from 0.6–4.8% to 48.3–92.3% on MNIST. In the case
of Fashion-MNIST, the results have slightly declined, but we can still see an
improvement against a variety of adversarial examples (35.4–75.1% increase). For
FGSM and PGD, DFT-based defense significantly outperforms other methods.

• Our method obtains outstanding results on DeepFool and CW-L2 for all employed
watermarking algorithms. On MNIST, the test accuracy increases up to 95.6%
on DeepFool and 93.3% on CW-L2. On Fashion-MNIST, the best defense result
reaches 84.3% test accuracy on DeepFool and 82.0% on CW-L2. By contrast, the
experimental results on FGSM and PDG are not as good as that on DeepFool and
CW-L2.

Defense against Partial Knowledge Attack T2. In the second attack scenario, we
focus on a stronger attack, where we enable the attacker to partially learn about our
defensive strategy including watermarking embedder devised in the defense method, but
not the watermark keys embed to the input data. We define the second threat model
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as T2 (as presented in Figure 4.2(a)). Specifically, to substitute the watermark images
keysd used in defense model, the attacker randomly picks surrogate images keysa from
the large image database to watermark the input, and trains their surrogate model for
adversarial example generation. The evaluation process for our defense model against
threat model T2 is depicted in Figure 4.2 as well, where the attacker trains the network
on the watermarked image set embedded with a different watermark set keysa from
keysd through the same watermarking system as the defense framework. Likewise, five
watermarking algorithms are performed and compared on 1,000 adversarial examples for
evaluation. The experimental results are shown in Table 4.2, where we can see that:

• DFT can potentially improve the robustness of the model against FGSM and
PGD better than other watermarking algorithms. The results show a 43.6–57.9%
accuracy increase on MNIST. For more complex Fashion-MNIST, it shares the
same observed tendency, but with a slight drop-off.

• Similar to Attack I, our defense achieves very promising results against DeepFool
and CW-L2 for all the watermarking algorithms. On MNIST, it can decrease the
classification error on adversarial examples from 99.0–99.4% to 4.6–19.1%. For
Fashion-MNIST, the error rate is reduced from 93.2% to 16.6% on DeepFool and
from 93.7% to 23.6% on CW-L2.

Discussion. The experimental results and analysis demonstrate that watermarking-
based defense can effectively enhance DNN robustness against adversarial attacks, even
the attacker may have different knowledge about the targeted system. In particular, our
method achieves high performance against the sophisticated attacks, e.g., DeepFool and
CW-L2. Unlike other attacks, these attacks are optimally generated through iterative
optimization, which may easily get overfitted to the model parameters and training
dataset and result in weak generalization. As a result, the delicate changes brought by
the watermark have a significant impact on them.

On the other hand, the defense efficacy on FGSM and PGD attacks underperform
DeepFool and CW-L2, since such attacks have lower variance and better transferability
to the learning models. Also, the information discrepancy caused by the subtle water-
mark does not necessarily induce sufficient patterns to destroy the specific structure of
adversarial perturbations. To address this limitation, we might need to either introduce
more potentially secret information to enlarge the knowledge gap between the defender
and the attacker, or leverage additional techniques (e.g., adversarial training against
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Figure 4.3: Accuracy on different color transformations.

single-step attacks) to further facilitate our watermarking-based defense. We leave it as
our future work.

4.1.4.3 Watermarking Defense on Color Images

Watermarking RGB images is not as straightforward as that on gray-scale images, due
to the fact that these three components are inter-correlated. To put it into perspective,
we initially exploit DFT to watermark RGB component for the color images from
CIFAR-10 [166], train a DNN model with and without color watermark embedding
process on regular data. The test accuracy decreases from 88.3% to 38.1%. Such a naive
watermarking method almost generates a denial of service for classification, let alone
be used as defense against adversarial attacks. In our work, we attempt KLT and HSV
transform to decorrelate RGB information of the color images in our defense, respectively.
We preliminarily assess the effectiveness of these color image watermarking methods on
the adversarial examples generated by different adversarial attacks on CIFAR-10. The
results are showed in Figure 4.3.

From Figure 4.3, we can see that the embedding process using transformations
indeed helps to improve the color watermarking quality, which outperforms the direct
watermarking on RGB space. Regarding the adversarial examples, our defense using KLT
and HSV improves the classification performance by different degrees against different
attacks, especially that the test accuracy achieves 63.2% and 60.0% against DeepFool,
which is better than other attacks. The same observations can be found in Table 4.1 and
Table 4.2, and the defense efficacy difference among FGSM, PGD, DeepFool and CW-L2
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has been well explained in Section 4.1.4.2. Considering that color image watermarking is
still an open issue with challenges and difficulties (e.g., color representations) [161], we’d
like to gain further insight to enhance the color watermarking in our defense strategy in
the future work.

4.1.4.4 Evaluation on Different Watermark Patterns

Due to the large amount of possible patterns introduced by watermarking system, it is
worth analyzing the different types of watermark images that work for our defense model
precisely. In this section, we thus validate the effectiveness and significance of watermark
image patterns in building a defense model. In our experiments, we limit the freedom
of watermark image choice to be one class of images from ImageNet, and randomly
choose different watermark images of one specific class to be watermark keys. We test
the watermarking system encoded with six image patterns respectively (i.e., tobacco
shop, tractor, pug, vase, gorilla, valley) to evaluate the performance of the defense model
against adversarial attacks. As illustrated in prior experiments, DFT performs better
than other four transformation algorithms applied in our defense strategy on average;
therefore, we evaluate the effectiveness of different watermark images using DFT as the
embedder of watermarking system. We report the results with respect to the classification
accuracy on MNIST in Table 4.3.

As revealed from the results, the defense performances slightly vary in different
classes of watermark images where some image patterns could outperform others against
one adversarial attack while underperform a bit against another attack (e.g., Tobacco
shop achieves 95.3% accuracy on CW-L2 while 89.9% accuracy on DeepFool). Overall,
watermarking-based defense is not strictly sensitive to the specific patterns introduced
by the watermark images, and is able to reach reasonable performance under a random
image choice. Recall that, the watermarking is also easy for implementation without
many additional computations and extra training. These properties make our defense
model convenient and feasible in practical use.

4.1.4.5 Comparisons with Other Methods

In this set of experiments, we examine the effectiveness of our defense model against the
adversarial attacks by comparisons with other related state-of-the-art defense methods,
including: (1) resizing [149], (2) padding [149], (3) resizing+padding [149], (4) bit-depth
reduction [34, 35], (5) JPEG compression [35, 169], and (6) Guassian noise [32]. More
specifically, resizing strategy resizes the original input images into a new image with
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Table 4.3: Accuracy (%) over different watermark classes

Watermark Class FGSM PGD DeepFool CW-L2

Tobacco shop 53.7 44.7 89.9 95.3
Tractor 54.0 36.4 91.8 93.7

Pug 52.4 41.4 92.0 94.3
Vase 47.8 27.7 91.6 94.9

Gorilla 49.9 31.6 88.2 95.1
Valley 50.7 36.5 93.3 82.9

Table 4.4: Accuracy (%) over different defense models

Defense Methods FGSM PGD DeepFool CW-L2

− 4.8 0.6 1.0 0.6
Resizing 14.7 2.0 92.8 92.1
Padding 13.4 0.9 93.4 92.6

Resizing+Padding 14.5 0.7 90.4 91.9
Bit-depth reduction 7.9 0.6 85.0 72.4
JPEG compression 11.1 0.7 93.3 82.9

Guassian Noise 10.5 0.6 92.2 86.0
Watermarking 60.7 48.3 94.8 93.6

random size. As discussed in [149], the difference between the original and new sizes
should be within a reasonably small range to avoid performance drop-off. Considering
the image set used in our experiments is of 28 × 28 size, we set the new size for each
image as 30 × 30. Padding pads zeros around the resized images for each side. For
resizing+padding, we first resize the images to 29 × 29, and then pads zero pixels on
the left and bottom to obtain 30 × 30 images. Bit-depth reduction performs a type
of quantization to squeeze image features that can possibly remove small adversarial
perturbations; we reduce the images to 4 bits in our experiments. JPEG compression
uses the similar way to disrupt adversarial perturbations; we follow the work [35] to
perform compression at quality level 75 (out of 100). Guassian noise N (0, 1) is added
to the image data to introduce randomization to the target model. The experimental
results on MNIST using DFT watermarking algorithm are reported in Table 4.3.

From Table 4.4, we observe that different image transformations can mitigate the
adversarial effects for iterative attacks like DeepFool and CW-L2 significantly, the reason
behind which has been well analyzed in Section 4.1.4.2. As for FGSM and PGD indicating
stronger transferability, these alternative image transformation methods suffer from a
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drastic drop-off, i.e., the best classification accuracy can only reaches to 14.7% and 2.0%
for FGSM and PGD respectively. By contrast, our watermarking-based defense can well
preserve the unique structure and patterns through the designed watermarking procedure
and enforce a distinctive discrepancy between the defense model and the surrogate model,
and thus outperforms other related defense methods.

4.1.5 Summary

In this work, we leverage the watermarking transformation to introduce secret watermark
into our defense model, and thus leading to knowledge gap to impede attackers. Accord-
ingly, we impair the capability of the attacker to customize the knowledge of the defense
model and avoids the possible adaptive attack behaviors in real use. We evaluate the
effectiveness of our strategy under two attacking scenarios where the attacker is enabled
with different knowledge of the target model. Moreover, we compare our method with
other related work and demonstrate the promising potential of using digital watermarking
as a kind of randomizations to improve the robustness of the defense model. However, the
small capability of watermark embedded to the image limits its performance in defending
against some powerful adversarial attacks. As future work, we aim to investigate other
potential methods to enlarger the amount of secret information that we can introduce to
the defense model and examine its behavior on more complex datasets.
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Chapter 5 |
The Ugly: There is No Free Lunch

In the deep learning community, there constantly arise new and advanced researches
on adversarial to resolve vulnerability issue of the model. Despite the great efforts,
those public defending strategies have been verified to be compromised by attackers,
and currently, there is no security guarantee concerning the adversarial attacks on deep
learning systems. The study results naturally lead us to give more careful considerations
on the question: Is there a silver bullet for this problem? As far as we know, absolute
security is not possible by the state-of-the-art [76], there still exit lots of new challenges
ahead facing with the threat that adversaries pose to us. But we have to admit that
studying such phenomenon not only provides us with measurements to test the security
of machine learning models, but also helps with better understanding the behaviors of
adversaries. More importantly, the principle underlying this problem is worth for our
more exploration.

5.1 Discussion
In this thesis, we present three work from the perspective of improving the DNN
robustness against adversarial attacks [170] and applying attack techniques to social
good scenarios [138]. Although the designed methods show their effectiveness in different
evaluation environment, their generality and stability still suffer limitations. This is due
to the reason that resolving the security issue of adversarial machine learning is still an
intractable problem. With the continuous arms race between attackers and defenders,
the existence of universally robust defending strategy is by far an open question to us.
In this regard, the proposed defense methods face the challenge in protecting model or
user privacy against more developed attack strategies. In this section, we will elaborate
these limitations with more details and discuss their future work correspondingly.
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5.1.1 Social media privacy protection using adversarial attacks

In our first work, we investigate the potential of leveraging adversarial attacks for social
good, i.e., social media data privacy. As one of our future work, Adv4SG should be
an easy-to-use service provided on users’ social media client side, so that its privacy
protection functionality would be realized in practice. For example, Adv4SG can be
developed as an API that is integrated into social media posting and editing systems
to allow users to choose the adversarial text according to their provided attribute and
text content. However, we also face some challenges and limitations on the applicability
of our proposed method. First, we require a large amount of data with labels while
training the NLP model to generate adversarial examples, while it is not realistic in the
real world. Especially for social media, user data usually suffer from label shortage. To
better obfuscate the private attribute, we may need to first recognize the target labels.
In order to resolve that, we may resort to semi-supervised learning or few-shot learning
strategies which release the burden on data labels. Also, in our experiments, we test the
performance of our protection against different inference attack models. Though Adv4SG
has been investigated and validated in terms of transferability of adversarial examples.
The attacker in real world can always evolve with more sophisticated behaviors that
the defender is not able to predict that we need to consider more cases while defending
against those more advanced inference threat models.

5.1.2 Attribute-obfuscating attack on graph for social good

Considering the challenges in our first study, we propose an attribute-obfuscating attack
on graph neural networks for social networks’ user privacy. The benefits of this work can
be summarized as two points: (1) based on the complex heterogeneous environment of
social network, more and more attackers tend to model the diverse user data as graph for
downstream tasks. To protest such attacks, we aim to design more powerful protections
to guarantee the security of user’s privacy. (2) lacking of data labels is a main challenge
for lots of deep learning models, graph neural networks such as GCN can achieve superior
performance under the semi-supervised setting where only a small amount of training
data has labels.

As our goal is developing a practical attribute obfuscation method to protect users’
private attribute in social network, there still exist several challenges for us to resolve.
Though AttrOBF has been validated to be transferable to these GNNs, the attackers
could take advantage of more advanced and robust GNN models (e.g., adversarial training
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via latent perturbation) to infer attributes and thus deteriorate AttrOBF. To solve it,
we need to observe and analyze more factors that can improve the transferability of
our graph-based adversarial attack. To design more sophisticated and stronger attack
on socal graph is also one possible way. The other limitation is that, from our current
experimental results, the number of training labels we need to obfuscate is a little bit
too much which consequently would affect the practicality of our method, especially for
those multi-class obfuscation task.

5.1.3 Watermarking-based defense against DNNs

In our third study, the designed watermarking-based defense yields a knowledge gap
advantage to protest gradient-based adversarial attacks by imposing a watermarking
module to DNNs. The information gap created through watermarking effectively weakens
the capability of attackers. In this work, we show the validity of digital watermark in
hiding information to the defense model and thereby improving its robustness. The results
validate our proposed idea against adversarial example attacks from limiting the attacker’s
knowledge of the defense model, especially for the optimized adversarial perturbations.
On the other hand, our method underperforms on some adversarial examples, such as
PGD. Such attacking models tend to have lower variance and better transferability to
the protected models, while the information discrepancy caused by the subtle watermark
does not always induce sufficient model distortions to fail the adversarial perturbations.
To address this limitation, we might leverage additional techniques to further facilitate
the model protection.

5.2 No Free Lunch Theorem in Adversarial Setting
In adversarial learning community, the attacking and defending strategies emerge con-
stantly, but the fact is this mini-max game seems to fall into the endless loop [76]. Under
this dilemma, some researchers try to jump out of the box and think of this issue from
different perspectives. For example, in [171], researchers point out that current machine
learning practitioners primarily rely on testing, but it is not sufficient to provide security
guarantees as the attacker can send samples that differ from those used for testing
purpose, i.e., adversarial examples. Besides, they mention that we should verify the
model rather than test it.

On the other hand, it is worth considering the possibility that there does not exist fully
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robust and accurate machine learning models. In traditional machine learning setting,
there exists such “no free lunch” theorem [172] states that all machine learning algorithms
are equally effective across all possible prediction problems. The “no free lunch” theorem
was first proposed in late 1990s [173] where claims no optimization algorithm is any
better than any other optimization algorithm, on average. Then it is applied to machine
learning. When it comes to the adversarial setting, researchers are keen to know whether
“no free lunch” theorem can be extended to it as well. If the answer is yes, then the
average performance of the model is taken on all possible datasets including those small
malicious perturbations, and it may indicate that those perturbations from the attackers
should be ignored [171,174]. In addition, researchers in [175] study the “no free lunch”
theorem towards adversarial robustness of simple machine learning models and state
that the attack models currently being considered in the literature may be too lax and
implausible. One thing we are sure about this important open theoretical question is
that, once it is resolved, it can extremely redefine the game. In a nutshell, with the
challenges ahead, we still need lots of more efforts to move forward.

5.3 Future Work
In our work that utilizing adversaries for social good, we show the applicability of
adversarial machine learning for human benefits. But as we discussed, our method
cannot guarantee the 100% protection against inference attacks. The attacker in real
world can always evolve with more sophisticated behaviors that the defender is not
able to predict. Especially, the continuous arms race between adversarial attacks and
defenses stimulate the development of defense capability for inference model to evade
these generated adversarial examples. For instance, in NLP field, the attackers could
take advantage of more advanced and robust learning models (e.g., spelling checking,
and graph learning) to infer attributes and thus deteriorate Adv4SG. In this regard, we
need to correspondingly upgrade the generality of our protection against a variety of
inference attacks. Meanwhile, we should also pay attention to the design of more powerful
adversarial attacks as we can consider them as our attribute obfuscation technique to
protect users’ privacy.

For the practicability of our methods, we can further consider the details and require-
ments on put them into use with the real-world social media platforms. For instance,
we can design such build-in interfaces to help users realize the attribute obfuscating
functions. On the other hand, the current performance of the proposed framework
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expects for better optimization from a practical point of view. Take our second work
as an example, it is unrealistic for us to expect many of users are willing to shift their
truth attributes, reducing the required graph perturbation to an ideal small amount is
an important step for us to improve, we leave that as our future work. In addition, the
great potential that adversarial machine learning showed in protecting data privacy in
social media, we are also inspired to search for more benefits of it in other domains, such
as software security. In terms of our proposed watermarking-based defense, we consider
assembling our scheme with other defense techniques designed from different security
perspective to more comprehensively enhance the robustness of DNNs, e.g., adversarial
training against single-step attacks. What’s more, the vulnerability issue on adversarial
has been proved to exist in different kinds of learning models other than DNNs. For
instance, the well-trained graph neural networks can easily be attacked by carefully
designed adversarial modifications. Therefore, we are looking forward to putting more
efforts on studying the robustness of diverse structured models against such adversarial
attacks in our future research.
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Chapter 6 |
Conclusion

In this thesis, we present three of our work to explore the robustness and applicability of
adversarial machine learning. In the first and the second work, we investigate adversary
for social good, and cast attribute privacy protection problem on social media as an
adversarial attack formulation problem to defend against attribute inference attacks.
In particular, in our first work, we focus on text data in our problem and propose a
text-space adversarial attack Adv4SG under the black-box setting, where the attack
constraints are first defined; guided by them, a sequence of plausible perturbations are
automatically performed to generate the adversarial texts using semantically and visually
similar word candidates, which are regulated by a reformed population-based optimization
algorithm. We conduct comprehensive experimental studies on real-world social media
datasets to evaluate the performance of Adv4SG, which validate its effectiveness and
efficiency against attribute inference attacks. Despite the challenges and limitations, we
believe that our work unveils novel insight of turning adversarial attacks in machine
learning into defense strategies and implies the great potential on the applicability of
adversarial attacks for attribute obfuscation and privacy protection in practice.

Followed by the first work, we focus on more complicated data structure of social
media and aim to design user privacy protections against more sophisticated inference
attacks on social graphs in our last work. Specifically, we investigate adversary for
social good, and cast attribute privacy protection problem on social networks as a graph
adversarial attack formulation problem to defend against GNN-based attribute inference
attacks. We design a black-box attribute-obfuscating attack AttrOBF, where a linearized
two-layer GCN is used as a surrogate model to perform our attack. With the help of this
surrogate model, a closed form of model weights is obtained to transform the intractable
bi-level optimization for AttrOBF into single-level. To address non-differentiable attribute
obfuscating operation optimization issue, we introduce the Gumbel estimator to generate
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continuous differentiable approximation. It enables gradient-based methods to search
for the optimal training attribute values to modify through back-propagation. In this
work, we conduct extensive experimental studies on real-world social network datasets to
evaluate the performance of AttrOBF, which validate its effectiveness against GNN-based
attribute inference attacks. Despite the limitation, our work innovately propose to take
advantage of the vulnerability of GNNs toward adversarial attacks for social good, and
we believe that our work has implications on the applicability of adversarial attacks for
attribute obfuscation and privacy protection in practice.

Finally, we study the robustness of the DNN model against adversarial examples,
and propose a watermarking-based defense mechanism against adversarial attacks. We
creatively impose a secret watermarking system into the DNN model to yield a knowledge
gap advantage over the attackers. The experimental results demonstrate that our defense
can effectively enhance the robustness of the DNN classifier against adversarial attacks
even the attacker may have different knowledge about the targeted learning system, and
we also prove that watermark is a good choice to introduce randomization of the defense
model. Followed by comprehensive evaluations, we show that the information gap created
through watermarking effectively weakens the capability of attackers. In addition, the
results illustrate a promising potential of our proposed idea against adversarial attacks
from limiting the attacker’s knowledge of the defense model, especially for the optimized
adversarial perturbations. On the other hand, our defense underperforms on some type of
adversarial examples, such as PGD. It is because that the model disturbance introduced
by watermark is very subtle, the information discrepancy caused by it might not be
sufficient to destroy the specific adversarial perturbations, especially those with lower
variance and higher transferability. We disscuss the possible solution to it. By upgraing
the randomness capacity of our method, such as introducing more potentially secret
information to enlarge the knowledge gap between the defender and the attacker, we can
potentially improve the generalization of our protections.
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