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Abstract
Compilers are among the most fundamental programming tools for building software.
However, production compilers remain buggy. GNU compiler collection (GCC), as
a long-lasting software released in 1987, provided as a standard compiler for most
Unix-like operating systems, has caught over 3,410 bugs from the day they were
created. Fuzzing is often leveraged for stress testing purposes with newly-generated,
or mutated inputs to find new security vulnerabilities. In our study, we propose
a grammar-based compiler fuzzing framework called DeepFuzz that continuously
synthesizes well-formed C programs to trigger internal compiler errors or “bugs”,
as they are commonly called. In this framework, we are interested in how to apply
generative deep neural networks (DNNs), such as the sequence-to-sequence model,
to synthesize well-formed C programs based on training through syntax-correct
programs. We are also interested in how to synthesize programs using a novel form of
reinforcement learning, where the model becomes its teacher to start with a random
neural network with no training data and trains itself through self-play. We will use
a synthesized set of new C programs to fuzz off-the-shelf C compilers, e.g., GCC
and Clang/LLVM. This thesis describes our analysis of neural program synthesis for
compiler fuzzing in three steps.

First, we conduct a first-step study by implementing DeepFuzz that deploys
a sequence-to-sequence model to synthesize C programs. We have performed a
detailed case study on analyzing the pass rate of generating well-formed programs
and achieving the goal of fuzz testing, which requires a certain degree of variation.
In general, DeepFuzz generated 82.63% syntax valid programs and improved the
testing efficacy with regards to line, function, and branch coverage. It identified
previously unknown bugs, and 8 of them were confirmed by the GCC developers.

Second, for the cases when we could not get any or enough data to train a
model for representing the grammar, we build a reinforcement learning framework for
program synthesis and apply it to the BF programming language. With no training
data set required, the model is initialized with random weights at the very beginning,
and it evolves with environment rewards provided by the target compiler being
tested. During the performance of the learning iterations, the neural network model
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gradually learns how to construct valid and diverse programs to improve testing
efficacies under four different reward functions that we defined. We implemented
the proposed method into a prototyping tool called AlphaProg. We performed an
in-depth diversity analysis of the generated programs that explains the improved
testing coverage of a target compiler being tested. We reported two important bugs
for this production compiler and they were confirmed and addressed by the project
owner.

Third, we extend the framework to synthesize C programs, which is more chal-
lenging in terms of state space. We propose an automatic code mutation framework
called FuzzBoost that is based on deep reinforcement learning. By adopting testing
coverage information collected at runtime as the reward, the fuzzing agent learns to
fuzz a seed program that achieves an overall goal of testing coverage improvement.
We implemented this new approach, and preliminary evidence showed that reinforce-
ment fuzzing can outperform baseline random fuzzing on production compilers. It
also showed that a pre-trained model can boost the fuzzing process for seed programs
with similar patterns.

This thesis solves the problem of using the DNN to synthesize new programs for
compiler fuzz testing. Specifically, the proposed framework is able to handle compilers
of different programming languages. Accordingly, DeepFuzz and FuzzBoost are
designed for the C compiler testing, and AlphaProg is designed for the BF
language compiler testing. Additionally, the generative neural networks for program
synthesis can be trained with or without training data. Moreover, the model in
DeepFuzz is trained based on training data but AlphaProg and FuzzBoost rely
on reinforcement learning, which requires no training samples. We built prototyping
tools for each study and applied them for practical use. Their effectiveness was
evaluated, and they caught real bugs in off-the-shelf compilers.
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Chapter 1 |
Introduction

1.1 Motivation

Compilers are among the most fundamental components of computation systems, and

they are important parts of the trusted computing base of our machines. However,

they often contain a substantial number of bugs. GNU compiler collection (GCC) is

a long-lasting software released in 1987 that was developed to provide a standard

compiler for most Unix-based operating systems, and it caught over 3,410 internal

bugs [98] from the day they were created. Even in a recent research paper, 217

unknown bugs detected among which 119 were fixed [103] over a six-month study

period. Similar circumstances apply to Java, Python, and JavaScript, with thousands

of bugs being detected in widely used compilers, among others. Compiler bugs can

result in unintended program executions and lead to catastrophic consequences in

security-sensitive applications, and they may also hamper developers productivity in

debugging a program when the root cause cannot be identified in the applications

or compilers. Consequently, improving compiler accuracy is important, although

validating compilers is not easy, as the size of code bases continues to gradually

increase. The code base of today’s GCC includes approximately 15 million lines of

code [84], which is close to the 19 millions of lines of code.

It is critical to make compilers dependable, and in the past decade, compiler
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verification has become a paramount concern, which has led to verification grant

challenges in computing research [33]. Mainstream research focuses on formal

verification [49, 51], translation validation [73, 76], and random testing [46, 47, 48, 53].

The objective of the first two categories is to provide certified compilers, e.g.,

CompCert [50], which represents promising progress in this area, though in practice,

it is challenging to apply formal techniques to fully verify a production compiler

because it requires more effort to compose the specifications than build a compiler.

Therefore, testing remains the dominant approach to conducting compiler validation.

The focus of this study was on compiler testing. By scanning programs covering

different features to different production compilers that turn on different levels of

optimization, internal compiler errors (i.e., genuine bugs in the compiler) may be

triggered during the compilation with a detailed error message indicating what

and where the error is. However, challenging hurdles in compiler testing include

determining how to generate “good” programs to make testing more efficient, how to

automate this process, and how to build a continuous testing framework. Existing

methods including man-made tests, each of which covers some features, and it

is common today to see the gradually enlarged test suites for modern compilers.

Man-made test suites are efficient for testing in terms of coverage, though it takes

huge human effort to develop these tests. Nevertheless, a practical way to reduce

human labor for testing is fuzz testing (i.e., “fuzzing”). Fuzzing [7] is the process of

finding security vulnerabilities by repeatedly executing a program with automatically

generated/modified inputs and detecting abnormal behaviors by observing the

execution results. The primary techniques for input fuzzing in use today are black-box

random fuzzing [101], white box constraint-based fuzzing [27], and grammar-based

fuzzing [22]. Black box and white box fuzzing are fully automatic and have historically

proven effective at finding security vulnerabilities in binary-format file parsers. In
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contrast, grammar-based fuzzing is required an input grammar specifying the input

format of the application under test, which is typically written by hand. This process

is labor-intensive, time-consuming, and error-prone. Nevertheless, grammar-based

fuzzing is the most effective fuzzing technique known today for fuzzing applications

with complex structured input formats, e.g., compilers. For compiler testing, one way

to deploy the grammar-based fuzzing is to encode the C grammar as rules for test

case generation. However, in practice, C11 [17], the current standard of C syntax,

has 696 pages of detailed specifications, which represents a hurdle for engineers when

constructing such a grammar-based engine.

1.2 Problem Definition

In this thesis, we consider the problem of automatically generating syntactically valid

inputs for grammar-based fuzzing with a deep learning framework. More specifically,

we target on training a generative deep neural network which can be viewed as an

implicit representation of the “grammar”, to be more precise, the language patterns,

for programming languages. In this thesis, we consider two scenarios, one with and

one without training data set.

The two scenarios describe the two main challenges incrementally in grammar-

based fuzz testing. To test general compilers that are well maintained, i.e. GCC,

that we can find enough test programs accordingly, we aim at building an end-

to-end learning framework to continuously generate valid programs by encoding

programming language patterns in neural networks. It reduces human effort in

constructing rule-based production rules in previous grammar-based fuzzing engines.

However, for less well-maintained compilers, even parsers or interpreters that we

cannot find enough data for training such a model to represent language patterns,

we aim to build a reinforcement learning framework to achieve the same outcome.
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Simply stated, a deep neural network will be incrementally trained with a reward

system. The second scenario applies to a more general case, that is, any software

systems that take in highly-structured inputs and can provide an environmental

reward to describe the validity of given inputs.

To train a deep neural network from a training data set, we propose to apply

existing generative models, such as the Sequence-to-Sequence model [86] in a super-

vised learning strategy leveraging the original test suites provided with production

compilers. At a high level, the sequence-to-sequence model consists of two recurrent

neural networks: the encoder RNN simply consumes the input source code without

making any prediction; the decoder, on the other hand, processes the target sen-

tence while predicting the next words. Originally, it was widely used for machine

translation [42], which takes in a sequence of the original language and generates the

sequence on a target language with the same semantics. It has also been applied to

text generation [85], where feeding in abundant paragraphs of Harry Potter results in

the automatic generation of a new paragraph that keeps the style of writing of what

J.K. Rowling wrote. Theoretically speaking, by training the model on the original

paragraphs, we implicitly encoded the correct spelling of words, valid syntaxes of

sentences, and detailed styles of writing behaviors into a generative model. The same

idea can be applied to program synthesis, where it is only necessary to train a model

to generate different syntactically valid programs on top of a seed data set. For the

training data set, we adopted the original GCC test suite, which includes more than

10,000 short programs that cover most of the features specified in the C11 standard.

Moreover, the open-source projects, online coding systems, students programming

assignments are all good sources for grabbing syntax-valid programs for training.
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1.3 Research Objective

In general, we used neural program synthesis to accomplish two main objectives. The

first is to generate new programs that follow legitimate grammar with and without

a set of syntactically correct programs. The major challenge comes from handling

long sequences and grammar representation. The second objective was to improve

compiler testing efficacy. We targeted improving the coverage and capture of more

internal errors in production compilers. More specifically, we wanted to enhance line

coverage, function coverage, and branch coverage for testing production compilers.

The coverage information is important for compiler testing as it indicates how many

more lines of code are covered by executing a target program with a set of new

inputs. Intuitively, the more lines of code that are executed, the more chances there

are to assure a software is secure in terms of program semantics. Also, during the

fuzzing process, we sought to detect unknown compiler bugs with the improved test

suites. There are two stages in the entire workflow, program generation and compiler

testing. We targeted production compilers, such as GCC [26] and LLVM/Clang [15].

We conducted some preliminary studies. We have pipelined a prototype with

around 5,000 pieces (20 MB) of valid C programs collected from the GCC repository

and online coding systems. We trained an LSTM model with 2 layers and 512

hidden units per layer. We trained the model for in total 30 epochs on a server

machine with 2.90 GHz Intel Xeon(R) E5-2690 CPU and 128 GB of memory. It

takes 900 seconds for an epoch and 7.5 hours for the entire training. We generated a

total of 4,409 programs by inserting two new lines of code into randomly sampled

seed programs. Among the newly generated programs, 1,134 of them are syntax

valid C programs which mean the generation success rate was about 25.72%. In

the generated syntax invalid programs, we observed some common errors such as

“undeclared identifier” (2,509) which indicates that some variables are used before
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they are defined, and also “expected expression” (1,823), which includes syntax errors

like unbalanced parenthesis exist. We want to improve the model to enhance the

generation success rate in our next step, though our machine is not powerful enough

to handle (1) more training data being feed in; (2) building of self-training cycles

based on reinforcement learning as state-of-the-art approaches. We would also like

to pipeline the current prototype with coverage analysis. More specifically, we will

analyze how is the percentage of code, paths, and branches coverages with the newly

generated programs leveraging static analysis. We will be interested in answering

the following research question: How can syntax-valid programs be automatically

generated for fuzzing compilers and will these newly generated programs efficiently

improve the testing coverage and detect unknown bugs?

In the first stage, we will train generative neural networks based on conventional

deep learning models, i.e. the sequence-to-sequence model, from a set of training data;

or based on a reinforcement learning framework, such as the AlphaGo Zero, which

trains itself through data and reward from a compilation environment. After training

the model within certain epochs, we started to generate new programs with this

fitted model. For program generation, we tried different generation strategies, such

as direct insert and replace. Because our target was to fuzz production compilers,

we aimed to generate programs that cover the most features of the C language or

BF language. Therefore, we also adopted some sampling methods to diversify the

generated program.

In the second stage, we fed the generated C programs or BF programs, either

syntactically correct or incorrect, to compilers in different optimization levels and log

the compiling messages. The message is a flag for (1) whether a generated program

is syntactically correct or (2) the generated program may have triggered an internal

compiler error (bug) of the specific compiler at a specific optimization level. In
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addition to the compiling message, we logged the execution trace to provide coverage

information. In a nutshell, for this program generation task, we had three objectives:

to generate syntax valid programs, to improve code coverages, and to detect new

bugs. We performed deliberate studies on three related metrics, pass rate, coverage,

and bugs, for the three objectives.

1.4 Research Question

Our work is the first that works on grammar-based compiler fuzzing with a deep

learning framework. We have three main research questions:

• Can we build a continuous testing framework that automatically generates

syntactically correct programs based on deep neural networks for compiler

fuzzing based on observing existing syntactically correct programs?

• If there is no training data to rely on, how can a deep neural network be trained

to generate programs for compiler fuzzing based on reinforcement learning?

• What are the key factors how these key factors will affect the accuracy of

the generative model and fuzzing performance. How testing coverage (line,

function, branch) is increased with our proposed method?

To ansser these research questions, we conducted three research projects. To

answer the first question, we developed DeepFuzz to train a generative deep neural

network over training data of well-formed C program and use the trained model to

continuously produce new C programs. To answer the second and third question, we

conduct two studies: we developed AlphaProg and FuzzBoost. AlphaProg is

a generative fuzzing framework that trains itself a deep neural network to producing

BF language programs at the character-level. It uses environment rewards from

compilation information from off-the-shelf compilers, i.e. BFC; FuzzBoost is
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a mutational fuzzing framework based on a deep reinforcement learning system

as well. It predicts actions to choose from pre-defined mutation rules to mutate

seed C programs by adopting testing coverage information collected from runtime

information as the reward. The three studies helped us to better construct a neural

program synthesis framework for compiler fuzzing.

The rest of this thesis is organized as follows.

• We first review the related works about Compiler Testing, ML for Program

Synthesis, and Advanced ML for Program Synthesis in Chapter 2.

• We then report our study of DeepFuzz that uses a Sequence-to-Sequence

model to synthesize program for compiler fuzzing in Chapter 3. We present

a detailed case study on analyzing the pass rate of generating well-formed

programs and achieving the goal of fuzz testing, which requires a certain degree

of variation in the synthesized new programs. We analyzed the performance of

DeepFuzz with 3 types of sampling methods, as well as 3 types of generation

strategies. Consequently, DeepFuzz improved the testing efficacy with respect

to line, function, and branch coverage. In our preliminary study, we found

and reported 8 bugs in GCC, all of which have been actively addressed by

developers.

• Next, to solve the case when there are no/few training data, we report our

study AlphaProg in Chapter 4. It is a generative fuzzing framework based

on reinforcement learning. A naive model was first provided and it evolves

with the rewards provided by the target compiler we are going to test. By

iterating the learning cycle, the model learns how to write valid programs and

generate programs that improve the testing efficacy. We analyzed the framework

with 3 different reward functions, and our study revealed the effectiveness of
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AlphaProg for compiler testing. We also performed an in-depth diversity

analysis of the generated programs, which explained the improved testing

coverage of our target compiler. We reported two important bugs for this

production compiler, and they were confirmed and well-addressed by the project

owner.

• In addition, we extended the reinforcement learning framework into Fuzz-

Boost to continuously produce C programs for fuzzing GCC in Chapter 5. It

is a mutational fuzzing framework. By adopting testing coverage information

collected from runtime information as the reward, we developed a learning

system with the state-of-the-art deep Q-learning algorithm that optimizes this

reward. In this way, the fuzzing agent learns the actions to perform to fuzz a

seed program that achieves an overall goal of testing coverage improvement. We

have implemented this new approach and evidence showed that reinforcement

fuzzing can outperform baseline random fuzzing on production compilers. It

also showed that a pre-trained model can boost the fuzzing process for seed

programs with similar patterns.

• Then, similarities and differences among the three projects are discussed in

Chapter 6. We compare DeepFuzz and FuzzBoost in terms of the valid

rate of synthesized programs, since they are both fuzzers of C compilers; we

cannot compare the two in terms of coverage because FuzzBoost focuses

on single seed mutations. We also discuss the models we chose in the three

projects, where we use encoder-decoder (RNN) for program generation as in

DeepFuzz and AlphaProg; and RNN embedding plus DNN for program

token-based mutations in FuzzBoost.

• Finally, conclusions are presented in Chapter 7.
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Chapter 2 |
Related Work

Our research seeks to detect more bugs in production compilers and improve the

testing coverage in the meantime. In this section, we review related works on compiler

testing, program synthesis and also discuss existing methods in program-related

usage of deep learning models.

2.1 Compiler Testing

Compilers are one of the most fundamental components of any computing system,

but studies have shown they to be buggy [84]. To assure the correctness of a compiler,

researchers have proposed different methods, most of which focus on verification and

testing.

In the past decade, compiler verification is an active area and has been discussed

widely [33]. Mainstream research focuses on formal verification [49, 51], and transla-

tion verification [73, 76]. The proposed method provides a fully certified compiler,

e.g., CompCert [50] which is proven to be correctly functioned. However, it does not

apply to production compilers, the code base of which is exceptionally large. It takes

more effort to compose the specifications for verifying such systems than building

a new one. Therefore, using testing techniques remains the dominant approach in

compiler validation [46, 47, 48, 53]. Existing methods for compiler testing include
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man-made tests that cover most features of one syntax. However, it is laborious

and a practical way to reduce human labor is fuzz testing [7], which is the process

of finding security vulnerabilities by repeatedly executing a program with newly

generated inputs. There are three major methods to fuzz inputs: black box random

fuzzing [9, 101, 103], white box constraint-based fuzzing [27], and grammar-based

fuzzing [25]. The first two methods are fully automated, while grammar-based fuzzing

requires human involvement, where grammar is composed according to rules.

Grammar-based fuzzing [22] uses an existing corpus of language grammars for

fuzzing. Grammar-based fuzzing requires an input grammar to specify the input

format of an application being tested. Despite the high effectiveness of grammar-

based fuzzing to synthesize complexly structured inputs, these grammars are typically

written by hand [98], which makes the process laborious, time-consuming, and error-

prone. In the scenario of compiler testing, one way to deploy the grammar-based

fuzzing is to encode the C grammar as rules for test case generation. However, in

practice, C11 [17], the current standard of the C programming language, has 696 pages

of detailed specifications, which represents a hurdle for engineers when constructing

such a grammar-based engine. A few automation methods have been proposed

for grammar-based fuzzing to save human labor, including statistic-based [91],

mutation-based [39], and deep learning-based [18, 60]. Researchers utilized an

RNN-based model to encode program grammar and generate new well-formed C

programs for compiler fuzzing. In this paper, we describe how our method boosts

the generation process by using a deep neural network to predict the generation

based on an observation of self-generated programs and corresponding rewards from

the environment. This method makes the compiler testing work for cases where few

training data can be acquired, such as the BF language.

Mutation-based fuzzing uses an existing corpus of seed inputs for fuzzing. It
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generates new inputs by modifying the provided seeds. A well-known fuzzer that

is mutation-based is called AFL [101], which randomly mutates seed inputs and

incrementally adds new seeds to the set concerning defined heuristics. Several

boosting techniques have been proposed to improve the efficiency of mutation-based

fuzzing. AFLFast [8] boosts original AFL fuzzer by focusing on low-frequency paths

that allow the fuzzer to explore more paths with limited time. Skyfire [91] applies

grammar in existing seed inputs for fuzzing programs that take highly-structured

inputs. Kargen and Shahmehri [39] perform mutations on the machine code instead

of a well-formed input, which they can use the information about the input format

encoded in the generated program to produce high-coverage inputs. DeepFuzz [60]

utilized an RNN-based model to encode program grammar and generate new well-

formed C programs for compiler fuzzing. In this paper, our method boosts the

mutation process by using a deep neural network to predict the mutation based on

an observation of existing seed programs.

2.2 Program Synthesis

Program synthesis is one of the fundamental problems in artificial intelligence (AI)

which aims at synthesizing programs automatically that follow certain predefined

specifications. It can be traced back to Waldinger and Lee [90], where a theorem

prover was used to construct LISP programs based on a formal specification of

the input-output relation. Since formal specifications are often as complex as

writing the original program, many researchers have proposed different techniques to

achieve the same goal with simpler partial specifications in the form of input-output

examples [4, 83]. Rule-based synthesis approaches have been successful in pushing the

process further [54, 57, 58, 59, 62], which used rule-based systems to translate user

specifications in natural language into program commands. Meanwhile, DSL-based
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inductive synthesis has also been another milestone, with the most widely known

example being the FlashFill system in MS Excel [31]. However, such systems are

difficult to extend and need significant development from domain experts to provide

the pruning rules for supporting more efficient search. As a result, the use of machine

learning methods have been proposed based on Bayesian probabilistic models [52].

Researchers also proposed the inductive logic programming [71] to automatically

generate programs based on examples. In recent studies, inspired by the the success

of Neural Networks in other applications, differentiable controllers were made to

learn the behavior of programs by using gradient descent over a differentiable version

of traditional programming concepts such as memory addressing [29], manipulating

stacks [30, 38], and register machines [44]. However, their method of solving problems

is still not scalable because they learn a different model for each program, but which

is later tackled in Bunel’s work [10], where a single model is used for learning a large

number of programs.

Incorporating knowledge of target domain’s grammars to enforce syntactical

correctness has already proven useful to model arithmetic expressions, molecules [45],

and programs [75, 99]. These approaches define the model over the production rules

of the grammar. In our scenario, the only specification of the synthesized program is

syntactically correct. This specification is much looser than any previous program

synthesis problems in which the specifications are usually at the semantic level.

However, we have more challenges regarding how to generate more diverse programs

to cover the features in compilers and therefore increase the testing efficacy. Besides,

our framework will serve as a syntax guard for any program synthesis research where

manually constructed production rules can be replaced with an automatically trained

neural network.
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2.3 Program-related Advanced Machine Learning

Reinforcement learning is adopted in many sequential action prediction tasks after

its first success in the game of Go [82], and thus as the task of program synthesis.

Based on given specifications, Bunel et al. performed reinforcement learning on top

of a supervised model with an objective that explicitly maximizes the likelihood of

generating semantically correct programs [10]. There are also research projects that

target program semantics, such as Neurally Directed Program Search (NDPS) [89],

proposed for solving the challenging non-smooth optimization problem of finding a

programmatic policy with maximal reward. Overall, existing projects that adopt

deep reinforcement learning for semantic program synthesis focus on one semantic

goal with one synthesis task. Our objective is to generate source programs that are

well-formed but contain different syntactic features, which are similar to the work

from Bottinger et al. [9] that aims at PDF parser fuzzing. In our design, we consider

the improvement of testing coverage of compilers as the reward for reinforcement

learning.

AI-based software security and software analysis have been discussed over the

years [23, 72, 102]. Neural network-based models dominate a variety of applications,

and interest has grown tremendously regarding their use for program analysis [2, 74]

and synthesis [21, 55]. Recurrent neural networks especially Sequence-to-Sequence-

based models have been developed for learning language models of source code from

a large code corpus and then using these models for several applications, such as

learning natural coding conventions, code suggestions, auto-completion, and repairing

syntax errors [6, 32]. It has been proven efficient, especially when a large amount of

data is provided, in improving the system efficacy as well as saving human labor.

Additionally, RNN-based models are applied for grammar-based fuzzing [18, 28]

which learns a generative model to produce PDF files to fuzz the PDF parser.
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Chapter 3 |
Program Synthesis based on S2S
for Compiler Fuzzing

Compilers are among the most fundamental programming tools for building software.

However, production compilers remain buggy. Fuzz testing is often leveraged with

newly-generated or mutated inputs to find new bugs or security vulnerabilities. In

this study, we proposed a grammar-based fuzzing tool called DeepFuzz. Based

on a generative Sequence-to-Sequence model, which can be viewed as an implicit

representation of the language patterns for training data, DeepFuzz automatically

and continuously generates well-formed C programs. We use this set of new C

programs to fuzz off-the-shelf C compilers, e.g., GCC and Clang/LLVM. We present

a detailed case study to analyze the success rate and coverage improvement of the

generated C programs for fuzz testing. We analyze the performance of DeepFuzz

with three types of sampling methods as well as three types of generation strategies.

Consequently, DeepFuzz improved the testing efficacy with respect to the line,

function, and branch coverage. We apply our DeepFuzz technique to test GCC

and Clang/LLVM. During our preliminary analysis, we found and reported 8 bugs

in GCC, all of which have been actively being addressed by developers.
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3.1 Problem

Compilers are among the most fundamental components of computation systems,

and they are part of the trusted computing base of our machine. But they contain

numerous bugs. GCC, as a long-lasting software released in 1987, provided a

standard compiler for most Unix-like operating systems, caught over 3,410 internal

bugs [98] from the day they were created. Even in a recent research study, 217

unknown bugs were detected, among which 119 were fixed [103] over a six-month

study. Similar situations apply to Java, Python and JavaScript, over thousands of

bugs are detected in widely used compilers, let alone the others. Compiler bugs

can result in unintended program executions and lead to catastrophic consequences

in security-sensitive applications. It may also hamper developersâĂŹ productivity

in debugging a piece of program when the root cause cannot be identified in the

applications or compilers. Therefore, improving compiler correctness is important.

However, validating compilers is not easy with the gradually enlarged code base: the

code base of todayâĂŹs GCC includes around 15 million of lines of code [84], which

is close to the entire Linux kernel, which is around 19 million lines of code.

It is critical to make compilers dependable. In the past decade, compiler verifica-

tion has been an important and active area for the verification grant challenge in

computing research [33]. Mainstream research focuses on formal verification [49, 51],

translation validation [73, 76] and random testing [46, 47, 48, 53]. The first two

categories try to provide certified compilers, e.g., CompCert [50], which made promis-

ing progress in this area. However, in practice, it is challenging to apply formal

techniques to fully verify a production compiler because it requires more effort to

compose the specifications than to build a compiler. Therefore, testing remains the

dominant approach in compiler validation.

Our work focuses on compiler testing. By loading programs covering different
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features to different production compilers turning on different levels of optimizations,

internal compiler errors (genuine bugs of the compiler) may be triggered during the

compilation, which results in a detailed error message indicating what and where

the error is. However, it is challenging to generate “good” programs to make testing

more efficient and build a continuous testing framework by automating this process.

Each test, including man-made ones, and existing methods, covers some features,

and it is common today to see larger and larger test suites for modern compilers.

This improves the testing coverage but it takes a lot of human effort to construct

these tests. Nevertheless, a practical way to reduce human labor for testing is fuzz

testing, or fuzzing.

Fuzzing [7] is a method used to find bugs or security vulnerabilities. A program

is repeatedly executing with automatically generated or modified inputs to detect

abnormal behaviors, such as program crashes. Main techniques for input fuzzing in

use today are black box random fuzzing [101], white box constraint-based fuzzing [27],

and grammar-based fuzzing [22]. Black box and white box fuzzing are fully automatic

and have historically been proven to be effective in finding security vulnerabilities

in binary-format file parsers. By contrast, grammar-based fuzzing requires input

grammar specifying the input format of the application being tested, which is

typically written by hand. This process is laborious, time-consuming, and error-

prone. However, grammar-based fuzzing is the most effective fuzzing technique

known today for fuzzing applications with complexly structured input formats, e.g.,

compilers. In the scenario of compiler testing, one way to deploy the grammar-based

fuzzing is to encode the C grammar as rules for test case generation. However, in

practice, C11, the current standard of the C programming language, has 696 pages

of detailed specifications, which represents a hurdle for engineers when constructing

such a grammar-based engine.
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In this study, we considered the problem of automatically generating syntactically

valid inputs for grammar-based fuzzing with a generative recurrent neural network.

More specifically, we targeted training a generative neural network, which is an

implicit representation of “grammar”, or to be more precise, the language patterns,

for input data. We proposed to train a Sequence-to-Sequence model in a supervised

learning strategy leveraging the original test suites provided with production com-

pilers. At a high level, the Sequence-to-Sequence model consists of two recurrent

neural networks: the encoder RNN simply consumes the input source code without

making any prediction, while the decoder processes the target sentence and predicts

the next words. Originally, it was widely used for machine translation, which takes

in a sequence of the original language and generate the sequence in a target language

with the same semantics. It has also been applied to text generation. where feeding

in abundant paragraphs of Harry Potter results in the automatic generation of a

new paragraph that maintains the style of J.K. Rowling. Theoretically speaking,

by training the model on the original paragraphs, we implicitly encode the correct

spelling of words, valid syntaxes of sentences, and detailed styles of writing behaviors

into a generative model. The same idea can be applied to program synthesis, where

we only need to train a model to generate different syntactically valid programs on top

of a seed data set. For the training data set, we adopted the original GCC test suite,

which has more than 10,000 short programs that cover most of the features specified

in the C11 standard. In addition, the open-source projects, online coding systems,

students programming assignments are all good sources for grabbing syntax-valid

programs for training. On the training stage, we tune the parameters in the neural

network to encode the language patterns for C programs into the model, and based

on this, we will continuously generate new programs for compiler fuzzing.
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Contributions. Our work is the first to use a generative recurrent neural

network for grammar-based compiler fuzzing.

• First, the proposed framework is fully automatic. By training a Sequence-

to-Sequence model which can be viewed as an implicit representation of the

language patterns for training data, C syntax in our scenario, our framework

DeepFuzz will continuously provide new well-formed C programs.

• Second, we build a practical tool for fuzz testing off-the-shelf C compilers. We

conduct a detailed analysis regarding how key factors will affect the accuracy

of the generative model and fuzzing performance. The testing coverage (line,

function, branch) is increased with our proposed method.

• Third, we apply our DeepFuzz technique to test GCC and Clang/LLVM.

During our preliminary analysis, we found and reported 8 (will increase later)

real-world bugs. These bugs have been actively addressed by developers.

3.2 Overview

3.2.1 Sequence-to-Sequence Model

We build DeepFuzz on top of a Sequence-to-Sequence model, which implements

two recurrent neural networks (RNNs) for character-level sequences prediction. An

RNN is a neural network that consists of hidden states h and an optional output y.

It operates on a variable-length sequence, x = (x1, x2, ..., xT ). At each step t, the

hidden state h〈t〉 of the RNN is updated by

h〈t〉 = f(h〈t−1〉, xt) (3.1)

where f is a non-linear activation function. An RNN can learn a probability distri-

bution over a sequence of characters to predict the next symbol. Therefore, at each

19



timestep t, the output from the RNN is a conditional distribution p(xt|xt−1, ..., x1).

For instance, in our case, upon a multinomial distribution of the next character, we

use a softmax activation function for the output

p(xt,j = 1|xt−1, ..., x1) = exp(wjh〈t〉)∑K
j=1 exp(wjh〈t〉)

, (3.2)

for all possible symbols j = 1, ..., K, where wj are the rows of a weight matrix W . By

combining these probabilities, we compute the probability of the sequence x using

p(x) =
T∏
t=1

p(xt|xt−1, ..., x1). (3.3)

With the learned distribution, it is straightforward to generate a new sequence by

iteratively sampling new characters at each time step.

A Sequence-to-Sequence model consists of two RNNs, an encoder and a decoder.

The encoder learns to encode a variable-length sequence into a fixed-length vector

representation and the decoder will decode this fixed-length vector representation

into a variable-length sequence. It was originally proposed by Cho et al. [13] for

statistical machine translation. The encoder RNN reads each character of an input

sequence x while the hidden states of the RNN changes. After reading the end

of this sequence, the hidden state of the RNN is a summary c of the whole input

sequence. Meanwhile, the decoder RNN is trained to generate the output sequence

by predicting the next character yt given the hidden state h〈t〉. However, unlike a

pure RNN, both yt and h〈t〉 are also conditioned on yt−1 and the summary c of the

input sequence. In this case, to compute the hidden states of the decoder, we have

h〈t〉 = f(h〈t−1〉, yt−1, c), (3.4)

and similarly, the condition distribution of the next character is

p(yt|yt−1, ...y1, c) = g(h〈t〉, yt−1, c), (3.5)
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where f and g are activation functions. Overall, the two RNNs Encoder-Decoder are

jointly trained to generate a target sequence given an input sequence.

All RNNs have feedback loops in the recurrent layer. This design allows them to

maintain information in “memory” over time. However, it can be difficult to train

standard RNNs to learn long-term temporal dependencies, but which are common

in programs. This is because the gradient of the loss function decays exponentially

with time [14]. Therefore, in our design, we adopt a variant of RNN, long short-term

memory (LSTM), specifically in our encoder and decoder. LSTM units include a

“memory cell” that can keep information in memory for long periods of time, in

which case long history information can be stored.

In previous studies, the Sequence-to-Sequence model has been trained to generate

syntactically correct PDF objects to fuzz a PDF parser [28]. The core idea behind this

work is that the source language syntax can be learned as a by-product of training on

string pairs. Shi [81] investigated with an experiment that the Sequence-to-Sequence

model can learn both local and global syntactic information about source sentences.

This work lays a foundation for formal language synthesis with RNN. In our study, we

apply a similar idea for compiler fuzzing. During the training, we split the sequence

into multiple training sequences of a fixed size d. By cutting the sequences, we have

the ith training sequence xi = s[i ∗ d : (i+ 1) ∗ d], where s[k : l] is the subsequence of

s between indices k and l. The output sequence for each training sequence is the

next character, i.e., yt = s[(i+ 1) ∗ d+ 1]. We configure this training process to learn

a generative model over the set of training sequences.

3.2.2 Workflow

In general, we propose DeepFuzz for two main objectives. The first is to generate

new programs that follow legitimate grammars from a set of syntactically correct

programs. The major challenge comes from long sequence handling and language
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grammar representing. The second objective is to improve the compiler testing

efficacy. We target at improving the coverage and capturing more internal errors in

production compilers.1

Figure 3.1 shows the workflow of DeepFuzz. There are two stages in the entire

workflow, Program Generation and Compiler Testing. We target on production

compilers such as GCC [26] and LLVM/Clang [15]. On the first stage, we train a

generative Sequence-to-Sequence model with collected data from the original man-

crafted compiler test suites. Before we feed the sequences into the training model,

we preprocess them to avoid noise data. We detail the preprocess step later in

Preprocessing. The model we are going to fit is a general Sequence-to-Sequence model

that has 2 layers with 512 hidden units for each layer. We compare our model

configuration with the state-of-the-art sequence generation studies in Experiment

Setup. For program generation, we try different generation strategies. We detail the

generation strategies and their rationale in Generation Strategy. Because our target

is to fuzz production compilers, we aim at generating programs that cover the most

features of the C language. Therefore, we also adopted some sampling methods as

detailed in Sampling Variants, to diversify the generated programs.

On the second stage, we feed the generated C programs, either syntactically correct

or incorrect, to the compilers in different optimization levels. In addition to the

compiling message, we log the execution trace to provide the coverage information.

We have three objectives: to generate syntax valid programs, to improve code

coverages, and to detect new bugs. We perform studies on three related metrics,

pass rate, coverage, and bugs, for the three objectives in Evaluation.

1An internal compiler error, also abbreviated as ICE, is an error during the compilation not
due to the erroneous source code, but rather results from bugs of the compiler itself [16]. Usually,
it indicates inconsistencies being found by the compiler. Commonly, the compiler will output an
error message like the following: gcc: internal compiler error: Illegal instruction (program). Please
submit a full bug report, with preprocessed source if appropriate.
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3.3 Design

Before we set up the training stage, we first concatenate all the C programs in the

training set into a single file. By connecting these files, we have a large sequence of

characters. We then split the sequence into multiple training sequences of a fixed

size. The output sequence for each training sequence is the next character right next

to an input sequence. We configure this training process to learn a generative model

over the set of all training sequences. However, we notice that there are some noise

in the concatenated sequence which needs to be well-handled. In preprocessing, we

mainly take care of three issues: comment, whitespace, and macro.

Comment The comments are usually described in natural language which do not

follow the syntax of C programming language. Therefore, they are noise to us. We

first cut off all the comments, including line comments and block comments using

patterns in regular expression from the training data.

Whitespace According to the POSIX standard, whitespace characters include

common space, horizontal tab, vertical tab, carriage return, newline, and feed.

Observing the training dataset, we see white spaces are not unified formated. For

example, in some programs, there is a white space before and after the operator

but in the others, there is no such pattern; and in some programs, programmers use

a tab for indentation but in the others, the indentation is marked by four or two

spaces. To unify program style, we replaced all the white space characters with a

single space. In addition, we delete all the spaces before and after operators to make

a full expression more condensed.

Macro Macro is a unique feature of the C programming language. A macro is a

fragment of code which has been given a new name. Whenever the name is used, it is

always replaced by the contents of the macro. There are two kinds of macros. They

differ mostly in what they look like when they are used. Object-like macros resemble
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data objects when used, function-like macros resemble function calls. However, the

use of macro will cause problem for the training process as it brings noise. For

example, if we define a macro #define OnePlus 1+, we can write a = OnePlus 1 later

in the program but which does not follow C syntax. To avoid this situation, we

replace all the macro names with the contents as defined in the preprocessing.

3.3.1 Sampling Variants

We use the learnt Sequence-to-Sequence model to generate new C programs. With a

prefix sequence “int ”, for example, it is highly possible for the learnt distribution to

predict “main” to follow up. However, our target is to diversify original programs to

have more generated statements like “int foo = 1;” or “int foo = bar(1);”. Therefore,

we propose to adopt some sampling methods to sample the learnt distribution. We

describe the three sampling methods that we employ for generating new C programs

here: NoSample, Sample and SampleSpace.

NoSample In this sampling method, we directly rely on the learnt distribution to

greedily predict the best next character given a prefix. To be more specific, based

on the predicted possibility distribution of a next character, we always pick the one

with the highest possibility. This method will generate programs that are most likely

to be well-formed and consistent, but it will limits the number of different programs

that can be generated.

Sample To overcome the limitation of the NoSample method, given a prefix

sequence we propose to sample next character instead of picking the top predicted

one. This sampling method can help with generating a more diverse set of programs

as it can combine different patterns it learnt from the training dataset. However,

it will trigger the low pass rate problem, in another word, it is highly possible that

a newly generated program is syntactically invalid. To balance the diversity and
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well-formness, we set up a threshold in the sampling. That is to say, every time we

only sample among the most predicted characters.

SampleSpace This sampling method is a combination of Sample and NoSample.

In this method, we only sample the next character among all the predicted ones over

the threshold when the prefix sequence ends with a whitespace. We propose this

method because, we hope to predict a next character more consistent within the

prefix token but there can be more freedom when predicting the starting character

of next token. This method is expected to generate more well-formed C programs

compared with the Sample method and enhance the diversity compared with the

NoSample method.

3.3.2 Generation Strategy

To continuously fuzz production compilers, we use the learnt model to generate new

sequences of the C programming language. We treat programs in the original test

suites as seeds. Based on a sequence from the original program as the prefix, we

will generate new code. To make the most of the generated sequences, we propose

three generation strategies: G1) we insert the newly generated code based on the

same prefix sequence at one place into the original well-formed programs; G2)

we generate new pieces of code, but they will be generated with prefix sequences

randomly picked from different locations in the original program and, then insert

back respectively; G3 we chop out the same number of lines (We use lines of code

instead of C syntactic objects such as statements since we treat C programs purely

as sequences of characters.) after the prefix sequence from the original program and

insert the newly generated new lines into the position of the sentences that have

been chopped out. Moreover, more generation strategies can be conveniently set up

within our framework but we perform a preliminary study with these three kinds.
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Table 3.1. Model configuration
Training Size # of Layer # of Hidden Unit

Text Generation2 100 MB 1 (RNN ) 1,500
Learn&Fuzz3 534 PDF Files 2 (LSTM ) 128

DeepFuzz 10,000 C Programs 2 (LSTM ) 512

3.4 Evaluation

3.4.1 Experiment Setup

To evaluate DeepFuzz, we pipelined a prototyping workflow which trained a

Sequence-to-Sequence model based on a set of syntactically correct C programs.

Originally, the training data set, which contains 10,000 well-formed C programs, was

collected and sampled from the GCC test suites. We trained a Sequence-to-Sequence

model with 2 layers and there are 512 LSTM units per layer. We set the dropout

rate of 0.2.

We compare our configuration with others in Table 3.1. In a previous study

on text generation [85], researchers trained a one-layer RNN with over 100 MB of

training data, and there are 1,500 hidden units in this one-layer model. For the closest

related work, Learn&Fuzz [28], which adopted a generative Sequence-to-Sequence

model to generate new PDF objects for PDF parser fuzzing, researchers trained a

model with two layers and in each of these layers, there are 128 hidden units. They

trained this model over a data set containing 534 well-formed PDF files. In our

study, we trained a model with two layers where there are 512 LSTM units in each

layer of the DeepFuzz framework. The training data set, which contains 10,000

syntactically correct C programs sampled from production compiler test suites, is

larger than any previous studies.

We trained the Sequence-to-Sequence model in a supervised setting. In order
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to analyze the training performance, we trained multiple models parameterized by

the number of passes, or epochs. An epoch is defined as an iteration of the learning

algorithm to go over the complete set of training data. We trained the model for 50

epochs on a server machine with 2.90GHz Intel Xeon(R) E5-2690 CPU and 128GB

memory. We kept a snapshot of the model over five different number of epochs: 10,

20, 30, 40, and 50. It took about 30 minutes to train an epoch and 25 hours for

the entire training period. For new program generation, as described in Design, we

used different sampling methods and various generation strategies to generate new

C programs. The newly-generated programs are still based on the original training

data; in another word, we used the original C programs as the seeds from which

we randomly picked prefix sequences. By inserting new lines or replacing lines with

new lines into a seed, we can get new programs. Because the newly-generated part

will introduce new identifiers, new branches, new functions, etc., it will make the

control-flow of the newly generated program more complicated and thus enhance the

testing efficacy.

In our study, we use three metrics to measure the effectiveness of DeepFuzz:

• Pass rate is the metric to measure the ratio of syntax valid program among

all of the newly generated C programs. The Sequence-to-Sequence model will

presumably encode language patterns of C into the neural network. Therefore,

pass rate will be a good indicator of how well this network is trained over the

input sequences. We use the command line of gcc to parse a newly generated

program and if no error is reported, it indicates the syntactical correctness of

this program.

• Coverage is a specific measurement for testing. Intuitively, the more code are

covered by the tests, the more certainty we assure the completeness of testing.

There are three kinds of coverage information we collect during our analysis:
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line coverage, function coverage, and branch coverage. Line coverage identifies

how many lines were encountered as a result of your tests; function coverage

identifies how many functions are covered by your test; and branch coverage

identifies how many branches in your program are covered. We use gcov, a

command line tool supported by gcc to collect the coverage information.

• Bug detection is the goal of testing. For compiler testing, by feeding more

programs to compilers in different optimization levels, it is expected to trigger

bugs like crashes or wrong code errors. As a self-protection mechanism, com-

pilers like GCC and Clang/LLVM have defined a special kind of error called

“internal compiler error”. This error indicates the problem of the compiler itself

during a normal parsing process and the error message will help us to find bugs

in compilers.

Post-processing: We tested a trial generation, where 4,409 program were generated

with no sampling applied and using the generation strategy G1, which is to insert

two new lines at one location of original seed programs. We analyzed results from

this trial: Among the newly generated programs, 1,134 of them are syntax valid C

programs which means the pass rate is only about 25.72%. To increase the pass rate,

we took a closer look at the generated programs. In the generated syntax invalid

programs, we observed a common error called Undeclared Identifier which indicates

that some identifiers are used before they are declared. There are 2,509 programs

are syntax invalid due to this problem. Therefore, we post-process the generated

program to handle this issue. We used a try-catch for this error and automatically

declare the undeclared identifiers at the beginning of this program. Although this

issue is handled in an ad-hoc way, but by adding this post-processing process, the

pass rate will be remarkably enhanced.
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3.4.2 Pass rate

Pass rate is the ratio of generated syntax valid programs over the complete set of

newly generated programs. It is an indicator of how well the C language patterns are

encoded in the proposed Sequence-to-Sequence model. In our evaluation, specifically,

we will analyze how the pass rate varies with the number of epochs of training,

different sampling methods, and different generation strategies.

Epoch. An epoch is defined as an iteration of the learning algorithm to go over

the complete set of the training data. We trained the model for a total of 50 epochs

and we took a snapshot of the model at different epochs: 10, 20, 30, 40, 50 and

applied the models for new C program generation. We tried the process for all the

three sampling methods under the generation strategy G1.

Result: Figure 3.2 shows the result.

• The pass rate increases with more training from 10 to 30 epochs. The drop of

pass rate after 30 epochs may be a result of overfitting.

• The best pass rate for all sampling methods is achieved at 30 epochs training.

The highest pass rate is 82.63%.

Sampling. We have adopted different sampling methods after training the model.

As we proposed, a sampling method decides how a new character is chosen based on

the predicted distribution and it can affect the pass rate. Therefore, we recorded the

pass rate of the newly generated 10,000 programs based on the seed programs under

different sampling methods: NoSample, Sample and SampleSpace.

Result: Figure 3.2 shows the result. Note, this experiment is conducted under

the generation strategy G1.

• For all the sampling methods, the pass rate increases within 30 epochs of

training and after that, there is a small drop.
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Figure 3.2. Pass rate for different sampling methods

• Comparing the pass rate for all the three sampling methods, NoSample achieves

a better pass rate for every snapshot model than the other two methods Sample

and SampleSpace. The highest pass rate is 82.63%.

Generation Strategy. To generate new programs, we have introduced three

generation strategies: G1) insert two new lines at one location, G2) insert two new

lines at different locations, and G3) replace two new lines. The newly generated lines

are based on the prefix sequences selected in the seed programs. To analyze how

the pass rate changes with different generation strategies, we recorded the result of

performing program generation using a trained model after 30 epochs. In addition,

we used NoSample in this experiment.

Result: Table 3.2 shows the result.

• The pass rate for the three generation strategies are 82.63%, 79.86%, and

73.23%, respectively. Comparing pass rate under these three different generation
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Table 3.2. Pass rate of 10,000 generated programs
Generation Pass
Strategy rate (%)

NoSample
G1 82.63
G2 79.86
G3 73.23

strategies, we conclude that G1 performs the best in terms of the pass rate

under NoSample.

• The result for G1 and G2 are similar in term of the pass rate which is higher

than the pass rate for G3. The reason is probably that chopping out lines will

introduce unbalanced statements, such as unclosed parenthesis, brackets, or

curly brackets.

3.4.3 Coverage

In addition to the pass rate, as described at the beginning of this section, because

we are conducting testing, coverage information is another important metric. In this

part, we analyzed how coverage improvements (line, function, branch) are achieved

with different sampling methods and generation strategies.

Sampling. To compare the coverage improvements, we recorded the coverage

information, including how many lines/functions/branches are covered with the

original seed test suite (10,000) plus the newly generated test suite (10,000) specifically

for GCC-5 and Clang-3. In addition, to analyze how sampling methods can influence

the coverage improvements, we record the coverage improvement percentages under

different sampling methods. We recorded the coverage improvement information in

Table 3.3 with the augmented test suite of 10,000 newly generated C programs from

DeepFuzz on GCC-5 and to compare the metrics, we also present it in Figure 3.3.
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Table 3.3. Coverage improvements with 10,000 generated programs
Line Function Branch

Coverage Coverage Coverage

G1
NoSample 0.33% 0.08% 0.26%
Sample 0.38% 0.19% 0.86%
SampleSpace 0.36% 0.17% 0.82%

G2
NoSample 5.41% 1.22% 3.12%
Sample 7.76% 2.13% 3.11%
SampleSpace 7.14% 2.44% 3.21%

G3
NoSample 3.32% 0.87% 2.20%
Sample 6.87% 1.33% 2.68%
SampleSpace 6.23% 1.72% 2.97%

Result: The coverage improvement information is shown in Table 3.3 with the

augmented test suite of 10,000 newly generated C programs from DeepFuzz on

GCC-5 and to compare the metrics, we also present it in Figure 3.3.

• Among the three different sampling methods, Sample achieves the best per-

formance in terms of line, function and branch coverage improvements. For

example, under the generation strategy G2, the line coverage improvement for

NoSample, Sample and SampleSpace is 5.41%, 7.76% and 7.14%, respectively.

• The coverage improvement patterns for different generation strategies are

similar across different sampling methods. G2 is always the best and G1

is always the worst among the three. In another word, the performance of

sampling methods is slightly correlated with generation strategies.

Generation Strategy. In addition to the sampling methods, we are also interested

in how these three different coverages are improved under different generation

strategies.

Result: Figure 3.3 shows how coverage improves using G1, G2, and G3.

• Comparing the coverage improvements under the three different generation
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strategies, G2, which is to insert two new lines at different locations, in most

cases, achieves the best performance in terms of the line, function and branch

coverage improvements.

• Comparing with sampling methods, the adoption of generation strategies

is a more influential factor for coverage improvement. For instance, under

SampleSpace, the function coverage improvement percentages for the three

generation strategies are 0.17%, 2.44% and 1.72%. The coverage improvement

increases 42 times after changing from G1 to G2.

• G2 and G3 perform similarly in term of coverage improvement which is much

higher than G1.

Overall. To demonstrate how our tool performs on compiler fuzzing, we compared

DeepFuzz with a well-designed practical tool for compiler testing. Csmith [98] is a

tool that can generate random C programs. To make a fair comparison, we recorded

the coverage improvements of Csmith and DeepFuzz by both augmenting the GCC

and LLVM test suites with 10,000 generated programs in Table 3.4.

Note that we use Sample as our sampling method and G2 as our generation

strategy when conducting this analysis. We also documented coverage improvements

during the process of program generation in Figure 4.5. It demonstrates how the

line, function, and branch coverages are improved with the increasing number of new

tests.

Result:

• Csmith improved the coverage less than 1% for all the cases while DeepFuzz

improves the coverage of line, function, and branch by 7.14%, 2.44%, and

3.21%, respectively. DeepFuzz achieves better coverage improvement than

Csmith.
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Table 3.4. Augmenting the GCC and LLVM test suites with 10,000 generated programs
Line Function Branch

Coverage Coverage Coverage

GCC

original 75.13% 82.23% 46.26%
Csmith 75.58% 82.41% 47.11%
% change +0.45% +0.18% +0.85%
DeepFuzz 82.27% 84.76% 49.47%
% change +7.14% +2.44% +3.21%
absolute change +23,514 +619 +16,884

Clang

original 74.54% 72.90% 59.22%
Csmith 74.69% 72.95% 59.48%
% change +0.15% +0.05% +0.24%
DeepFuzz 79.89% 74.56% 66.79%
% change +5.35% +1.66% +7.57%
absolute change +23,661 +2,456 +26,960

• The performance of the coverage improvement pattern for DeepFuzz is similar

over GCC-5 and Clang-3.

3.4.4 New bugs

Using different generation strategies and sampling methods, based on the seed

programs from the GCC test suite, we can generate new programs. Because we aim

at compiler fuzzing, the number of bugs detected is an important indicator of the

efficacy of DeepFuzz. During our preliminary study, we caught 8 newly confirmed

GCC bugs and we will elaborate on two bugs that we detect with more details.

GCC Bug 84290: This is a bug we reported. DeepFuzz generate the two new

lines (line 5 and line 6), which triggered an internal compiler error of the built-in

function __atomic_load_n. The error is triggered because that the first argument of

this function should be a pointer, but it points to an incomplete type. This error

is fixed and a new test (atomic-pr81231.c) is added to the latest test suite in GCC.
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This detected bug shows the importance of using the syntactically well-formed but

semantically nonsense tests for compiler testing.
1 double f () {
2 double r;
3 asm ("mov %S1,%S0; mov %R1,%R0" : "=r" (r) : "i" (20));
4 asm ("mov %S1,%S0; mov %R1,%R0" : "+r" (r) : "i" (20.));
5 __atomic_load_n ((enum E ∗) 0, 0);
6 ;
7 return r ;
8 }

GCC Bug 85443: This is a bug we reported. DeepFuzz generates the two new

lines (line 5 and line 6), which introduced a new crash. The generated _Atomic

is a keyword for defining atomic types and the assignment on line 6 triggers the

segmentation fault. This is a newly confirmed bug on GCC-5 and has been fixed in

the latest version. This detected bug by DeepFuzz again shows the importance

of using the syntactically well-formed but semantically nonsense tests for compiler

testing.
1 char acDummy[0xf0] __attribute__ ((__BELOW100__));
2 unsigned short B100 __attribute__ ((__BELOW100__));
3 unsigned short ∗p = &B100;
4 unsigned short wData = 0x1234;
5 _Atomic int i = 3;
6 int a1 = sizeof ( i + 1);
7 void Do (void) {
8 B100 = wData;
9 }

10 int main (void) {
11 ∗p = 0x9876;
12 Do ();
13 return (∗p == 0x1234) ? 0 : 1;
14 }
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3.5 Limitations

In this study, we have presented an automated fuzzing tool called DeepFuzz, that

continuously generates well-formed new C programs for stress-testing production

compilers. In this section, we present limitations of our existing work.

3.5.1 Model

Observing the generated programs, we noticed that many ill-formed generations

are caused by expected expressions. To be more specific, this error message denotes

the errors like unbalanced parenthesis, brackets, or curly brackets. We conclude

two main reasons that account for this problem: lack of training and loss of global

information.

For the first reason, the training data is abundant but it still lacks enough

repeated patterns in the current training dataset for training a good generative

model. The structure of statements that used often, e.g. assignments, can be

captured in our model precisely and completely but for those features appear very

seldom, our trained model might have already “forgotten”. We believe that by feeding

in more high-quality data, where different patterns or features distribute averagely,

the generation pass rate will be improved. In our future work, we can create a larger

training dataset by enumerating all the structures in the original test suites with

new variable or function names. For example, previously, we only have “swap(str1,

str2);” in the training dataset, but we can create more statements like “swap(str3,

str4);” or “swap(str5, str6);”. This enlarged training dataset will encode the structure

of “swap(*, *);” where * can be replaced by any declared variables, into our model.

On the other hand, because the generation is based on the prefix sequences, it

will lose some global information which are out of the scope of the prefix sequence.

For example, if we adopt G3 for the generation and it chops out the ending right
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curly bracket for a if statement. If our model does not predict a curly bracket to end,

this generated program is ill-formed. To handle this problem, we either increase the

length of the training sequence to ensure that enough information is captured, or we

can use some heuristics to help with model training. The former method may cause

less diversity in the generated program and the latter one requires the assistance of

static program analysis.

Additionally, our proposed method is based on a character-level Sequence-to-

Sequence model. We provide a sequence of characters for the current model which

requires a lot of effort in dealing with the token-level syntax. It hurts the training

scalability and pass rate as well. In C, there are less than 32 keywords and over 100

build-in functions. Both the pass rate and scalability will be increased if we perform

token-level sequence prediction over a Sequence-to-Sequence model.

3.5.2 Black-box Algorithm

In our study, the proposed program generation method is based on a Sequence-

to-Sequence model. Although our prototyping tool has achieved a considerable

performance in terms of pass rate, which indicates that our model has encoded the

language patterns of C in the training data very well, it cannot be viewed as a

representation for the entire C grammar. The trained Sequence-to-Sequence model is

a black box to us.

By reviewing existing literature, we find some methods to explain black-box

algorithms, e.g. Sequence-to-Sequence [3]. The most popular method to visualize

high-dimensional vectors is to project them into two-dimensional space using t-

SNE [66]. Li et al. [40] explored the syntactic behavior of an RNN-based sentiment

analyzer, including the compositionality of negation, intensification, and concessive

clauses, by plotting a 60-dimensional heat map of hidden unit values. Specifically, we

notice that researchers also analyzed whether the black-box model can learn source
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syntax after the training process [81]. They explain in their work that after training

the Sequence-to-Sequence model with natural language sequences, low-level syntax

characters like Part-of-Speech (POS) tags are encoded in the model. As a future

study, we can follow a similar method but focus on our domain, relying on which,

we can explain what syntax patterns of C are learnt by the model and what are lost.

3.5.3 Generation

In our study, in order to generate programs to achieve a higher pass rate, we only

generate two new lines of code and place them back into a seed program. From the

evaluation result, we draw the conclusion that the generation strategy is the most

influential factor in this compiler fuzzing task. Although we get a good result in

the fuzzing job which makes a remarkable improvement in coverage, it can perform

better.

Essentially, by merely modifying the control and data dependency of test programs

will increase the testing coverage for compilers quickly [103]. For our next step, we

can try to generate programs more progressively, e.g., generate more than two new

lines and insert them into more locations. We can conduct a comparative study

among different generation strategies and see how the difference can contribute to

testing coverage based upon our current setting.

3.6 Summary

Compiler testing is critical for assuring the fundamental correctness of computing

systems. Fuzzing is one of the mainstream technologies to assist with compiler

testing. In this study, we proposed an automatic grammar-based fuzzing tool called

DeepFuzz which learns a generative recurrent neural network that continuously

provides syntactically correct C programs to fuzz off-the-shelf compilers, GCC and
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Clang. We conducted a detailed study on analyzing how key factors, i.e. sampling

method and generation strategy, affect the accuracy of this generative model and how

different improvements of testing efficacy are achieved. DeepFuzz generated 82.63%

syntax valid programs and improved the testing efficacy in regards to line, function

and branch coverage. With the preliminary evaluation, we found and reported 8

bugs in GCC, all of which are actively addressed by developers.
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Figure 3.3. Coverage improvements for different sampling methods
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Figure 3.4. Coverage improvement with the new tests generated
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Chapter 4 |
Program Synthesis based on Re-
inforcement Learning for Com-
piler Fuzzing

Testing is widely used to assure software quality. However, automatic generation of

high-quality test suites is challenging, especially for software that takes in highly-

structured inputs, such as compilers. Compiler testing remains difficult, while a

substantial amount of research is focused on trying to generate programs that are

syntactically and semantically valid. However, they either depend on human-made

grammar or a large data set to learn a machine learning model to represent partial

language grammar. They both encounter the completeness problem which is a classic

puzzle in software testing. In this study, we propose a reinforcement learning-based

approach for program synthesis. A naive model was provided at the beginning, and it

evolves with the rewards provided by a target compiler that we are going to test. By

iterating the learning cycle, the model learns how to write valid programs and how

to generate programs that improve the testing efficacy. We integrated the proposed

method into a tool called AlphaProg. We analyzed the framework with four

different reward functions, and our study revealed the effectiveness of AlphaProg

for compiler testing. We performed an in-depth diversity analysis of the generated

programs, which explained the improved testing coverage of our target compiler.
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We reported two important bugs for this production compiler, and they have been

confirmed and well-addressed by the project owner.

4.1 Problem

Compilers are the most import components of computing systems. Although vast

research resources have been deployed to verify production compilers, they still

contain bugs, and their quality need improvements [84]. Different from application

bugs, errors in compilers are usually harder to find, which are not the first place

to put breakpoints when a developer tries to debug an unexpected behavior during

compilation. They are presumably correct for most application developers, though

a simple bug can be exploited for backdoors, which has been demonstrated by

researchers [20]. Therefore, it is critical to enforce the validity of compilers with

more advanced techniques.

Testing has been widely adopted [12, 79] to verify the correctness and robustness

of compilers, and random test case generation, fuzzing, has proven to be an effective

method of improving testing efficacies and detecting software bugs [11, 43], including

blackbox fuzzing and whitebox fuzzing. The main difference between fuzzing and

blackbox testing is that fuzzing focuses on program crashes and hangs, though the

testing is more general, which aims at detecting types of syntactical and semantic

errors with well-defined sanitizers. Although blackbox fuzzing is efficient for general

software, existing techniques are not applicable in for compiler testing that includes

highly-structured inputs.

To compile a program, there are a few stages, including lexical analysis, syntax

analysis, semantic analysis, intermediate code generation, optimization, and code

generation. If a generated test program is not valid, it will be rejected by exception

handling in the early stages, such as during the lexical analysis, and the early
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rejection will prevent it from testing a deeper site of compilers, which is in contrast to

software testing. To generate high-quality inputs in the context of compiler testing,

there are two mainstream tracks in existing blackbox fuzzing methods, including

mutation-based [68] and generation-based [97]. Mutational approaches start with

a few seed inputs and rely on simple mutations, such as bits flip, replace, insert,

and delete, depending on designed heuristics [101]. The design rationale focuses on

exploring the entire input set by mutating local structures while maintaining global

structures from the seed set. Many of the mutated programs are valid in terms of

syntax and semantics since only a small part of originally valid programs are changed,

and it is more efficient for compiler testing where validity is of greater importance.

However, the effective ratio is not good enough, and accordingly, researchers have

proposed more rigorous generation engines that encodes formal language grammar for

whole program generation [98]. Typically, they conform both syntactic and semantic

rules for generating effective programs for compiler testing. However, it takes human

effort to construct the grammar-based generation engines, where only a subset of the

whole language grammars are encoded as claimed by most of the owners of fuzzing

engines in this type. To reduce human labor, researchers have proposed the use of

deep neural networks to learn language patterns from existing programs [18, 28, 60].

Based on a sequence-to-sequence model, language patterns can be acquired in terms

of production rules and then used for new program generations. The neural networks

can capture most syntactical features and generate new tests, which are valid and

effective, while no human effort is required to construct the grammar. But their

successfulness depends on the chosen data set, which is used for fitting the model

and as the seeds. Without such a valid and diverse dataset, which is usually the test

suites built by programmers, the proposed machine-learning-based approach does

not work as expected.
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In this study, we addressed the problem of building a deep learning-based ap-

proach without using any datasets for learning. We developed a reinforcement

learning framework (deep Q-learning) to bootstrap the neural nets that encode

language patterns from scratch with the objective of returning messages and runtime

information during compilation. Starting from an artificial neural network with

random weights, we generated new programs within a limited time period. We

then asked any production compiler to compile such a program and collect both

the returning message and runtime information, i.e. execution traces, to provide a

reward, which is used to train the neural network. Gradually, with more programs

generated, the neural network will be trained to generate programs according to our

expectations. To achieve better performance regarding compiler testing efficacy, we

constructed coverage-guided reward functions to balance the program validity and

testing coverage improvement of target compilers. In such a manner, the trained

neural network will eventually learn to generate programs that are valid and diverse.

We built the proposed framework into a prototyping tool called AlphaProg.

We deployed AlphaProg on an esoteric language called BrainFuck [77] (we use

BF in later context), which is a Turing-complete programming language that only

contains eight instructions. We explored the effectiveness of AlphaProg by testing

an industrial-grade BF compiler called BFC [35]. We compared AlphaProg

results under four different reward functions for compiler fuzzing, and AlphaProg

performed well in terms of validity and testing efficacies. We also describe the

dynamics of generated programs and discuss the evolving process of the trained

model from the perspective of program diversity. During the analysis, we also detected

two important bugs of this target compiler that they were actively addressed by the

project owner in the new released version [56].
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Figure 4.1. The agent-environment interaction in a Markov decision process. Reprinted
Reinforcement learning: An introduction (p. 38), by Richard S. Sutton and Andrew G.
Barto, 2017, MIT press. Copyright 2014, 2015, 2016, 2017. Reprinted with permission. [87]

4.2 Overview

The Markov Decision Process (MDP) is a discrete time stochastic control process

that conforms the Markov property, which states that “the future is independent

of the past given the present” [67]. The proposed program generation task can be

modeled as an MDP which sees a program as a string of characters in this language,

and in each step, a single character is generated. In this section, we elaborate how

we modeled the generation of BF code for compiler fuzzing as an MDP and how to

fit the constructed reinforcement learning framework.

4.2.1 Program Generation

MDP: A Markov decision process is a 4-tuple (S, A, Pa, Ra), where S is a finite set

of states, A is a finite set of actions and it is a transition between two states. And

for each different state s, the probability of taking action a is Pa(s, s′), accordingly,

it receives an immediate reward Ra(s, s′), where s is current state and s′ is the

state after action. Figure 4.1 shows the agent-environment interaction in a Markov

decision process. It shows one complete interaction between the agent and interaction.

Starting the iteration from the agent, one action At ∈ A(St) will be selected and
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performed. Once the environment receives the current state St and action At,

it responds with a numerical reward Rt+1 and finds the agent a new state St+1.

Therefore, the MDP agent will handle the decision making in a sequence that looks

like this:

S0, A0, R1, S1, A1, R2, S2, A2, R3, ... (4.1)

If we see a program as a string of characters of such language, which can normally

be any ASCII characters, then program generation is the process of appending new

characters from an empty string to an EOF. The generation of an EOF may vary

and a simple implementation is set EOF at a fixed point. That is to say, we limit the

length of generated programs. According to literature [84], the test cases revealing

bugs for C compilers are typically small, with 80% of them being fewer than 45 lines

of code. In this case, our goal becomes generating a fixed length of strings compilers

used for execution. The core problem of MDP is to find a policy π for making action

decisions on a specific state s. That is an update of the probability matrix, Pa(s, s′),

which achieves the optimal reward Ra(s, s′). In the fuzzing task, the probability for

each transition will be learning by neural networks to achieve an optimal reward

which combines two important metrics (1) the validity of generated programs and

(2) compiler testing coverage. The validity of generated strings will be confirmed

by returning messages of compilations and it demonstrates how the policy conforms

formal language production rules. Traditional production rules are token-based and

usually represented in their simplest form by shifting and reducing sentences such

that language can be parsed. In our scenario, the policy π is a redundant version of

production rules, and for each sentence and each next character, there exists a specific

rule to follow with. Moreover, for compiler testing coverage, it will be calculated

by analyzing the runtime information of each compilation. We will illustrate details

about reward functions in Section 4.3.2.

48



forward ::= ’>’
backward ::= ’<’
increment ::= ’+’
decrement ::= ’−’

put ::= ’.’
get ::= ’,’

while ::= ’[’
wend ::= ’]’

Figure 4.2. The BF language

BF Language: The BF language is an esoteric programming language [77]

that contains only eight instructions. Although the language constructs are simple,

the language is fully Turing-complete. The eight commands in BF are detailed

in Figure 4.2. All characters other than those in the table should be considered

comments and ignored. The basic idea behind BF language is memory manipulation

that provides an array of memory blocks initiated with a value of zero where you

can more the memory pointer forward or backward and increase or decrease memory

values. To input or output ASCII characters, it has specific symbols to put and get

and for writing more expressive code, it contains while and wend (which is short

for while end) to open and close loops. The BF language is context-free and it has

one-to-one mapping language structs to the C programming language which limits

the operations on arrays.

To generate code in the BF language, the MDP problem is concretized as

appending one of the eight instructions at each step. By limiting the program length

to 50 characters, the task becomes extending an empty string until it reaches a length

50 and by querying a production compiler of BF and recording execution traces

to calculate coverage information. We can draw conclusions regarding whether the

generated strings are of high quality in terms of compiler testing. To compile code

in the BF language, people build compilers that usually interpret the BF code into
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C language or LLVM IR for optimization. In this study, we targeted BFC [35], an

industrial-grade BF compiler. This compiler first parses the source code first into its

own IR called BF IR for optimization. It provides a range of peephole optimizations

including combining instructions, loop simplification, etc. The optimized BF IR

is then compiled to LLVM IR and then handled by the LLVM infrastructure to

generate x86 executables. During the compilation, it will report syntax errors such

as unclosing while-statement by showing no matching [. It will also report warnings

including “pointer out-of-bound” and “no-effect instructions”. This is the BF compiler

that mostly used on Github and is still actively under maintenance.

4.2.2 Reinforcement Learning

Traditionally, reinforcement learning describes the cycles of interaction between an

agent and an operational environment, and gradually, an optimal policy can be

learned by trial-and-error for sequential decision-making problems [5, 87]. Since

we modeled the program generation task as an MDP, we can apply reinforcement

learning frameworks to achieve the policy to generate BF programs character by

character. Therefore, we build an off-policy and model-free reinforcement learning

process that attempts to figure out the value functions directly from the interactions

with the environment. We use Temporal Difference Learning (TD-Learning) for our

policy learning task that at each step t, an estimate of reward is given to update

the value function where actions are chosen via selecting among the ones have the

highest value. One of the most important breakthroughs of reinforcement learning is

Q-learning, which is an off-policy TD control algrithm [95]. It estimates a state-action

value function for any provided policy that selects actions of the highest value. Taking

in a concrete pair of examples for the current state and a deterministic action, by

querying a value table, which is called Q-table, we can obtain an estimation of the
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Algorithm 1 Reinforcement Compiler Fuzzing
Output: action-value function Q-network
initialize Q-network arbitrarily, randomly assign the weights
for for each episode e do do
encode state s from empty string
repeat
a ← action for s derived by Q-network, e.g., ε-greedy
s′ ← append a new character on s
r ← calculate reward from runtime traces
Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)
s← s′

until state s is a terminal state
end for

value. By comparing the values for each of these pairs, we can select the action that

has the highest value under such a state.

The usage of Q-learning for MDP with large state space is the Deep Q-Learning [88].

Different from traditional Q-learning, it replaces the Q-table with a deep neural

network. Accordingly, this neural network takes the input of a current state and

outputs a value for each action in the action space. The predicted action will be

selected with a softmax function from the calculated value table. The detailed process

is shown in Algorithm 2. At the very beginning, we have an arbitrary neural network

with randomly assigned weights. When starting an episode, we encode a given state,

i.e. an empty string at first, into the Long-Short term memory (LSTM), which is a

variant of recursive neural network (RNN). It will encode variable-length strings into

a fixed-length vector that contains all the features of such strings. The Q-network

will be used for predicting values for each action at one step, that is, based on a

given string, a new character will be chosen to be appended to the original string.

As long as we have this new character being selected, we have the string after taking

action, and we calculate the reward for this state-action from runtime information.

This reward is used to update the Q-network, that is, the Q-network is improved

51



round by round. We end an episode while a terminal state is achieved, and in our

preliminary design, we cut the episode by a fixed string length. We will detail the

model configuration, reward calculation as well as the training process in Section 4.3.

4.3 Model

We proposed a reinforcement learning framework based on Q-learning to generate

the BF code for fuzzing BF compilers and we show the overall generation process

in Figure 4.3. In this framework, there are essentially two main components, the

fuzzing agent and the environment. The fuzzing agent will try to generate a new

program with best practice, i.e. the provided neural network, and the environment,

i.e. the compiler, will provide a scala reward for evaluating this synthesized program.

To generate a new program, that is a sequence of characters in our context, the

neural network will take in a base string xt for the prediction, character by character.

The generated program yt is a new string by appending a new character to the

base string. The quality of this new program will be evaluated and a scala reward

rt calculated with the message and execution trace from the compilation will be

provided for training the neural networks which are initialized with random weights

and will evolve gradually with more strings are generated and evaluated. In this

section, we will detail the model configuration we choose and elaborate on the reward

function we defined.

4.3.1 Action-State Value

In traditional Q-learning, there is an action-state value table, which we call Q-table,

for querying a value for any predicted actions given a current state. To improve

the model to be applicable for tasks with large state-action space, the Q-table is

replaced with the deep neural network.
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In our design, observing a current state, that is a string of characters, the action-

state value network should predict an action for the next step. The action is to

select a character from the BF code language to append. Valid BF code contains

eight different characters as described in Section 4.2.1. We choose a variant of RNN,

the Long-Short-Term-Memory (LSTM) [34] for sequence embedding. Recurrent

neural networks are designed for sequence predictions for embedding variable-length

sequences into feature vectors. LSTM works better for longer sequences, such as

text in paragraphs, by remembering the cell state along the connected recurrent

neurons in one layer. We use a LSTM layer with 128 neurons for sequence embedding

connected with the two LSTM layers with 512 neurons respectively. The output

layer is a dense layer with 8 neurons activated by a linear function and it allows the

predicted action with the highest value to be output.

4.3.2 Reward

The reward function is key to reinforcement learning frameworks that indicates

the learning direction. In the compiler fuzzing task, there are two main goals: (a)

the generated programs should be valid; (b) the generated programs should be as

diverse as possible. For validity, the generated programs are supposed to be both

syntactically and semantically valid. There are a few stages during the compilation

process and if the test code is rejected during early stages, such as the syntax

analysis, the compilation will be terminated and the rest execution paths won’t be

tested. Thus, the validity of generated test programs is important for the fuzzing

task. In addition to validity, diversity is another goal we want to achieve from the

perspective of testing efficacies. If similar tests are generated, although they are

valid to be successfully compiled by target compilers, we can not acquire improved

testing coverage, thereby hinder the potential for AlphaProg to become a tool for

fuzz testing. In other words, we prefer more legal language patterns are explored
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and encoded into the neural networks other than periodically synthesizing test code

with same patterns.

In our design, we set up four different reward functions for the learning process

which demonstrates the two different learning goals and how to achieve the balance

in between. First, considering the syntactic and semantic validity, we set the reward

function as

R1 =


0, length is less than limit

−1, compilation error

1, compilation success

(4.2)

That for any intermediate programs during a generation episode, we give it a

reward of 0 until its length hits our limitation. To verify the validity of a synthesized

program, we use a production compiler to parse this program and then judge its

correctness based on the compilation messages.

Compilation Message: Usually, there are five kinds of compilation messages:

no errors or warning, which means the program is successfully compiled to executables

without any conflict to the hard or soft rules defined by the compiler; errors, which

means the program does not conform syntactic or semantic checks and hits the

exceptions that terminate the compilation process; internal errors, which means

the compiler does not conform pre-defined assertions during the compilation and it

indicates an error (bug) of the compiler; warnings, which means the compilation

succeeds but there are some soft rules have not been met, such as that the program

contains some meaningless sequences; and hangs, which means the compilation falls

into some infinite loops and it does not exit in a reasonable time. We consider

three cases among these compilation messages as the indicator for a valid program:

no errors or warning, warnings, and internal errors. Theoretically, this reward

function should guide the model to synthesize programs that are valid with least
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effort, such that, it can be repeatedly generating the same character all the time in

the synthesized program.

Second, considering the diversity of the synthesized program, we can use the

newly covered basic blocks on the compilation trace as the testing coverage. It shows

how many different language patterns have been covered in the generated testsuite.

Therefore we have,

R2 = B(Tp)/
⋃
ρ∈I′

B(Tρ), (4.3)

as the reward. In this new reward function, B(Tp) is the number of newly tested

unique basic blocks of the execution trace for a program p and I ′ ⊂ I is all the

programs generated so far in this test suite. It makes the reward a continuous scalar

value in the range of [0, 1], where 1 is achieved when all the basic block on the

compilation trace have not been tested forehead, and 0 is achieved when an existing

program is generated repeatedly or all the basic blocks on the compilation trace have

been executed so far.

Third, we adopt a combination of reward for validity and diversity of generated

programs. To achieve a balance, we have

R3 =


0, length is less than limit

−1, compilation error

1 +B(Tp)/
⋃
ρ∈I′ B(Tρ), compilation success

(4.4)

as the reward function. For all the generated programs that are compiled successfully,

we use the portion of newly tested basic blocks as the reward. For the other two

cases, we still return reward 0 when the program length does not hit the limit, and

−1 when the program is not compilable. This reward function will be partially

continuous which is similar to an activation function. When a program is valid in

terms of syntax and semantics, the reward should be a value in the range of [1, 2],
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where 2 is achieved when all the basic blocks are new, and 1 is achieved when a valid

but repeated program is generated. This reward function motivates the program

generation towards the training purpose, that is to generate valid, and then diverse

programs for fuzzing target compilers.

Fourth, based on the previous reward, we add the control-flow complexity of

synthesized programs into consideration. According to Zhang et al.’s study [103],

the increase of control-flow complexity of programs in the testsuites will remarkably

improve testing efficacies of corresponding compilers. Effective testing coverage can

be improved by 40% by simply switch the positions of variables in each program

within the GCC testsuite. In our design, we add the Cyclomatic Complexity of

synthesized programs into the reward function. It is one of the representations for

describing program control-flow complexity.

Cyclomatic Complexity This value is one of the software metrics to measure

the quantitative complexity of a target program by counting the number of linearly

independent paths [96]. The complexity M is defined as M = E −N + 2P , where E

is the number of edges, N is the number of nodes, and P is the number of connected

components. We calculate the complexity of each generated program and display the

value for all the valid programs generated from the training process. To calculate the

cyclomatic complexity, we first dump the converted LLVM IR from the compilation

process. Then we develop a plug-in to generate this number based on the control-flow

graphs from the LLVM optimization tool.

That we have,

R4 = R3 + C(p)/max(C(ρ : ρ ∈ I ′)). (4.5)

In this function, C(∗) is the cyclomatic complexity of a program. We simply add

the cyclomatic complexity of a synthesized program divided by the max value we

get till now in the previous reward function R3. In other words, if the synthesized
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program does not hit the length limit, we give it a reward of 0 and if it is not valid,

we give it reward −1. Otherwise, the reward will be a combination of program

validity, testing coverage, and program control-flow complexity. When a program

is valid within the compilation process, it will be given a reward in the range of

[1, 3], where 3, the max value, is achieved when all the running basic blocks are new

and it has the most cyclomatic complexity of synthesized programs till now. This

reward function motivates the program generation towards our training purposes as

well, which is to generate both valid and diverse programs. In addition, it takes the

program complexity into account which indirectly improve the testing coverage.

4.3.3 Training

During the training stage, we bootstrap the deep neural network for program

generation that takes in as input a current program x ∈ S(x), the action a that

generated x from a previous state x′, the reward r ∈ [−1, 2] that is calculated based

on compilation, and an original Q-network. On a given state, this Q-network predicts

the expected rewards for all defined actions simultaneously. We update the Q-network

to adapt the predicted value Q(xt, at) according to the target r + γmaxaQ(xt + 1, a)

by minimizing the loss of the deviation in between. For all actions in the action

space other than the predicted one, they are updated by zero loss. The convergence

rate of the Q-network is determined by the hyper-parameters, i.e. the learning rate

of stochastic gradient descent during back propagation as well as the choice of γ,

which is a discounted rate between 0 and 1. A value closer to 1 indicates a goal

that is targeted on long-term reward while a value closer to 0 means the model

is more greedy. We adopt the ε-greedy method in the training process to balance

exploration and exploitation, that with probability ε, our model will choose a random

action and with probability 1− ε it will follow the prediction from a neural network.

In the implementation, we make the value for ε decaying, that at earlier stages of
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training, the chance to choose a random action is higher but the probability goes

down proportionally to the number of predictions. It indicates we gradually rely on

the trained neural network other than based on random guesses to explore.

4.4 Experiment

We propose a reinforcement learning framework to generate BF programs for fuzz

testing BF compilers. To evaluate our prototyping tool AlphaProg, we perform

studies on training the model towards the two different goals by setting reward

functions as described in Section ??. We will log the valid rate and testing coverage

improvement during the learning process. The analysis will confirm our guess on

the leading role of the two reward functions. To demonstrate the testing ability, we

compare our tool with random fuzzing with 30,000 newly generated programs, in

terms of testing efficacy. To elaborate its effectiveness on generating more diverse

programs, we also study the generated programs to explain the evolving process of

the training model. In this section, we will report the detailed implementation of

AlphaProg, and will also discuss the experiments we conducted.

4.4.1 Implementation

We build AlphaProg by applying an existing framework of binary instrumentation

and neural network training. The core framework of the deep Q-learning module is

implemented in Python 3.6. In our implementation, the program execution trace

is generated by Pin [65], a widely-used dynamic binary instrumentation tool. We

develop a plug-in of Pin to log the executed instructions. Additionally, we develop

another coverage analysis tool based on the execution trace to report all the basic

block touched so far. It will also report whether and the number of new basic

blocks are covered by a certain new program in the compiler code. Additionally,
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Table 4.1. Valid rate with different rewards
# of Test (K) 5 10 15 20 25 30
Reward 1 (%) 170 180 210 1000 1000 1000
Reward 2 (%) 16 19 41 182 235 221
Reward 3 (%) 21 48 102 312 479 431
Reward 4 (%) 21 48 102 312 479 431

our environment will also log and report abnormal crashes, memory leaks or failing

assertions of compilers with the assistance of internal errors messages.

The exploration, exploitation trade-off is a dilemma that we frequently face in

reinforcement learning. On the decision-making process, exploitation means the

model will make the best decision on a given current state and exploration aims at

gathering more information. In our program generation problem, exploitation is to

take advantage of a trained model to generate sequences that conforms program

grammar rules as much as possible. And exploration means the fuzzing agent will

randomly choose a character to append and it allows the generated sequences to

vary. In the implementation, the trade-off between exploitation and exploration is

configured by a hyper-parameter ε, where ε is the possibility that the fuzzing agent

takes a randomly selected action rather than taking the action that to maximize

reward. And to achieve a balance, we take the epsilon-greedy strategy, that ε is a

percentage of the time. In this design, the fuzzing agent will prefer exploration at

first and decrease the possibility of exploration over time. It mimics the general

learning process that at the beginning, the model will try to explore and it will help

us to generate more diverse data for the model to learn from. And with the model

becoming more matured, our design allows the generation to rely on the trained

model. If the language patterns are successfully encoded, the generated programs

will be mostly valid, or conform the compiler’s grammar.

Our Q-learning module is implemented in Tensorflow [1] using a LSTM layer
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for sequence embedding that is connected with a 2-layer encoder-decoder network.

The initialized weights are randomly and uniformly distributed within wi ∈ [0, 0.1].

We choose a discounted rate γ = 1 to address long-term goal and a learning rate

α = 0.0001 for the gradient descent optimizer. We assign εmax = 1 and εmin = 0.01

with a decaying value of (εmax − εmin)/100000 after each prediction. Therefore, the

model stops exploration after episode 20, 000. We will open source our prototyping

tool AlphaProg for public dissemination after the paper is accepted.

4.4.2 Validity

Since our first goal is to generate valid programs, we plan to evaluate the valid rate

of the generated programs during the training process. We compare our proposed

method with four different reward functions. The four different rewards set up two

different goals for the program generation: for Reward 1, it only evaluates the validity

of programs while for Reward 2, it targets on testing coverage and for Reward 3, it

combines validity with testing coverage, lastly for Reward 4, it combines validity

with testing coverage and program complexity as well. We report the number of

valid program numbers every 1, 000 generated programs in Figure 4.4 and Table 4.1.

Reward 1

Reward 1 demonstrates the learning towards generating only valid programs. From

the Figure 4.4 we may find that, with the increasing number of programs generated,

the valid rate grows fast and by 20, 000 generated programs, the valid rate reaches

100%. From the generation result, we may find that, once the easiest way to generate

a valid program is guessed by a random generation, i.e. „„„„ or »»»», the network

converges quickly to this point and stops learning anything. The model trained

by this reward function achieves the most ratio of valid programs in the synthesis

procedure. It is similar to the human learning process, that repetitive actions are
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Figure 4.4. Valid rate

easy to remember. We also tried to change the length limit to 80 and 100, the

learning process is as fast as when we set the length limit to 50.

Reward 2

Reward 2 demonstrates the learning towards generating diverse programs for improv-

ing testing coverage for a target compiler. Without balancing with syntactic and

semantic validity, with this reward, we anticipate more diverse programs patterns

will be generated but less of them should be valid. From the results in Figure 4.4 we

may find that the valid rate stays the lowest for almost all the time which means the

generation engine has a low efficiency to learning writing a valid program through the

reward on pure coverage. Theoretically, if more are explored on a limited search space,

there are chances that the model will learn validity through pure coverage reward

since compilation execution traces should be longer for valid programs compared
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with those illegal ones. However, due in part to the large search space which leads

to less probability to randomly generate valid programs and the positive training

samples are far fewer than negative samples. In this case, our model will not be able

to efficiently learn any generation strategies out from the training samples.

Reward 3

Reward 3 sets up the goal of combining validity and diversity. In a high-level, to

generate valid programs and diverse programs are two opposite goals. To generate

valid programs, the model only needs to know one simple way that fits language

grammar. For example, in the experiment of using Reward 1, the model only learns

that by appending , to whatever prefix, it can generate valid programs out of it.

However, if the goal becomes generating diverse programs, different characters should

be tried which makes validity easy to be broken. The model trained by this reward

function achieves the second place in the ratio of valid programs in the synthesis

procedure. From Figure 4.4 we may find that the valid rate goes up and down

periodically. But from a larger scale, the overall valid rate is increasing and achieves

a valid rate approximate to 90% at the final stage. By observing generation results,

we find that generating language patterns evolve periodically. For example, the first

time a valid program with the local pattern [>..] is generated, testing coverage is

improved and a relatively high reward is given. But next time when another program

is generated with this pattern, testing coverage is not improved any more which

leads to a relatively low reward. That encourages the model to try new language

patterns while remembering those testified. In addition, the different combinations

of learned language patterns also contribute a lot for improving testing coverages as

well. We also notice that after trying a new language pattern which fails the validity

check, in the next a few episodes, the model will conservatively choose an existing

language pattern to generate. We see this process similar as a human cognitive
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Table 4.2. Coverage improvement with different rewards
# of Test (K) 5 10 15 20 25 30
Reward 1 39,000 46,000 47000 47000 47000 47000
Reward 2 57,000 59,000 60,000 62,000 69,000 71,000
Reward 3 64,000 78,000 84,000 84,500 87,000 87,500
Reward 4 64,000 78,000 84,000 84,500 87,000 87,500

learning process as well: the learning process is like a spiral which is not improving

all the time, especially when the learning tasks are challenging with multiple goals.

Reward 4

Reward 4 sets up the goal of adding program control-flow complexity together with

the synthesis validity and diversity. By studying related studies, we know that

the control-flow complexity of programs in testsuites is one of the most important

factors that improve testing efficacies for compilers. We anticipate the add-on of this

factor into the reward function will help us to improve the testing coverage of target

compilers while not hindering the program validity that much. From Figure 4.4 we

may find that the model trained by this reward function achieves the third place

in the ratio of valid programs in the synthesis procedure. The improved pattern is

very similar to the pattern under Reward 3 which periodically goes up and down

along the way but eventually achieves a valid rate about 80%. The add-on of this

value hinders the valid rate a little bit from the model trained by purely relying on

coverage. We interpret this as that the goal of synthesizing more complex code does

not 100% align with the goal of improving testing coverage. And it is an opposite

goal to synthesizing more valid programs as well. Similar to the human learning

process, if the learning goals are not 100% aligned, the learning process will be less

efficient that may lead to an opposite effect to any one or more of the learning goals.
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Figure 4.5. Coverage improvement with the new tests generated

4.4.3 Testing Coverage

Coverage improvement is the most important metric for software testing. Tradi-

tionally, it denotes the overall lines/branches/paths in target software being visited

with certain testcases. In the design of AlphaProg, to improve the performance

in this end-to-end learning process, we adopt an approximation to describe the

overall testing coverage, that is the accumulated number of unique basic blocks being

executed with the generated new programs (new testsuite). A basic block of an

execution trace is a straight-line code sequence with no branches except for the entry

and exit point in compiler constructions. To capture the overall number of unique

basic blocks, we first capture the unique basic blocks B(Tp) with respect to each

execution trace Tp, and then calculate a store of accumulated unique basic blocks

number B(I) by union the new basic blocks on current trace with existing ones
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that are visited before B(I ′). In our implementation, we adopt Pintool to log the

execution trace of the program compilation, and apply our self-developed plug-in

to generate the set of unique basic blocks. We made this plug-in available together

with the open-sourced project.

In the experiments, we logged the accumulated testing coverage for the four

different rewards we adopted in the framework as well as corresponding scores for

each episode. We compare the four coverage improvements and draw conclusions on

applying the new reward to balance between the validity and testing efficacy. We

show the results in Figure 4.5 and Table 4.2.

Reward 1

The blue line shows the accumulated compiler testing coverage (number of unique

blocks tested) by generating programs under Reward 1. With this reward, we may

find the coverage improves drastically at earlier stages of training. But it stops

growing since episode 11, 000. In the corresponding figure that shows the validity

distribution, we also noticed that the valid rate achieves 100% since episode 11, 000

which is very close to the converging point of coverage. It is because our model

finally converges at the point that the model keeps producing , or > for every

action. Although the generated programs are 100% valid, they do not improve the

testing coverage anymore. This result confirms what we get from the validity test

experiment.

Reward 2

The red line shows the accumulated compiler testing coverage by generating programs

under Reward 2. With this reward, we may find that coverage improves also

drastically but slower than the other two cases at earlier stages of training. It still

slowly grows after the improvement stops with Reward 1 but the pace is not as fast as

the improvement under Reward 3. The improvement goes on a little slower than the
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coverage improvement under Reward 3. In the corresponding figure that shows the

valid rate, although, under Reward 2, our model scarcely generates valid programs,

these generated one is inspired to be diverse to hit different parts inside the target

compiler which eventually improves the testing coverage with lower efficiency.

Reward 3

The green line shows the accumulated compiler testing coverage by generating

programs under Reward 3. With this reward, we may find that coverage improves

the most drastically at earlier stages and it keeps going high later on until the

second-highest testing coverage is achieved eventually. We may also notice that the

coverage improves periodically. In the corresponding figure that shows the valid rate,

we also observe the regularity of increasing and decreasing wave. In other words, the

model is trying to generate valid programs, because the least reward it can get is 1.

But it periodically tries to generating some new patterns, usually a combination of

existing patterns. In this case, the generated programs can be valid and diverse at

the same time.

Reward 4

The orange line shows the accumulated compiler testing coverage by generating

programs under Reward 4. With this reward, we may find that the coverage improves

as drastically as the synthesis under model trained using Reward 3 at earlier learning

stages. The coverage keeps increasing until the highest value is achieved among the

4 designed reward functions. Although the final program valid rate under Reward 4

is lower than those under Reward 1 and Reward 3, but the testing coverage beats

those two coverages. To compare testing coverages under Reward 1 and Reward 4,

the reason for the better latter case is obvious: the model is trained to achieve better

coverage under Reward 4 but not Reward 1. However, to compare testing coverages

under Reward 3 and Reward 4, the reason for explaining the higher value under
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Reward 4 is more complex. We may interpret it as the side effect of the learning

goal of program control-flow complexity. On the one hand, the higher control-flow

complexity is a more direct and instant reward to improve the testing coverage. It

will trigger the fuzzing agent to generate programs that require more optimizations

in the compilation process. On the other hand, it sets up the goal of synthesizing

complex program in every episode which is not the goal under Reward 3. Under

Reward 3, to improve testing coverage, the fuzzing agent needs to learn new language

patterns but under Reward 4, the fuzzing agent needs to additionally learn how to

combine the newly learned language patterns in an efficient way because the entire

sequence length is limited.

4.4.4 Diversity

We also report the growing traces of control-flow dependencies of the generated

programs. In existing studies, researchers developed tools that improved compiler

testing efficacies by generating programs with more complex control-flow dependen-

cies [103]. This research indicates the proportional relationship between testcases’

control-flow complexity and compilers’ testing coverage with limited language pat-

terns. In our experiments described in Section 4.4.3, the results reveal improvements

in testing efficacies based on program generation under the three different rewards.

In this section, we will explain these improvements from the perspective of generated

programs, especially the control-flow complexity of these programs. It also shows a

dynamic balance is achieved while balancing the program validity and diversity.

Reward 1

The cyclomatic complexities for programs generated by AlphaProg under Reward

1 scale from 2 to 52, that has an overall median value at 2, which is the lowest among

the four different rewards. The value goes up and down until finally stops at a value

at 4. It is because the model was trained to synthesize a single same BF program
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Table 4.3. Cyclomatic complexity with different rewards
Min Max Median

Reward 1 2 52 4
Reward 2 2 47 11
Reward 3 2 52 11
Reward 4 2 52 18

that is using the character , all the time. We may conclude that the learning goal is

achieved, which is to synthesize valid programs, in the easiest way. The generation

engine starts with random guesses and after some positive samples are generated, it

tries to reduce the effort for repeating partial language patterns until finally, it finds

a way to always repeat a same character.

Reward 2

Under Reward 2, the cyclomatic complexities for all the generated programs scale

from 2 to 47. The overall median is 11 which is higher than that under Reward 1

and the same as that under Reward 3. Because we can only calculate the cyclomatic

complexities for valid programs, that are compiled successfully by BFC, therefore, we

get fewer data points because we have fewer valid programs. In general, we may find

a gradually improved trend of program cyclomatic complexities. We may conclude

that the learning goal is also achieved, which is to synthesize diverse programs. Here,

we only measure one ax in program diversity. The generation engine also starts with

random guesses but different from the case of Reward 1, the model was trained to

generate a different combination of existing patterns. Theoretically speaking, we may

extend the learning cycles until more language patterns are learned and eventually

get an artificial network closer to represent all the rules inside the target compiler.

Reward 3

Under Reward 3, the cyclomatic complexities for all the generated programs scale

69



from 2 to 52. The overall median is 11 which is the same as that under Reward

2 and higher than that of Reward 1. In this case, we get a few more data points

compared with the experiment under Reward 2 because more valid programs are

generated. The cyclomatic complexities also gradually trending high across the

learning process and which has a steeper incline. We may conclude that the learning

goal is achieved, which is to synthesize both valid and diverse programs. The reason

for the steeper incline of program complexity may due in part to the higher learning

efficiency. Because more valid programs are generated and the number of positive

training samples is much more than that under Reward 2, the model has more data

to learn from. Therefore, we claim that we may utilize the framework under Reward

3 to continuously generate new programs for compiler fuzzing.

Reward 4

Under Reward 4, the cyclomatic complexities for all the generated programs scale

from 2 to 52. The overall median is 18 which is the highest value among the

cyclomatic complexities of programs under the four different reward functions. Since

this value is only measured for programs that are valid, it is skewed with the valid

rate. From the comparison of cyclomatic complexities between Reward 2 and Reward

3, we may summarize that the higher valid rate will lead to more positive learning

samples, thereby improves the learning efficiency. In other words, the learning goal

will be more effectively achieved. But the valid rate is lower under Reward 4 than

under Reward 3. Although, the positive learning samples are fewer under Reward

4, we still get higher cyclomatic complexities. It is because we set the program

complexity in the reward function. From another perspective, we may conclude, the

most effective way to improve a measurement in reinforcement learning is to directly

add this value into the reward function. We may also conclude that the learning

goal is achieved the best under Reward 4.
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Table 4.4. Synthesis examples
Episode CC 1 Program
101 2 [+, <>++[>..],-+<+[,]-,[<].<-[],>,[>. <[+]]+>«]
1786 11 [>[„[... - [<]>+, .+-,. .-.,],].]> .,+[>]>. +..+.
5096 32 <-+[. <,[.,-] +]> -.+++<++-.>-,[>.,+,] -<- –[]
10342 39 -<[>.<.<.><,]<-<[<.-. ] -,[>- <>++-[],. ]»-+[,<]

4.4.4.1 Synthesis Examples

To demonstrate how the control-flow complexity of synthesized programs grows, we

show four cases that generated during different episodes using the model under Reward

4. The synthesized programs are displayed in Table 4.4 and their corresponding

control-flow graphs are shown in Figure 4.6. We draw the abstracted control-flow

graphs for them based on the control-flow graphs generated from the LLVM machine-

independent optimizer. The original control-flow graphs from the LLVM tool are

shown in Figure 4.7, Figure 4.8, Figure 4.9, and Figure 4.10. LLVM represents

programs as sequences of instructions in bytecodes and each block in Figure 4.6 is

a basic block. For each control-flow graph, we mark the init block in dark. The

cyclomatic complexities for the example programs are also shown in Table 4.4. We

may find that, with the learning goes on, the fuzzing agent learned to synthesize

more complex programs which have higher cyclomatic complexities. We display the

original control-flow graphs from the LLVM tool for the program examples.
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CFG for 'main' function

init:
 br label %beginning

beginning: 
 ret i32 0

Figure 4.7. Control-flow graph of synthesized programs (1)
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CFG for 'main' function

init:
 %0 = call i32 @write(i32 1, i8* getelementptr inbounds ([1 x i8], [1 x i8]*
... @known_outputs, i32 0, i32 0), i32 1)
 %cells = call i8* @malloc(i32 100000)
 %offset_cell_ptr = getelementptr i8, i8* %cells, i32 0
 call void @llvm.memset.p0i8.i32(i8* align 1 %offset_cell_ptr, i8 0, i32
... 100000, i1 true)
 %cell_index_ptr = alloca i32
 store i32 1, i32* %cell_index_ptr
 br label %after_init

after_init: 
 %cell_index2 = load i32, i32* %cell_index_ptr
 %current_cell_ptr3 = getelementptr i8, i8* %cells, i32 %cell_index2
 %input_char = call i32 @getchar()
 %input_byte = trunc i32 %input_char to i8
 store i8 %input_byte, i8* %current_cell_ptr3
 %cell_index4 = load i32, i32* %cell_index_ptr
 %offset_cell_index = add i32 %cell_index4, 0
 %current_cell_ptr5 = getelementptr i8, i8* %cells, i32 %offset_cell_index
 %cell_value6 = load i8, i8* %current_cell_ptr5
 %new_cell_value = add i8 %cell_value6, 1
 store i8 %new_cell_value, i8* %current_cell_ptr5
 br label %loop_header

loop_header: 
 %cell_index7 = load i32, i32* %cell_index_ptr
 %current_cell_ptr8 = getelementptr i8, i8* %cells, i32 %cell_index7
 %cell_value9 = load i8, i8* %current_cell_ptr8
 %cell_value_is_zero = icmp eq i8 0, %cell_value9
 br i1 %cell_value_is_zero, label %loop_after, label %loop_body

T F

beginning: 
 %cell_index = load i32, i32* %cell_index_ptr
 %new_cell_index = add i32 %cell_index, 1
 store i32 %new_cell_index, i32* %cell_index_ptr
 %cell_index1 = load i32, i32* %cell_index_ptr
 %current_cell_ptr = getelementptr i8, i8* %cells, i32 %cell_index1
 %cell_value = load i8, i8* %current_cell_ptr
 %cell_val_as_char = sext i8 %cell_value to i32
 %1 = call i32 @putchar(i32 %cell_val_as_char)
 br label %after_init

loop_after: 
 %cell_index12 = load i32, i32* %cell_index_ptr
 %new_cell_index13 = add i32 %cell_index12, 1
 store i32 %new_cell_index13, i32* %cell_index_ptr
 %cell_index14 = load i32, i32* %cell_index_ptr
 %current_cell_ptr15 = getelementptr i8, i8* %cells, i32 %cell_index14
 %cell_value16 = load i8, i8* %current_cell_ptr15
 %cell_val_as_char17 = sext i8 %cell_value16 to i32
 %2 = call i32 @putchar(i32 %cell_val_as_char17)
 %cell_index18 = load i32, i32* %cell_index_ptr
 %offset_cell_index19 = add i32 %cell_index18, 0
 %current_cell_ptr20 = getelementptr i8, i8* %cells, i32 %offset_cell_index19
 %cell_value21 = load i8, i8* %current_cell_ptr20
 %new_cell_value22 = add i8 %cell_value21, 1
 store i8 %new_cell_value22, i8* %current_cell_ptr20
 %cell_index23 = load i32, i32* %cell_index_ptr
 %current_cell_ptr24 = getelementptr i8, i8* %cells, i32 %cell_index23
 %cell_value25 = load i8, i8* %current_cell_ptr24
 %cell_val_as_char26 = sext i8 %cell_value25 to i32
 %3 = call i32 @putchar(i32 %cell_val_as_char26)
 %cell_index27 = load i32, i32* %cell_index_ptr
 %current_cell_ptr28 = getelementptr i8, i8* %cells, i32 %cell_index27
 %cell_value29 = load i8, i8* %current_cell_ptr28
 %cell_val_as_char30 = sext i8 %cell_value29 to i32
 %4 = call i32 @putchar(i32 %cell_val_as_char30)
 %cell_index31 = load i32, i32* %cell_index_ptr
 %offset_cell_index32 = add i32 %cell_index31, 0
 %current_cell_ptr33 = getelementptr i8, i8* %cells, i32 %offset_cell_index32
 %cell_value34 = load i8, i8* %current_cell_ptr33
 %new_cell_value35 = add i8 %cell_value34, 1
 store i8 %new_cell_value35, i8* %current_cell_ptr33
 %cell_index36 = load i32, i32* %cell_index_ptr
 %current_cell_ptr37 = getelementptr i8, i8* %cells, i32 %cell_index36
 %cell_value38 = load i8, i8* %current_cell_ptr37
 %cell_val_as_char39 = sext i8 %cell_value38 to i32
 %5 = call i32 @putchar(i32 %cell_val_as_char39)
 call void @free(i8* %cells)
 ret i32 0

loop_body: 
 %cell_index10 = load i32, i32* %cell_index_ptr
 %new_cell_index11 = add i32 %cell_index10, 1
 store i32 %new_cell_index11, i32* %cell_index_ptr
 br label %loop_header

Figure 4.8. Control-flow graph of synthesized programs (2)
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CFG for 'main' function

init:
 %cells = call i8* @malloc(i32 100000)
 %offset_cell_ptr = getelementptr i8, i8* %cells, i32 0
 call void @llvm.memset.p0i8.i32(i8* align 1 %offset_cell_ptr, i8 0, i32
... 100000, i1 true)
 %cell_index_ptr = alloca i32
 store i32 0, i32* %cell_index_ptr
 br label %after_init

after_init: 
 %cell_index = load i32, i32* %cell_index_ptr
 %new_cell_index = add i32 %cell_index, -1
 store i32 %new_cell_index, i32* %cell_index_ptr
 br label %loop_header

loop_header: 
 %cell_index1 = load i32, i32* %cell_index_ptr
 %current_cell_ptr = getelementptr i8, i8* %cells, i32 %cell_index1
 %cell_value = load i8, i8* %current_cell_ptr
 %cell_value_is_zero = icmp eq i8 0, %cell_value
 br i1 %cell_value_is_zero, label %loop_after, label %loop_body

T F

beginning: 
 br label %after_init

loop_after: 
 %cell_index30 = load i32, i32* %cell_index_ptr
 %offset_cell_index31 = add i32 %cell_index30, 1
 %current_cell_ptr32 = getelementptr i8, i8* %cells, i32 %offset_cell_index31
 %cell_value33 = load i8, i8* %current_cell_ptr32
 %new_cell_value34 = add i8 %cell_value33, -1
 store i8 %new_cell_value34, i8* %current_cell_ptr32
 %cell_index35 = load i32, i32* %cell_index_ptr
 %new_cell_index36 = add i32 %cell_index35, 1
 store i32 %new_cell_index36, i32* %cell_index_ptr
 %cell_index37 = load i32, i32* %cell_index_ptr
 %current_cell_ptr38 = getelementptr i8, i8* %cells, i32 %cell_index37
 %cell_value39 = load i8, i8* %current_cell_ptr38
 %cell_val_as_char40 = sext i8 %cell_value39 to i32
 %1 = call i32 @putchar(i32 %cell_val_as_char40)
 %cell_index41 = load i32, i32* %cell_index_ptr
 %offset_cell_index42 = add i32 %cell_index41, -1
 %current_cell_ptr43 = getelementptr i8, i8* %cells, i32 %offset_cell_index42
 %cell_value44 = load i8, i8* %current_cell_ptr43
 %new_cell_value45 = add i8 %cell_value44, 1
 store i8 %new_cell_value45, i8* %current_cell_ptr43
 %cell_index46 = load i32, i32* %cell_index_ptr
 %offset_cell_index47 = add i32 %cell_index46, 0
 %current_cell_ptr48 = getelementptr i8, i8* %cells, i32 %offset_cell_index47
 %cell_value49 = load i8, i8* %current_cell_ptr48
 %new_cell_value50 = add i8 %cell_value49, 3
 store i8 %new_cell_value50, i8* %current_cell_ptr48
 %cell_index51 = load i32, i32* %cell_index_ptr
 %new_cell_index52 = add i32 %cell_index51, -1
 store i32 %new_cell_index52, i32* %cell_index_ptr
 %cell_index53 = load i32, i32* %cell_index_ptr
 %current_cell_ptr54 = getelementptr i8, i8* %cells, i32 %cell_index53
 %cell_value55 = load i8, i8* %current_cell_ptr54
 %cell_val_as_char56 = sext i8 %cell_value55 to i32
 %2 = call i32 @putchar(i32 %cell_val_as_char56)
 %cell_index57 = load i32, i32* %cell_index_ptr
 %new_cell_index58 = add i32 %cell_index57, 1
 store i32 %new_cell_index58, i32* %cell_index_ptr
 %cell_index59 = load i32, i32* %cell_index_ptr
 %current_cell_ptr60 = getelementptr i8, i8* %cells, i32 %cell_index59
 %input_char61 = call i32 @getchar()
 %input_byte62 = trunc i32 %input_char61 to i8
 store i8 %input_byte62, i8* %current_cell_ptr60
 br label %loop_header63

loop_body: 
 %cell_index2 = load i32, i32* %cell_index_ptr
 %current_cell_ptr3 = getelementptr i8, i8* %cells, i32 %cell_index2
 %cell_value4 = load i8, i8* %current_cell_ptr3
 %cell_val_as_char = sext i8 %cell_value4 to i32
 %0 = call i32 @putchar(i32 %cell_val_as_char)
 %cell_index5 = load i32, i32* %cell_index_ptr
 %new_cell_index6 = add i32 %cell_index5, -1
 store i32 %new_cell_index6, i32* %cell_index_ptr
 %cell_index7 = load i32, i32* %cell_index_ptr
 %current_cell_ptr8 = getelementptr i8, i8* %cells, i32 %cell_index7
 %input_char = call i32 @getchar()
 %input_byte = trunc i32 %input_char to i8
 store i8 %input_byte, i8* %current_cell_ptr8
 br label %loop_header9

loop_header63: 
 %cell_index66 = load i32, i32* %cell_index_ptr
 %current_cell_ptr67 = getelementptr i8, i8* %cells, i32 %cell_index66
 %cell_value68 = load i8, i8* %current_cell_ptr67
 %cell_value_is_zero69 = icmp eq i8 0, %cell_value68
 br i1 %cell_value_is_zero69, label %loop_after65, label %loop_body64

T F

loop_header9: 
 %cell_index12 = load i32, i32* %cell_index_ptr
 %current_cell_ptr13 = getelementptr i8, i8* %cells, i32 %cell_index12
 %cell_value14 = load i8, i8* %current_cell_ptr13
 %cell_value_is_zero15 = icmp eq i8 0, %cell_value14
 br i1 %cell_value_is_zero15, label %loop_after11, label %loop_body10

T F

loop_after11: 
 %cell_index27 = load i32, i32* %cell_index_ptr
 %offset_cell_index28 = add i32 %cell_index27, 0
 %current_cell_ptr29 = getelementptr i8, i8* %cells, i32 %offset_cell_index28
 store i8 1, i8* %current_cell_ptr29
 br label %loop_header

loop_body10: 
 %cell_index16 = load i32, i32* %cell_index_ptr
 %current_cell_ptr17 = getelementptr i8, i8* %cells, i32 %cell_index16
 %cell_value18 = load i8, i8* %current_cell_ptr17
 %cell_val_as_char19 = sext i8 %cell_value18 to i32
 %3 = call i32 @putchar(i32 %cell_val_as_char19)
 %cell_index20 = load i32, i32* %cell_index_ptr
 %current_cell_ptr21 = getelementptr i8, i8* %cells, i32 %cell_index20
 %input_char22 = call i32 @getchar()
 %input_byte23 = trunc i32 %input_char22 to i8
 store i8 %input_byte23, i8* %current_cell_ptr21
 %cell_index24 = load i32, i32* %cell_index_ptr
 %offset_cell_index = add i32 %cell_index24, 0
 %current_cell_ptr25 = getelementptr i8, i8* %cells, i32 %offset_cell_index
 %cell_value26 = load i8, i8* %current_cell_ptr25
 %new_cell_value = add i8 %cell_value26, -1
 store i8 %new_cell_value, i8* %current_cell_ptr25
 br label %loop_header9

loop_after65: 
 %cell_index84 = load i32, i32* %cell_index_ptr
 %offset_cell_index85 = add i32 %cell_index84, -1
 %current_cell_ptr86 = getelementptr i8, i8* %cells, i32 %offset_cell_index85
 %cell_value87 = load i8, i8* %current_cell_ptr86
 %new_cell_value88 = add i8 %cell_value87, -3
 store i8 %new_cell_value88, i8* %current_cell_ptr86
 %cell_index89 = load i32, i32* %cell_index_ptr
 %offset_cell_index90 = add i32 %cell_index89, 0
 %current_cell_ptr91 = getelementptr i8, i8* %cells, i32 %offset_cell_index90
 store i8 -1, i8* %current_cell_ptr91
 %cell_index92 = load i32, i32* %cell_index_ptr
 %new_cell_index93 = add i32 %cell_index92, -1
 store i32 %new_cell_index93, i32* %cell_index_ptr
 br label %loop_header94

loop_body64: 
 %cell_index70 = load i32, i32* %cell_index_ptr
 %new_cell_index71 = add i32 %cell_index70, 1
 store i32 %new_cell_index71, i32* %cell_index_ptr
 %cell_index72 = load i32, i32* %cell_index_ptr
 %current_cell_ptr73 = getelementptr i8, i8* %cells, i32 %cell_index72
 %cell_value74 = load i8, i8* %current_cell_ptr73
 %cell_val_as_char75 = sext i8 %cell_value74 to i32
 %4 = call i32 @putchar(i32 %cell_val_as_char75)
 %cell_index76 = load i32, i32* %cell_index_ptr
 %current_cell_ptr77 = getelementptr i8, i8* %cells, i32 %cell_index76
 %input_char78 = call i32 @getchar()
 %input_byte79 = trunc i32 %input_char78 to i8
 store i8 %input_byte79, i8* %current_cell_ptr77
 %cell_index80 = load i32, i32* %cell_index_ptr
 %current_cell_ptr81 = getelementptr i8, i8* %cells, i32 %cell_index80
 %input_char82 = call i32 @getchar()
 %input_byte83 = trunc i32 %input_char82 to i8
 store i8 %input_byte83, i8* %current_cell_ptr81
 br label %loop_header63

loop_header94: 
 %cell_index97 = load i32, i32* %cell_index_ptr
 %current_cell_ptr98 = getelementptr i8, i8* %cells, i32 %cell_index97
 %cell_value99 = load i8, i8* %current_cell_ptr98
 %cell_value_is_zero100 = icmp eq i8 0, %cell_value99
 br i1 %cell_value_is_zero100, label %loop_after96, label %loop_body95

T F

loop_after96: 
 call void @free(i8* %cells)
 ret i32 0

loop_body95: 
 br label %loop_header94

Figure 4.9. Control-flow graph of synthesized programs (3)
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CFG for 'main' function

init:
 %cells = call i8* @malloc(i32 100000)
 %offset_cell_ptr = getelementptr i8, i8* %cells, i32 0
 call void @llvm.memset.p0i8.i32(i8* align 1 %offset_cell_ptr, i8 -1, i32 1,
... i1 true)
 %offset_cell_ptr1 = getelementptr i8, i8* %cells, i32 1
 call void @llvm.memset.p0i8.i32(i8* align 1 %offset_cell_ptr1, i8 0, i32
... 99999, i1 true)
 %cell_index_ptr = alloca i32
 store i32 0, i32* %cell_index_ptr
 br label %after_init

after_init: 
 %cell_index2 = load i32, i32* %cell_index_ptr
 %new_cell_index = add i32 %cell_index2, -1
 store i32 %new_cell_index, i32* %cell_index_ptr
 br label %loop_header

loop_header: 
 %cell_index3 = load i32, i32* %cell_index_ptr
 %current_cell_ptr4 = getelementptr i8, i8* %cells, i32 %cell_index3
 %cell_value = load i8, i8* %current_cell_ptr4
 %cell_value_is_zero = icmp eq i8 0, %cell_value
 br i1 %cell_value_is_zero, label %loop_after, label %loop_body

T F

beginning: 
 %cell_index = load i32, i32* %cell_index_ptr
 %offset_cell_index = add i32 %cell_index, 0
 %current_cell_ptr = getelementptr i8, i8* %cells, i32 %offset_cell_index
 store i8 -1, i8* %current_cell_ptr
 br label %after_init

loop_after: 
 %cell_index24 = load i32, i32* %cell_index_ptr
 %offset_cell_index25 = add i32 %cell_index24, -1
 %current_cell_ptr26 = getelementptr i8, i8* %cells, i32 %offset_cell_index25
 %cell_value27 = load i8, i8* %current_cell_ptr26
 %new_cell_value = add i8 %cell_value27, -1
 store i8 %new_cell_value, i8* %current_cell_ptr26
 %cell_index28 = load i32, i32* %cell_index_ptr
 %new_cell_index29 = add i32 %cell_index28, -2
 store i32 %new_cell_index29, i32* %cell_index_ptr
 br label %loop_header30

loop_body: 
 %cell_index5 = load i32, i32* %cell_index_ptr
 %new_cell_index6 = add i32 %cell_index5, 1
 store i32 %new_cell_index6, i32* %cell_index_ptr
 %cell_index7 = load i32, i32* %cell_index_ptr
 %current_cell_ptr8 = getelementptr i8, i8* %cells, i32 %cell_index7
 %cell_value9 = load i8, i8* %current_cell_ptr8
 %cell_val_as_char = sext i8 %cell_value9 to i32
 %0 = call i32 @putchar(i32 %cell_val_as_char)
 %cell_index10 = load i32, i32* %cell_index_ptr
 %new_cell_index11 = add i32 %cell_index10, -1
 store i32 %new_cell_index11, i32* %cell_index_ptr
 %cell_index12 = load i32, i32* %cell_index_ptr
 %current_cell_ptr13 = getelementptr i8, i8* %cells, i32 %cell_index12
 %cell_value14 = load i8, i8* %current_cell_ptr13
 %cell_val_as_char15 = sext i8 %cell_value14 to i32
 %1 = call i32 @putchar(i32 %cell_val_as_char15)
 %cell_index16 = load i32, i32* %cell_index_ptr
 %new_cell_index17 = add i32 %cell_index16, -1
 store i32 %new_cell_index17, i32* %cell_index_ptr
 %cell_index18 = load i32, i32* %cell_index_ptr
 %current_cell_ptr19 = getelementptr i8, i8* %cells, i32 %cell_index18
 %cell_value20 = load i8, i8* %current_cell_ptr19
 %cell_val_as_char21 = sext i8 %cell_value20 to i32
 %2 = call i32 @putchar(i32 %cell_val_as_char21)
 %cell_index22 = load i32, i32* %cell_index_ptr
 %current_cell_ptr23 = getelementptr i8, i8* %cells, i32 %cell_index22
 %input_char = call i32 @getchar()
 %input_byte = trunc i32 %input_char to i8
 store i8 %input_byte, i8* %current_cell_ptr23
 br label %loop_header

loop_header30: 
 %cell_index33 = load i32, i32* %cell_index_ptr
 %current_cell_ptr34 = getelementptr i8, i8* %cells, i32 %cell_index33
 %cell_value35 = load i8, i8* %current_cell_ptr34
 %cell_value_is_zero36 = icmp eq i8 0, %cell_value35
 br i1 %cell_value_is_zero36, label %loop_after32, label %loop_body31

T F

loop_after32: 
 %cell_index52 = load i32, i32* %cell_index_ptr
 %current_cell_ptr53 = getelementptr i8, i8* %cells, i32 %cell_index52
 %input_char54 = call i32 @getchar()
 %input_byte55 = trunc i32 %input_char54 to i8
 store i8 %input_byte55, i8* %current_cell_ptr53
 br label %loop_header56

loop_body31: 
 %cell_index37 = load i32, i32* %cell_index_ptr
 %new_cell_index38 = add i32 %cell_index37, -1
 store i32 %new_cell_index38, i32* %cell_index_ptr
 %cell_index39 = load i32, i32* %cell_index_ptr
 %current_cell_ptr40 = getelementptr i8, i8* %cells, i32 %cell_index39
 %cell_value41 = load i8, i8* %current_cell_ptr40
 %cell_val_as_char42 = sext i8 %cell_value41 to i32
 %3 = call i32 @putchar(i32 %cell_val_as_char42)
 %cell_index43 = load i32, i32* %cell_index_ptr
 %offset_cell_index44 = add i32 %cell_index43, 0
 %current_cell_ptr45 = getelementptr i8, i8* %cells, i32 %offset_cell_index44
 %cell_value46 = load i8, i8* %current_cell_ptr45
 %new_cell_value47 = add i8 %cell_value46, -1
 store i8 %new_cell_value47, i8* %current_cell_ptr45
 %cell_index48 = load i32, i32* %cell_index_ptr
 %current_cell_ptr49 = getelementptr i8, i8* %cells, i32 %cell_index48
 %cell_value50 = load i8, i8* %current_cell_ptr49
 %cell_val_as_char51 = sext i8 %cell_value50 to i32
 %4 = call i32 @putchar(i32 %cell_val_as_char51)
 br label %loop_header30

loop_header56: 
 %cell_index59 = load i32, i32* %cell_index_ptr
 %current_cell_ptr60 = getelementptr i8, i8* %cells, i32 %cell_index59
 %cell_value61 = load i8, i8* %current_cell_ptr60
 %cell_value_is_zero62 = icmp eq i8 0, %cell_value61
 br i1 %cell_value_is_zero62, label %loop_after58, label %loop_body57

T F

loop_after58: 
 %cell_index80 = load i32, i32* %cell_index_ptr
 %new_cell_index81 = add i32 %cell_index80, 2
 store i32 %new_cell_index81, i32* %cell_index_ptr
 br label %loop_header82

loop_body57: 
 %cell_index63 = load i32, i32* %cell_index_ptr
 %new_cell_index64 = add i32 %cell_index63, 1
 store i32 %new_cell_index64, i32* %cell_index_ptr
 br label %loop_header65

loop_header82: 
 %cell_index85 = load i32, i32* %cell_index_ptr
 %current_cell_ptr86 = getelementptr i8, i8* %cells, i32 %cell_index85
 %cell_value87 = load i8, i8* %current_cell_ptr86
 %cell_value_is_zero88 = icmp eq i8 0, %cell_value87
 br i1 %cell_value_is_zero88, label %loop_after84, label %loop_body83

T F

loop_header65: 
 %cell_index68 = load i32, i32* %cell_index_ptr
 %current_cell_ptr69 = getelementptr i8, i8* %cells, i32 %cell_index68
 %cell_value70 = load i8, i8* %current_cell_ptr69
 %cell_value_is_zero71 = icmp eq i8 0, %cell_value70
 br i1 %cell_value_is_zero71, label %loop_after67, label %loop_body66

T F

loop_after67: 
 %cell_index72 = load i32, i32* %cell_index_ptr
 %current_cell_ptr73 = getelementptr i8, i8* %cells, i32 %cell_index72
 %input_char74 = call i32 @getchar()
 %input_byte75 = trunc i32 %input_char74 to i8
 store i8 %input_byte75, i8* %current_cell_ptr73
 %cell_index76 = load i32, i32* %cell_index_ptr
 %current_cell_ptr77 = getelementptr i8, i8* %cells, i32 %cell_index76
 %cell_value78 = load i8, i8* %current_cell_ptr77
 %cell_val_as_char79 = sext i8 %cell_value78 to i32
 %5 = call i32 @putchar(i32 %cell_val_as_char79)
 br label %loop_header56

loop_body66: 
 br label %loop_header65

loop_after84: 
 call void @free(i8* %cells)
 ret i32 0

loop_body83: 
 %cell_index89 = load i32, i32* %cell_index_ptr
 %current_cell_ptr90 = getelementptr i8, i8* %cells, i32 %cell_index89
 %input_char91 = call i32 @getchar()
 %input_byte92 = trunc i32 %input_char91 to i8
 store i8 %input_byte92, i8* %current_cell_ptr90
 %cell_index93 = load i32, i32* %cell_index_ptr
 %new_cell_index94 = add i32 %cell_index93, -1
 store i32 %new_cell_index94, i32* %cell_index_ptr
 br label %loop_header82

Figure 4.10. Control-flow graph of synthesized programs (4)
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4.4.5 Compare with AFL

AFL [101] is a matured production fuzzer that has been widely used for different

applications. We also compared AlphaProg with AFL in the two perspectives we

focus on: Validity and Coverage. We use AFL with a single empty seed to generate

30, 000 programs for fuzzing BFC and record the highest valid rate per 1, 000 samples

and the accumulated coverage achieved. As a result, the highest valid rate for AFL

is 35% and the accumulated coverage in terms of basic blocks tested is 43, 135. It

covered 162 paths but found no crashes or hangs (actually we ran AFL for 24 hours

and no crashes or hangs was found). But AlphaProg can achieve the valid rate

around 80% under Reward 4 which is the most efficient one for fuzzing, that over

100,000 basic blocks are tested with 30, 000 test samples, and two bugs were detected.

With this result, we may claim that AlphaProg is better than AFL in generating

valid and diverse programs for compiler fuzzing.

Additionally, we measured the performance of both AlphaProg and AFL by

running each tool for synthesizing the 30, 000 samples. We ran the experiment on

a server machine with 2.90GHz Intel Xeon(R) E5-2690 CPU and 128GB memory.

For AlphaProg, we stopped the training process and timed the synthesis with the

trained model. It took 27 minutes for AFL to synthesizing the 30, 000 samples while

it took 2 hours for AlphaProg to do the same task. There is still room to improve

for AlphaProg in terms of scalability.

4.4.6 Bugs

With the improved testing efficacy, our tool has the potential to discover more

compiler bugs compared with pure random fuzzing. And during our analysis, our

tool helped is to report two important bugs for the target compiler BFC which is an

industrial-grade BF compiler with the most stars (207) and folks (8) on GitHub. We
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reported two programs that trigger BFC to hang due to compile-time evaluations [56].

The two programs are listed below,
1 . +
2 [ [ [ [ >.
3 [+
4 [<>
5 ]
6 ]
7 ] >
8 ]<>+ .
9 ]>< ,−.,,+++

10 [
11 ]−−−
12 ]

Listing 4.1. Bug 1

1 . + . +
2 [ [ [ [ >.
3 [+
4 [<>
5 ]
6 ]
7 ] >
8 ]<>+ .
9 ]>< ,−.,,+++

10 [
11 ]−−−
12 ]

Listing 4.2. Bug 2
The first program triggers the bug during the BF IR optimization and the the

second one triggers the bug because the compiler aggressively unroll the loop due to

compile-time evaluation, send a huge amount of IR to LLVM, and then it spends

ages trying to optimize the IR. Both issues are addressed by the owner of BFC and

they confirmed its importance to be fixed later on.

4.5 Limitation

Our work demonstrates the first step using reinforcement learning, Q-learning

framework for generating valid programs for compiler fuzzing. However, there are

still two main limitations in our current work.

First, the existing framework is still not applicable for generating programs in a

more complex programming language, e.g. C, from scratch due to the large search

space. We tried to use our framework to generate C programs token by token, in

which experiment we adopted a language space of 141 different tokens and limited

the program length to 20 tokens. However, it took days for our prototype to find

one single valid C program. The C language structs are difficult to synthesize where

the entire search space is 14120, almost 8e+ 24 times of the BF language with same
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length limit. We still need more grammars to be encoded in the generation engine

to make our framework applicable for languages like C.

Second, it is hard to determine the end of a training cycle. Since generating

more diverse programs is contradict to generating valid programs, the goal for our

reinforcement learning framework is hard to define compared with the game of Go.

Currently, the reward functions we defined can inspire the two different goals, yet

it is impossible to decide whether the two goals are fully achieved for a training

cycle. We still need to improve the design with one generalized goal defined, such as

based on the percentage of code covered. However, it is ironic to have this metric

calculated which brings a lot of overhead and we need a more in-depth study on this

in our future study.

4.6 Summary

In this study, we proposed a reinforcement learning-based approach to continuously

generate BF programs for BF compiler fuzzing. With no training data set required,

the model was initialized with random weights at the very beginning and it evolves

with environment rewards provided by the target compiler we are going to test. With

the learning iterations going on, the neural network model gradually learns how

to write valid and diverse programs to improve testing efficacies under the three

different reward functions we defined. We implemented the proposed method into a

prototyping tool called AlphaProg. We detailed the configuration of our model and

open-sourced the code. Our study revealed the overall effectiveness of AlphaProg

for compiler testing. We also compared metrics under the different reward functions

and explained the improved testing coverage by analyzing the generated programs.

Our tool helped us to find two important bugs of a production BF compiler, BFC,

and all of then are confirmed and well-addressed by the project owner.
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Chapter 5 |
ProgramMutation based on Re-
inforcement Learning for Com-
piler Fuzzing

Enforcing correctness of compilers is important. Fuzzing is an efficient way to find

security vulnerabilities by repeatedly testing programs with randomly modified input

data. However, in the context of compilers, fuzzing is challenging because the inputs

are pieces of codes that must be both syntactically and semantically valid to pass

front-end checks. Moreover, the fuzzed inputs are expected to be distinct enough

to trigger abnormal crashes, memory leaks, or failing assertions that have not been

detected before. In this study, we proposed an automatic code synthesis framework

called FuzzBoost based on deep reinforcement learning. By adopting testing

coverage information collected from runtime information as the reward, we propose

a learning system with the deep Q-learning algorithm that optimizes this reward. In

this way, the fuzzing agent learns the actions to fuzz a seed program that achieves an

overall goal of testing coverage improvement. We validated the effectiveness of our

proposed approach, and the preliminary evidence shows that reinforcement fuzzing

can outperform baseline random fuzzing on production compilers. It also shows that

a pre-trained model can boost the fuzzing process for seed programs with similar

patterns.
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5.1 Problem

Fuzzing is an effective way to find security vulnerabilities in compilers by repeatedly

testing the codes with randomly modified inputs. Many existing vulnerabilities

are reported by fuzzing techniques [78]. Due to the unlimited search space and

limited computing resource, existing fuzzing tools explore efficient strategies in

fuzzing program inputs. Especially in the scenario of compiler testing, no one can

exhaustively examine the entire input space in practice, or traversing all the possible

execution paths of target compilers. Therefore, they typically use fuzzing heuristics

to prioritize the fuzzing strategies to be taken. Such heuristics may be random

selections or trying to maximize a specific goal, such as code coverage [41], execution

timeouts, and crashes [100].

Coverage-guided testing is widely adopted by fuzzers [24, 92, 101], which utilize

code coverage as the heuristic for searching a good next fuzz action from a predefined

list. These exhaustive bounded searches use domain-specific heuristics and are

thus limited in applicability and scalability. Additionally, they do not benefit from

past experiences, where common knowledge in boosting the fuzzing process across

different seeds are shared when similar patterns in the seed files exist. Moreover, most

coverage-guided frameworks calculate the rewards/fitness after a single mutation

being taken, but which overlooks the power of mutation combinations. State-of-the-

art methods, such as American Fuzzing Lop (AFL) [101], incrementally add newly

fuzzed programs into the seed set according to defined heuristics after each mutation.

However, for coverage-guided fuzzing, testing coverage does not increase linearly. In

other words, each of these mutations may not incrementally improve the testing

efficacy. They can be rejected by lexical or semantic checks in the early stage of

compilation. However, a trace of mutations may trigger a giant improvement because
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it may help to generate a valid and different program to cover more paths inside

compilers.

The exercising of reinforcement learning inspired the design of FuzzBoost.

Reinforcement learning describes the learning process by an agent interacting with

the environment to learn an optimal policy by trial and error. It is usually effective

for sequential decision-making problems in both natural and social sciences [5, 87].

Theoretically speaking, the problem of compiler fuzzing can be seen as a problem

of program synthesis, the goal of which is to cover more paths and trigger more

crashes or memory leaks in compilers’ execution traces, while compiling such new

codes. In this study, we model the compiler fuzzing as a multi-step decision-making

process and formalize it into a reinforcement learning problem. Compiler fuzzing

is a learning task with a feedback loop. Initially, the fuzzing agent generates new

inputs with little knowledge but random heuristics. Then, we let the compiler run

with each new input. As the feedback from the environment, we capture runtime

information gathered from binary instrumentation technique to evaluate the seed

quality according to heuristics we defined in our learning circle. By taking this

quality feedback into account, we may construct an end-to-end learning cycle that

the fuzzing agent can learn from. By iterating the learning cycle, the agent is trained

to generate a new input program to fuzz compilers effectively and efficiently.

Theoretically speaking, the problem of compiler fuzzing can be seen as a problem

of program synthesis, the goal of which is to cover more paths and trigger more

crashes or memory leaks in the compiler’s execution trace while compiling such new

codes. In this study, we model the compiler fuzzing as a multi-step decision-making

process and formalize it into a reinforcement learning problem. We may see the

problem of compiler fuzzing as a learning task with a feedback loop. Initially, the

fuzzing agent generates new inputs with little knowledge but random heuristics. We
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will let the compiler run with each new input and as the environment’s feedback, and

for each program execution trace, we capture runtime information gathered from

binary instrumentation for evaluating the quality w.r.t. the heuristic we defined for

the current input program. For instance, the quality of the generated input can be

measured as the number of unique basic blocks on this trace. By taking this quality

feedback into account, we construct an end-to-end learning cycle that the fuzzing

agent can use to learn. By iterating the learning cycle, the agent can be trained to

generate a new input program to fuzz compilers in the most effective and efficient

way.

We evaluated FuzzBoost with seed programs from test suites of production

compilers, i.e. GCC. To demonstrate the effectiveness of our framework, we also

compare it to a baseline system, which applies mutation actions with a uniformly

distributed strategy, and it is adopted in widely-used fuzzing tools. FuzzBoost

outperforms baseline random fuzzing with a higher coverage improvement on a single

seed program. Additionally, to show the generalization of FuzzBoost on boosting

the fuzzing process, we design the experiments with seed programs by α-conversion.

As a result, our tool has better performance of scalability with a pre-trained model.

That means the fuzzing process will be boosted when we reuse an existing model for

new seed programs compared with an untrained model.

In summary, we make the following contributions:

• We formalized compiler fuzzing as a reinforcement learning problem by modeling

it as a multi-step decision-making process.

• We propose to use deep Q-learning that learns to choose a trace of high-reward

mutation actions for any given seed program input. The method is stand-alone

and does not rely on any other fuzzing techniques.
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Figure 5.1. Compiler fuzzing process (mutational)

• We implement a prototyping tool called FuzzBoost and analyze real-world

fuzzing jobs. It outperforms baseline random fuzzing in terms of testing efficacy.

5.2 Design

Mutation-based fuzzing relies on generating new program inputs by mutating with

heuristics based on seed programs. Traditionally, mutation-based fuzzing adopted

iterations of one-step fuzzing. In other words, to decide the interest of adding a new

mutated input into the seed set, they collect the performance of such input after

a single mutation by capturing new crashes in the context of black-box fuzzing or

capturing new path information in the context of grey- or white-box fuzzing. However,

it overlooks potential performances of a trace of mutations, some intermediate states

of which may not be good enough to attract interest or even break the compilation

process due to lexical checks in early stages. Therefore, we re-model the problem

as multi-step decision-making problem that will give enough attention to these

intermediate states being ignored in previous design models. And we formally define

the compiler fuzzing and learning process as a Markov decision-making process as

described in Figure 5.1.

MDP: As shown in the figure, in this multi-step decision-making process, there

is an input mutation engineM , that will perform a fuzzing action a, and subsequently

observe a new state x directly derived from the mutated program P2 by exercising
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the predicted action a on an original seed program P1. This input mutation engine

will predict the program rewrites with regard to an extracted state from the seed

program. With the given formalization, it is natural to use Markov decision process

(MDP) to model this problem. Therefore, the corresponding T-step finite horizon

MDP is defined as M = (s1, a1, r1, s2, a2, ..., sT ). Here st, at, rt represent the state,

action, and reward at time step t = 1, ..., T − 1, respectively. To achieve the trace

of most effective rewrites of a seed program, our formalization allows us to apply

state-of-the-art reinforcement learning methods, in particular, the Q-learning [95].

We choose to use a variation of Q-learning called deep Q-learning [69, 70] where

the value function is replaced by a deep neural network. By training an end-to-end

model with stochastic gradient descent to update the weights, we can acquire a

well-trained model to perform this program synthesis task and achieve an overall

goal to maximize the reward we define.

Q-learning refines the policy greedily with respect to action values by the max

operator. Our framework utilizes the deep Q-learning which adopts the deep neural

network for the Q function. The algorithm for deep Q learning is presented in

Algorithm 2. The Q-network is initialized arbitrarily with random weights at the

beginning. During each episode, we use an incrementally trained Q-network for

predicting actions in program mutations and retrain the model when we get new

rewards for each program state after performing the predicted action. We provide

more detailed learning process description in Section 5.3.

Overview: In reinforcement learning, one episode is one complete sequence of

states, actions, and rewards, which starts with an initial configuration and ends with

a terminal state. In the problem of compiler fuzzing, one episode can be defined as

generating a good program by mutating an existing seed program (initial state) with

respect to the defined quality and in our preliminary implementation, we hard-coded
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Algorithm 2 Reinforcement Compiler Fuzzing
Output: action value function Q-network
initialize Q-network arbitrarily, randomly assign the weights
for for each episode e do do
extract state s from seed program
repeat
a ← action for s derived by Q-network, e.g., ε-greedy
take action a, s′
calculate r from runtime trace
Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)
s← s′

until state s is a terminal state
end for

the entire trace length of program mutations as one of the terminal conditions

(terminal state) as well as define a terminal action that allows the model to end one

episode actively. Compare with conventional mutation-based fuzz testing methods,

we adopt the same methodology to select a generated input from the seed set where

inputs will be continuously fuzzed. The main difference is that, in our design, we

lazy-evaluate the quality of the fuzzed inputs. Thus, intermediate states that are not

valid but eventually turn out to contribute high-quality fuzzed inputs.

Before we start the learning process, we first initialize a randomly generated

neural network. In the first episode, State 0 is initiated by preprocessing a seed

program P . We initially extract a substring within this seed program with the

window size w and offset s. By observing this substring, the neural network will help

us to predict a mutation action to be taken. Feasible mutation actions on token-level

include insert a token, switch two or more tokens, replace a token, or change the

window size or offset to enable another substring to observe and mutate. Once an

action is decided, we run the compiler (any production compiler) with the program

after mutation and calculate the reward r of this new program with a record of the

execution trace. The state will move to State 1 after one action being taken. With
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the increased number of actions being taken, we deduct the reward by a discounted

rate γ which is a value between 0 and 1. We iterate the mutation prediction and

evaluation until a terminal state. There are four key elements in this process: state,

action, environment, and reward. We will elaborate on these key elements in our

design one by one.

5.2.1 State

A state S is a concrete configuration after each action is being taken. It has similar

definition as in the MDP that each process has one state and when the process

proceeds, the state updates. Therefore, the state can be the current configuration

returned by the environment or any future configurations on this trace. In the case of

compiler fuzzing, the agent learns to interact with a given seed program. Therefore,

the state is a function about a given input seed program p. In our design, the

interaction is performed upon the observation of substrings of consecutive symbols

within such an input. Formally, let Σ denotes a finite set of symbols. The set of

possible program inputs I in this language is defined by the Kleen closure I := Σ∗.

For an input program string p = (p1, p2, ..., pn) ∈ I, let

S(p) := (p1+i, p2+i, ..., pm+i)|i ≥ 0,m+ i ≤ n (5.1)

denote the set of all substrings of p. We define the states of the Markov decision

process to be I and I is a union set of S(p). Thus, we have p ∈ I denotes an input

program and p0 ∈ S(p) ⊂ I is a substring of this input seed program. The entire

state space of a seed program is S(p), which is theoretically infinite since any symbol

in this language I can increase after mutation. In other words, the seed program

can be converted to any other valid programs.
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5.2.2 Action

Action A is the set of all possible mutation actions the agent can perform. In

most cases, actions are deterministic and should be chosen among a list of possible

actions. In compiler fuzzing, we define the set of possible action A of our Markov

decision process map extracted substrings S(p)0 to probabilistic rewrite rules. The

rewrite rules are defined in accord with the extracted substring and predicted type.

In a high-level, we define two types of rewrites, on the extracted content and the

extraction window. To be more specific, the rewrites of extracted content are

performed on token-level which include insertion, replacement, re-ordering, deletion

and replication. These pre-defined token-level rewrite rules conform with C language

lexical requirements. For insertion, in we append tokens after the predicted index

according to production rules; that is if the last token is an operator, we random

sample from existing identifiers for next, etc. For deletion, we delete the token

located at the predicted index. For replacement, we replace the token at predicted

index with another token randomly sampled from sets of tokens with same PoS, e.g.

if this token is a keyword of C, we select another keyword for replacement. The

keyword, operator token set are predefined and identifier token set is generated by

parsing the seed file.

The neural network will predict which type and on which position an action

should be performed and we employ a lexical analysis on such extracted substring to

conduct such mutations on a fine-grained granularity. This will change the input

program pi into pi+1 by mutating the substring S(p) in observation, meanwhile, keep

the original syntactic and semantic validity with the best effort. For the second

type, they are designed to make a change of extraction windows. Atomic mutations

include window left shift and right shift; and window size up and down, one character

length for each. Each of these actions does not modify the original seed program but
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motivates an originally extracted substring S(pi) into another substring S(pi+1). For

both types of mutations, the time step increases to next state until the termination

state incurred on the current episode. The substring rewrites consider every substring

in the seed program and predict accordingly to maximize the accumulated rewards

along mutation traces. We also define a terminate action to early stop the mutation

episode. That is to say, the mutation agent can actively terminate a mutation episode

while observing an extracted substring.

5.2.3 Environment

The environment is the world that the agent evaluates each action. The environment

will take the current state and predicted action as the input and then outputs the

reward and next state after executing the action. In compiler fuzzing, the environment

is the compiler or verifier. To observe more detailed information about the fuzzing

efficacy, we develop a tool based on program execution traces. In this respect, we

record dynamic traces when running any production compilers, i.e. GCC, with

generated programs. In compiler construction, a basic block of an execution trace is

defined as a straight-line code sequence with no branches except for the entry and exit

point. We capture all the unique basic blocks B(Tp) with respect to each execution

trace Tp, and calculate a store with all the unique basic blocks covered by the existing

test suite I ′. In our implementation FuzzBoost, the program execution trace is

generated by Pin [65], a widely-used dynamic binary instrumentation tool. Pin

provides infrastructures to intercept and instrument the execution trace of a binary.

During execution, Pin will insert the instrumentation code into the original code and

recompiles the output with a Just-In-Time (JIT) compiler. We develop a plug-in

of Pin to log the executed instructions. Additionally, we develop another coverage

analysis tool based on the execution trace to report all the basic block touched so far.

It also reports whether new basic blocks are covered by certain mutated program
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and the number of new covered blocks as well. Additionally, our environment will

also log and report abnormal crashes, memory leaks or failing assertions of compilers

with the assistance of internal errors alarms from the compiling messages.

5.2.4 Reward

Rewards provide evaluative feedbacks for an RL agent to make decisions. However,

rewards may be very sparse so that it is challenging for the agent to learn any

algorithms. In the game of Go, a reward only occurs at the end of a game. In such

cases, the learning process will converge slowly because of the sparse motivations.

Therefore, to design a good reward function to facilitate learning and maintaining

the optimal policy is very important. Generally, in fuzz testing, proposed heuristics

are program coverages, new crashes, timeout, etc. It aims at enlarging the analyzed

surface in target programs being fuzzed and digging into program traces accordingly

that are more spurious. In compiler fuzzing, we adopt testing coverage as the

reward to motivate the learning towards a search for more areas in the compiler’s

code. However, not as conventional definitions for coverage, which are usually

line/function/branch coverages that require more computing resource to calculate,

we define the reward the ratio of unique basic blocks covered by a certain generated

program p to the entire test suite I ′; that is

R(p, I ′) := B(Tp)/
⋃
ρ∈I′

B(Tρ), (5.2)

where B(Tp) is the number of unique basic blocks of the execution trace for a program

p and I ′ ⊂ I is all the programs generated so far in this test suite. This stepwise

reward R is a continuous scalar value that has a range of (0, 1], where 1 is achieved

when a specific execution trace covers all the basic blocks that have been tested

so far by existing test cases. This reward motivates the mutation steps towards
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the training purpose: improve the compiler testing coverage by selecting a critical

subsequence inside a seed program and making simple mutations in a trace.

5.3 Learning

To start a deep Q-learning process for compiler fuzzing, we propose FuzzBoost

which adopts a constructed forward neural network with two layers connected with

non-linear activation functions. We build this end-to-end learning framework with

the environment reward calculated based on dynamic trace analysis. In this section,

we present the overall learning process for FuzzBoost by illustrating an iteration

of fuzz action prediction in the reinforcement learning process for compiler fuzzing

as shown in Figure 5.2.

5.3.1 Initialization

We start with an initial input seed p ∈ I, where the choice of p is not constrained

but can be any C program even it is not well-formed. We employ the GCC test suite

as our sampling pool and randomly selected programs to be our seed inputs. We

propose to use a neural network as the Q function to mimic the reasoning for input

mutation of compiler fuzzing. This deep neural network maps states (embedding

of an extracted substring from seed programs) to estimate Q values for all actions

A. Due to the lack of heuristics at the very beginning, we built it a reinforcement

learning process, where the neural network is randomly initialized and gradually

tunes the parameters θ with learned mutation heuristics calculated with environment

rewards.
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5.3.2 State Extraction

FuzzBoost will observe a substring within a seed program to predict actions to

perform. The substring is extracted from the seed program by customized window,

and encoded as State(p). In Section State, we defined the states of our Markov

decision process to be I = Σ∗. To be more specific, it is a strict substring p′ at offset

o ∈ 0, ..., |p| − |p′| and of window size |p′|. To make the extracted state controllable,

we defined actions in Section Action, to shift and resize the window. By performing

window-related actions, the fuzzing agent can see the whole program via partially

observe fragments consecutively. In other words, FuzzBoost will learn to select

the most critical piece of code to mutate incrementally during the training process.

After the sequence is extracted, we use word embedding for abstract the sequence

into a fixed-sized vector for training.

5.3.3 Deep Q-Network

We implemented the Q-learning module based on Tensorflow [1] 1.14. The deep

neural network that used for prediction is a forward neural network with two hidden

layers connected with non-linear activation functions. The two hidden layers contain

100 and 512 hidden units respectively, and fully connected with an input layer with

100 units (which is the max window size for input substring) and an output layer

with 10 units (which is the size of action space). The goal of the training is to

maximize the expected reward. Since the MDP is a finite horizon in our practical

design, we adopt a discount rate γ = 0.9 to address the long-term reward. We set

the learning rate α = 0.001 to achieve our best-tuned results. We use the decayed

epsilon-greedy strategy for exploration in the reinforcement learning iteration, that

is the ε value was set up to 1 at the very beginning and decays over time until a min

value, 0.01 in our configuration, is reached. In this scenario, with the probability
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1 − ε, the agent selects an action a = argmaxa′Q(xt, at), which is the estimated

optimal by the on-training neural network. On the contrary, with probability ε,

the agent explores any other actions with a uniformly distributed choice within the

action space |A|. To evaluate the proposed framework with the deep Q-Network,

we explored its effectiveness under several different initial window sizes. We also

explored several non-linear activation functions, including tanh, sigmoid, elu, softplus,

softsign, relu. We report experimental results in Section Evaluation.

5.3.4 Termination

A mutation episode will terminate when the agent detects a terminal state. In our

design, we define three conditions that may trigger the terminal state of mutating

of a single seed program: (1) the agent executes the “terminate” action from the

neural network prediction; (2) the generated program reaches a maximum number of

mutation steps; or (3) the agent generates an invalid action that triggers miscellaneous

effects during the reward calculation. The first type of termination will cut the

program mutation actively by FuzzBoost while the latter two are passively ended

with pre-defined policies. We hard-code the limitation of mutation trace length to

be 20 actions in all of our experiments. Theoretically speaking, from the perspective

of fuzz testing, the mutation trace can be generated as long as possible to achieve

enough randomness. But in practice, to excessively improve the testing efficacy, we

set up these policies to enforce our learning agent to learn within the shortest path.

Moreover, it is arguable that the length of learning traces is set to be such a small

number that during an episode, the agent cannot explore the entire language set.

But in our design, all the programs that have achieved a higher coverage will be kept

to be a seed and waiting for another round of fuzzing. The methodology applied

in our mechanism is the same as conventional coverage-guided fuzzing methods

but only has made mutation traces longer in one round (compare with 1 step in
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Table 5.1. Coverage improvements with different state size
State Size 50 60 70 80 90 100

Coverage Improvement (%) 37.14 36.11 30.29 28.95 28.07 27.94

Table 5.2. Coverage improvements with different activation functions
Activation Function tanh sigmoid elu softplus softsign relu

Coverage Improvement (%) 37.14 28.27 7.48 13.72 14.22 13.26

conventional fuzzing) and predictable by a neural network (compare with purely

random in conventional fuzzing).

5.4 Experiments

In our research, we proposed a reinforcement learning framework FuzzBoost that

incrementally trains a deep neural network to predict mutation actions on a given

seed program that improves the compiler testing coverage effectively. We tested

the performance of FuzzBoost on a seed input set gathered from the GCC test

suites. We randomly sampled 20 C programs in the test suite as our benchmark.

We evaluated FuzzBoost in terms of the testing efficacy and compared with a

baseline random fuzzing method. We also successfully boosted our fuzzing process

by using a pre-trained model for generating new seed programs. All measurements

were performed on i7-7700T 2.90Ghz with 12GB of RAM.

5.4.1 Testing Efficacy

Coverage improvement is the most important measurement for testing. It denotes the

overall lines/branches/paths in the original code is being visited. In our design, to

improve the performance in this end-to-end learning process, we use an approximation

to describe the coverage information, that is the accumulated number of unique

basic blocks being executed with the generated new test cases. To show that
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Table 5.3. FuzzBoost v.s. random fuzzing
FuzzBoost Random

Case 1 5,702 5,569
Case 2 5,708 5,695
Case 3 5,395 5,316
Case 4 5,957 5,795

FuzzBoost learning algorithm learns to perform high-reward actions given a seed

input observation, we compare the improved testing efficacy against a baseline random

action selection policy. The choice of the baseline method uniformly distributed

among the action space A and we terminate the actions with the same methodologies

as our method described in Section Termination. Random mutation is widely-used in

software fuzzing tools [101] which is proven to be effective while a good heuristic, such

as coverage-guided, is designed. In our framework, we adopt the same methodology

to keep or throw away newly-generated programs from our seed test suites. Therefore,

we only need to compare the improvement of testing efficacy in one round. We

randomly sampled 20 C programs in the GCC test suite, specifically, from the

gcc.c-torture repository.

Baseline: We performed the experiments with the two different action selection

strategies using each of the programs from the sampling pool as the seed. We

generated 1,000 new tests from both strategies from the seeds and recorded the

accumulated number of unique basic blocks along the execution trace. In the most

related work called Deep Reinforcement Fuzzing, for evaluation, 500 pieces are

generated for measuring the code coverage improvement. In our experiment, we

measured more than 1,000 but we found the improvement does not grow too much

after the first 1,000. And to compare with mutation-based fuzzing, we did not

use time-based evaluation because our tool has no better performance in terms of

scalability because our model will be retrained.
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Figure 5.3. Compare FuzzBoost with random fuzzing on testing coverage

Compared with the baseline method, in terms of the number of accumulated

unique basic blocks as our testing coverage, FuzzBoost achieved testing coverage

by 37.14% more on average for the 20 benchmark problems. Figure 5.3 and Table 5.3

demonstrate the coverage improvement of comparisons baseline method and Fuzz-

Boost on mutating four different seed programs, among which the most and least
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improvements, 79.17% (case 1, seed1.c) and 12.24% (case 2, seed2.c) respectively, are

achieved. From another perspective, an improvement of 5.59% coverage improvement

is achieved at most with the newly generated 1,000 programs by FuzzBoost for a

single seed.

In similar research done by Rishabh Singh et al. [9] on reinforcement learning the

mutation for one single PDF file, it achieves an improvement of approximately 7%

improvement on code coverage. Our tool reports 5.6% improvement. The difference

may result from different applications where PDF files are easier to be correctly

generated and the mutations can be more flexible.

Window Size: Since the size of each seed program varies, and, arguably,

the limited number of window size and mutation trace in one episode may put a

constraint on exploring the entire seed program. That is, after one episode, the seed

program is neither thoroughly observed nor mutated accordingly. Therefore, we

analyzed the effectiveness of the current framework with different window size. We

increased the initial window size w = |x′| from 50 characters to 100 characters and

measured the average reward improvement compare with the baseline strategy on

seed1.c.

Table 5.1 shows the results for this experiment. We can see a decreasing im-

provement when increasing the initial state size. To interpret this result, smaller

substrings are better processed than larger ones. In other words, our model learns

the best move of small windows and will select the best action accordingly to improve

coverage. In addition, the exploration of entire programs is not the key for fuzz

testing but making control-flow changes within a limited observations will boost the

fuzzing process.

Activation Function: To get a best-tuned model, we are also interested in

testing efficacy improvements when applying different activation functions in the
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Figure 5.4. Mutation length during training

neural network. We conducted experiments to generate 1,000 new program upon

seed1.c with FuzzBoost trained with models using different activation functions.

Table 5.2 compares the different activation functions with respect to improvement

of coverage. All these experiments are done with the Window size 50. We noticed

that there is a large variation across different activation functions. For all activation

functions provided by the Tensorflow framework, we found the tanh function to yield

the best result for our setting.

End State: We define the compiler fuzzing as a multi-step decision-making

problem and set up the end-to-end learning framework. Theoretically speaking, not

like the problem of Go, the end state of FuzzBoost is not deterministic in all

cases. In our design, we hard-coded a limit on the length of mutation traces for

experiments, but naturally, the traces can be endless to gain enough randomness and

achieve a higher reward. Although, to learn an endless mutation trace will improve

the testing coverage better than a limited length, to make the two equivalent, we

(1) set a limit on mutation times in one episode of training, and (2) if the newly

generated code has new Basic Blocks tested, it will be kept in our seed set for another
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Figure 5.5. FuzzBoost with/without pre-trained model on testing coverage

round of mutating and learning. Therefore, our tool is similar to AFL but has

more mutations in one round. In addition, we provided the learning agent an action

to actively terminate the episode which varies across the learning stage. Thus, to

analyze how end-state evolves, we recorded the distribution of mutation trace lengths

under different training stages. Figure 5.4 shows the trace length distributions along
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the learning process. From the result, we can see that, with the training goes on,

mutation trace lengths are increasing. That is to say, the reward expectation of each

mutation action is positive in a well-trained model and it tends to maximize the

mutation opportunities in one episode.

5.4.2 Mutation Example

To show how effective FuzzBoost can achieve in program mutations for compiler

fuzzing, we show the topmost utilized mutations in the following example. We show

an orginal seed (on the left) and its corresponding new generations after mutations

(on the right). We discuss each of these abstracted edits that contain a trace of atomic

mutations, which explains what is learned by the model during the reinforcement

learning process. These mutations are not done within one episode, we just use this

one example to show what are the most used mutations and how they look like.
1 foo (a, p)
2 int ∗p;
3 { p[0] = a;
4 a = (short) a;
5 return a;
6 }
7 main () {
8 int i ;
9

10 foobar ( i , &i);
11

12

13 }
14 foobar (a, b) {
15 int c;
16 c = a % b;
17 a = a / b;
18 return a + b;
19 }

Listing 5.1. Original

1 foo (a, p)
2 int ∗p;
3 { p[0] = foobar(a,p);
4 p = (short) a;
5 return a;
6 }
7 main () {
8 int i ;
9 for ( int a=8; a>0; a−−) {

10 foobar ( i , &i);
11 }
12 foobar(i , &i);
13 }
14 foobar (a, b) {
15 int c;
16 c = a % b;
17 a = c / b;
18 return a + b;
19 }

Listing 5.2. Mutated
Example: By observing the results, we find 1O the top most chosen mutation is

insertion. Usually, the fuzzing engine tries to insert statements with keywords that
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do not exist in the original seed file. As shown in line 9 to line 11 in the mutated

file, that the fuzzing engine tries to insert a for statement into the seed file. By

inserting these non-existing tokens, the compiler should execute the lexical analysis

in a way that has not used before. 2O the second chosen mutation is replication that

the fuzzing engine tries to replicate statements locally as shown in line 12 in the

mutated file. The replication will trigger the compiler to optimize code which will

improve the testing coverage. 3O the third chosen mutation is replacement that can

be to replace a variable (a) with a function call (foobar(a,p)) as in line 3 or to

replace a variable (a) with another existing variable (p). The replacement either

makes the statement to be more complex to parse or cause exception handlings such

as typecast, or change the control-flow of the seed file, all of which will make the

compilation different from the original paths, thereby increasing the testing coverage.

5.4.3 Boosting with pre-training

We next address the question, given an agent which is pre-trained on seed programs

Ptrain = pi ∼ P , will it improve the testing efficacy faster than learning from

scratch? We prepared the training and testing data as follows. We reused the four

seed programs in previous experiments which covers the most and least coverage

improvement from the initial 20 seed program and created another 9 α-equivalent

programs for each seed respectively. We call a program P ′ is an α-equivalent program

of program P when we only perform bound variable renaming on P . We used 80%

of them serves as Ptrain and the rest 20% are used for Ptest. After pre-training the

agent on Ptrain for 50 epochs, we saved the model and reused it on Ptest . It continued

the trial-and-error reinforcement learning.

Figure 5.5 shows average coverage improvement using FuzzBoost with an

initially arbitrary model and another pre-trained model respectively. We may see

that the coverage improvement for the latter case improves drastically towards the
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FuzzBoost Pre-trained
Case 1 5,702 5,785
Case 2 5,708 5,886
Case 3 5,395 5,456
Case 4 5,957 5,986
Table 5.4. FuzzBoost v.s. pre-trained

highest value in the former case despite the minor difference in the language of

two seed programs. In addition, with the training goes on, the coverage was again

improved to a new highest value that outperformed previous testing efficacy. It

reveals the transferability of a trained model in the context of compiler fuzzing.

5.5 Limitation

To compare with related works is critical but we find it difficult to perform apple-to-

apple comparisons. Generation-based fuzzing tools, DeepSmith and Learn&Fuzz [28],

generate new programs other than mutating seed programs. Our tool is mutation-

based. We rely on seed programs to achieve whole-program validity. Even if our

tool has a better performance in terms of testing coverage improvement with a same

amount of code synthesized, (it should be according to our observation), it is not

convincing to claim that our tool is better. Our tool will generate compilable code

for almost all the time, but DeepSmith [19] and Learn&Fuzz do not. There are many

code generated from them, rejected at an early stage in the compilation. Therefore

the testing procedure is quite shallow. And for AFL [101] and NEUZZ [80], they are

efficient for many applications, but not for compilers. On the other hand, AFL is

fast; each new file only needs one-step mutation. Although our tool is more efficient

in generating more valid and efficient tests, it is not fair to compare with AFL in

this way. For NEUZZ, it is grey-box fuzzing that relies on the coverage analysis on

target applications. But for compiler testing, the computation cost for code edge
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coverage is very high, and that is one of the reasons for using # Basic Blocks tested

as an approximation. Thus we cannot directly compare our tool with NEUZZ.

For the reward function, our basic assumption is that, on a single seed program,

with limited numbers of mutations, the compiler’s coverage has an upper bound, and

the exploration towards this upper bound will expand the code coverage. In other

words, our tool can be considered as a variant of AFL (or compared with AFL) with

a longer trace of mutations in one step. A newly generated code piece, according to

the defined heuristics, whether testing coverage is improved, will be kept or deleted

from the seed set.

5.6 Summary

In this study, we proposed FuzzBoost, a deep reinforcement learning framework

to fuzz off-the-shelf compilers by generating new programs with coverage-guided

dynamics. Our proposed end-to-end learning framework that learns to select the

best actions to perform automatically without any supervision. It improved the

testing coverage on a seed set from the GCC test suite and outperformed the baseline

fuzzing agent with a random selection strategy. Moreover, after being pre-trained, it

can generalize the strategy to new instances much faster than starting from scratch.
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Chapter 6 |
Discussion

We presented three studies that automatically generate small pieces of code for

compiler testing. In this chapter, we describe the rationale of the three sub-projects

and compare them horizontally in terms of (1) models and (2) improvement of testing

coverage.

6.1 Research Rationale

In this section, we describe the rationale for proposing each of these three sub-projects

and the challenges that we have faced.

6.1.1 DeepFuzz

In the first study, DeepFuzz, we proposed to use a Sequence-to-Sequence model

to learn a language model ovecr a set of existing code. This work is the first to

automatically generate C programs by insertion mutations and with which, the

testing coverage of GCC and LLVM was improved in a higher efficiency compared

with human-crafted generation rules. However, DeepFuzz is still based on training

data. In other words, the newly-generated programs are like new combinations of

existing code pieces. Although it brings in code diversity while maintains the code

validity, both syntactically and semantically, there are still rooms to improve.
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6.1.2 AlphaProg

In the second stage, where we proposed to train a neural-network-based language

model, for continuously generating new programs, with no training data. The good

thing about no training data is that, there are chances to generate non-existing

language patterns step-by-step. Theoretically speaking, if we use a well-designed

heuristic to drive the synthesis process, the exploration space will be larger than to

purely train a model based on existing code pieces. On the other hand, if there is

no training data, the efficiency of the training process will be demotivated. That

is to say, the positive samples will be very sparse, which is true in our analysis,

especially when we set up the hyper-parameter to favor exploration. We adopted

the reinforcement learning method for training this neural network-based language

model gradually. However, there are a few challenges to overcome to fit into our

problem:

• Inefficiency: This was the first challenge we encountered when we first made

a trial to synthesis C program from scratch, character by character. This

is because there were too few positive samples to efficiently train a model.

Humans can be taught how to say a correct sentence with one training example,

which is not the case with computers. The observation revealed a low validity

rate (less than 1%) even though we set up an experiment of growing a fixed-

length (20 characters) short program (the search space is 12820). Therefore, we

simplified the problem by introducing a new scenario, applying the method to

a programming language called BF instead of C. There are only 8 characters

in this new language, thus decreasing the search space exponentially.

• Reward function: It is certainly true that defining a reward function is

difficult, especially in our task. In a pure program synthesis task, to synthesize a

106



correct (syntactically/semantically) program is the goal. But in our scenario, we

would like the synthesized program to be both valid (syntactically/semantically

correct) so it can pass the compiler checks, as well as diverse so it can trigger

different execution paths when the compiler attempts to compile it. Before the

presented experiments in Chapter 4, we had a few failures. Our first trial was to

merely use program validity as the reward. The final observation showed that

the model converged in a fast way and fell into the local optimal despite how

much dropout or randomness we set. Our second trial was designed to combine

validity with program diversity. We had the experience of combining a different

number of characters into the reward function. But the model will converge

fast and fell into the local optimal again. The difference is that the model

stopped at synthesizing a valid and diverse (contains 8/8 characters) program.

Then, we realized that the program diversity cannot be calculated statically,

instead, we stored existing programs to calculate this diversity. Essentially,

the synthesized programs are for compiler testing, and we only later found

that a better way to evaluate this diversity is to use testing coverage, and an

approximation is to count the newly executed basic blocks on the execution

trace. We designed our experiments based on all of this pre-knowledge, which

eventually showed us a best-tuned model for generating BF programs from

scratch.

• Local optimal: This problem is common across all machine learning tasks,

but the problem is well defined and well-studied. One solution is to use dropout

method or just add more randomness. In reinforcement learning tasks, to add

randomness is realized by tuning the hyper-parameter, ε. We first tried to use

a fixed-value for ε, but results revealed either a lack of exploration (if ε is too

small) or difficulty in converging where the total regret is large (if ε is too large).
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Therefore, we finally adopted a decaying ε strategy that included changing the

value of ε. Again, there is a trade-off between exploitation and exploration

while we are talking about picking a decay schedule for ε, i.e. the gap. It is

difficult to determine this value because the more uncertainty associated with

an action value, the more important it is to explore that action. Therefore,

we tuned this hyper-parameter based on an evaluation of cumulative average

reward. We also found that there are interactions between this gap and learning

rate as well. In this case, we batch updated these two values to find an optimal

model.

6.1.3 FuzzBoost

We then came to the third stage, where we proposed a neural network-based mutation

method to improve compiler testing coverage starting from a single seed program.

As described in Section 6.1.2, we faced the challenge from the large search space

when we considered the problem of generating C programs from scratch. Another

solution for this issue is to base the generation on seed files. In other words, we

can train a neural network to mutate seed programs that share the same task as a

well-known fuzzing tool called AFL. However, to conduct this study, there are still

challenges other than search space:

• Mutation rules: Since we are trying to implement a deep neural network

to select the best action to mutate an existing code piece, there should be a

few mutation rules to choose from. We hope the local mutation will improve

corresponding testing coverage while keeping the validity of original seed

programs. We could start from the mutation methods like AFL, which works

on binaries and does simple bit replacements or flips, though it overlooks

the complexity of C language. The synthesized programs rarely pass the
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lexical/semantic checks of compilers, and this hinders its efficiency with respect

to improving the testing coverage. Therefore, we defined a set of token-level

mutations that conforms C language production rules, including insert a token,

switch two or more tokens, replace a token, or change the window size or offset

to enable another substring to observe and mutate. Since the insertion set

contains the complete C language keywords, digits and characters, the language

set after mutation theoretically equals to the C language set.

• Reward function: Similar to AlphaProg, the synthesized programs are

used for compiler testing, and it is critical to calculate the reward function based

on testing coverage. In the AlphaProg work, better coverage improvement

was achieved by combining program validity and testing coverage. In contrast

to AlphaProg, where we need the neural network to learn how to generate

syntactically correct programs, we did not include the validity as part of the

reward calculation, which is because the program validity will be maintained

through the mutation rules, and the learning efficiency can thereby be improved

without such calculation.

6.2 Comparation

6.2.1 Model

In our first two studies, DeepFuzz and AlphaProg, we adopted the Sequence-

to-Sequence model to encode the language pattern. However, in the third study,

FuzzBoost, we adopted a two-layer fully connected dense network. The reason

we choose different models for the three projects is due to the differences in the

synthesis task. For DeepFuzz and AlphaProg, the neural network serves as

a language model which should be responsible for sentence embedding as well as

decoding. Each of the synthesized characters is correlated in the training sequence.
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However, for FuzzBoost, the neural network serves as an action selector which

bases its knowledge of the given sentence embedding to select a mutation action.

The actions in the mutation sequence are independent in our scenario. Our tool can

be considered as a variant of AFL with an extended trace of mutations in one step.

Moreover, a newly generated code piece, according to the defined heuristics, whether

testing coverage is improved, will be kept or deleted from the seed set.

6.2.2 Coverage Improvement

Since our objective was to synthesize programs for compiler testing, the most impor-

tant measurement of performance we care about is the testing coverage. Although

the three tasks share the same goal, they are slightly different from each other. For

DeepFuzz, our main objective is to use insertion mutation to combine learned

language patterns into seed programs from a test suite. In other words, the neu-

ral network encodes language patterns and the program diversity is improved by

our mutation strategy. Essentially, the testing coverage is improved because the

control-flow diversities of original seed files are improved. Additionally, we have to

claim that the final coverage of GCC (82.27%) is achieved because we choose to

mutate based on the original test suite (75.13%). However, in contrast to Deep-

Fuzz, AlphaProg synthesizes programs from scratch. And the neural network

of AlphaProg is responsible for synthesizing both valid and diverse programs.

As a result, the first 10,000 programs achieved 84,500 basic blocks and the second

10,000 programs achieved 110,500 basic blocks of the target compiler. If we treat

the coverage of the first 10,000 programs as the baseline, DeepFuzz achieved 7.14%

improvement while AlphaProg achieved over 30%. Although it is arguable to

conclude higher efficiency of reinforcement learning than based on training data,

the performance of reinforcement learning is acceptable even though no training

set is provided. For FuzzBoost, our main objective is to improve the testing
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coverage based on one single seed program. Therefore, we cannot directly compare

FuzzBoost with the other two.
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Chapter 7 |
Conclusion

Compiler testing is critical for assuring the fundamental correctness of computing

systems. Fuzzing is one of the most common mainstream technologies used to assist

with compiler testing. In our first study, we proposed an automatic grammar-based

fuzzing tool called DeepFuzz that learns a generative recurrent neural network that

continuously provides syntactically correct C programs to fuzz off-the-shelf compilers,

GCC and Clang. We conducted a detailed study on analyzing how key factors, i.e.,

sampling method and generation strategy, effect on the accuracy of this generative

model, and how different improvements of testing efficacy are achieved. DeepFuzz

generated 82.63% syntax valid programs and improved the testing efficacy with

respect to line, function and branch coverage. With the preliminary evaluation, we

found and reported 8 bugs in GCC, all of which have been actively addressed by

developers.

In our second study, we proposed a reinforcement learning-based approach to

continuously generate BF programs for BF compiler fuzzing. With no training data

set required, the model was initialized with random weights at the very beginning

and it evolved with environment rewards provided by the target compiler we are

going to test. During the performance of the learning iterations, the neural network

model gradually learns how to write valid and diverse programs to improve testing

efficacies under the three different reward functions we defined. We incorporated
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the proposed method into a prototyping tool called AlphaProg. We detailed

the configuration of our model and open-sourced the code. Our study revealed the

overall effectiveness of AlphaProg for compiler testing. We also compared metrics

under the different reward functions and explained the improved testing coverage by

analyzing the generated programs. Our tool helped to find two important bugs of a

production BF compiler, BFC, and all were confirmed and well-addressed by the

project owner.

In our third study, we proposed FuzzBoost, a deep reinforcement learning

framework was used to fuzz off-the-shelf compilers by generating new programs with

coverage-guided dynamics. Our proposed end-to-end learning framework learns to

select the best actions to perform automatically without any supervision. It improved

the testing coverage on a seed set from the GCC test suite and outperformed the

baseline fuzzing agent with a random selection strategy. Moreover, after being

pre-trained, it was able to generalize the strategy to new instances much faster than

starting from scratch.

As part of further studies, we suggest a more in-depth analysis of the reasons why

the proposed deep neural network functions in this scenario, as well as determining

what syntax patterns of C are encoded in neural networks and what is lost. Our

preliminary study on using the LSTM network for program synthesis has achieved

good performance in terms of pass rate, which is the ratio of syntactically correct

programs to the entire programs being synthesized. Therefore, we suggest inves-

tigating whether a neural network trained for program synthesis learns syntactic

information on the source side as a by-product of training.
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