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Abstract

Compilers are among the most fundamental programming tools for building software.
However, production compilers remain buggy. GNU compiler collection (GCC), as
a long-lasting software released in 1987, provided as a standard compiler for most
Unix-like operating systems, has caught over 3,410 bugs from the day they were
created. Fuzzing is often leveraged for stress testing purposes with newly-generated,
or mutated inputs to find new security vulnerabilities. In our study, we propose
a grammar-based compiler fuzzing framework called DEEPFUZZ that continuously
synthesizes well-formed C programs to trigger internal compiler errors or “bugs”,
as they are commonly called. In this framework, we are interested in how to apply
generative deep neural networks (DNNs), such as the sequence-to-sequence model,
to synthesize well-formed C programs based on training through syntax-correct
programs. We are also interested in how to synthesize programs using a novel form of
reinforcement learning, where the model becomes its teacher to start with a random
neural network with no training data and trains itself through self-play. We will use
a synthesized set of new C programs to fuzz off-the-shelf C compilers, e.g., GCC
and Clang/LLVM. This thesis describes our analysis of neural program synthesis for
compiler fuzzing in three steps.

First, we conduct a first-step study by implementing DEEPFUZZ that deploys
a sequence-to-sequence model to synthesize C programs. We have performed a
detailed case study on analyzing the pass rate of generating well-formed programs
and achieving the goal of fuzz testing, which requires a certain degree of variation.
In general, DEEPFUZZ generated 82.63% syntax valid programs and improved the
testing efficacy with regards to line, function, and branch coverage. It identified
previously unknown bugs, and 8 of them were confirmed by the GCC developers.

Second, for the cases when we could not get any or enough data to train a
model for representing the grammar, we build a reinforcement learning framework for
program synthesis and apply it to the BF programming language. With no training
data set required, the model is initialized with random weights at the very beginning,
and it evolves with environment rewards provided by the target compiler being
tested. During the performance of the learning iterations, the neural network model
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gradually learns how to construct valid and diverse programs to improve testing
efficacies under four different reward functions that we defined. We implemented
the proposed method into a prototyping tool called ALPHAPROG. We performed an
in-depth diversity analysis of the generated programs that explains the improved
testing coverage of a target compiler being tested. We reported two important bugs
for this production compiler and they were confirmed and addressed by the project
owner.

Third, we extend the framework to synthesize C programs, which is more chal-
lenging in terms of state space. We propose an automatic code mutation framework
called FuzzBoOST that is based on deep reinforcement learning. By adopting testing
coverage information collected at runtime as the reward, the fuzzing agent learns to
fuzz a seed program that achieves an overall goal of testing coverage improvement.
We implemented this new approach, and preliminary evidence showed that reinforce-
ment fuzzing can outperform baseline random fuzzing on production compilers. It
also showed that a pre-trained model can boost the fuzzing process for seed programs
with similar patterns.

This thesis solves the problem of using the DNN to synthesize new programs for
compiler fuzz testing. Specifically, the proposed framework is able to handle compilers
of different programming languages. Accordingly, DEEPFUZZ and FuzzBooST are
designed for the C compiler testing, and ALPHAPROG is designed for the BF
language compiler testing. Additionally, the generative neural networks for program
synthesis can be trained with or without training data. Moreover, the model in
DeEPFUZZ is trained based on training data but ALPHAPROG and FuzzBoOOST rely
on reinforcement learning, which requires no training samples. We built prototyping
tools for each study and applied them for practical use. Their effectiveness was
evaluated, and they caught real bugs in off-the-shelf compilers.
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Chapter 1
Introduction

1.1 Motivation

Compilers are among the most fundamental components of computation systems, and
they are important parts of the trusted computing base of our machines. However,
they often contain a substantial number of bugs. GNU compiler collection (GCC) is
a long-lasting software released in 1987 that was developed to provide a standard
compiler for most Unix-based operating systems, and it caught over 3,410 internal
bugs [98] from the day they were created. Even in a recent research paper, 217
unknown bugs detected among which 119 were fixed [I03] over a six-month study
period. Similar circumstances apply to Java, Python, and JavaScript, with thousands
of bugs being detected in widely used compilers, among others. Compiler bugs can
result in unintended program executions and lead to catastrophic consequences in
security-sensitive applications, and they may also hamper developers productivity in
debugging a program when the root cause cannot be identified in the applications
or compilers. Consequently, improving compiler accuracy is important, although
validating compilers is not easy, as the size of code bases continues to gradually
increase. The code base of today’s GCC includes approximately 15 million lines of
code [84], which is close to the 19 millions of lines of code.

It is critical to make compilers dependable, and in the past decade, compiler



verification has become a paramount concern, which has led to verification grant
challenges in computing research [33]. Mainstream research focuses on formal
verification [49, 5], translation validation [73| [76], and random testing [46], 47, [48], [53].
The objective of the first two categories is to provide certified compilers, e.g.,
CompCert [50], which represents promising progress in this area, though in practice,
it is challenging to apply formal techniques to fully verify a production compiler
because it requires more effort to compose the specifications than build a compiler.
Therefore, testing remains the dominant approach to conducting compiler validation.

The focus of this study was on compiler testing. By scanning programs covering
different features to different production compilers that turn on different levels of
optimization, internal compiler errors (i.e., genuine bugs in the compiler) may be
triggered during the compilation with a detailed error message indicating what
and where the error is. However, challenging hurdles in compiler testing include
determining how to generate “good” programs to make testing more efficient, how to
automate this process, and how to build a continuous testing framework. Existing
methods including man-made tests, each of which covers some features, and it
is common today to see the gradually enlarged test suites for modern compilers.
Man-made test suites are efficient for testing in terms of coverage, though it takes
huge human effort to develop these tests. Nevertheless, a practical way to reduce
human labor for testing is fuzz testing (i.e., “fuzzing”). Fuzzing [7] is the process of
finding security vulnerabilities by repeatedly executing a program with automatically
generated /modified inputs and detecting abnormal behaviors by observing the
execution results. The primary techniques for input fuzzing in use today are black-box
random fuzzing [101], white box constraint-based fuzzing [27], and grammar-based
fuzzing [22]. Black box and white box fuzzing are fully automatic and have historically

proven effective at finding security vulnerabilities in binary-format file parsers. In



contrast, grammar-based fuzzing is required an input grammar specifying the input
format of the application under test, which is typically written by hand. This process
is labor-intensive, time-consuming, and error-prone. Nevertheless, grammar-based
fuzzing is the most effective fuzzing technique known today for fuzzing applications
with complex structured input formats, e.g., compilers. For compiler testing, one way
to deploy the grammar-based fuzzing is to encode the C grammar as rules for test
case generation. However, in practice, C11 [I7], the current standard of C syntax,
has 696 pages of detailed specifications, which represents a hurdle for engineers when

constructing such a grammar-based engine.

1.2 Problem Definition

In this thesis, we consider the problem of automatically generating syntactically valid
inputs for grammar-based fuzzing with a deep learning framework. More specifically,
we target on training a generative deep neural network which can be viewed as an
implicit representation of the “grammar”, to be more precise, the language patterns,
for programming languages. In this thesis, we consider two scenarios, one with and
one without training data set.

The two scenarios describe the two main challenges incrementally in grammar-
based fuzz testing. To test general compilers that are well maintained, i.e. GCC,
that we can find enough test programs accordingly, we aim at building an end-
to-end learning framework to continuously generate valid programs by encoding
programming language patterns in neural networks. It reduces human effort in
constructing rule-based production rules in previous grammar-based fuzzing engines.
However, for less well-maintained compilers, even parsers or interpreters that we
cannot find enough data for training such a model to represent language patterns,

we aim to build a reinforcement learning framework to achieve the same outcome.



Simply stated, a deep neural network will be incrementally trained with a reward
system. The second scenario applies to a more general case, that is, any software
systems that take in highly-structured inputs and can provide an environmental
reward to describe the validity of given inputs.

To train a deep neural network from a training data set, we propose to apply
existing generative models, such as the Sequence-to-Sequence model [86] in a super-
vised learning strategy leveraging the original test suites provided with production
compilers. At a high level, the sequence-to-sequence model consists of two recurrent
neural networks: the encoder RNN simply consumes the input source code without
making any prediction; the decoder, on the other hand, processes the target sen-
tence while predicting the next words. Originally, it was widely used for machine
translation [42], which takes in a sequence of the original language and generates the
sequence on a target language with the same semantics. It has also been applied to
text generation [85], where feeding in abundant paragraphs of Harry Potter results in
the automatic generation of a new paragraph that keeps the style of writing of what
J.K. Rowling wrote. Theoretically speaking, by training the model on the original
paragraphs, we implicitly encoded the correct spelling of words, valid syntaxes of
sentences, and detailed styles of writing behaviors into a generative model. The same
idea can be applied to program synthesis, where it is only necessary to train a model
to generate different syntactically valid programs on top of a seed data set. For the
training data set, we adopted the original GCC test suite, which includes more than
10,000 short programs that cover most of the features specified in the C11 standard.
Moreover, the open-source projects, online coding systems, students programming

assignments are all good sources for grabbing syntax-valid programs for training.



1.3 Research Objective

In general, we used neural program synthesis to accomplish two main objectives. The
first is to generate new programs that follow legitimate grammar with and without
a set of syntactically correct programs. The major challenge comes from handling
long sequences and grammar representation. The second objective was to improve
compiler testing efficacy. We targeted improving the coverage and capture of more
internal errors in production compilers. More specifically, we wanted to enhance line
coverage, function coverage, and branch coverage for testing production compilers.
The coverage information is important for compiler testing as it indicates how many
more lines of code are covered by executing a target program with a set of new
inputs. Intuitively, the more lines of code that are executed, the more chances there
are to assure a software is secure in terms of program semantics. Also, during the
fuzzing process, we sought to detect unknown compiler bugs with the improved test
suites. There are two stages in the entire workflow, program generation and compiler
testing. We targeted production compilers, such as GCC [26] and LLVM/Clang [15].

We conducted some preliminary studies. We have pipelined a prototype with
around 5,000 pieces (20 MB) of valid C programs collected from the GCC repository
and online coding systems. We trained an LSTM model with 2 layers and 512
hidden units per layer. We trained the model for in total 30 epochs on a server
machine with 2.90 GHz Intel Xeon(R) E5-2690 CPU and 128 GB of memory. It
takes 900 seconds for an epoch and 7.5 hours for the entire training. We generated a
total of 4,409 programs by inserting two new lines of code into randomly sampled
seed programs. Among the newly generated programs, 1,134 of them are syntax
valid C programs which mean the generation success rate was about 25.72%. In
the generated syntax invalid programs, we observed some common errors such as

“undeclared identifier” (2,509) which indicates that some variables are used before



they are defined, and also “expected expression” (1,823), which includes syntax errors
like unbalanced parenthesis exist. We want to improve the model to enhance the
generation success rate in our next step, though our machine is not powerful enough
to handle (1) more training data being feed in; (2) building of self-training cycles
based on reinforcement learning as state-of-the-art approaches. We would also like
to pipeline the current prototype with coverage analysis. More specifically, we will
analyze how is the percentage of code, paths, and branches coverages with the newly
generated programs leveraging static analysis. We will be interested in answering
the following research question: How can syntax-valid programs be automatically
generated for fuzzing compilers and will these newly generated programs efficiently
improve the testing coverage and detect unknown bugs?

In the first stage, we will train generative neural networks based on conventional
deep learning models, i.e. the sequence-to-sequence model, from a set of training data;
or based on a reinforcement learning framework, such as the AlphaGo Zero, which
trains itself through data and reward from a compilation environment. After training
the model within certain epochs, we started to generate new programs with this
fitted model. For program generation, we tried different generation strategies, such
as direct insert and replace. Because our target was to fuzz production compilers,
we aimed to generate programs that cover the most features of the C language or
BF language. Therefore, we also adopted some sampling methods to diversify the
generated program.

In the second stage, we fed the generated C programs or BF programs, either
syntactically correct or incorrect, to compilers in different optimization levels and log
the compiling messages. The message is a flag for (1) whether a generated program
is syntactically correct or (2) the generated program may have triggered an internal

compiler error (bug) of the specific compiler at a specific optimization level. In



addition to the compiling message, we logged the execution trace to provide coverage
information. In a nutshell, for this program generation task, we had three objectives:
to generate syntax valid programs, to improve code coverages, and to detect new
bugs. We performed deliberate studies on three related metrics, pass rate, coverage,

and bugs, for the three objectives.

1.4 Research Question

Our work is the first that works on grammar-based compiler fuzzing with a deep

learning framework. We have three main research questions:

o Can we build a continuous testing framework that automatically generates
syntactically correct programs based on deep neural networks for compiler

fuzzing based on observing existing syntactically correct programs?

o If there is no training data to rely on, how can a deep neural network be trained

to generate programs for compiler fuzzing based on reinforcement learning?

« What are the key factors how these key factors will affect the accuracy of
the generative model and fuzzing performance. How testing coverage (line,

function, branch) is increased with our proposed method?

To ansser these research questions, we conducted three research projects. To
answer the first question, we developed DEEPFUZZ to train a generative deep neural
network over training data of well-formed C program and use the trained model to
continuously produce new C programs. To answer the second and third question, we
conduct two studies: we developed ALPHAPROG and FuzzBoOST. ALPHAPROG is
a generative fuzzing framework that trains itself a deep neural network to producing
BF language programs at the character-level. It uses environment rewards from

compilation information from off-the-shelf compilers, i.e. BFC; FuzzBooOST is
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a mutational fuzzing framework based on a deep reinforcement learning system
as well. It predicts actions to choose from pre-defined mutation rules to mutate
seed C programs by adopting testing coverage information collected from runtime
information as the reward. The three studies helped us to better construct a neural
program synthesis framework for compiler fuzzing.

The rest of this thesis is organized as follows.

o We first review the related works about Compiler Testing, ML for Program
Synthesis, and Advanced ML for Program Synthesis in Chapter [2]

o We then report our study of DEEPFUZZ that uses a Sequence-to-Sequence
model to synthesize program for compiler fuzzing in Chapter [3. We present
a detailed case study on analyzing the pass rate of generating well-formed
programs and achieving the goal of fuzz testing, which requires a certain degree
of variation in the synthesized new programs. We analyzed the performance of
DeEPFUZZ with 3 types of sampling methods, as well as 3 types of generation
strategies. Consequently, DEEPFUZZ improved the testing efficacy with respect
to line, function, and branch coverage. In our preliminary study, we found
and reported 8 bugs in GCC, all of which have been actively addressed by

developers.

« Next, to solve the case when there are no/few training data, we report our
study ALPHAPROG in Chapter [ It is a generative fuzzing framework based
on reinforcement learning. A naive model was first provided and it evolves
with the rewards provided by the target compiler we are going to test. By
iterating the learning cycle, the model learns how to write valid programs and
generate programs that improve the testing efficacy. We analyzed the framework

with 3 different reward functions, and our study revealed the effectiveness of



ALPHAPROG for compiler testing. We also performed an in-depth diversity
analysis of the generated programs, which explained the improved testing
coverage of our target compiler. We reported two important bugs for this
production compiler, and they were confirmed and well-addressed by the project

owner.

o In addition, we extended the reinforcement learning framework into Fuzz-
BOOST to continuously produce C programs for fuzzing GCC in Chapter [5 It
is a mutational fuzzing framework. By adopting testing coverage information
collected from runtime information as the reward, we developed a learning
system with the state-of-the-art deep (-learning algorithm that optimizes this
reward. In this way, the fuzzing agent learns the actions to perform to fuzz a
seed program that achieves an overall goal of testing coverage improvement. We
have implemented this new approach and evidence showed that reinforcement
fuzzing can outperform baseline random fuzzing on production compilers. It
also showed that a pre-trained model can boost the fuzzing process for seed

programs with similar patterns.

o Then, similarities and differences among the three projects are discussed in
Chapter 6. We compare DEEPFUZzZ and FuzzBoOST in terms of the valid
rate of synthesized programs, since they are both fuzzers of C compilers; we
cannot compare the two in terms of coverage because FuzzBoosT focuses
on single seed mutations. We also discuss the models we chose in the three
projects, where we use encoder-decoder (RNN) for program generation as in
DeErPFUZZ and ALPHAPROG; and RNN embedding plus DNN for program

token-based mutations in FuzzBOOST.

o Finally, conclusions are presented in Chapter [7]



Chapter 2
Related Work

Our research seeks to detect more bugs in production compilers and improve the
testing coverage in the meantime. In this section, we review related works on compiler
testing, program synthesis and also discuss existing methods in program-related

usage of deep learning models.

2.1 Compiler Testing

Compilers are one of the most fundamental components of any computing system,
but studies have shown they to be buggy [84]. To assure the correctness of a compiler,
researchers have proposed different methods, most of which focus on verification and
testing.

In the past decade, compiler verification is an active area and has been discussed
widely [33]. Mainstream research focuses on formal verification [49] 51], and transla-
tion verification [73] [76]. The proposed method provides a fully certified compiler,
e.g., CompCert [50] which is proven to be correctly functioned. However, it does not
apply to production compilers, the code base of which is exceptionally large. It takes
more effort to compose the specifications for verifying such systems than building
a new one. Therefore, using testing techniques remains the dominant approach in

compiler validation [46, [47, 48|, 53]. Existing methods for compiler testing include
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man-made tests that cover most features of one syntax. However, it is laborious
and a practical way to reduce human labor is fuzz testing [7], which is the process
of finding security vulnerabilities by repeatedly executing a program with newly
generated inputs. There are three major methods to fuzz inputs: black box random
fuzzing [9, 101}, T03], white box constraint-based fuzzing [27], and grammar-based
fuzzing [25]. The first two methods are fully automated, while grammar-based fuzzing
requires human involvement, where grammar is composed according to rules.

Grammar-based fuzzing [22] uses an existing corpus of language grammars for
fuzzing. Grammar-based fuzzing requires an input grammar to specify the input
format of an application being tested. Despite the high effectiveness of grammar-
based fuzzing to synthesize complexly structured inputs, these grammars are typically
written by hand [98], which makes the process laborious, time-consuming, and error-
prone. In the scenario of compiler testing, one way to deploy the grammar-based
fuzzing is to encode the C grammar as rules for test case generation. However, in
practice, C11 [I7], the current standard of the C programming language, has 696 pages
of detailed specifications, which represents a hurdle for engineers when constructing
such a grammar-based engine. A few automation methods have been proposed
for grammar-based fuzzing to save human labor, including statistic-based [91],
mutation-based [39], and deep learning-based [18] [60]. Researchers utilized an
RNN-based model to encode program grammar and generate new well-formed C
programs for compiler fuzzing. In this paper, we describe how our method boosts
the generation process by using a deep neural network to predict the generation
based on an observation of self-generated programs and corresponding rewards from
the environment. This method makes the compiler testing work for cases where few
training data can be acquired, such as the BF language.

Mutation-based fuzzing uses an existing corpus of seed inputs for fuzzing. It
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generates new inputs by modifying the provided seeds. A well-known fuzzer that
is mutation-based is called AFL [I0I], which randomly mutates seed inputs and
incrementally adds new seeds to the set concerning defined heuristics. Several
boosting techniques have been proposed to improve the efficiency of mutation-based
fuzzing. AFLFast [8] boosts original AFL fuzzer by focusing on low-frequency paths
that allow the fuzzer to explore more paths with limited time. Skyfire [91] applies
grammar in existing seed inputs for fuzzing programs that take highly-structured
inputs. Kargen and Shahmehri [39] perform mutations on the machine code instead
of a well-formed input, which they can use the information about the input format
encoded in the generated program to produce high-coverage inputs. DeepFuzz [60]
utilized an RNN-based model to encode program grammar and generate new well-
formed C programs for compiler fuzzing. In this paper, our method boosts the
mutation process by using a deep neural network to predict the mutation based on

an observation of existing seed programs.

2.2 Program Synthesis

Program synthesis is one of the fundamental problems in artificial intelligence (AI)
which aims at synthesizing programs automatically that follow certain predefined
specifications. It can be traced back to Waldinger and Lee [90], where a theorem
prover was used to construct LISP programs based on a formal specification of
the input-output relation. Since formal specifications are often as complex as
writing the original program, many researchers have proposed different techniques to
achieve the same goal with simpler partial specifications in the form of input-output
examples [4], 83]. Rule-based synthesis approaches have been successful in pushing the
process further [54, [57, 58, 59, 62], which used rule-based systems to translate user

specifications in natural language into program commands. Meanwhile, DSL-based
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inductive synthesis has also been another milestone, with the most widely known
example being the FlashFill system in MS Excel [31]. However, such systems are
difficult to extend and need significant development from domain experts to provide
the pruning rules for supporting more efficient search. As a result, the use of machine
learning methods have been proposed based on Bayesian probabilistic models [52].
Researchers also proposed the inductive logic programming [71] to automatically
generate programs based on examples. In recent studies, inspired by the the success
of Neural Networks in other applications, differentiable controllers were made to
learn the behavior of programs by using gradient descent over a differentiable version
of traditional programming concepts such as memory addressing [29], manipulating
stacks [30, B8], and register machines [44]. However, their method of solving problems
is still not scalable because they learn a different model for each program, but which
is later tackled in Bunel’s work [10], where a single model is used for learning a large
number of programs.

Incorporating knowledge of target domain’s grammars to enforce syntactical
correctness has already proven useful to model arithmetic expressions, molecules [45],
and programs [75, 99]. These approaches define the model over the production rules
of the grammar. In our scenario, the only specification of the synthesized program is
syntactically correct. This specification is much looser than any previous program
synthesis problems in which the specifications are usually at the semantic level.
However, we have more challenges regarding how to generate more diverse programs
to cover the features in compilers and therefore increase the testing efficacy. Besides,
our framework will serve as a syntax guard for any program synthesis research where
manually constructed production rules can be replaced with an automatically trained

neural network.
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2.3 Program-related Advanced Machine Learning

Reinforcement learning is adopted in many sequential action prediction tasks after
its first success in the game of Go [82], and thus as the task of program synthesis.
Based on given specifications, Bunel et al. performed reinforcement learning on top
of a supervised model with an objective that explicitly maximizes the likelihood of
generating semantically correct programs [10]. There are also research projects that
target program semantics, such as Neurally Directed Program Search (NDPS) [89],
proposed for solving the challenging non-smooth optimization problem of finding a
programmatic policy with maximal reward. Overall, existing projects that adopt
deep reinforcement learning for semantic program synthesis focus on one semantic
goal with one synthesis task. Our objective is to generate source programs that are
well-formed but contain different syntactic features, which are similar to the work
from Bottinger et al. [9] that aims at PDF parser fuzzing. In our design, we consider
the improvement of testing coverage of compilers as the reward for reinforcement
learning.

Al-based software security and software analysis have been discussed over the
years [23| [72] 102]. Neural network-based models dominate a variety of applications,
and interest has grown tremendously regarding their use for program analysis [2, [74]
and synthesis |21} [55]. Recurrent neural networks especially Sequence-to-Sequence-
based models have been developed for learning language models of source code from
a large code corpus and then using these models for several applications, such as
learning natural coding conventions, code suggestions, auto-completion, and repairing
syntax errors [0, 32]. It has been proven efficient, especially when a large amount of
data is provided, in improving the system efficacy as well as saving human labor.
Additionally, RNN-based models are applied for grammar-based fuzzing [18], 2§]
which learns a generative model to produce PDF files to fuzz the PDF parser.
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Chapter 3
Program Synthesis based on S25
for Compiler Fuzzing

Compilers are among the most fundamental programming tools for building software.
However, production compilers remain buggy. Fuzz testing is often leveraged with
newly-generated or mutated inputs to find new bugs or security vulnerabilities. In
this study, we proposed a grammar-based fuzzing tool called DEEPFUZZ. Based
on a generative Sequence-to-Sequence model, which can be viewed as an implicit
representation of the language patterns for training data, DEEPFUZZ automatically
and continuously generates well-formed C programs. We use this set of new C
programs to fuzz off-the-shelf C compilers, e.g., GCC and Clang/LLVM. We present
a detailed case study to analyze the success rate and coverage improvement of the
generated C programs for fuzz testing. We analyze the performance of DEEPFUZZ
with three types of sampling methods as well as three types of generation strategies.
Consequently, DEEPFUZz improved the testing efficacy with respect to the line,
function, and branch coverage. We apply our DEEPFUZZ technique to test GCC
and Clang/LLVM. During our preliminary analysis, we found and reported 8 bugs
in GCC, all of which have been actively being addressed by developers.
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3.1 Problem

Compilers are among the most fundamental components of computation systems,
and they are part of the trusted computing base of our machine. But they contain
numerous bugs. GCC, as a long-lasting software released in 1987, provided a
standard compiler for most Unix-like operating systems, caught over 3,410 internal
bugs [98] from the day they were created. Even in a recent research study, 217
unknown bugs were detected, among which 119 were fixed [103] over a six-month
study. Similar situations apply to Java, Python and JavaScript, over thousands of
bugs are detected in widely used compilers, let alone the others. Compiler bugs
can result in unintended program executions and lead to catastrophic consequences
in security-sensitive applications. It may also hamper developersaAZ productivity
in debugging a piece of program when the root cause cannot be identified in the
applications or compilers. Therefore, improving compiler correctness is important.
However, validating compilers is not easy with the gradually enlarged code base: the
code base of todayaAZs GCC includes around 15 million of lines of code [84], which
is close to the entire Linux kernel, which is around 19 million lines of code.

It is critical to make compilers dependable. In the past decade, compiler verifica-
tion has been an important and active area for the verification grant challenge in
computing research [33]. Mainstream research focuses on formal verification [49, 51],
translation validation [73] [76] and random testing [46], 47, 48], 53]. The first two
categories try to provide certified compilers, e.g., CompCert [50], which made promis-
ing progress in this area. However, in practice, it is challenging to apply formal
techniques to fully verify a production compiler because it requires more effort to
compose the specifications than to build a compiler. Therefore, testing remains the
dominant approach in compiler validation.

Our work focuses on compiler testing. By loading programs covering different
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features to different production compilers turning on different levels of optimizations,
internal compiler errors (genuine bugs of the compiler) may be triggered during the
compilation, which results in a detailed error message indicating what and where
the error is. However, it is challenging to generate “good” programs to make testing
more efficient and build a continuous testing framework by automating this process.
Each test, including man-made ones, and existing methods, covers some features,
and it is common today to see larger and larger test suites for modern compilers.
This improves the testing coverage but it takes a lot of human effort to construct
these tests. Nevertheless, a practical way to reduce human labor for testing is fuzz
testing, or fuzzing.

Fuzzing [7] is a method used to find bugs or security vulnerabilities. A program
is repeatedly executing with automatically generated or modified inputs to detect
abnormal behaviors, such as program crashes. Main techniques for input fuzzing in
use today are black box random fuzzing [I01], white box constraint-based fuzzing [27],
and grammar-based fuzzing [22]. Black box and white box fuzzing are fully automatic
and have historically been proven to be effective in finding security vulnerabilities
in binary-format file parsers. By contrast, grammar-based fuzzing requires input
grammar specifying the input format of the application being tested, which is
typically written by hand. This process is laborious, time-consuming, and error-
prone. However, grammar-based fuzzing is the most effective fuzzing technique
known today for fuzzing applications with complexly structured input formats, e.g.,
compilers. In the scenario of compiler testing, one way to deploy the grammar-based
fuzzing is to encode the C grammar as rules for test case generation. However, in
practice, C11, the current standard of the C programming language, has 696 pages
of detailed specifications, which represents a hurdle for engineers when constructing

such a grammar-based engine.
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In this study, we considered the problem of automatically generating syntactically
valid inputs for grammar-based fuzzing with a generative recurrent neural network.
More specifically, we targeted training a generative neural network, which is an
implicit representation of “grammar”, or to be more precise, the language patterns,
for input data. We proposed to train a Sequence-to-Sequence model in a supervised
learning strategy leveraging the original test suites provided with production com-
pilers. At a high level, the Sequence-to-Sequence model consists of two recurrent
neural networks: the encoder RNN simply consumes the input source code without
making any prediction, while the decoder processes the target sentence and predicts
the next words. Originally, it was widely used for machine translation, which takes
in a sequence of the original language and generate the sequence in a target language
with the same semantics. It has also been applied to text generation. where feeding
in abundant paragraphs of Harry Potter results in the automatic generation of a
new paragraph that maintains the style of J.K. Rowling. Theoretically speaking,
by training the model on the original paragraphs, we implicitly encode the correct
spelling of words, valid syntaxes of sentences, and detailed styles of writing behaviors
into a generative model. The same idea can be applied to program synthesis, where
we only need to train a model to generate different syntactically valid programs on top
of a seed data set. For the training data set, we adopted the original GCC test suite,
which has more than 10,000 short programs that cover most of the features specified
in the C11 standard. In addition, the open-source projects, online coding systems,
students programming assignments are all good sources for grabbing syntax-valid
programs for training. On the training stage, we tune the parameters in the neural
network to encode the language patterns for C programs into the model, and based

on this, we will continuously generate new programs for compiler fuzzing.
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Contributions. Our work is the first to use a generative recurrent neural

network for grammar-based compiler fuzzing.

o First, the proposed framework is fully automatic. By training a Sequence-
to-Sequence model which can be viewed as an implicit representation of the
language patterns for training data, C syntax in our scenario, our framework

DeEPFUZZ will continuously provide new well-formed C programs.

o Second, we build a practical tool for fuzz testing off-the-shelf C compilers. We
conduct a detailed analysis regarding how key factors will affect the accuracy
of the generative model and fuzzing performance. The testing coverage (line,

function, branch) is increased with our proposed method.

o Third, we apply our DEEPFUZZ technique to test GCC and Clang/LLVM.
During our preliminary analysis, we found and reported 8 (will increase later)

real-world bugs. These bugs have been actively addressed by developers.

3.2 Overview

3.2.1 Sequence-to-Sequence Model

We build DEEPFUZZ on top of a Sequence-to-Sequence model, which implements
two recurrent neural networks (RNNs) for character-level sequences prediction. An
RNN is a neural network that consists of hidden states h and an optional output y.
It operates on a variable-length sequence, x = (x1, z9, ..., z7). At each step t, the

hidden state h( of the RNN is updated by

hiy = f(hg-1), 2e) (3.1)

where f is a non-linear activation function. An RNN can learn a probability distri-

bution over a sequence of characters to predict the next symbol. Therefore, at each
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timestep ¢, the output from the RNN is a conditional distribution p(x¢|zi_1, ..., z1).
For instance, in our case, upon a multinomial distribution of the next character, we

use a softmax activation function for the output

exp(w;h
p(xe; = e, ...,21) = (w; (t))

Z]K:l exp(w;hyy)

for all possible symbols j =1, ..., K, where w; are the rows of a weight matrix . By

combining these probabilities, we compute the probability of the sequence z using

=

p(x) = || p(xelzi-1, ...y 21). (3.3)

t=1

With the learned distribution, it is straightforward to generate a new sequence by
iteratively sampling new characters at each time step.

A Sequence-to-Sequence model consists of two RNNs, an encoder and a decoder.
The encoder learns to encode a variable-length sequence into a fixed-length vector
representation and the decoder will decode this fixed-length vector representation
into a variable-length sequence. It was originally proposed by Cho et al. [13] for
statistical machine translation. The encoder RNN reads each character of an input
sequence = while the hidden states of the RNN changes. After reading the end
of this sequence, the hidden state of the RNN is a summary ¢ of the whole input
sequence. Meanwhile, the decoder RNN is trained to generate the output sequence
by predicting the next character y; given the hidden state h;y. However, unlike a
pure RNN, both y; and hy are also conditioned on y;_; and the summary c of the

input sequence. In this case, to compute the hidden states of the decoder, we have
hay = f(hu-1y, Yi-1,0), (3.4)
and similarly, the condition distribution of the next character is

pWelyi—1, -1, ¢) = g(hwy, Y1, ©), (3.5)
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where f and g are activation functions. Overall, the two RNNs Encoder-Decoder are
jointly trained to generate a target sequence given an input sequence.

All RNNs have feedback loops in the recurrent layer. This design allows them to
maintain information in “memory” over time. However, it can be difficult to train
standard RNNs to learn long-term temporal dependencies, but which are common
in programs. This is because the gradient of the loss function decays exponentially
with time [I4]. Therefore, in our design, we adopt a variant of RNN, long short-term
memory (LSTM), specifically in our encoder and decoder. LSTM units include a
“memory cell” that can keep information in memory for long periods of time, in
which case long history information can be stored.

In previous studies, the Sequence-to-Sequence model has been trained to generate
syntactically correct PDF objects to fuzz a PDF parser [28]. The core idea behind this
work is that the source language syntax can be learned as a by-product of training on
string pairs. Shi [R1] investigated with an experiment that the Sequence-to-Sequence
model can learn both local and global syntactic information about source sentences.
This work lays a foundation for formal language synthesis with RNN. In our study, we
apply a similar idea for compiler fuzzing. During the training, we split the sequence
into multiple training sequences of a fixed size d. By cutting the sequences, we have
the i'" training sequence z; = sfi * d : (i + 1) * d], where sk : [] is the subsequence of
s between indices k and [. The output sequence for each training sequence is the
next character, i.e., y; = s[(i + 1) *d + 1]. We configure this training process to learn

a generative model over the set of training sequences.

3.2.2 Workflow

In general, we propose DEEPFUZZ for two main objectives. The first is to generate
new programs that follow legitimate grammars from a set of syntactically correct

programs. The major challenge comes from long sequence handling and language
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grammar representing. The second objective is to improve the compiler testing
efficacy. We target at improving the coverage and capturing more internal errors in
production compilers.ﬂ

Figure [3.1] shows the workflow of DEEPFUZz. There are two stages in the entire
workflow, Program Generation and Compiler Testing. We target on production
compilers such as GCC [26] and LLVM /Clang [15]. On the first stage, we train a
generative Sequence-to-Sequence model with collected data from the original man-
crafted compiler test suites. Before we feed the sequences into the training model,
we preprocess them to avoid noise data. We detail the preprocess step later in
Preprocessing. The model we are going to fit is a general Sequence-to-Sequence model
that has 2 layers with 512 hidden units for each layer. We compare our model
configuration with the state-of-the-art sequence generation studies in Fxperiment
Setup. For program generation, we try different generation strategies. We detail the
generation strategies and their rationale in Generation Strategy. Because our target
is to fuzz production compilers, we aim at generating programs that cover the most
features of the C language. Therefore, we also adopted some sampling methods as
detailed in Sampling Variants, to diversify the generated programs.

On the second stage, we feed the generated C programs, either syntactically correct
or incorrect, to the compilers in different optimization levels. In addition to the
compiling message, we log the execution trace to provide the coverage information.
We have three objectives: to generate syntax valid programs, to improve code
coverages, and to detect new bugs. We perform studies on three related metrics,

pass rate, coverage, and bugs, for the three objectives in Evaluation.

LAn internal compiler error, also abbreviated as ICE, is an error during the compilation not
due to the erroneous source code, but rather results from bugs of the compiler itself [16]. Usually,
it indicates inconsistencies being found by the compiler. Commonly, the compiler will output an
error message like the following: gcc: internal compiler error: Illegal instruction (program). Please
submit a full bug report, with preprocessed source if appropriate.
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3.3 Design

Before we set up the training stage, we first concatenate all the C programs in the
training set into a single file. By connecting these files, we have a large sequence of
characters. We then split the sequence into multiple training sequences of a fixed
size. The output sequence for each training sequence is the next character right next
to an input sequence. We configure this training process to learn a generative model
over the set of all training sequences. However, we notice that there are some noise
in the concatenated sequence which needs to be well-handled. In preprocessing, we
mainly take care of three issues: comment, whitespace, and macro.

Comment The comments are usually described in natural language which do not
follow the syntax of C programming language. Therefore, they are noise to us. We
first cut off all the comments, including line comments and block comments using
patterns in regular expression from the training data.

Whitespace According to the POSIX standard, whitespace characters include
common space, horizontal tab, vertical tab, carriage return, newline, and feed.
Observing the training dataset, we see white spaces are not unified formated. For
example, in some programs, there is a white space before and after the operator
but in the others, there is no such pattern; and in some programs, programmers use
a tab for indentation but in the others, the indentation is marked by four or two
spaces. To unify program style, we replaced all the white space characters with a
single space. In addition, we delete all the spaces before and after operators to make
a full expression more condensed.

Macro Macro is a unique feature of the C programming language. A macro is a
fragment of code which has been given a new name. Whenever the name is used, it is
always replaced by the contents of the macro. There are two kinds of macros. They

differ mostly in what they look like when they are used. Object-like macros resemble
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data objects when used, function-like macros resemble function calls. However, the
use of macro will cause problem for the training process as it brings noise. For
example, if we define a macro #define OnePlus 1+, we can write a = OnePlus 1 later
in the program but which does not follow C syntax. To avoid this situation, we

replace all the macro names with the contents as defined in the preprocessing.

3.3.1 Sampling Variants

We use the learnt Sequence-to-Sequence model to generate new C programs. With a
prefix sequence “int 7, for example, it is highly possible for the learnt distribution to
predict “main” to follow up. However, our target is to diversify original programs to
have more generated statements like “int foo = 1;” or “int foo = bar(1);”. Therefore,
we propose to adopt some sampling methods to sample the learnt distribution. We
describe the three sampling methods that we employ for generating new C programs
here: NoSample, Sample and SampleSpace.

NoSample In this sampling method, we directly rely on the learnt distribution to
greedily predict the best next character given a prefix. To be more specific, based
on the predicted possibility distribution of a next character, we always pick the one
with the highest possibility. This method will generate programs that are most likely
to be well-formed and consistent, but it will limits the number of different programs
that can be generated.

Sample To overcome the limitation of the NoSample method, given a prefix
sequence we propose to sample next character instead of picking the top predicted
one. This sampling method can help with generating a more diverse set of programs
as it can combine different patterns it learnt from the training dataset. However,
it will trigger the low pass rate problem, in another word, it is highly possible that

a newly generated program is syntactically invalid. To balance the diversity and
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well-formness, we set up a threshold in the sampling. That is to say, every time we
only sample among the most predicted characters.

SampleSpace This sampling method is a combination of Sample and NoSample.
In this method, we only sample the next character among all the predicted ones over
the threshold when the prefix sequence ends with a whitespace. We propose this
method because, we hope to predict a next character more consistent within the
prefix token but there can be more freedom when predicting the starting character
of next token. This method is expected to generate more well-formed C programs
compared with the Sample method and enhance the diversity compared with the

NoSample method.

3.3.2 Generation Strategy

To continuously fuzz production compilers, we use the learnt model to generate new
sequences of the C programming language. We treat programs in the original test
suites as seeds. Based on a sequence from the original program as the prefix, we
will generate new code. To make the most of the generated sequences, we propose
three generation strategies: GG1) we insert the newly generated code based on the
same prefix sequence at one place into the original well-formed programs; G2)
we generate new pieces of code, but they will be generated with prefix sequences
randomly picked from different locations in the original program and, then insert
back respectively; G3 we chop out the same number of lines (We use lines of code
instead of C syntactic objects such as statements since we treat C programs purely
as sequences of characters.) after the prefix sequence from the original program and
insert the newly generated new lines into the position of the sentences that have
been chopped out. Moreover, more generation strategies can be conveniently set up

within our framework but we perform a preliminary study with these three kinds.
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Table 3.1. Model configuration

Training Size # of Layer | # of Hidden Unit
Text Generation] 100 MB 1 (RNN) 1,500
Learn&Fuz 534 PDF Files 2 (LSTM) 128
DeepFuzz | 10,000 C Programs | 2 (LSTM) 512

3.4 Evaluation

3.4.1 Experiment Setup

To evaluate DEEPFUZz, we pipelined a prototyping workflow which trained a
Sequence-to-Sequence model based on a set of syntactically correct C programs.
Originally, the training data set, which contains 10,000 well-formed C programs, was
collected and sampled from the GCC test suites. We trained a Sequence-to-Sequence
model with 2 layers and there are 512 LSTM units per layer. We set the dropout
rate of 0.2.

We compare our configuration with others in Table [3.1I} In a previous study
on text generation [85], researchers trained a one-layer RNN with over 100 MB of
training data, and there are 1,500 hidden units in this one-layer model. For the closest
related work, Learn&Fuzz [28], which adopted a generative Sequence-to-Sequence
model to generate new PDF objects for PDF parser fuzzing, researchers trained a
model with two layers and in each of these layers, there are 128 hidden units. They
trained this model over a data set containing 534 well-formed PDF files. In our
study, we trained a model with two layers where there are 512 LSTM units in each
layer of the DEEPFUZZ framework. The training data set, which contains 10,000
syntactically correct C programs sampled from production compiler test suites, is
larger than any previous studies.

We trained the Sequence-to-Sequence model in a supervised setting. In order
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to analyze the training performance, we trained multiple models parameterized by
the number of passes, or epochs. An epoch is defined as an iteration of the learning
algorithm to go over the complete set of training data. We trained the model for 50
epochs on a server machine with 2.90GHz Intel Xeon(R) E5-2690 CPU and 128GB
memory. We kept a snapshot of the model over five different number of epochs: 10,
20, 30, 40, and 50. It took about 30 minutes to train an epoch and 25 hours for
the entire training period. For new program generation, as described in Design, we
used different sampling methods and various generation strategies to generate new
C programs. The newly-generated programs are still based on the original training
data; in another word, we used the original C programs as the seeds from which
we randomly picked prefix sequences. By inserting new lines or replacing lines with
new lines into a seed, we can get new programs. Because the newly-generated part
will introduce new identifiers, new branches, new functions, etc., it will make the
control-flow of the newly generated program more complicated and thus enhance the
testing efficacy.

In our study, we use three metrics to measure the effectiveness of DEEPFUZZ:

o Pass rate is the metric to measure the ratio of syntax valid program among
all of the newly generated C programs. The Sequence-to-Sequence model will
presumably encode language patterns of C into the neural network. Therefore,
pass rate will be a good indicator of how well this network is trained over the
input sequences. We use the command line of gcc to parse a newly generated
program and if no error is reported, it indicates the syntactical correctness of

this program.

» Coverage is a specific measurement for testing. Intuitively, the more code are
covered by the tests, the more certainty we assure the completeness of testing.

There are three kinds of coverage information we collect during our analysis:
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line coverage, function coverage, and branch coverage. Line coverage identifies
how many lines were encountered as a result of your tests; function coverage
identifies how many functions are covered by your test; and branch coverage
identifies how many branches in your program are covered. We use gcov, a

command line tool supported by gcc to collect the coverage information.

o Bug detection is the goal of testing. For compiler testing, by feeding more
programs to compilers in different optimization levels, it is expected to trigger
bugs like crashes or wrong code errors. As a self-protection mechanism, com-
pilers like GCC and Clang/LLVM have defined a special kind of error called
“internal compiler error”. This error indicates the problem of the compiler itself
during a normal parsing process and the error message will help us to find bugs

in compilers.

Post-processing: We tested a trial generation, where 4,409 program were generated
with no sampling applied and using the generation strategy G1, which is to insert
two new lines at one location of original seed programs. We analyzed results from
this trial: Among the newly generated programs, 1,134 of them are syntax valid C
programs which means the pass rate is only about 25.72%. To increase the pass rate,
we took a closer look at the generated programs. In the generated syntax invalid
programs, we observed a common error called Undeclared Identifier which indicates
that some identifiers are used before they are declared. There are 2,509 programs
are syntax invalid due to this problem. Therefore, we post-process the generated
program to handle this issue. We used a try-catch for this error and automatically
declare the undeclared identifiers at the beginning of this program. Although this
issue is handled in an ad-hoc way, but by adding this post-processing process, the

pass rate will be remarkably enhanced.
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3.4.2 Pass rate

Pass rate is the ratio of generated syntax valid programs over the complete set of
newly generated programs. It is an indicator of how well the C language patterns are
encoded in the proposed Sequence-to-Sequence model. In our evaluation, specifically,
we will analyze how the pass rate varies with the number of epochs of training,
different sampling methods, and different generation strategies.

Epoch. An epoch is defined as an iteration of the learning algorithm to go over
the complete set of the training data. We trained the model for a total of 50 epochs
and we took a snapshot of the model at different epochs: 10, 20, 30, 40, 50 and
applied the models for new C program generation. We tried the process for all the
three sampling methods under the generation strategy G1.

Result: Figure [3.2 shows the result.

o The pass rate increases with more training from 10 to 30 epochs. The drop of

pass rate after 30 epochs may be a result of overfitting.

o The best pass rate for all sampling methods is achieved at 30 epochs training.

The highest pass rate is 82.63%.

Sampling. We have adopted different sampling methods after training the model.
As we proposed, a sampling method decides how a new character is chosen based on
the predicted distribution and it can affect the pass rate. Therefore, we recorded the
pass rate of the newly generated 10,000 programs based on the seed programs under
different sampling methods: NoSample, Sample and SampleSpace.

Result: Figure shows the result. Note, this experiment is conducted under

the generation strategy G1.

o For all the sampling methods, the pass rate increases within 30 epochs of

training and after that, there is a small drop.
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Figure 3.2. Pass rate for different sampling methods

o Comparing the pass rate for all the three sampling methods, NoSample achieves
a better pass rate for every snapshot model than the other two methods Sample

and SampleSpace. The highest pass rate is 82.63%.

Generation Strategy. To generate new programs, we have introduced three
generation strategies: G1) insert two new lines at one location, G2) insert two new
lines at different locations, and G&) replace two new lines. The newly generated lines
are based on the prefix sequences selected in the seed programs. To analyze how
the pass rate changes with different generation strategies, we recorded the result of
performing program generation using a trained model after 30 epochs. In addition,
we used NoSample in this experiment.

Result: Table shows the result.

e The pass rate for the three generation strategies are 82.63%, 79.86%, and

73.23%, respectively. Comparing pass rate under these three different generation
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Table 3.2. Pass rate of 10,000 generated programs

Generation Pass
Strategy | rate (%)
G1 82.63
NoSample G2 79.86
G3 73.23

strategies, we conclude that G'I performs the best in terms of the pass rate

under NoSample.

o The result for G1 and G2 are similar in term of the pass rate which is higher
than the pass rate for G3. The reason is probably that chopping out lines will
introduce unbalanced statements, such as unclosed parenthesis, brackets, or

curly brackets.

3.4.3 Coverage

In addition to the pass rate, as described at the beginning of this section, because
we are conducting testing, coverage information is another important metric. In this
part, we analyzed how coverage improvements (line, function, branch) are achieved
with different sampling methods and generation strategies.

Sampling. To compare the coverage improvements, we recorded the coverage
information, including how many lines/functions/branches are covered with the
original seed test suite (10,000) plus the newly generated test suite (10,000) specifically
for GCC-5 and Clang-3. In addition, to analyze how sampling methods can influence
the coverage improvements, we record the coverage improvement percentages under
different sampling methods. We recorded the coverage improvement information in
Table |3.3| with the augmented test suite of 10,000 newly generated C programs from

DEEPFUZZ on GCC-5 and to compare the metrics, we also present it in Figure [3.3
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Table 3.3. Coverage improvements with 10,000 generated programs

Line | Function Branch

Coverage | Coverage | Coverage

NoSample 0.33% 0.08% 0.26%
G1 | Sample 0.38% 0.19% 0.86%
SampleSpace 0.36% 0.17% 0.82%
NoSample 5.41% 1.22% 3.12%
G2 | Sample 7.76% 2.13% 3.11%
SampleSpace 7.14% 2.44% 3.21%
NoSample 3.32% 0.87% 2.20%
G3 | Sample 6.87% 1.33% 2.68%
SampleSpace 6.23% 1.72% 2.97%

Result: The coverage improvement information is shown in Table [3.3| with the
augmented test suite of 10,000 newly generated C programs from DEEPFUZZ on

GCC-5 and to compare the metrics, we also present it in Figure [3.3]

o Among the three different sampling methods, Sample achieves the best per-
formance in terms of line, function and branch coverage improvements. For
example, under the generation strategy G2, the line coverage improvement for

NoSample, Sample and SampleSpace is 5.41%, 7.76% and 7.14%, respectively.

o The coverage improvement patterns for different generation strategies are
similar across different sampling methods. G2 is always the best and G1
is always the worst among the three. In another word, the performance of

sampling methods is slightly correlated with generation strategies.

Generation Strategy. In addition to the sampling methods, we are also interested
in how these three different coverages are improved under different generation

strategies.

Result: Figure shows how coverage improves using G1, G2, and GS5.

o Comparing the coverage improvements under the three different generation

33



strategies, G2, which is to insert two new lines at different locations, in most
cases, achieves the best performance in terms of the line, function and branch

coverage improvements.

o Comparing with sampling methods, the adoption of generation strategies
is a more influential factor for coverage improvement. For instance, under
SampleSpace, the function coverage improvement percentages for the three
generation strategies are 0.17%, 2.44% and 1.72%. The coverage improvement

increases 42 times after changing from G1 to G2.

e (G2 and G3 perform similarly in term of coverage improvement which is much

higher than G1.

Overall. To demonstrate how our tool performs on compiler fuzzing, we compared
DeEPFUZZ with a well-designed practical tool for compiler testing. Csmith [9§] is a
tool that can generate random C programs. To make a fair comparison, we recorded
the coverage improvements of Csmith and DEEPFUZZ by both augmenting the GCC
and LLVM test suites with 10,000 generated programs in Table [3.4]

Note that we use Sample as our sampling method and G2 as our generation
strategy when conducting this analysis. We also documented coverage improvements
during the process of program generation in Figure [£.5] It demonstrates how the
line, function, and branch coverages are improved with the increasing number of new
tests.

Result:

o Csmith improved the coverage less than 1% for all the cases while DEEPFUZZ
improves the coverage of line, function, and branch by 7.14%, 2.44%, and
3.21%, respectively. DEEPFUZZ achieves better coverage improvement than

Csmith.
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Table 3.4. Augmenting the GCC and LLVM test suites with 10,000 generated programs

Line | Function| Branch

Coverage | Coverage | Coverage

original 75.13% 82.23% 46.26%
Csmith 75.58% 82.41% 47.11%

Goc % change +0.45% | +0.18% | +0.85%
DEEPFUZZ 82.27% 84.76% 49.47%

% change +7.14% +2.44% +3.21%
absolute change | 423,514 +619| 416,884
original 74.54% 72.90% 59.22%
Csmith 74.69% 72.95% 59.48%

Clang % change +0.15% +0.05% +0.24%
DEEPFUZZ 79.89% 74.56% 66.79%

% change +5.35% +1.66% +7.57%
absolute change 423,661 42,456 426,960

o The performance of the coverage improvement pattern for DEEPFUZZ is similar

over GCC-5 and Clang-3.

3.4.4 New bugs

Using different generation strategies and sampling methods, based on the seed
programs from the GCC test suite, we can generate new programs. Because we aim
at compiler fuzzing, the number of bugs detected is an important indicator of the
efficacy of DEEPFUZZ. During our preliminary study, we caught & newly confirmed
GCC bugs and we will elaborate on two bugs that we detect with more details.
GCC Bug 84290: This is a bug we reported. DEEPFUZZ generate the two new
lines (line 5 and line 6), which triggered an internal compiler error of the built-in
function ___atomic_load_n. The error is triggered because that the first argument of
this function should be a pointer, but it points to an incomplete type. This error

is fixed and a new test (atomic-pr81231.c) is added to the latest test suite in GCC.
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This detected bug shows the importance of using the syntactically well-formed but

semantically nonsense tests for compiler testing.

1 double f () {
2 double r;
3
1

asm ("mov %S1,%8S0; mov %R1,%R0" : "=r" (r) : "i" (20));
asm ("mov %S1,%8S0; mov %R1,%R0" : "+1" (r) : "i' (20.));

___atomic_load_n ((enum E %) 0, 0);
6
7 return r;

s}

GCC Bug 85443: This is a bug we reported. DEEPFUZZ generates the two new
lines (line 5 and line 6), which introduced a new crash. The generated _Atomic
is a keyword for defining atomic types and the assignment on line 6 triggers the
segmentation fault. This is a newly confirmed bug on GCC-5 and has been fixed in
the latest version. This detected bug by DEEPFUZZ again shows the importance
of using the syntactically well-formed but semantically nonsense tests for compiler

testing.

1 char acDummy[0xf0] _ attribute_ ((__BELOW100__));
> unsigned short B100 ___ attribute_ ((__ BELOW100__ ));
3 unsigned short xp = &B100;

i unsigned short wData = 0x1234;

5 _ Atomic int i = 3;

6 int al = sizeof (i + 1);

7 void Do (void) {

s B100 = wData;

9 }
10 int main (void) {
11 xp = 0x9876;
12 Do ();
15 return (xp == 0x1234) 7 0: 1;
14
}
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3.5 Limitations

In this study, we have presented an automated fuzzing tool called DEEPFUZZ, that
continuously generates well-formed new C programs for stress-testing production

compilers. In this section, we present limitations of our existing work.

3.5.1 Model

Observing the generated programs, we noticed that many ill-formed generations
are caused by expected expressions. To be more specific, this error message denotes
the errors like unbalanced parenthesis, brackets, or curly brackets. We conclude
two main reasons that account for this problem: lack of training and loss of global
information.

For the first reason, the training data is abundant but it still lacks enough
repeated patterns in the current training dataset for training a good generative
model. The structure of statements that used often, e.g. assignments, can be
captured in our model precisely and completely but for those features appear very
seldom, our trained model might have already “forgotten”. We believe that by feeding
in more high-quality data, where different patterns or features distribute averagely,
the generation pass rate will be improved. In our future work, we can create a larger
training dataset by enumerating all the structures in the original test suites with
new variable or function names. For example, previously, we only have “swap(strl,
str2);” in the training dataset, but we can create more statements like “swap(str3,
strd);” or “swap(strb, str6);”. This enlarged training dataset will encode the structure
of “swap(*, *);” where * can be replaced by any declared variables, into our model.

On the other hand, because the generation is based on the prefix sequences, it
will lose some global information which are out of the scope of the prefix sequence.

For example, if we adopt G3 for the generation and it chops out the ending right
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curly bracket for a if statement. If our model does not predict a curly bracket to end,
this generated program is ill-formed. To handle this problem, we either increase the
length of the training sequence to ensure that enough information is captured, or we
can use some heuristics to help with model training. The former method may cause
less diversity in the generated program and the latter one requires the assistance of
static program analysis.

Additionally, our proposed method is based on a character-level Sequence-to-
Sequence model. We provide a sequence of characters for the current model which
requires a lot of effort in dealing with the token-level syntax. It hurts the training
scalability and pass rate as well. In C, there are less than 32 keywords and over 100
build-in functions. Both the pass rate and scalability will be increased if we perform

token-level sequence prediction over a Sequence-to-Sequence model.

3.5.2 Black-box Algorithm

In our study, the proposed program generation method is based on a Sequence-
to-Sequence model. Although our prototyping tool has achieved a considerable
performance in terms of pass rate, which indicates that our model has encoded the
language patterns of C in the training data very well, it cannot be viewed as a
representation for the entire C grammar. The trained Sequence-to-Sequence model is
a black box to us.

By reviewing existing literature, we find some methods to explain black-box
algorithms, e.g. Sequence-to-Sequence [3]. The most popular method to visualize
high-dimensional vectors is to project them into two-dimensional space using t-
SNE [66]. Li et al. [40] explored the syntactic behavior of an RNN-based sentiment
analyzer, including the compositionality of negation, intensification, and concessive
clauses, by plotting a 60-dimensional heat map of hidden unit values. Specifically, we

notice that researchers also analyzed whether the black-box model can learn source
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syntax after the training process [81]. They explain in their work that after training
the Sequence-to-Sequence model with natural language sequences, low-level syntax
characters like Part-of-Speech (POS) tags are encoded in the model. As a future
study, we can follow a similar method but focus on our domain, relying on which,

we can explain what syntax patterns of C are learnt by the model and what are lost.

3.5.3 Generation

In our study, in order to generate programs to achieve a higher pass rate, we only
generate two new lines of code and place them back into a seed program. From the
evaluation result, we draw the conclusion that the generation strategy is the most
influential factor in this compiler fuzzing task. Although we get a good result in
the fuzzing job which makes a remarkable improvement in coverage, it can perform
better.

Essentially, by merely modifying the control and data dependency of test programs
will increase the testing coverage for compilers quickly [103]. For our next step, we
can try to generate programs more progressively, e.g., generate more than two new
lines and insert them into more locations. We can conduct a comparative study
among different generation strategies and see how the difference can contribute to

testing coverage based upon our current setting.

3.6 Summary

Compiler testing is critical for assuring the fundamental correctness of computing
systems. Fuzzing is one of the mainstream technologies to assist with compiler
testing. In this study, we proposed an automatic grammar-based fuzzing tool called
DEEPFUZZ which learns a generative recurrent neural network that continuously

provides syntactically correct C programs to fuzz off-the-shelf compilers, GCC and
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Clang. We conducted a detailed study on analyzing how key factors, i.e. sampling
method and generation strategy, affect the accuracy of this generative model and how
different improvements of testing efficacy are achieved. DEEPFUZZ generated 82.63%
syntax valid programs and improved the testing efficacy in regards to line, function
and branch coverage. With the preliminary evaluation, we found and reported 8

bugs in GCC, all of which are actively addressed by developers.
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Chapter 4

Program Synthesis based on Re-
inforcement Learning for Com-
piler Fuzzing

Testing is widely used to assure software quality. However, automatic generation of
high-quality test suites is challenging, especially for software that takes in highly-
structured inputs, such as compilers. Compiler testing remains difficult, while a
substantial amount of research is focused on trying to generate programs that are
syntactically and semantically valid. However, they either depend on human-made
grammar or a large data set to learn a machine learning model to represent partial
language grammar. They both encounter the completeness problem which is a classic
puzzle in software testing. In this study, we propose a reinforcement learning-based
approach for program synthesis. A naive model was provided at the beginning, and it
evolves with the rewards provided by a target compiler that we are going to test. By
iterating the learning cycle, the model learns how to write valid programs and how
to generate programs that improve the testing efficacy. We integrated the proposed
method into a tool called ALPHAPROG. We analyzed the framework with four
different reward functions, and our study revealed the effectiveness of ALPHAPROG
for compiler testing. We performed an in-depth diversity analysis of the generated

programs, which explained the improved testing coverage of our target compiler.
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We reported two important bugs for this production compiler, and they have been

confirmed and well-addressed by the project owner.

4.1 Problem

Compilers are the most import components of computing systems. Although vast
research resources have been deployed to verify production compilers, they still
contain bugs, and their quality need improvements [84]. Different from application
bugs, errors in compilers are usually harder to find, which are not the first place
to put breakpoints when a developer tries to debug an unexpected behavior during
compilation. They are presumably correct for most application developers, though
a simple bug can be exploited for backdoors, which has been demonstrated by
researchers [20]. Therefore, it is critical to enforce the validity of compilers with
more advanced techniques.

Testing has been widely adopted [12} [79] to verify the correctness and robustness
of compilers, and random test case generation, fuzzing, has proven to be an effective
method of improving testing efficacies and detecting software bugs [11], 43], including
blackbox fuzzing and whitebox fuzzing. The main difference between fuzzing and
blackbox testing is that fuzzing focuses on program crashes and hangs, though the
testing is more general, which aims at detecting types of syntactical and semantic
errors with well-defined sanitizers. Although blackbox fuzzing is efficient for general
software, existing techniques are not applicable in for compiler testing that includes
highly-structured inputs.

To compile a program, there are a few stages, including lexical analysis, syntax
analysis, semantic analysis, intermediate code generation, optimization, and code
generation. If a generated test program is not valid, it will be rejected by exception

handling in the early stages, such as during the lexical analysis, and the early
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rejection will prevent it from testing a deeper site of compilers, which is in contrast to
software testing. To generate high-quality inputs in the context of compiler testing,
there are two mainstream tracks in existing blackbox fuzzing methods, including
mutation-based [68] and generation-based [97]. Mutational approaches start with
a few seed inputs and rely on simple mutations, such as bits flip, replace, insert,
and delete, depending on designed heuristics [I01]. The design rationale focuses on
exploring the entire input set by mutating local structures while maintaining global
structures from the seed set. Many of the mutated programs are valid in terms of
syntax and semantics since only a small part of originally valid programs are changed,
and it is more efficient for compiler testing where validity is of greater importance.
However, the effective ratio is not good enough, and accordingly, researchers have
proposed more rigorous generation engines that encodes formal language grammar for
whole program generation [98]. Typically, they conform both syntactic and semantic
rules for generating effective programs for compiler testing. However, it takes human
effort to construct the grammar-based generation engines, where only a subset of the
whole language grammars are encoded as claimed by most of the owners of fuzzing
engines in this type. To reduce human labor, researchers have proposed the use of
deep neural networks to learn language patterns from existing programs [I8] 28, [60].
Based on a sequence-to-sequence model, language patterns can be acquired in terms
of production rules and then used for new program generations. The neural networks
can capture most syntactical features and generate new tests, which are valid and
effective, while no human effort is required to construct the grammar. But their
successfulness depends on the chosen data set, which is used for fitting the model
and as the seeds. Without such a valid and diverse dataset, which is usually the test
suites built by programmers, the proposed machine-learning-based approach does

not work as expected.
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In this study, we addressed the problem of building a deep learning-based ap-
proach without using any datasets for learning. We developed a reinforcement
learning framework (deep Q-learning) to bootstrap the neural nets that encode
language patterns from scratch with the objective of returning messages and runtime
information during compilation. Starting from an artificial neural network with
random weights, we generated new programs within a limited time period. We
then asked any production compiler to compile such a program and collect both
the returning message and runtime information, i.e. execution traces, to provide a
reward, which is used to train the neural network. Gradually, with more programs
generated, the neural network will be trained to generate programs according to our
expectations. To achieve better performance regarding compiler testing efficacy, we
constructed coverage-guided reward functions to balance the program validity and
testing coverage improvement of target compilers. In such a manner, the trained
neural network will eventually learn to generate programs that are valid and diverse.

We built the proposed framework into a prototyping tool called ALPHAPROG.
We deployed ALPHAPROG on an esoteric language called BrainFuck [77] (we use
BF in later context), which is a Turing-complete programming language that only
contains eight instructions. We explored the effectiveness of ALPHAPROG by testing
an industrial-grade BF compiler called BFC [35]. We compared ALPHAPROG
results under four different reward functions for compiler fuzzing, and ALPHAPROG
performed well in terms of validity and testing efficacies. We also describe the
dynamics of generated programs and discuss the evolving process of the trained
model from the perspective of program diversity. During the analysis, we also detected
two important bugs of this target compiler that they were actively addressed by the

project owner in the new released version [56].
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Figure 4.1. The agent-environment interaction in a Markov decision process. Reprinted
Reinforcement learning: An introduction (p. 38), by Richard S. Sutton and Andrew G.
Barto, 2017, MIT press. Copyright 2014, 2015, 2016, 2017. Reprinted with permission. [87]

4.2 QOverview

The Markov Decision Process (MDP) is a discrete time stochastic control process
that conforms the Markov property, which states that “the future is independent
of the past given the present” [67]. The proposed program generation task can be
modeled as an MDP which sees a program as a string of characters in this language,
and in each step, a single character is generated. In this section, we elaborate how
we modeled the generation of BF code for compiler fuzzing as an MDP and how to

fit the constructed reinforcement learning framework.

4.2.1 Program Generation

MDP: A Markov decision process is a 4-tuple (S, A, P,, R,), where S is a finite set
of states, A is a finite set of actions and it is a transition between two states. And
for each different state s, the probability of taking action a is P,(s, s’), accordingly,
it receives an immediate reward R,(s,s’), where s is current state and s’ is the
state after action. Figure [4.1] shows the agent-environment interaction in a Markov
decision process. It shows one complete interaction between the agent and interaction.

Starting the iteration from the agent, one action A, € A(S;) will be selected and
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performed. Once the environment receives the current state S; and action A,
it responds with a numerical reward R;.; and finds the agent a new state S;;.
Therefore, the MDP agent will handle the decision making in a sequence that looks
like this:

So, Ao, R1,S1, A1, R, S2, As, Rs, ... (4.1)

If we see a program as a string of characters of such language, which can normally
be any ASCII characters, then program generation is the process of appending new
characters from an empty string to an EOF. The generation of an FOF may vary
and a simple implementation is set FOF at a fixed point. That is to say, we limit the
length of generated programs. According to literature [84], the test cases revealing
bugs for C compilers are typically small, with 80% of them being fewer than 45 lines
of code. In this case, our goal becomes generating a fixed length of strings compilers
used for execution. The core problem of MDP is to find a policy 7 for making action
decisions on a specific state s. That is an update of the probability matrix, P,(s, s),
which achieves the optimal reward R,(s, s’). In the fuzzing task, the probability for
each transition will be learning by neural networks to achieve an optimal reward
which combines two important metrics (1) the validity of generated programs and
(2) compiler testing coverage. The validity of generated strings will be confirmed
by returning messages of compilations and it demonstrates how the policy conforms
formal language production rules. Traditional production rules are token-based and
usually represented in their simplest form by shifting and reducing sentences such
that language can be parsed. In our scenario, the policy 7 is a redundant version of
production rules, and for each sentence and each next character, there exists a specific
rule to follow with. Moreover, for compiler testing coverage, it will be calculated
by analyzing the runtime information of each compilation. We will illustrate details

about reward functions in Section [4.3.2]
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BF Language: The BF language is an esoteric programming language [77]
that contains only eight instructions. Although the language constructs are simple,
the language is fully Turing-complete. The eight commands in BF are detailed
in Figure [4.2l All characters other than those in the table should be considered
comments and ignored. The basic idea behind BF language is memory manipulation
that provides an array of memory blocks initiated with a value of zero where you
can more the memory pointer forward or backward and increase or decrease memory
values. To input or output ASCII characters, it has specific symbols to put and get
and for writing more expressive code, it contains while and wend (which is short
for while end) to open and close loops. The BF language is context-free and it has
one-to-one mapping language structs to the C programming language which limits
the operations on arrays.

To generate code in the BF language, the MDP problem is concretized as
appending one of the eight instructions at each step. By limiting the program length
to 50 characters, the task becomes extending an empty string until it reaches a length
50 and by querying a production compiler of BF and recording execution traces
to calculate coverage information. We can draw conclusions regarding whether the
generated strings are of high quality in terms of compiler testing. To compile code

in the BF language, people build compilers that usually interpret the BF code into
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C language or LLVM IR for optimization. In this study, we targeted BFC [35], an
industrial-grade BF compiler. This compiler first parses the source code first into its
own IR called BF IR for optimization. It provides a range of peephole optimizations
including combining instructions, loop simplification, etc. The optimized BF IR
is then compiled to LLVM IR and then handled by the LLVM infrastructure to
generate 86 executables. During the compilation, it will report syntax errors such
as unclosing while-statement by showing no matching [. It will also report warnings
including “pointer out-of-bound” and “no-effect instructions”. This is the BF compiler

that mostly used on Github and is still actively under maintenance.

4.2.2 Reinforcement Learning

Traditionally, reinforcement learning describes the cycles of interaction between an
agent and an operational environment, and gradually, an optimal policy can be
learned by trial-and-error for sequential decision-making problems [5, R7]. Since
we modeled the program generation task as an MDP, we can apply reinforcement
learning frameworks to achieve the policy to generate BF programs character by
character. Therefore, we build an off-policy and model-free reinforcement learning
process that attempts to figure out the value functions directly from the interactions
with the environment. We use Temporal Difference Learning (TD-Learning) for our
policy learning task that at each step ¢, an estimate of reward is given to update
the value function where actions are chosen via selecting among the ones have the
highest value. One of the most important breakthroughs of reinforcement learning is
Q-learning, which is an off-policy TD control algrithm [95]. It estimates a state-action
value function for any provided policy that selects actions of the highest value. Taking
in a concrete pair of examples for the current state and a deterministic action, by

querying a value table, which is called Q-table, we can obtain an estimation of the
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Algorithm 1 Reinforcement Compiler Fuzzing
Output: action-value function Q-network
initialize (Q-network arbitrarily, randomly assign the weights
for for each episode e do do
encode state s from empty string
repeat
a < action for s derived by Q-network, e.g., e-greedy
s’ < append a new character on s
r < calculate reward from runtime traces
Q(s,a) + Q(s,a) + alr + ymax,Q(s',d") — Q(s,a)
s 8
until state s is a terminal state
end for

value. By comparing the values for each of these pairs, we can select the action that
has the highest value under such a state.

The usage of Q-learning for MDP with large state space is the Deep Q-Learning [8§].
Different from traditional @-learning, it replaces the Q-table with a deep neural
network. Accordingly, this neural network takes the input of a current state and
outputs a value for each action in the action space. The predicted action will be
selected with a softmaz function from the calculated value table. The detailed process
is shown in Algorithm [2] At the very beginning, we have an arbitrary neural network
with randomly assigned weights. When starting an episode, we encode a given state,
i.e. an empty string at first, into the Long-Short term memory (LSTM), which is a
variant of recursive neural network (RNN). It will encode variable-length strings into
a fixed-length vector that contains all the features of such strings. The Q-network
will be used for predicting values for each action at one step, that is, based on a
given string, a new character will be chosen to be appended to the original string.
As long as we have this new character being selected, we have the string after taking
action, and we calculate the reward for this state-action from runtime information.

This reward is used to update the Q-network, that is, the Q-network is improved
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round by round. We end an episode while a terminal state is achieved, and in our
preliminary design, we cut the episode by a fixed string length. We will detail the

model configuration, reward calculation as well as the training process in Section

4.3 Model

We proposed a reinforcement learning framework based on Q-learning to generate
the BF code for fuzzing BF compilers and we show the overall generation process
in Figure [4.3] In this framework, there are essentially two main components, the
fuzzing agent and the environment. The fuzzing agent will try to generate a new
program with best practice, i.e. the provided neural network, and the environment,
i.e. the compiler, will provide a scala reward for evaluating this synthesized program.
To generate a new program, that is a sequence of characters in our context, the
neural network will take in a base string x; for the prediction, character by character.
The generated program y; is a new string by appending a new character to the
base string. The quality of this new program will be evaluated and a scala reward
ry calculated with the message and execution trace from the compilation will be
provided for training the neural networks which are initialized with random weights
and will evolve gradually with more strings are generated and evaluated. In this
section, we will detail the model configuration we choose and elaborate on the reward

function we defined.

4.3.1 Action-State Value

In traditional Q-learning, there is an action-state value table, which we call Q-table,
for querying a value for any predicted actions given a current state. To improve
the model to be applicable for tasks with large state-action space, the Q-table is

replaced with the deep neural network.
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In our design, observing a current state, that is a string of characters, the action-
state value network should predict an action for the next step. The action is to
select a character from the BF code language to append. Valid BF code contains
eight different characters as described in Section We choose a variant of RNN,
the Long-Short-Term-Memory (LSTM) [34] for sequence embedding. Recurrent
neural networks are designed for sequence predictions for embedding variable-length
sequences into feature vectors. LSTM works better for longer sequences, such as
text in paragraphs, by remembering the cell state along the connected recurrent
neurons in one layer. We use a LSTM layer with 128 neurons for sequence embedding
connected with the two LSTM layers with 512 neurons respectively. The output
layer is a dense layer with 8 neurons activated by a linear function and it allows the

predicted action with the highest value to be output.

4.3.2 Reward

The reward function is key to reinforcement learning frameworks that indicates
the learning direction. In the compiler fuzzing task, there are two main goals: (a)
the generated programs should be valid; (b) the generated programs should be as
diverse as possible. For validity, the generated programs are supposed to be both
syntactically and semantically valid. There are a few stages during the compilation
process and if the test code is rejected during early stages, such as the syntax
analysis, the compilation will be terminated and the rest execution paths won’t be
tested. Thus, the validity of generated test programs is important for the fuzzing
task. In addition to validity, diversity is another goal we want to achieve from the
perspective of testing efficacies. If similar tests are generated, although they are
valid to be successfully compiled by target compilers, we can not acquire improved
testing coverage, thereby hinder the potential for ALPHAPROG to become a tool for

fuzz testing. In other words, we prefer more legal language patterns are explored
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and encoded into the neural networks other than periodically synthesizing test code
with same patterns.

In our design, we set up four different reward functions for the learning process
which demonstrates the two different learning goals and how to achieve the balance
in between. First, considering the syntactic and semantic validity, we set the reward

function as

0, length is less than limit
Ry = ¢ —1, compilation error (4.2)
1, compilation success

That for any intermediate programs during a generation episode, we give it a
reward of 0 until its length hits our limitation. To verify the validity of a synthesized
program, we use a production compiler to parse this program and then judge its
correctness based on the compilation messages.

Compilation Message: Usually, there are five kinds of compilation messages:
no errors or warning, which means the program is successfully compiled to executables
without any conflict to the hard or soft rules defined by the compiler; errors, which
means the program does not conform syntactic or semantic checks and hits the
exceptions that terminate the compilation process; internal errors, which means
the compiler does not conform pre-defined assertions during the compilation and it
indicates an error (bug) of the compiler; warnings, which means the compilation
succeeds but there are some soft rules have not been met, such as that the program
contains some meaningless sequences; and hangs, which means the compilation falls
into some infinite loops and it does not exit in a reasonable time. We consider
three cases among these compilation messages as the indicator for a valid program:
no errors or warning, warnings, and internal errors. Theoretically, this reward

function should guide the model to synthesize programs that are valid with least
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effort, such that, it can be repeatedly generating the same character all the time in
the synthesized program.

Second, considering the diversity of the synthesized program, we can use the
newly covered basic blocks on the compilation trace as the testing coverage. It shows
how many different language patterns have been covered in the generated testsuite.

Therefore we have,

Ry = B(T,)/ J B(T,), (4.3)

pel’

as the reward. In this new reward function, B(T)) is the number of newly tested
unique basic blocks of the execution trace for a program p and I’ C I is all the
programs generated so far in this test suite. It makes the reward a continuous scalar
value in the range of [0, 1], where 1 is achieved when all the basic block on the
compilation trace have not been tested forehead, and 0 is achieved when an existing
program is generated repeatedly or all the basic blocks on the compilation trace have
been executed so far.

Third, we adopt a combination of reward for validity and diversity of generated

programs. To achieve a balance, we have

0, length is less than limit

R3 ={ —1, compilation error (4.4)

1+ B(T,)/U,er B(T,), compilation success

as the reward function. For all the generated programs that are compiled successfully,
we use the portion of newly tested basic blocks as the reward. For the other two
cases, we still return reward 0 when the program length does not hit the limit, and
—1 when the program is not compilable. This reward function will be partially
continuous which is similar to an activation function. When a program is valid in

terms of syntax and semantics, the reward should be a value in the range of [1, 2],
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where 2 is achieved when all the basic blocks are new, and 1 is achieved when a valid
but repeated program is generated. This reward function motivates the program
generation towards the training purpose, that is to generate valid, and then diverse
programs for fuzzing target compilers.

Fourth, based on the previous reward, we add the control-flow complexity of
synthesized programs into consideration. According to Zhang et al’s study [103],
the increase of control-flow complexity of programs in the testsuites will remarkably
improve testing efficacies of corresponding compilers. Effective testing coverage can
be improved by 40% by simply switch the positions of variables in each program
within the GCC testsuite. In our design, we add the Cyclomatic Complexity of
synthesized programs into the reward function. It is one of the representations for
describing program control-flow complexity.

Cyclomatic Complexity This value is one of the software metrics to measure
the quantitative complexity of a target program by counting the number of linearly
independent paths [96]. The complexity M is defined as M = E — N + 2P, where E
is the number of edges, N is the number of nodes, and P is the number of connected
components. We calculate the complexity of each generated program and display the
value for all the valid programs generated from the training process. To calculate the
cyclomatic complexity, we first dump the converted LLVM IR from the compilation
process. Then we develop a plug-in to generate this number based on the control-flow
graphs from the LLVM optimization tool.

That we have,

Ry = Rs+ C(p)/max(C(p:pel)). (4.5)

In this function, C'(x) is the cyclomatic complexity of a program. We simply add
the cyclomatic complexity of a synthesized program divided by the max value we

get till now in the previous reward function R3. In other words, if the synthesized
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program does not hit the length limit, we give it a reward of 0 and if it is not valid,
we give it reward —1. Otherwise, the reward will be a combination of program
validity, testing coverage, and program control-flow complexity. When a program
is valid within the compilation process, it will be given a reward in the range of
[1, 3], where 3, the max value, is achieved when all the running basic blocks are new
and it has the most cyclomatic complexity of synthesized programs till now. This
reward function motivates the program generation towards our training purposes as
well, which is to generate both valid and diverse programs. In addition, it takes the

program complexity into account which indirectly improve the testing coverage.

4.3.3 Training

During the training stage, we bootstrap the deep neural network for program
generation that takes in as input a current program x € S(x), the action a that
generated x from a previous state 2/, the reward r € [—1, 2] that is calculated based
on compilation, and an original Q-network. On a given state, this Q-network predicts
the expected rewards for all defined actions simultaneously. We update the Q-network
to adapt the predicted value Q(xy, a;) according to the target r + ymaz,Q(x; + 1, a)
by minimizing the loss of the deviation in between. For all actions in the action
space other than the predicted one, they are updated by zero loss. The convergence
rate of the Q-network is determined by the hyper-parameters, i.e. the learning rate
of stochastic gradient descent during back propagation as well as the choice of 7,
which is a discounted rate between 0 and 1. A value closer to 1 indicates a goal
that is targeted on long-term reward while a value closer to 0 means the model
is more greedy. We adopt the e-greedy method in the training process to balance
exploration and exploitation, that with probability €, our model will choose a random
action and with probability 1 — € it will follow the prediction from a neural network.

In the implementation, we make the value for € decaying, that at earlier stages of
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training, the chance to choose a random action is higher but the probability goes
down proportionally to the number of predictions. It indicates we gradually rely on

the trained neural network other than based on random guesses to explore.

4.4 Experiment

We propose a reinforcement learning framework to generate BF programs for fuzz
testing BF compilers. To evaluate our prototyping tool ALPHAPROG, we perform
studies on training the model towards the two different goals by setting reward
functions as described in Section ??. We will log the valid rate and testing coverage
improvement during the learning process. The analysis will confirm our guess on
the leading role of the two reward functions. To demonstrate the testing ability, we
compare our tool with random fuzzing with 30,000 newly generated programs, in
terms of testing efficacy. To elaborate its effectiveness on generating more diverse
programs, we also study the generated programs to explain the evolving process of
the training model. In this section, we will report the detailed implementation of

ALPHAPROG, and will also discuss the experiments we conducted.

4.4.1 Implementation

We build ALPHAPROG by applying an existing framework of binary instrumentation
and neural network training. The core framework of the deep Q-learning module is
implemented in Python 3.6. In our implementation, the program execution trace
is generated by Pin [65], a widely-used dynamic binary instrumentation tool. We
develop a plug-in of Pin to log the executed instructions. Additionally, we develop
another coverage analysis tool based on the execution trace to report all the basic
block touched so far. It will also report whether and the number of new basic

blocks are covered by a certain new program in the compiler code. Additionally,
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Table 4.1. Valid rate with different rewards
# of Test (K) 5 10 15 20 25 30
Reward 1 (%) | 170 180 210 1000 1000 1000
Reward 2 (%) | 16 19 41 182 235 221
Reward 3 (%) | 21 48 102 312 479 431
Reward 4 (%) | 21 48 102 312 479 431

our environment will also log and report abnormal crashes, memory leaks or failing
assertions of compilers with the assistance of internal errors messages.

The exploration, exploitation trade-off is a dilemma that we frequently face in
reinforcement learning. On the decision-making process, exploitation means the
model will make the best decision on a given current state and exploration aims at
gathering more information. In our program generation problem, exploitation is to
take advantage of a trained model to generate sequences that conforms program
grammar rules as much as possible. And exploration means the fuzzing agent will
randomly choose a character to append and it allows the generated sequences to
vary. In the implementation, the trade-off between exploitation and exploration is
configured by a hyper-parameter €, where € is the possibility that the fuzzing agent
takes a randomly selected action rather than taking the action that to maximize
reward. And to achieve a balance, we take the epsilon-greedy strategy, that € is a
percentage of the time. In this design, the fuzzing agent will prefer exploration at
first and decrease the possibility of exploration over time. It mimics the general
learning process that at the beginning, the model will try to explore and it will help
us to generate more diverse data for the model to learn from. And with the model
becoming more matured, our design allows the generation to rely on the trained
model. If the language patterns are successfully encoded, the generated programs
will be mostly valid, or conform the compiler’s grammar.

Our Q-learning module is implemented in Tensorflow [I] using a LSTM layer
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for sequence embedding that is connected with a 2-layer encoder-decoder network.
The initialized weights are randomly and uniformly distributed within w; € [0, 0.1].
We choose a discounted rate v = 1 to address long-term goal and a learning rate
a = 0.0001 for the gradient descent optimizer. We assign €,,,, = 1 and €,,;,, = 0.01
with a decaying value of (€00 — €min)/100000 after each prediction. Therefore, the
model stops exploration after episode 20, 000. We will open source our prototyping

tool ALPHAPROG for public dissemination after the paper is accepted.

4.4.2 Validity

Since our first goal is to generate valid programs, we plan to evaluate the valid rate
of the generated programs during the training process. We compare our proposed
method with four different reward functions. The four different rewards set up two
different goals for the program generation: for Reward 1, it only evaluates the validity
of programs while for Reward 2, it targets on testing coverage and for Reward 3, it
combines validity with testing coverage, lastly for Reward 4, it combines validity
with testing coverage and program complexity as well. We report the number of
valid program numbers every 1,000 generated programs in Figure 4.4 and Table [4.1
Reward 1
Reward 1 demonstrates the learning towards generating only valid programs. From
the Figure [£.4] we may find that, with the increasing number of programs generated,
the valid rate grows fast and by 20,000 generated programs, the valid rate reaches
100%. From the generation result, we may find that, once the easiest way to generate

a valid program is guessed by a random generation, i.e. or »»» the network

munn
converges quickly to this point and stops learning anything. The model trained
by this reward function achieves the most ratio of valid programs in the synthesis

procedure. It is similar to the human learning process, that repetitive actions are
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Figure 4.4. Valid rate

easy to remember. We also tried to change the length limit to 80 and 100, the
learning process is as fast as when we set the length limit to 50.
Reward 2

Reward 2 demonstrates the learning towards generating diverse programs for improv-
ing testing coverage for a target compiler. Without balancing with syntactic and
semantic validity, with this reward, we anticipate more diverse programs patterns
will be generated but less of them should be valid. From the results in Figure [4.4] we
may find that the valid rate stays the lowest for almost all the time which means the
generation engine has a low efficiency to learning writing a valid program through the
reward on pure coverage. Theoretically, if more are explored on a limited search space,
there are chances that the model will learn validity through pure coverage reward

since compilation execution traces should be longer for valid programs compared
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with those illegal ones. However, due in part to the large search space which leads
to less probability to randomly generate valid programs and the positive training
samples are far fewer than negative samples. In this case, our model will not be able
to efficiently learn any generation strategies out from the training samples.
Reward 3

Reward 3 sets up the goal of combining validity and diversity. In a high-level, to
generate valid programs and diverse programs are two opposite goals. To generate
valid programs, the model only needs to know one simple way that fits language
grammar. For example, in the experiment of using Reward 1, the model only learns
that by appending , to whatever prefix, it can generate valid programs out of it.
However, if the goal becomes generating diverse programs, different characters should
be tried which makes validity easy to be broken. The model trained by this reward
function achieves the second place in the ratio of valid programs in the synthesis
procedure. From Figure [£.4] we may find that the valid rate goes up and down
periodically. But from a larger scale, the overall valid rate is increasing and achieves
a valid rate approximate to 90% at the final stage. By observing generation results,
we find that generating language patterns evolve periodically. For example, the first
time a valid program with the local pattern [>..] is generated, testing coverage is
improved and a relatively high reward is given. But next time when another program
is generated with this pattern, testing coverage is not improved any more which
leads to a relatively low reward. That encourages the model to try new language
patterns while remembering those testified. In addition, the different combinations
of learned language patterns also contribute a lot for improving testing coverages as
well. We also notice that after trying a new language pattern which fails the validity
check, in the next a few episodes, the model will conservatively choose an existing

language pattern to generate. We see this process similar as a human cognitive
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Table 4.2. Coverage improvement with different rewards

# of Test (K) | 5 10 15 20 25 30
Reward 1 | 39,000 46,000 47000 47000 47000 47000
Reward 2 | 57,000 59,000 60,000 62,000 69,000 71,000
Reward 3 | 64,000 78,000 84,000 84,500 87,000 87,500
Reward 4 | 64,000 78,000 84,000 84,500 87,000 87,500

learning process as well: the learning process is like a spiral which is not improving
all the time, especially when the learning tasks are challenging with multiple goals.
Reward 4
Reward 4 sets up the goal of adding program control-flow complexity together with
the synthesis validity and diversity. By studying related studies, we know that
the control-flow complexity of programs in testsuites is one of the most important
factors that improve testing efficacies for compilers. We anticipate the add-on of this
factor into the reward function will help us to improve the testing coverage of target
compilers while not hindering the program validity that much. From Figure we
may find that the model trained by this reward function achieves the third place
in the ratio of valid programs in the synthesis procedure. The improved pattern is
very similar to the pattern under Reward 3 which periodically goes up and down
along the way but eventually achieves a valid rate about 80%. The add-on of this
value hinders the valid rate a little bit from the model trained by purely relying on
coverage. We interpret this as that the goal of synthesizing more complex code does
not 100% align with the goal of improving testing coverage. And it is an opposite
goal to synthesizing more valid programs as well. Similar to the human learning
process, if the learning goals are not 100% aligned, the learning process will be less

efficient that may lead to an opposite effect to any one or more of the learning goals.
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Figure 4.5. Coverage improvement with the new tests generated

4.4.3 Testing Coverage

Coverage improvement is the most important metric for software testing. Tradi-
tionally, it denotes the overall lines/branches/paths in target software being visited
with certain testcases. In the design of ALPHAPROG, to improve the performance
in this end-to-end learning process, we adopt an approximation to describe the
overall testing coverage, that is the accumulated number of unique basic blocks being
executed with the generated new programs (new testsuite). A basic block of an
execution trace is a straight-line code sequence with no branches except for the entry
and exit point in compiler constructions. To capture the overall number of unique
basic blocks, we first capture the unique basic blocks B(T),) with respect to each
execution trace T,, and then calculate a store of accumulated unique basic blocks

number B(I) by union the new basic blocks on current trace with existing ones
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that are visited before B(I’). In our implementation, we adopt Pintool to log the
execution trace of the program compilation, and apply our self-developed plug-in
to generate the set of unique basic blocks. We made this plug-in available together
with the open-sourced project.

In the experiments, we logged the accumulated testing coverage for the four
different rewards we adopted in the framework as well as corresponding scores for
each episode. We compare the four coverage improvements and draw conclusions on
applying the new reward to balance between the validity and testing efficacy. We
show the results in Figure [4.5 and Table 4.2}

Reward 1
The blue line shows the accumulated compiler testing coverage (number of unique
blocks tested) by generating programs under Reward 1. With this reward, we may
find the coverage improves drastically at earlier stages of training. But it stops
growing since episode 11,000. In the corresponding figure that shows the validity
distribution, we also noticed that the valid rate achieves 100% since episode 11, 000
which is very close to the converging point of coverage. It is because our model
finally converges at the point that the model keeps producing , or > for every
action. Although the generated programs are 100% valid, they do not improve the
testing coverage anymore. This result confirms what we get from the validity test
experiment.

Reward 2
The red line shows the accumulated compiler testing coverage by generating programs
under Reward 2. With this reward, we may find that coverage improves also
drastically but slower than the other two cases at earlier stages of training. It still
slowly grows after the improvement stops with Reward 1 but the pace is not as fast as

the improvement under Reward 3. The improvement goes on a little slower than the
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coverage improvement under Reward 3. In the corresponding figure that shows the
valid rate, although, under Reward 2, our model scarcely generates valid programs,
these generated one is inspired to be diverse to hit different parts inside the target
compiler which eventually improves the testing coverage with lower efficiency.

Reward 3
The green line shows the accumulated compiler testing coverage by generating
programs under Reward 3. With this reward, we may find that coverage improves
the most drastically at earlier stages and it keeps going high later on until the
second-highest testing coverage is achieved eventually. We may also notice that the
coverage improves periodically. In the corresponding figure that shows the valid rate,
we also observe the regularity of increasing and decreasing wave. In other words, the
model is trying to generate valid programs, because the least reward it can get is 1.
But it periodically tries to generating some new patterns, usually a combination of
existing patterns. In this case, the generated programs can be valid and diverse at
the same time.

Reward 4
The orange line shows the accumulated compiler testing coverage by generating
programs under Reward 4. With this reward, we may find that the coverage improves
as drastically as the synthesis under model trained using Reward 3 at earlier learning
stages. The coverage keeps increasing until the highest value is achieved among the
4 designed reward functions. Although the final program valid rate under Reward 4
is lower than those under Reward 1 and Reward 3, but the testing coverage beats
those two coverages. To compare testing coverages under Reward 1 and Reward 4,
the reason for the better latter case is obvious: the model is trained to achieve better
coverage under Reward 4 but not Reward 1. However, to compare testing coverages

under Reward 3 and Reward 4, the reason for explaining the higher value under
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Reward 4 is more complex. We may interpret it as the side effect of the learning
goal of program control-flow complexity. On the one hand, the higher control-flow
complexity is a more direct and instant reward to improve the testing coverage. It
will trigger the fuzzing agent to generate programs that require more optimizations
in the compilation process. On the other hand, it sets up the goal of synthesizing
complex program in every episode which is not the goal under Reward 3. Under
Reward 3, to improve testing coverage, the fuzzing agent needs to learn new language
patterns but under Reward 4, the fuzzing agent needs to additionally learn how to
combine the newly learned language patterns in an efficient way because the entire

sequence length is limited.

4.4.4 Diversity

We also report the growing traces of control-flow dependencies of the generated
programs. In existing studies, researchers developed tools that improved compiler
testing efficacies by generating programs with more complex control-flow dependen-
cies [103]. This research indicates the proportional relationship between testcases’
control-flow complexity and compilers’ testing coverage with limited language pat-
terns. In our experiments described in Section [£.4.3], the results reveal improvements
in testing efficacies based on program generation under the three different rewards.
In this section, we will explain these improvements from the perspective of generated
programs, especially the control-flow complexity of these programs. It also shows a
dynamic balance is achieved while balancing the program validity and diversity.
Reward 1

The cyclomatic complexities for programs generated by ALPHAPROG under Reward
1 scale from 2 to 52, that has an overall median value at 2, which is the lowest among
the four different rewards. The value goes up and down until finally stops at a value

at 4. It is because the model was trained to synthesize a single same BF program
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Table 4.3. Cyclomatic complexity with different rewards
Min Max Median

Reward 1 2 52 4
Reward 2 2 47 11
Reward 3 2 52 11
Reward 4 2 52 18

that is using the character , all the time. We may conclude that the learning goal is
achieved, which is to synthesize valid programs, in the easiest way. The generation
engine starts with random guesses and after some positive samples are generated, it
tries to reduce the effort for repeating partial language patterns until finally, it finds
a way to always repeat a same character.

Reward 2
Under Reward 2, the cyclomatic complexities for all the generated programs scale
from 2 to 47. The overall median is 11 which is higher than that under Reward 1
and the same as that under Reward 3. Because we can only calculate the cyclomatic
complexities for valid programs, that are compiled successfully by BFC, therefore, we
get fewer data points because we have fewer valid programs. In general, we may find
a gradually improved trend of program cyclomatic complexities. We may conclude
that the learning goal is also achieved, which is to synthesize diverse programs. Here,
we only measure one ax in program diversity. The generation engine also starts with
random guesses but different from the case of Reward 1, the model was trained to
generate a different combination of existing patterns. Theoretically speaking, we may
extend the learning cycles until more language patterns are learned and eventually
get an artificial network closer to represent all the rules inside the target compiler.

Reward 3

Under Reward 3, the cyclomatic complexities for all the generated programs scale
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from 2 to 52. The overall median is 11 which is the same as that under Reward
2 and higher than that of Reward 1. In this case, we get a few more data points
compared with the experiment under Reward 2 because more valid programs are
generated. The cyclomatic complexities also gradually trending high across the
learning process and which has a steeper incline. We may conclude that the learning
goal is achieved, which is to synthesize both valid and diverse programs. The reason
for the steeper incline of program complexity may due in part to the higher learning
efficiency. Because more valid programs are generated and the number of positive
training samples is much more than that under Reward 2, the model has more data
to learn from. Therefore, we claim that we may utilize the framework under Reward
3 to continuously generate new programs for compiler fuzzing.
Reward 4

Under Reward 4, the cyclomatic complexities for all the generated programs scale
from 2 to 52. The overall median is 18 which is the highest value among the
cyclomatic complexities of programs under the four different reward functions. Since
this value is only measured for programs that are valid, it is skewed with the valid
rate. From the comparison of cyclomatic complexities between Reward 2 and Reward
3, we may summarize that the higher valid rate will lead to more positive learning
samples, thereby improves the learning efficiency. In other words, the learning goal
will be more effectively achieved. But the valid rate is lower under Reward 4 than
under Reward 3. Although, the positive learning samples are fewer under Reward
4, we still get higher cyclomatic complexities. It is because we set the program
complexity in the reward function. From another perspective, we may conclude, the
most effective way to improve a measurement in reinforcement learning is to directly
add this value into the reward function. We may also conclude that the learning

goal is achieved the best under Reward 4.
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Table 4.4. Synthesis examples

Episode | CC Program

101 2 [+, <>++[>..],-+<+[,]1-,[<] .<=-[0,>,[>. <[+]1]1+>«]
1786 11 L. = [KI>+, 4=, =.,1,1.1> ,+[>]>. +. .+,
5096 32 <—+[. <, [.,-] +]> —.+++<++=->-, [>.,+,] -<- -[]
10342 39 —<[>.<.<.><,]<<[<.-. ] -,[-<++-[1,. I»+[,«]

4.4.4.1 Synthesis Examples

To demonstrate how the control-flow complexity of synthesized programs grows, we
show four cases that generated during different episodes using the model under Reward
4. The synthesized programs are displayed in Table and their corresponding
control-flow graphs are shown in Figure 4.6l We draw the abstracted control-flow
graphs for them based on the control-flow graphs generated from the LLVM machine-
independent optimizer. The original control-flow graphs from the LLVM tool are
shown in Figure [£.7] Figure [4.8] Figure 4.9, and Figure 4.10, LLVM represents
programs as sequences of instructions in bytecodes and each block in Figure is
a basic block. For each control-flow graph, we mark the init block in dark. The
cyclomatic complexities for the example programs are also shown in Table [4.4, We
may find that, with the learning goes on, the fuzzing agent learned to synthesize
more complex programs which have higher cyclomatic complexities. We display the

original control-flow graphs from the LLVM tool for the program examples.
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init:
br label %beginning

'

beginning:
ret 132 0

CFG for 'main' function

Figure 4.7. Control-flow graph of synthesized programs (1)
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init:

%0 = call i32 @write(i32 1, i8* getelementptr inbounds ([1 x i8], [1 x i8]*
... @known_outputs, i32 0,i32 0),i32 1)

%cells = call i8* @malloc(i32 100000)

%offset_cell_ptr = getelementptr i8, i8* %cells, 32 0

call void @llvm.memset.p0i8.132(i8* align 1 %offset_cell_ptr, i8 0,132

%cell_index_ptr = alloca 132
store 132 1, i32* %cell_index_ptr
br label %after_init

beginning:

Yocell_index = load i32, i32* %cell_index_ptr

%onew_cell_index = add i32 %cell_index, 1

store i32 %onew_cell_index, i32* %cell_index_ptr

%cell_index1 = load 132, i32* %cell_index_ptr

Ycurrent_cell_ptr = getelementptr i8, i8* %cells, i32 %cell_index1
%ocell_value = load i8, i8* %current_cell_ptr

%cell_val_as_char = sext i8 %cell_value to i32

%] = call 132 @putchar(i32 %cell_val_as_char)

br label %after_init

... 100000, i1 true)

.

after_init:

Yoinput_char = call i32 @getchar()

br label %loop_header

Yocell_index2 = load 132, i32* %cell_index_ptr
Yocurrent_cell_ptr3 = getelementptr i8, i8* %cells, i32 %cell_index2

Joinput_byte = trunc i32 %input_char to i8

store i8 %input_byte, i8* %current_cell_ptr3

9ocell_index4 = load 132, i32* %cell_index_ptr

%eoffset_cell_index = add 32 %cell_index4, 0

Yocurrent_cell_ptr5 = getelementptr i8, i8* %cells, i32 %offset_cell_index
Yocell _value6 = load i8, i8* %current_cell_ptr5

%new_cell_value = add i8 %cell_value6, 1

store 18 %new_cell_value, i8* %current_cell_ptr5

!

loop_header:

Yocell_index7 = load i32, i32* %cell_index_ptr

Yocurrent_cell_ptr8 = getelementptr i8, i8* %cells, 132 %cell_index7
Yocell_value9 = load i8, i8* %current_cell_ptr8
ocell_value_is_zero = icmp eq i8 0, %cell_value9

br il %cell_value_is_zero, label %loop_after, label %loop_body

F

—

loop_after:
Yocell_index12 = load i32,132* %cell_index_ptr

%new_cell_index13 = add i32 %cell_index12, 1

store 132 %new_cell_index13, i32* %cell_index_ptr

Yocell_index 14 = load 132, i32* %cell_index_ptr

Yocurrent_cell_ptrl5 = getelementptr i8, i8* %cells, i32 %cell_index14
Yocell_valuel6 = load i8, i8* %current_cell_ptr15
Y%cell_val_as_char17 = sext i8 %cell_valuel6 to i32

%?2 = call i32 @putchar(i32 %cell_val_as_char17)

Yocell_index 18 = load i32,132* %cell_index_ptr

%offset_cell_index19 = add i32 %cell_index18, 0

Yocurrent_cell_ptr20 = getelementptr i8, i8* %cells, 32 %offset_cell_index19
Yocell _value21 = load i8, i8* %current_cell_ptr20

%new_cell_value22 = add i8 %cell_value21, 1

store i8 %new_cell_value22, i8* %current_cell_ptr20

Yocell_index23 = load 132, i32* %cell_index_ptr

9ocurrent_cell_ptr24 = getelementptr i8, i8* %cells, i32 %cell_index23
9ocell_value25 = load i8, i8* %current_cell_ptr24
%cell_val_as_char26 = sext i8 %cell_value25 to i32

%3 = call i32 @putchar(i32 %cell_val_as_char26)

Yocell_index27 = load i32,132* %cell_index_ptr

Yocurrent_cell_ptr28 = getelementptr i8, i8* %cells, i32 %cell_index27
Yocell _value29 = load i8, i8* %current_cell_ptr28
%cell_val_as_char30 = sext i8 %cell_value29 to i32

%4 = call 132 @putchar(i32 %cell_val_as_char30)

Yocell_index31 = load 132, i32* %cell_index_ptr
%offset_cell_index32 = add i32 %cell_index31,0

Yocurrent_cell_ptr33 = getelementptr i8, i8* %cells, i32 %offset_cell_index32
Yecell_value34 = load i8, i8* %current_cell_ptr33

Yonew_cell_value35 = add i8 %cell_value34, 1

store i8 %new_cell_value35, i8* %current_cell_ptr33

Yocell_index36 = load 132, 132* %cell_index_ptr

Yocurrent_cell_ptr37 = getelementptr i8, i8* %cells, i32 %cell_index36
ocell_value38 = load i8, i8* %current_cell_ptr37
%cell_val_as_char39 = sext i8 %cell_value38 to i32

%5 = call 132 @putchar(i32 %cell_val_as_char39)

call void @free(i8* %cells)

reti32 0

loop_body:

9ocell_index 10 = load 132, i32* %cell_index_ptr
%new_cell_index11 = add i32 %cell_index10, 1
store 132 %new_cell_index11,132* %cell_index_ptr
br label %loop_header

CFG for 'main' function

Figure 4.8. Control-flow graph of synthesized programs (2)
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Figure 4.10. Control-flow graph of synthesized programs (4)
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4.4.5 Compare with AFL

AFL [I01] is a matured production fuzzer that has been widely used for different
applications. We also compared ALPHAPROG with AFL in the two perspectives we
focus on: Validity and Coverage. We use AFL with a single empty seed to generate
30, 000 programs for fuzzing BFC and record the highest valid rate per 1,000 samples
and the accumulated coverage achieved. As a result, the highest valid rate for AFL
is 35% and the accumulated coverage in terms of basic blocks tested is 43,135. It
covered 162 paths but found no crashes or hangs (actually we ran AFL for 24 hours
and no crashes or hangs was found). But ALPHAPROG can achieve the valid rate
around 80% under Reward 4 which is the most efficient one for fuzzing, that over
100,000 basic blocks are tested with 30,000 test samples, and two bugs were detected.
With this result, we may claim that ALPHAPROG is better than AFL in generating
valid and diverse programs for compiler fuzzing.

Additionally, we measured the performance of both ALPHAPROG and AFL by
running each tool for synthesizing the 30,000 samples. We ran the experiment on
a server machine with 2.90GHz Intel Xeon(R) E5-2690 CPU and 128GB memory.
For ALPHAPROG, we stopped the training process and timed the synthesis with the
trained model. It took 27 minutes for AFL to synthesizing the 30, 000 samples while
it took 2 hours for ALPHAPROG to do the same task. There is still room to improve

for ALPHAPROG in terms of scalability.

4.4.6 Bugs

With the improved testing efficacy, our tool has the potential to discover more
compiler bugs compared with pure random fuzzing. And during our analysis, our
tool helped is to report two important bugs for the target compiler BFC which is an
industrial-grade BF compiler with the most stars (207) and folks (8) on GitHub. We
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reported two programs that trigger BFC to hang due to compile-time evaluations [56].

The two programs are listed below,

.+
[

[<>

© 00O Ut W
—

© 00O Ut W
—

Listing 4.1. Bug 1 Listing 4.2. Bug 2
The first program triggers the bug during the BF IR optimization and the the

second one triggers the bug because the compiler aggressively unroll the loop due to
compile-time evaluation, send a huge amount of IR to LLVM, and then it spends
ages trying to optimize the IR. Both issues are addressed by the owner of BFC and

they confirmed its importance to be fixed later on.

4.5 Limitation

Our work demonstrates the first step using reinforcement learning, @-learning
framework for generating valid programs for compiler fuzzing. However, there are
still two main limitations in our current work.

First, the existing framework is still not applicable for generating programs in a
more complex programming language, e.g. C, from scratch due to the large search
space. We tried to use our framework to generate C programs token by token, in
which experiment we adopted a language space of 141 different tokens and limited
the program length to 20 tokens. However, it took days for our prototype to find
one single valid C program. The C language structs are difficult to synthesize where

the entire search space is 141%°, almost 8e + 24 times of the BF language with same
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length limit. We still need more grammars to be encoded in the generation engine
to make our framework applicable for languages like C.

Second, it is hard to determine the end of a training cycle. Since generating
more diverse programs is contradict to generating valid programs, the goal for our
reinforcement learning framework is hard to define compared with the game of Go.
Currently, the reward functions we defined can inspire the two different goals, yet
it is impossible to decide whether the two goals are fully achieved for a training
cycle. We still need to improve the design with one generalized goal defined, such as
based on the percentage of code covered. However, it is ironic to have this metric
calculated which brings a lot of overhead and we need a more in-depth study on this

in our future study.

4.6 Summary

In this study, we proposed a reinforcement learning-based approach to continuously
generate BF programs for BF compiler fuzzing. With no training data set required,
the model was initialized with random weights at the very beginning and it evolves
with environment rewards provided by the target compiler we are going to test. With
the learning iterations going on, the neural network model gradually learns how
to write valid and diverse programs to improve testing efficacies under the three
different reward functions we defined. We implemented the proposed method into a
prototyping tool called ALPHAPROG. We detailed the configuration of our model and
open-sourced the code. Our study revealed the overall effectiveness of ALPHAPROG
for compiler testing. We also compared metrics under the different reward functions
and explained the improved testing coverage by analyzing the generated programs.
Our tool helped us to find two important bugs of a production BF compiler, BFC,

and all of then are confirmed and well-addressed by the project owner.
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Chapter 5

Program Mutation based on Re-
inforcement Learning for Com-
piler Fuzzing

Enforcing correctness of compilers is important. Fuzzing is an efficient way to find
security vulnerabilities by repeatedly testing programs with randomly modified input
data. However, in the context of compilers, fuzzing is challenging because the inputs
are pieces of codes that must be both syntactically and semantically valid to pass
front-end checks. Moreover, the fuzzed inputs are expected to be distinct enough
to trigger abnormal crashes, memory leaks, or failing assertions that have not been
detected before. In this study, we proposed an automatic code synthesis framework
called FuzzBooSsT based on deep reinforcement learning. By adopting testing
coverage information collected from runtime information as the reward, we propose
a learning system with the deep Q-learning algorithm that optimizes this reward. In
this way, the fuzzing agent learns the actions to fuzz a seed program that achieves an
overall goal of testing coverage improvement. We validated the effectiveness of our
proposed approach, and the preliminary evidence shows that reinforcement fuzzing
can outperform baseline random fuzzing on production compilers. It also shows that
a pre-trained model can boost the fuzzing process for seed programs with similar

patterns.
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5.1 Problem

Fuzzing is an effective way to find security vulnerabilities in compilers by repeatedly
testing the codes with randomly modified inputs. Many existing vulnerabilities
are reported by fuzzing techniques [78]. Due to the unlimited search space and
limited computing resource, existing fuzzing tools explore efficient strategies in
fuzzing program inputs. Especially in the scenario of compiler testing, no one can
exhaustively examine the entire input space in practice, or traversing all the possible
execution paths of target compilers. Therefore, they typically use fuzzing heuristics
to prioritize the fuzzing strategies to be taken. Such heuristics may be random
selections or trying to maximize a specific goal, such as code coverage [41], execution
timeouts, and crashes [100].

Coverage-guided testing is widely adopted by fuzzers [24], 92, [101], which utilize
code coverage as the heuristic for searching a good next fuzz action from a predefined
list. These exhaustive bounded searches use domain-specific heuristics and are
thus limited in applicability and scalability. Additionally, they do not benefit from
past experiences, where common knowledge in boosting the fuzzing process across
different seeds are shared when similar patterns in the seed files exist. Moreover, most
coverage-guided frameworks calculate the rewards/fitness after a single mutation
being taken, but which overlooks the power of mutation combinations. State-of-the-
art methods, such as American Fuzzing Lop (AFL) [I01I], incrementally add newly
fuzzed programs into the seed set according to defined heuristics after each mutation.
However, for coverage-guided fuzzing, testing coverage does not increase linearly. In
other words, each of these mutations may not incrementally improve the testing
efficacy. They can be rejected by lexical or semantic checks in the early stage of

compilation. However, a trace of mutations may trigger a giant improvement because
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it may help to generate a valid and different program to cover more paths inside
compilers.

The exercising of reinforcement learning inspired the design of FuzzBoOOST.
Reinforcement learning describes the learning process by an agent interacting with
the environment to learn an optimal policy by trial and error. It is usually effective
for sequential decision-making problems in both natural and social sciences [5, [87].
Theoretically speaking, the problem of compiler fuzzing can be seen as a problem
of program synthesis, the goal of which is to cover more paths and trigger more
crashes or memory leaks in compilers’ execution traces, while compiling such new
codes. In this study, we model the compiler fuzzing as a multi-step decision-making
process and formalize it into a reinforcement learning problem. Compiler fuzzing
is a learning task with a feedback loop. Initially, the fuzzing agent generates new
inputs with little knowledge but random heuristics. Then, we let the compiler run
with each new input. As the feedback from the environment, we capture runtime
information gathered from binary instrumentation technique to evaluate the seed
quality according to heuristics we defined in our learning circle. By taking this
quality feedback into account, we may construct an end-to-end learning cycle that
the fuzzing agent can learn from. By iterating the learning cycle, the agent is trained
to generate a new input program to fuzz compilers effectively and efficiently.

Theoretically speaking, the problem of compiler fuzzing can be seen as a problem
of program synthesis, the goal of which is to cover more paths and trigger more
crashes or memory leaks in the compiler’s execution trace while compiling such new
codes. In this study, we model the compiler fuzzing as a multi-step decision-making
process and formalize it into a reinforcement learning problem. We may see the
problem of compiler fuzzing as a learning task with a feedback loop. Initially, the

fuzzing agent generates new inputs with little knowledge but random heuristics. We
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will let the compiler run with each new input and as the environment’s feedback, and
for each program execution trace, we capture runtime information gathered from
binary instrumentation for evaluating the quality w.r.t. the heuristic we defined for
the current input program. For instance, the quality of the generated input can be
measured as the number of unique basic blocks on this trace. By taking this quality
feedback into account, we construct an end-to-end learning cycle that the fuzzing
agent can use to learn. By iterating the learning cycle, the agent can be trained to
generate a new input program to fuzz compilers in the most effective and efficient
way.

We evaluated FuzzBooOST with seed programs from test suites of production
compilers, i.e. GCC. To demonstrate the effectiveness of our framework, we also
compare it to a baseline system, which applies mutation actions with a uniformly
distributed strategy, and it is adopted in widely-used fuzzing tools. FuzzBoosT
outperforms baseline random fuzzing with a higher coverage improvement on a single
seed program. Additionally, to show the generalization of FuzzB00OST on boosting
the fuzzing process, we design the experiments with seed programs by a-conversion.
As a result, our tool has better performance of scalability with a pre-trained model.
That means the fuzzing process will be boosted when we reuse an existing model for
new seed programs compared with an untrained model.

In summary, we make the following contributions:

o We formalized compiler fuzzing as a reinforcement learning problem by modeling

it as a multi-step decision-making process.

o We propose to use deep (Q-learning that learns to choose a trace of high-reward
mutation actions for any given seed program input. The method is stand-alone

and does not rely on any other fuzzing techniques.
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Action Insert Replace Delete

Reward Q ‘

Figure 5.1. Compiler fuzzing process (mutational)

o We implement a prototyping tool called FUzzB0OOST and analyze real-world

fuzzing jobs. It outperforms baseline random fuzzing in terms of testing efficacy.

5.2 Design

Mutation-based fuzzing relies on generating new program inputs by mutating with
heuristics based on seed programs. Traditionally, mutation-based fuzzing adopted
iterations of one-step fuzzing. In other words, to decide the interest of adding a new
mutated input into the seed set, they collect the performance of such input after
a single mutation by capturing new crashes in the context of black-box fuzzing or
capturing new path information in the context of grey- or white-box fuzzing. However,
it overlooks potential performances of a trace of mutations, some intermediate states
of which may not be good enough to attract interest or even break the compilation
process due to lexical checks in early stages. Therefore, we re-model the problem
as multi-step decision-making problem that will give enough attention to these
intermediate states being ignored in previous design models. And we formally define
the compiler fuzzing and learning process as a Markov decision-making process as
described in Figure 5.1}

MDP: As shown in the figure, in this multi-step decision-making process, there
is an input mutation engine M, that will perform a fuzzing action a, and subsequently

observe a new state z directly derived from the mutated program P, by exercising

84



the predicted action a on an original seed program P;. This input mutation engine
will predict the program rewrites with regard to an extracted state from the seed
program. With the given formalization, it is natural to use Markov decision process
(MDP) to model this problem. Therefore, the corresponding T-step finite horizon
MDP is defined as M = (s1,a1,71, So, G, ..., s7). Here s, a;, 7, represent the state,
action, and reward at time step ¢t = 1,...,T — 1, respectively. To achieve the trace
of most effective rewrites of a seed program, our formalization allows us to apply
state-of-the-art reinforcement learning methods, in particular, the Q-learning [95].
We choose to use a variation of Q-learning called deep Q-learning [69, [70] where
the value function is replaced by a deep neural network. By training an end-to-end
model with stochastic gradient descent to update the weights, we can acquire a
well-trained model to perform this program synthesis task and achieve an overall
goal to maximize the reward we define.

(Q-learning refines the policy greedily with respect to action values by the max
operator. Our framework utilizes the deep ()-learning which adopts the deep neural
network for the ) function. The algorithm for deep @) learning is presented in
Algorithm [2] The @-network is initialized arbitrarily with random weights at the
beginning. During each episode, we use an incrementally trained )-network for
predicting actions in program mutations and retrain the model when we get new
rewards for each program state after performing the predicted action. We provide
more detailed learning process description in Section [5.3]

Overview: In reinforcement learning, one episode is one complete sequence of
states, actions, and rewards, which starts with an initial configuration and ends with
a terminal state. In the problem of compiler fuzzing, one episode can be defined as
generating a good program by mutating an existing seed program (initial state) with

respect to the defined quality and in our preliminary implementation, we hard-coded
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Algorithm 2 Reinforcement Compiler Fuzzing
Output: action value function Q-network
initialize (Q-network arbitrarily, randomly assign the weights
for for each episode e do do
extract state s from seed program
repeat
a < action for s derived by @Q-network, e.g., e-greedy
take action a, s
calculate r from runtime trace
Q(s,a) + Q(s,a) + alr + ymax,Q(s',d") — Q(s,a)
s 8
until state s is a terminal state
end for

the entire trace length of program mutations as one of the terminal conditions
(terminal state) as well as define a terminal action that allows the model to end one
episode actively. Compare with conventional mutation-based fuzz testing methods,
we adopt the same methodology to select a generated input from the seed set where
inputs will be continuously fuzzed. The main difference is that, in our design, we
lazy-evaluate the quality of the fuzzed inputs. Thus, intermediate states that are not
valid but eventually turn out to contribute high-quality fuzzed inputs.

Before we start the learning process, we first initialize a randomly generated
neural network. In the first episode, State 0 is initiated by preprocessing a seed
program P. We initially extract a substring within this seed program with the
window size w and offset s. By observing this substring, the neural network will help
us to predict a mutation action to be taken. Feasible mutation actions on token-level
include insert a token, switch two or more tokens, replace a token, or change the
window size or offset to enable another substring to observe and mutate. Once an
action is decided, we run the compiler (any production compiler) with the program
after mutation and calculate the reward r of this new program with a record of the

execution trace. The state will move to State 1 after one action being taken. With
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the increased number of actions being taken, we deduct the reward by a discounted
rate v which is a value between 0 and 1. We iterate the mutation prediction and
evaluation until a terminal state. There are four key elements in this process: state,
action, environment, and reward. We will elaborate on these key elements in our

design one by one.

5.2.1 State

A state S is a concrete configuration after each action is being taken. It has similar
definition as in the MDP that each process has one state and when the process
proceeds, the state updates. Therefore, the state can be the current configuration
returned by the environment or any future configurations on this trace. In the case of
compiler fuzzing, the agent learns to interact with a given seed program. Therefore,
the state is a function about a given input seed program p. In our design, the
interaction is performed upon the observation of substrings of consecutive symbols
within such an input. Formally, let > denotes a finite set of symbols. The set of
possible program inputs [ in this language is defined by the Kleen closure I := .

For an input program string p = (p1, p2, ..., pn) € 1, let

S(p) = (p1+i7p2+’ia 7pm+l)|Z > O7m +1 <n (51)

denote the set of all substrings of p. We define the states of the Markov decision
process to be I and I is a union set of S(p). Thus, we have p € I denotes an input
program and py € S(p) C [ is a substring of this input seed program. The entire
state space of a seed program is S(p), which is theoretically infinite since any symbol
in this language I can increase after mutation. In other words, the seed program

can be converted to any other valid programs.
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5.2.2 Action

Action A is the set of all possible mutation actions the agent can perform. In
most cases, actions are deterministic and should be chosen among a list of possible
actions. In compiler fuzzing, we define the set of possible action A of our Markov
decision process map extracted substrings S(p)o to probabilistic rewrite rules. The
rewrite rules are defined in accord with the extracted substring and predicted type.
In a high-level, we define two types of rewrites, on the extracted content and the
extraction window. To be more specific, the rewrites of extracted content are
performed on token-level which include insertion, replacement, re-ordering, deletion
and replication. These pre-defined token-level rewrite rules conform with C language
lexical requirements. For insertion, in we app