
A State-Space Based Approach to
the Specification and Verification of
Hybrid Systems and Its Axiomatic

Basis

A Thesis Submitted for the Degree of
Master of Science

by

Wu Dinghao

Advisor: Prof. Lü Jian
Major: Formal Method

Institute of Computer Software
Nanjing University, P. R. China

February 20, 2018

To My Family

Acknowledgements

I would like to thank my advisor Prof. Lü Jian for making this research project

possible and for providing remarkable insights into many aspects of my academic

life. His moral and financial support, technical ideas, friendship, and high stan-

dards of integrity have been inspirational to me and crucial to the completion

of this thesis. Many thanks also to Dr. Tao Xianping and Dr. Yang Dajun

for numerous interesting discussions and their pleasant companionship on our

scientific trips.

A number of other people play an important role in the completion of this

thesis. I own much to Liao Yu, who provides me with helpful advice about

verification using the PVS specification and verification system. Sincere thanks

go to Zhang Ming and Tang Bao for their useful comments and suggestions. I am

grateful to Li Xin for his help to my practicing the LATEX document preparation

system. I am indebted to Wang Yan for correcting many spelling and grammar

errors. Thanks also to my colleagues at the Institute of Computer Software,

Nanjing University.

Moreover, I would like to express my special thanks to my parents and my

brothers. It is their support, trust, and love that have enabled me to achieve

successes such as this thesis.

Finally, I wish to thank my wife, Lily. Her unfailing love, support, and com-

panionship have made the process of writing this thesis tolerable. In many times

I have deeply doubted my work and myself, she has provided the encouragement

to push on. I could not have reached this point without her, nor can I image a

better soul with whom to face future challenges.

Dinghao Wu
Nanjing, P.R.China

ii

Abstract

In recent years, the study of hybrid control systems has already become an
important topic in the fields of computer science and control engineering.
Hybrid control systems usually contain two distinct kinds of subsystems,
namely time-evolving and event-driven subsystems, which interact with
each other and operate in real time. In the field of control systems, this kind
of hybridity is becoming more and more popular, as exemplified by robots,
redundant flight control systems, and intelligent control systems etc. In
hybrid control systems we not only need to control the time-evolving sub-
systems, but also need to control the event-driven subsystems. Therefore,
the control in a hybrid control system usually contains two corresponding
parts: the digital controllers and decision-maker.

In this thesis, we discuss the design methodology of hybrid control sys-
tems, and its theoretical foundation as well. We apply the principle of
stepwise refinement to the design and analysis of hybrid control systems
and propose a state-space based method for the design of digital controllers
and synthesis of the decision-maker through decomposition of the corre-
sponding control laws. The main procedure includes problem description,
determination of state-space, partition of state-space and control refine-
ment. The central idea of this method is illustrated by applying it to a
typical example of hybrid systems: a water level monitoring system.

To explore the theoretical foundation of the state-space based approach,
we analyze the generic characteristics of control laws. We conclude that
the important characteristics of control laws are their entering points, leav-
ing points and changing ranges. These three aspects can be specified by

iii

Abstract iv

making general assertions about the values that the relevant state vari-
ables constituting state-space will take before, after and during the action
of control laws. To describe control laws in this sense, we introduce a new
notation P { C | W } Q, where P , R, W , and C are precondition, postcon-
dition, duration-condition and control law, respectively. Furthermore, in
order to specify and verify the design procedure, the classical Hoare logic
system is extended as an axiomatic basis of this method, and a composi-
tional proof system is formulated. We show that the system is sound in
specifying and verifying hybrid control systems by constructing an opera-
tional model, Evolution Machine (EM), of the extended Hoare (EH) logic
system.

Following the proposed design procedure, we achieve the specifications
for the example water level monitoring system using the extended Hoare
logic. The correctness of the specifications has been mechanically verified
by using the PVS specification and verification system. As a result, the
correctness of design procedure can be verified to some extent, and the
reliability of hybrid control systems is increased.

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 What Are Hybrid Systems 1

1.2 The Design Framework . 2

1.3 Motivation . 5

1.4 The Main Work . 6

1.5 The Plan of This Thesis 7

2 State-Space Partition and Design of Control Laws 8

2.1 Problem Description: The Water level Monitoring System 8

2.2 Determination of State-Space 9

2.3 Partition of State-Space 10

2.4 Control Refinement . 10

2.4.1 Choosing primary factors 10

2.4.2 Identifying key sub state-space 12

2.4.3 Synthesis of Decision-Maker 12

2.5 Towards a Hierarchical Design and Synthesis Method . . . 13

v

3 An Axiomatic Basis for the State-Space Based Method 14

3.1 Syntax and Informal Meaning 15

3.2 The Extended Hoare Logic System EH 15

3.3 Operational Semantics . 18

3.3.1 Evolution Relation 18

3.3.2 Properties of Evolution Relation 22

3.3.3 Evolution Machine 22

3.4 Soundness of the Extended Hoare Logic System EH 24

3.5 Summary . 25

4 Specification and Verification 26

4.1 Requirement Specifications 26

4.2 Specifications for the Sub Control Requirements 27

4.3 Specification for the Decision-Maker 27

4.4 Verification of Control Refinement 28

4.5 Summary . 29

5 Verification Using PVS 30

5.1 An Introduction to PVS 30

5.2 Specification for the EH system 32

5.3 Specification for the Water Level Monitoring System . . . 33

5.4 Verification Using PVS . 35

5.5 Summary . 36

6 Concluding Remarks 37

6.1 Contributions of This Thesis 37

6.2 Future Work . 39

vi

Appendices 41

A Proof for Soundness of the Proof System EH 41

B PVS Specifications and Proofs 45

B.1 Theory EH . 45

B.2 Theory WaterContainer 46

B.3 Proofs for Control Requirements 47

B.3.1 Proof for CR1 . 47

B.3.2 Proof for CR2 . 48

B.4 Proof Trees . 49

B.4.1 Proof Tree for CR1 49

B.4.2 Proof Tree of CR2 49

Bibliography 54

vii

List of Figures

1.1 The Structure of Hybrid Control Systems 3

1.2 The Design Framework . 4

2.1 Water Container . 9

2.2 Partition of State-Space 10

2.3 Control Laws and Their Relations 11

2.4 Desirable Control Laws and Their Relations 12

B.1 LATEX-Printed Version of the Theory EH 50

B.2 LATEX-Printed Version of the Theory WaterContainer . . . 51

B.3 Graphical Display of the Proof Tree for CR1 52

B.4 Graphical Display of the Proof Tree for CR2 53

viii

Chapter 1

Introduction

Nowadays, the exponential drop in price of computing power makes com-
puters widely available. This leads to the widely use of computers in most
control systems. A computer that acts as a logic decision unit processes
input and provides output in digital form, i.e., 0 and 1. It is also known
as a discrete-time system. On the contrary, a system that processes only
continuous-time data is called a continuous-time system, that is, it can be
represented by mathematical functions. The combination of the computer
science and control engineering has led to the emergence of computer-aided
control engineering as a new research field. Therefore, it is common to have
a mixture of both logic and continuous systems. This kind of system is
known as hybrid system or hybrid control system. Unfortunately, this kind
of hybridity causes extra complexity of the design, specification and verifi-
cation of hybrid systems, which leads to the general aim of this thesis: the
design, specification and verification of hybrid properties of hybrid systems.

1.1 What Are Hybrid Systems

The term hybrid system is used to describe a large and varied class of
dynamical systems. A hybrid system consists of a collection of digital pro-
grams that interact with each other and with an analogue environment.

1

Chapter 1. Introduction 2

Examples of hybrid systems include medical equipment, manufacturing
controllers, automotive controllers, and robots. The formal analysis of the
mixed digital-analog nature of these systems requires a model that incor-
porates the discrete behavior of computer programs with the continuous
behavior of environment variables, such as temperature and pressure.

A typical hybrid system is arranged in a hierarchy of two (or more)
layers [1, 2], as shown in Figure 1.1. At each layer the system is modeled
at a different level of abstraction. In the bottom layer the plant model is
usually described by means of differential and/or difference equations. This
level contains the actual plant and any conventional controllers working at
the same level of abstraction. In the top layer the plant description is
more abstract. Typical choices of description language at this level are
finite state machines, fuzzy logic, Petri nets etc. Typically the controllers
designed at this level are discrete event supervisory controllers [3]. The
two levels communicate by means of an interface that plays the role of a
translator between signals and symbols.

In other words, hybrid control systems usually contain two distinct
kinds of subsystems, namely time-evolving and event-driven subsystems,
which interact with each other through an interface and operate in real
time. In the field of control systems, this kind of hybridity is becom-
ing more and more popular, as exemplified by robots [4, 5], redundant
flight control systems [6], and intelligent control systems [7] etc. Many
researchers devote to this field and numerous papers are published, such
as [8], [9], [10], [11], and [12] etc.

1.2 The Design Framework

In hybrid control systems we not only need to control the time-evolving
subsystems, but also need to control the event-driven subsystems. This
naturally follows then, that the controller has a hierarchical structure. In
order to reflect this character more clearly, an appropriate framework of
hybrid control systems has been presented and used in many papers, such
as [1], [13] and [14], as shown in Figure 1.2.

Chapter 1. Introduction 3

Continuous System

(Differential-Difference Equations)

�

�

Interface

Generator

Signal

Generator

Event/SymbolGeneralized
D/A

Converter

Generalized
A/D

Converter

- -

- -

�

�

Discrete Event System

(Finite State Machine, Petri Nets,
Rule Based AI, Fuzzy Logic)

Figure 1.1: The Structure of Hybrid Control Systems

The structure can be divided into three layers. The lowest layer is
the continuous time layer which consists of the plant to be controlled, the
sensor for measuring the plant states and the actuators to implement the
control action. The middle layer is the discrete time layer. It consists of
digital controllers to calculate the control signals, which control the plant
based on the measured plant states. The top layer is the discrete event
layer that makes decisions through symbol manipulation and is driven by
discrete events fed from the digital control loop. Among these three layers
there are two interfaces: namely A-D and D-S interfaces. A-D interface
includes A/D and D/A converters; and D-S interface includes D/S and
S/D converters. A/D (D/A) converter transforms Analog (Digital) signals

Chapter 1. Introduction 4

Sensors Plant Actuators

- -A/D D/A

Digital Controllers

- -D/S S/D

Event Driven Decision-Maker

�

�

�

�

�

�

�

�

� �

Analogue States

(Reals)

Digital States

(Reals)

Digital States

(Reals)

Events

(Symbols)

Analogue Control

Signal (Reals)

Digital Control

Signal (Reals)

Digital Switches

(Reals)

Decisions

(Symbols)

Continuous Time Layer

Digital Time Layer

Digital Time Layer

Discrete Event Layer

Figure 1.2: The Design Framework

to Digital (Analog) signals, and D/S (S/D) converter transforms Digital
(Symbol) signals to Symbol (Digital) signals.

The control in a hybrid control system usually contains two parts:
Decision-Maker (Dmer) and Digital Controllers (Dcers). The decision-
maker determines the usage of digital controllers under different conditions,
while the digital controllers use control laws to control physical systems.

Chapter 1. Introduction 5

1.3 Motivation

As stated above, there are two parts of control in a hybrid control system.
The digital controller is located in the middle layer of the framework, which
controls the plant through A-D interface, sensors and actuators. This part
is very familiar to control experts. There are mature theories to support
it. The other part is the decision-maker, which is located in the decision-
maker box. It makes decision events according to the events fed from the
digital control loops and conveys them into the digital control loops. This
part is familiar to computers and control experts.

These two parts are interrelated and interact with each other. The
decision-maker considers the main problems in a global view without any
triviality, while the digital controller deals with such concrete problems as
how to realize the decisions fed from the decision-maker, how to design the
controllers and how to select the control parameters etc. No matter good or
bad decisions will directly affect the realization of the digital control loops,
in return the design of the digital controllers can offer valuable information
to the decision-maker for making decisions.

For digital control systems, we have mature approaches based on the
differential equation theory to support their analysis and design; and for
discrete event systems, we also have several approaches like Ramadge and
Wonham’s Supervisory Control Theory [15, 16], Petri Nets etc., to support
their analysis and design. However, there are virtually less theories to
support the control problem in hybrid systems which contain decision-
maker and digital controllers [17].

In general, the design objective of hybrid control systems is to find a
correct control strategy that restricts the behavior of the plant to some
desired states. Therefore, an important problem is how to design system-
atically and correctly the decision-maker and digital controllers from the
problem description in the above framework.

Many papers have been presented to discuss this problem. For in-
stance, Dang Van Hung and Wang Ji [18] use I/O automata to discuss the
method for decision-maker synthesis and analyze the timing properties of
hybrid systems, and in [13], P. J. Antsaklis et al. propose a general plant

Chapter 1. Introduction 6

model and discuss its intelligent control. However, less attention is paid
to the problem of systematic acquisition of the correct decision-maker and
digital controllers from the problem description. In this thesis, we apply
the principle of stepwise refinement to the design and analysis of hybrid
control systems. As a result, a state-space based approach for systematic
acquisition of the digital controllers and the corresponding decision-maker
from practical problem is proposed. The key idea of this method is to
decompose the whole system into several subsystems step by step through
the partition of state-space and its control refinement with respect to the
original control requirements until control laws can be designed directly.
The hierarchical decomposition will make the design of control laws and
the synthesis of the corresponding decision-maker easier. In order to guar-
antee the correctness of the decision-maker, Hoare logic is extended as the
logical basis for the method. The main ideas are illustrated by a process
control example of a water level monitoring system. Additionally, the cor-
rectness of specifications has been mechanically verified by using the PVS
specification and verification system.

1.4 The Main Work

The achievements of the work presented in this thesis can be summarized
as follows:

1. A state-space based approach to the design and analysis of hybrid
systems. The main design procedure includes problem description,
determination of state-space, partition of state-space and control re-
finement.

2. The extended Hoare logic system EH, which is an axiomatic basis of
the state-space based approach and is used to specify hybrid systems.
By carefully scrutinizing the control laws, we conclude that the im-
portant characteristics of control laws are their entering points, leav-
ing points and changing ranges. These three aspects can be specified
by making general assertions about the values that the relevant state

Chapter 1. Introduction 7

variables constituting state-space will take before, after and during
the action of control laws. Therefore, we extend the Hoare triple
P { S } Q with a third predicate, called duration-condition, which
expresses the behavior of control laws during the changing range.
This leads to the extended Hoare logic formula P { C | W } Q,
where C is a control law; P , W , and Q are precondition, duration-
condition, and postcondition, respectively.

3. The development of an EH proof assistant in PVS. The proof as-
sistant is used to verify the specification of the example water level
monitoring system.

1.5 The Plan of This Thesis

The rest of this thesis is organized as follows. In Chapter 2, using the
principle of stepwise refinement, we develop a hierarchical design and syn-
thesis method based on partition of the state-space and decomposition of
the control laws. The design procedure is illustrated by a simple example.
In Chapter 3, our extension of Hoare logic as the axiomatic basis of the
method is introduced. Furthermore, we construct its operational model
and thus its soundness is proved. Then in Chapter 4, we discuss the speci-
fication and verification of hybrid systems using the extended Hoare logic.
In Chapter 5, the correctness of specifications is mechanically verified by
using PVS. Finally, the concluding remarks are presented in Chapter 6.

Chapter 2

State-Space Partition and
Design of Control Laws

A typical example of a hybrid system is a real-time computer system that
controls physical processes. In this chapter, we propose a state-space based
approach to the design of hybrid systems [19] and illustrate the design
procedure by the analysis and design of a water level monitoring system as
shown in Figure 2.1, which is taken from [20], and has been used in many
papers such as [21] and [22].

2.1 Problem Description: The Water level

Monitoring System

Consider a water level decision-maker that opens and closes a valve reg-
ulating the outflow of water from a container. The water container has
an input vent, through which water flows in at a constant rate a, and an
output vent, on which there is a valve. When the valve is full open, there
is an outflow at a rate c > a, leading the decrease of overall water level
−b = c − a per unit time. The intention is to design a control system
which keeps the water level inside the vessel between certain critical values
68 and 76. Besides, the initial value of water level is assumed to be 0 or

8

Chapter 2. State-Space Partition and Design of Control Laws 9

h. The water level in the vessel can be measured by means of a sensor
and the level can be influenced by switching the valve on or off. Therefore,
the main work is to design a decision-maker to decide the changes of the
valve states (i.e. open or close) such that the water level is maintained
between 68 and 76. Here, we use a sensor to measure the water level and
an actuator to change the status of the valve. Both of them are assumed
to be given.

� c
valve

�a

0

68

76

h

Figure 2.1: Water Container

2.2 Determination of State-Space

A state-space is a multi-dimensional space, of which each coordinate axis
corresponds to a considered state variable. Therefore, all state variables
and their value domains related to the practical problem should be de-
termined. According to the example described previously, there are two
factors that can be used to reflect the state of the problem at hand:

• Water level w: its domain is W = [0, h]

• State of valve d: its domain is D = {open, close}

So, the state space is W ×D.

Chapter 2. State-Space Partition and Design of Control Laws 10

2.3 Partition of State-Space

By state-space refinement, we mean that some reasonable cutting points
are introduced and therefore a large space can be divided into several
smaller spaces so that the design of control laws on the large space can be
decomposed into the design of control laws on the smaller spaces.

The requirement in the problem description says “water level should
be maintained between 68 and 76.” Therefore, according to the require-
ment, two cutting points 68 and 76 are introduced. As a result, W can be
naturally divided into three parts: W ′ = {[0, 68], [68, 76], [76, h]}. And
state-space W ×D is refined into W ′ ×D as shown in Figure 2.2.

�
open/close

0

68

76

h

Figure 2.2: Partition of State-Space

2.4 Control Refinement

Based on the refined state-space W ′ ×D, we state the control refinement
strategy as follows.

2.4.1 Choosing primary factors

Firstly, some primary factors are chosen and their control relations to their
neighbors are studied. Then, other factors are considered when they are

Chapter 2. State-Space Partition and Design of Control Laws 11

needed. For example, the water level w is chosen as a primary factor in our
problem because the aim of control is to maintain w between the certain
values.

Based on the primary factors, the state-space is partitioned into several
sub state-spaces and the adjacent relations between them are defined. For
our example, we have three sub state-spaces:

S1 : [0, 68]×D

S2 : [68, 76]×D

S3 : [76, h]×D

The relation between them is

R = {(S1, S2), (S2, S1), (S2, S3), (S3, S2)}.

Therefore, we will consider the following six sub control laws C1, C2, C3,
C4, C5 and C6 as shown in Figure 2.3 and study the control relations
between them in next step.

�

�

�

�

�

�

(0, 68)×D

(68, 76)×D

(76, h)×D

C5

C3

C1

C6

C4

C2

Figure 2.3: Control Laws and Their Relations

Chapter 2. State-Space Partition and Design of Control Laws 12

2.4.2 Identifying key sub state-space

In this step, some key sub state-spaces are identified and the control trans-
formation from non-key sub state-spaces to key sub state-spaces is studied.
For our example, [68, 76]×D is chosen as a key sub state-space because
the requirement says that water level should be maintained between 68
and 76. Based on the key sub state-space, the aim of the control laws (or
corresponding digital controllers) for non-key sub state-spaces is to reduce
the corresponding non-key sub state-spaces to the key sub state-space.

Using this design strategy, the control laws C1, C3, C4, and C6 are
needed only as shown in Figure 2.4. As a result, the original control re-
quirement is refined into several small control requirements.

�

�

�

�

(0, 68)×D

(68, 76)×D

(76, h)×D

C3

C1

C6

C4

Figure 2.4: Desirable Control Laws and Their Relations

2.4.3 Synthesis of Decision-Maker

Each control law in the sub state-spaces can be specified by a triple:
〈entering point, changing range, leaving point〉. The entering point
gives the initial condition that the corresponding control law can act on.

Chapter 2. State-Space Partition and Design of Control Laws 13

The leaving point gives the resulting description when the corresponding
control law leaves the sub state-space. And the changing range gives the
range of state change when the control law acts.

According to the above description method, four desirable control laws
C1, C3, C4, and C6 are specified as follows:

C1 : 〈w = h, w ∈ [76, h], w = 76〉

C3 : 〈w = 76, w ∈ [68, 76], w = 68〉

C4 : 〈w = 68, w ∈ [68, 76], w = 76〉

C6 : 〈w = 0, w ∈ [0, 68], w = 68〉

Based on the specifications for four control laws C1, C3, C4, and C6,
the decision-maker can be described informally as follows: Firstly, we use
C1 and C6 to reduce the non-key sub state-spaces to the key state-space.
Then, we use C3 and C4 continuously to keep water level between 68 and
76.

2.5 Towards a Hierarchical Design and Syn-

thesis Method

Up to now, the design of control laws and synthesis of decision-maker of the
original control problem can be reduced to the design of control laws and
synthesis of decision-maker of several sub problems. The specifications for
control laws in the sub state-spaces can be used as new control problems
in the following design. Therefore, the above design procedure can be
applied recursively until the control specification can be directly satisfied
by a control law. Consequently, we have a hierarchical design method
for the design of control laws and synthesis of the corresponding decision-
maker.

Chapter 3

An Axiomatic Basis for the
State-Space Based Method

In the bottom layer of hybrid system architecture, control laws or physical
laws are usually described by means of differential and/or difference equa-
tions. In this way, it is difficult to formalize control laws or to compose a
more complicated control law from some simpler ones. As stated above,
if viewed at a high abstract level, each control law can be specified by a
triple 〈entering point, changing range, leaving point〉. In other words, a
control law is composed of three parts: an initiate state, a final state and
an evolving process, which may satisfy some certain conditions, from the
initiate state to the final state. Therefore, we can take control laws as the
elementary design units of hybrid systems, and acquire more complicated
control laws through composition of simpler control laws.

To make the formalization of control laws easier, we consider a simple
sequential language. In Section 3.1 we give the syntax of this language
and informal meaning of syntactic domains. Next, in Section 3.2, Hoare
logic is extended as the logical basis of the state-space based method, and
furthermore, we define the axiomatic semantics of the language by it. Then,
in Section 3.3, in order to construct a model of the extended Hoare logic
system we describe the operational semantics of the language. Finally, in
Section 3.4, we prove the soundness of the extended Hoare logic system.

14

Chapter 3. An Axiomatic Basis 15

3.1 Syntax and Informal Meaning

The syntactic domains and their informal meaning are given below:

• Atomic controller set Actrl When designing hybrid control sys-
tem by using the state-space based approach stated previously, we
decompose the complicated control laws until they are simple enough
to be designed directly. The depth of the decomposition is, however,
related to the certain problem. Therefore, the sub control laws of the
deepest level of the decomposition are assumed to be given. The cor-
responding digital controllers conforming to them are called atomic
controllers, which are denoted as A. And Actrl is the set of atomic
controllers, that is, A ∈ Actrl.

• Boolean expression set Bexp is the set of Boolean expressions,
which are denoted as B. Hence, B ∈ Bexp.

• Controller set Ctrl The elements of the controller set Ctrl are
defined inductively by the BNF expression as follows:

C ::= skip | A | C;C | (if B then C else C) | (while B do C)

Hence, simple controllers can compose complicated controller by com-
positional, conditional and iterative rules.

3.2 The Extended Hoare Logic System EH

In order to verify the correctness of the design of control laws and synthesis
of the corresponding decision-maker, the proof system of Hoare logic (see
[23], [24], and [25]), which is conventionally called Hoare system H, is
extended as logical basis for this method.

The important characteristics of the above control laws are their enter-
ing points (or initiate states), leaving points (or final states) and changing
ranges (or called evolving processes). These three aspects can be specified

Chapter 3. An Axiomatic Basis 16

by making general assertions about the values that the relevant state vari-
ables constituting state-space will take before, after and during the action
of control laws. To describe the control law in this sense, we introduce a
new notation

P { C | W } Q

where P , Q, and W are predicates. It has the following interpretation:

If execution of C is begun in a proper state satisfying P , then W is
satisfied during the action of C, and Q will be satisfied on its completion.
In the case when Q is a contradiction which is false for all states, the
control law C acts and the assertion W is satisfied forever.

P is called the precondition or input assertion of C; Q the postcondition
or output assertion; and W the duration-condition. Corresponding to the
classical Hoare logic system H, we have the following proof axioms and
rules of extended Hoare logic formal system EH where P, Q, R, Inv and
W are assertions and C is a control law:

(i) P{skip|false}P
This rule states that execution of skip does nothing.

(ii) P{A|W}Q
As mentioned earlier, atomic control laws are assumed to be given.
Therefore, the semantics of them are also given. In general, an in-
ference rule has a list of hypotheses and a conclusion separated by a
horizontal line. Thus we have

(iii) Rule of Composition

P{C1|W1}R, R{C2|W2}Q

P{C1;C2|W1;W2}Q

where C1;C2|W1;W2 means that there exists a cutting point in the
states sequence produced by the control law C1;C2, such that W1

holds for every state before the cutting point and W2 holds for every

Chapter 3. An Axiomatic Basis 17

state after the cutting point. Suppose the cutting point were the
state that between the final state of C1 and the initial state of C2 ,
thus W1 holds for every state during the action of C1 and W2 holds
for every state during the action of C2.

(iv) Conditional Rule

P ∧B {C1|W1} Q, P ∧ ¬B {C2|W2} Q

P {(if B then C1 else C2)|W1 ∨W2} Q

(v) Iteration Rule

Inv ∧ B {C|W} Inv

Inv {(while B do C) |W} Inv ∧ ¬B

where Inv is an invariant which is true before and after each iteration
of the loop.

(vi) Rule of Consequence

P ⇒ P1, P1{C|W}Q

P{C|W}Q

P{C|W1}Q, W1 ⇒ W

P{C|W}Q

P{C|W}Q1, Q1 ⇒ Q

P{C|W}Q

The above three rules can be abbreviated to

P ⇒ P1, P1{C|W1}Q1, W1 ⇒ W, Q1 ⇒ Q

P{C|W}Q

Chapter 3. An Axiomatic Basis 18

Compared with the Hoare logic, extension of the above logic made
exists in two aspects. Firstly, the object that the above logic attempts
to specify is the control law instead of statement. The second difference
is the above logic extends Hoare logic with another component W called
duration-condition, which expresses the behavior of the control law during
the changing range.

The soundness of the above logic can be understood informally and
formally. Informally speaking, the soundness of the above logic can be
obtained according to the intuitive meaning of P{C|W}Q and various
control structures. Formally speaking, the soundness of the above logic can
be established by showing that it has a model. Actually, this model can
be defined as the formal operational semantics of P{C|W}Q and various
control structures. This is discussed in Section 3.3 and 3.4.

3.3 Operational Semantics

In order to describe the behavior or semantics of controllers and construct
the model of the extended Hoare system EH introduced above, we extend
the operational approach presented in [26] and further developed in [27] as
follows.

3.3.1 Evolution Relation

To interpret the controllers of the language specified in Section 3.1, firstly
an abstract evolution machine is introduced. Next, an evolution relation
� between so-called configurations of the abstract machine is specified,
then the meaning or semantics of programs is defined with the help of �.
Depending on the definition of configurations, the evolution relation � can
model executions at various levels of details.

We choose here a “high level” view of an execution, where a configura-
tion is simply a pair 〈C, s〉 consisting of a controller C and a state s. Let
State be the set of all the states, and let Ctrl be the set of all controllers.
Thus C ∈ Ctrl, and s ∈ State. The state consists of current values of

Chapter 3. An Axiomatic Basis 19

the control variables, and the configuration consists of the controller to
be executed and the current state. When the execution of a program has
completed, the controller remaining to be executed of the configuration is
empty. In this case, the configuration consists of only a state. So, let

Con = (Ctrl × State) ∪ State

denote the set of all configurations, and let con be a member of Con, thus
con ∈ Con.

To illustrate the execution process of a controller, we introduce the
concept of evolution between two configurations. Evolution means a con-
tinuous evolving process from one configuration to another. Usually, the
evolution process of a controller is composed of several evolution processes
of sub-controllers. Thus, the execution process of a controller can be de-
scribed by means of evolution between configurations, and the action of
abstract evolution machine by means of the evolution rules between con-
figurations. Intuitively, an evolution

〈C1, s1〉 � 〈C2, s2〉

means: executing C1 for a certain time in a proper state s1 can lead to
the state s2 with C2 being the remainder of C1 that still to be executed.
And in the meantime, the evolving process will satisfy certain control laws.
Besides, an evolution is a continuous process, which is the main difference
compared with the transition relation presented in [27].

Consequently, we propose a formal proof system, called an evolution
system, which consists of axioms and rules about evolutions. Using it,
we specify the evolution relation 〈C, s〉 by induction on the structure of
programs. Correspondingly, we have the following evolution axioms and
rules where s is a proper state:

(i) 〈skip, s〉 � s
This rule states that execution of skip does nothing. For the atomic
controller A, we have

Chapter 3. An Axiomatic Basis 20

(ii) 〈A, s〉 � A[[A]]
where A is the semantic “function” of the atomic controllers.

(iii) Rule of Composition

a)
〈C1,s〉 � 〈C ′

1,s
′〉

〈C1;C2,s〉 � 〈C ′
1;C2,s′〉

b)
〈C1,s〉 � s′

〈C1;C2,s〉 � 〈C2,s′〉

The above two rules state that, a composition controller C1;C2 is
executed by first executing C1 and then executing C2. They can be
abbreviated to the following rule:

〈C1, s〉 � 〈C ′
1, s

′〉 | s′

〈C1;C2, s〉 � 〈C ′
1;C2, s′〉 | 〈C2, s′〉

This rule shows the principle of stepwise refinement. Using it we can
design control laws by decomposition.

(iv) Conditional Rule

a) if B[[B]](s) = true, then
〈(if B then C1 else C2), s〉 � 〈C1, s〉,

b) if B[[B]](s) = false, then
〈(if B then C1 else C2), s〉 � 〈C2, s〉.

where B is the semantic function of Boolean expressions.

(v) Iteration Rule

a) if B[[B]](s) = true, then
〈(while B do C), s〉 � 〈C; (while B do C), s〉,

Chapter 3. An Axiomatic Basis 21

b) if B[[B]](s) = false, then
〈(while B do C), s〉 � 〈skip, s〉.

An evolution 〈C1, s1〉 � 〈C2, s2〉 is possible if and only if it can be
deduced in the above evolution system. Note that the skip controller,
atomic controllers and evaluation of Boolean expressions are all exe-
cuted in one step. This “high level” view abstracts from all details of
the evaluation of expressions in the execution of atomic controllers.
Consequently, this is a high-level semantics. In other words, we can
verify the design steps with the specifications of components by using
it but without knowing their implementation.

To describe the effect of finite evolution sequences we use the transi-
tive, reflexive closure �∗ of the evolution relation �:

〈C, s〉 �∗ 〈C ′, s′〉

holds when there exist configurations 〈C1, s1〉, · · · , 〈Cn, sn〉 with n ≥
0 such that

〈C, s〉 = 〈C1, s1〉 � · · · � 〈Cn, sn〉 = 〈C ′, s′〉

holds. In the case when n = 0, 〈C, s〉 = 〈C ′, s′〉 holds. The transi-
tive, reflexive closure states the reachability of the evolution relation.
Therefore, we have the following axiom and rule.

(vi) Rule of Reachability

a) con �∗ con,

b)
con �∗ con′, con′ � con′′

con �∗ con′′
.

Chapter 3. An Axiomatic Basis 22

3.3.2 Properties of Evolution Relation

The evolution relation �, as defined above, satisfies several simple prop-
erties that are used in the sequel.

Lemma 3.3.1 (Determinism) For any controller C and a proper state
s , there is exactly one configuration evolved from the configuration 〈C, s〉
one step. That is, if con � coni (i = 1, 2) then con1 = con2.

Proof . Due to the form of the above evolution system, it is sufficient
to prove that all axioms and proof rules of it are deterministic. Then the
result can be followed by the induction on the length of proofs. The details
of the proof are omitted here.

However, the reachability relation � ∗ is not a deterministic relation,
though it has the Church-Rosser property [28]. For any controller C which
is terminable and a proper state s, there is one “final” configuration, which
cannot evolve anymore, i.e., cannot evolve from the configuration 〈C, s〉
one or several steps. In the case when the controller C is not terminable,
we introduce a configuration “⊥” to denote this state. Note that “⊥”
is also a proper state or configuration. Therefore, we have the following
lemma.

Lemma 3.3.2 (Church-Rosser property) if con � ∗ coni (i = 1, 2)
then there exists one configuration con′, such that coni �∗ con′ (i = 1, 2).

3.3.3 Evolution Machine

Based on the above properties of the evolution relation �, an Evolution
Machine (EM) is introduced.

Definition 3.3.1 (Evolution Machine) For any controller C,

EM(C)(s) = s′ iff 〈C, s〉 �∗ s′.

Chapter 3. An Axiomatic Basis 23

By the Lemma 3.3.2, there exists only one configuration s′, no matter
whether it is a final configuration or the interminable configuration “⊥”,
such that 〈C, s〉 � ∗ s′. This ensures the unique result of EM(C)(s).
According to the above definition, we have the following properties of EM.
Since the proofs are obvious, they are omitted here.

Theorem 3.3.1 EM(skip) = id, where id is the identity function of the
states set State, that is, id(s) = s.

Theorem 3.3.2 EM(A) = A[[A]](s).

Theorem 3.3.3 EM(C1;C2) = EM(C2) ◦ EM(C1). For any controllers
C1 and C2, we define the composition EM(C2) ◦ EM(C1), provided that
EM(C1) ends in the same case that EM(C2) starts with, as follows:

EM(C2) ◦ EM(C1)(s) = s′ iff
∃s′′. s′′ = EM(C1)(s), and s′ = EM(C2)(s

′′).

Theorem 3.3.4

EM(if B then C1 else C2) = cond(B[[B]], EM(C1), EM(C2)).

where the notation cond, called conditional operator, is defined as follows:

cond(b, EM1, EM2)(s) =

{
EM1(s), if b(s) = true,
EM2(s), if b(s) = false.

Theorem 3.3.5

EM(while B do C) = cond(B[[B]], EM(C;while B do C), id).

Chapter 3. An Axiomatic Basis 24

3.4 Soundness of the Extended Hoare Logic

System EH

Up to now, the meaning of inductive propositions and the soundness of
the extended Hoare logic formal system EH are both informally illumi-
nated. According to the model theory, a formal system is sound if it has a
model. We show that the Evolution Machine (EM), which is introduced in
Section 3.3, is a model of the extended Hoare system EH. Thus, the sound-
ness of EH is proved. This goal is reached if we can show that provability
of a correct formula in the proof system EH implies its truth.

The assertions such as P , Q, and W etc. used previously constitute an
assertion language L which is included in the proof system EH. Let I be
an interpretation of L, and we might suppose

I[[B]] = B[[B]] (B ∈ Bexp)

as well. In the case when the controller is interminable, we have

I[[⊥]] = B[[⊥]] = true

We express the timing behavior of a hybrid system from a viewpoint of an
external observer with his own clock. Thus, the observable behavior of a
system is described in terms of a single, conceptual, global clock. Here we
use a time domain Time that equals the nonnegative real numbers. The
operational interpretation O of system EH is defined by

Definition 3.4.1 O[[P{C|W}Q]]
def
=

∀ s, s′. (I[[P]](s) ∧ s′ = EM(C)(s)) ⇒ I[[Q]](s′)
∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W]](st),

where, s is a proper state; P is an assertion; I[[P]](s) is the abbreviation
of I[[P]][s[xi]/xi]

n
i=1 (x1, x2, · · · , xn are all variables of the assertion P), and

the expression P [s[xi]/xi]
n
i=1 is formed by simultaneously substituting s[xi],

which are the values of xi in the proper state s, for all of free variables xi

Chapter 3. An Axiomatic Basis 25

of the assertion P respectively; EM is the evolution machine; t ∈ Time is
a time variable; ts ∈ Time is the time of the proper state s, in particular,
t⊥ = ∞; st is a proper state at time t.

Particularly, in the case when I[[W]] = B[[W]] = false, the controller C
has no operations. Hence, we have

Definition 3.4.2 O[[P{C | false}Q]]
def
= P ⇒ Q.

Definition 3.4.3 |= P{C|W}Q iff O[[P{C|W}Q]] ≡ true.

Theorem 3.4.1 (Soundness) � P{C|W}Q implies |= P{C|W}Q.

The proof of the soundness is given in Appendix A.

3.5 Summary

This chapter is concerned with the theoretical basis of the analysis and
design approach we proposed in Chapter 2. We extend conventional Hoare
logic as an axiomatic basis of the design approach and prove the soundness
of the extended Hoare (EH) logic system [29, 30, 31]. In the next chapter,
specifications are achieved by using the design approach and EH.

Chapter 4

Specification and Verification

Following the analysis and design procedure presented in Chapter 2 and
the extended Hoare logic introduced in Chapter 3, the control refinement
and formal specifications of the example water level monitoring system are
achieved in this chapter; additionally, the correctness of control refinement
and specifications are verified in the extended Hoare logic system EH.

4.1 Requirement Specifications

Following the state-space based approach and based on the analysis in
Chapter 2, the original control problem of the example water level moni-
toring system can be formalized as follows:

• State-Space
Water-level = {w|w ∈ Real ∧ 0 ≤ w ≤ h}
Valve-state = {open, close}
State-space = Water-level × Valve-state

• Initial-states: w = 0 ∨ w = h

• Control requirement: CR1;CR2

26

Chapter 4. Specification and Verification 27

where
w = 0 ∨ w = h {CR1|w ∈ [76, h] ∨ w ∈ [0, 68]} w = 68 ∨ w = 76
w = 68 ∨ w = 76 {CR2|w ∈ [68, 76]} false

4.2 Specifications for the Sub Control Re-

quirements

In Chapter 2, we have obtained four key sub control laws C1, C3, C4 and
C6. Using the new notation, P { C | W } Q, introduced in the extended
Hoare logic system EH (Section 3.2), the four key sub control laws can be
specified as follows:

w = h {C1|w ∈ [76, h]} w = 76
w = 76 {C3|w ∈ [68, 76]} w = 68
w = 68 {C4|w ∈ [68, 76]} w = 76
w = 0 {C6|w ∈ [0, 68]} w = 68

4.3 Specification for the Decision-Maker

The synthesized decision-maker can be described formally by using the
small language including sequential, conditional and loop statements which
was introduced in Section 3.1. According to the control refinement strat-
egy and the informal analysis in Section 2.4, we specify the decision-maker
to the following program.

if w = h then C1 else C6;
while true do

begin
if w = 68 then C4 else C3

end.

Chapter 4. Specification and Verification 28

4.4 Verification of Control Refinement

By means of the formal axioms and rules in the extended Hoare logic sys-
tem EH, it can be shown that the total effects of the control laws C1, C3, C4

and C6 under the control of the above decision-maker satisfy the require-
ment specifications.

By Consequence Rule and C1, we have

(w = 0 ∨ w = h) ∧ w = h
{C1|w ∈ [76, h]}
(w = 68 ∨ w = 76)

By consequence Rule and C6, we have

(w = 0 ∨ w = h) ∧ w �= h
{C6|w ∈ [0, 68]}
(w = 68 ∨ w = 76)

Using Conditional Rule, We have

(w = 0 ∨ w = h)
{(if w = h then C1 else C6)|w ∈ [0, 68] ∨ w ∈ [76, h]}
(w = 68 ∨ w = 76)

So CR1 is satisfied.

Using Conditional Rule, we have

(w = 68 ∨ w = 76)
{(if w = 68 then C4 else C3)|w ∈ [68, 76]}
(w = 68 ∨ w = 76)

By Iteration Rule, we have

Chapter 4. Specification and Verification 29

(w = 68 ∨ w = 76)
{(while true do if w = 68 then C4 else C3 end)|w ∈ [68, 76]}
false

So CR2 is satisfied.

4.5 Summary

In Chapter 2, we have described the design procedure and got a hierarchi-
cal design method. Following it, we obtain the specification of the example
water level monitoring system in this chapter. The correctness of speci-
fications has been verified by means of the extended Hoare logic system.
However, the proof of correctness is not mechanically checked. In the next
chapter, the correctness of specification is mechanically proved by using
PVS specification and verification system.

Chapter 5

Verification Using PVS

In the earlier chapters, we have described our approach to the formaliza-
tion of hybrid system behavior and illustrated it by a typical example.
Further, the correctness proofs for the specifications have been sketched.
These proofs are mechanically verified by using the PVS specification and
verification system [32, 33] in this chapter. Firstly, we specify the extended
Hoare (EH) logic system, as given in Chapter 3, and water level monitor-
ing system to PVS specifications; then prove that the specifications satisfy
the control requirements using PVS.

5.1 An Introduction to PVS

PVS stands for “Prototype Verification System,” and as the name sug-
gests, it is a prototype environment for specification and verification based
on high-order logic. It consists of a specification language integrated with
support tools and a theorem prover. PVS tries to provide the mechaniza-
tion needed to apply formal methods both rigorously and productively.

The primary purpose of PVS is to provide formal support for conceptu-
alization and debugging in the early stages of the lifecycle of the design of
a hardware or software system. In these stages, both the requirement and
designs are expressed in abstract terms that are not necessarily executable.

30

Chapter 5. Verification Using PVS 31

The best way to analyze such an abstract specification is to attempt proofs
for the desirable consequences of the specification. In this regard, PVS has
been experienced that such attempted proofs of putative theorems very
quickly highlight even subtle errors and infelicities. These would be costly
to detect and correct at later stages of the design lifecycle.

The specification language of PVS is built on high-order logic; i.e.,
functions can take functions as arguments and return them as values, and
qualification can be applied to function variables. There is a rich set of
built-in types and type-constructs, as well as a powerful notion of subtype.
Specifications can be constructed by using definitions, axioms, or a mix-
ture of the two. Specifications are logically organized into parameterized
theories and datatypes . Theories are linked by import and export lists.
Specifications for many foundational and standard theories are preloaded
into PVS as prelude theories that are always available and do not need to
be explicitly imported. Details on PVS language may be found in PVS
language reference [34].

PVS has a powerful theorem prover, or proof checker [35]. It is both
interactive and highly mechanized: the user chooses each step that is to
be applied and PVS performs it, displays the result, and then waits for
the next command. PVS is, therefore, directly controlled by the user. On
the other hand, PVS can invoke powerful decision procedures for arith-
metic, automatic rewriting, and induction. The automation underlying
PVS serves to ensure that the process of verification yields human insights
that can be easily communicated to other human, and encapsulated for
future verification. PVS therefore pays a lot of attention to simplifying the
process of developing, debugging, maintaining, and presenting proofs.

PVS is implemented in Common Lisp with ancillary functions provided
in C, Tcl/Tk, and LATEX [36], but it is not necessary to know Common Lisp
to effectively use the system. The GNU Emacs [37] or Xemacs display
editor provides the interface to PVS.

Chapter 5. Verification Using PVS 32

5.2 Specification for the EH system

A PVS specification consists of a collection of theories . Each theory con-
sists of a signature for the type names and constants introduced in the
theory, and the axioms, definitions, and theorems associated with the sig-
nature. The EH system is specified as a theory EH; the axioms and rules
(see Section 3.2) of the EH system are specified as axioms in the theory
EH. The type CONTROL LAW is defined uninterpreted , as shown below.

CONTROL_LAW : TYPE

The notion of system can be captured by the following PVS declarations.

P, P1, Q, Q1, W, W1, W2, R, B, Inv : VAR bool

C, C1, C2 : VAR CONTROL_LAW

skip, A :CONTROL_LAW

Assertion : [CONTROL_LAW, bool, bool, bool -> bool]

The above function Assertion signifies the new notation P { C | W } Q
we introduced in Section 3.2. The axioms and rules of EH system are
defined as axioms of theory EH as follows.

Skip: AXIOM Assertion(skip, P, FALSE, P)

Composition: AXIOM Assertion(C1, P, W1, R)

AND Assertion(C2, R, W2, Q)

IMPLIES Assertion(SequenceControl(C1, C2), P,

SequenceCondition(W1, W2), Q)

Conditional: AXIOM Assertion(C1, (P AND B), W1, Q)

AND Assertion(C2, (P AND (NOT B)), W2, Q)

IMPLIES Assertion(ConditionControl(B, C1, C2),

P, (W1 OR W2), Q)

Chapter 5. Verification Using PVS 33

Iteration: AXIOM Assertion(C, (Inv AND B), W, Inv)

IMPLIES Assertion(WhileControl(B, C), Inv, W,

(Inv AND (NOT B)))

Consequence: AXIOM ((P IMPLIES P1)

AND (W1 IMPLIES W)

AND (Q1 IMPLIES Q)

AND Assertion(C, P1, W1, Q1))

IMPLIES Assertion(C, P, W, Q)

The complete specification for the EH system appears in Appendix B.1.

5.3 Specification for the Water Level Mon-

itoring System

As stated in the previously, we obtain four desirable control laws C1, C3,
C4, and C6 for the water level monitoring system example as below:

C1 : 〈w = h, w ∈ [76, h], w = 76〉

C3 : 〈w = 76, w ∈ [68, 76], w = 68〉

C4 : 〈w = 68, w ∈ [68, 76], w = 76〉

C6 : 〈w = 0, w ∈ [0, 68], w = 68〉

We specify the water level monitoring system as theory WaterContainer,
and the above four control laws as the axioms in the theory. The con-
trol requirements CR1 and CR2 (see Section 4.1) are specified as theorems
in the theory WaterContainer to be verified. The details are shown in
Appendix B.2.

The system behavior is specified to WaterContainer as uninterpreted
type CONTROL LAW shown below.

Chapter 5. Verification Using PVS 34

WaterContainer : CONTROL_LAW =

SequenceControl(ConditionControl(w = h, C1, C6),

WhileControl(TRUE, ConditionControl((w=68), C4, C3)))

where SequenceControl, ConditionControl and WhileControl are
sequential, conditional and iteration control laws defined in the theory EH

according to the composition, conditional and iteration rules of EH system,
respectively.

The four control laws C1, C3, C4, and C6 have the following PVS spec-
ifications.

ControlLaw1:AXIOM Assertion(C1,(w=h),(w>=76 AND w<=h),(w=76))

ControlLaw3:AXIOM Assertion(C3,(w=76),(w>=68 AND w<=76),(w=68))

ControlLaw4:AXIOM Assertion(C4,(w=68),(w>=68 AND w<=76),(w=76))

ControlLaw6:AXIOM Assertion(C6,(w=0),(w>=0 AND w<=68),(w=68))

As for axiom ControlLaw1, it signifies control law C1 with the entering
point satisfying proposition (w = h), the changing range satisfying propo-
sition (w >= 76 ∧ w <= h), and the leaving point satisfying proposition
(w = 76). Then, we define two theorem CR1 and CR2:

CR1: THEOREM Assertion(ConditionControl(w=h,C1,C6),(w=0 OR w=h),

((w>=76 AND w<=h) OR (w>=0 AND w<=68)), (w=68 OR w=76))

CR2: THEOREM Assertion(WhileControl(TRUE, ConditionControl

((w=68), C4, C3)),(w=68 OR w=76),

((w>=68 AND w<=76) OR (w>=68 AND w<=76)), FALSE)

These signify the two control requirements CR1 and CR2 (see Section 4.1),
which are to be verified.

Chapter 5. Verification Using PVS 35

5.4 Verification Using PVS

The next step is to verify the correctness of specifications. Although a
broad understanding of the specification correctness for our example can
be obtained fairly readily, detailed proof of its theorems requires attention
to a mass of details and an astonishingly intricate argument. In the course
of the proof, PVS builds up a tree of sequents where each sequent is a
subgoal generated from its parent sequent by a PVS proof command. At
any point in the proof attempt, the control is at a leaf sequent of such a
proof tree. The proof is completed when there are no remaining unproved
leaf sequents in the proof tree. A complete proof of control requirement
CR1 using PVS is shown below.

(CR1 "" (LEMMA "ControlLaw1")

(("" (LEMMA "ControlLaw6")

(("" (LEMMA "Consequence")

(("" (LEMMA "Conditional")

(("" (GRIND)

(("1" (CASE "w=0" "w=h")

(("1" (USE "height") (("1" (ASSERT) NIL)))

("2" (USE "height") (("2" (ASSERT) NIL)))

("3" (ASSERT)

(("3" (CASE "w=h")

(("1" (ASSERT) (("1" (USE "False") NIL)))

("2" (ASSERT) (("2" (USE "False") NIL)))))))))

("2" (CASE "w=h")

(("1" (USE "height") (("1" (ASSERT) NIL)))

("2" (CASE "w=0")

(("1" (USE "height") (("1" (ASSERT) NIL)))

("2" (GRIND) (("2" (USE "False") NIL)))))))))))))))))

This is the form in which PVS proofs are stored for later replay. In each
proof step PVS applies a proof command. For examples, the first step
of the above proof is the proof command (LEMMA "ControlLaw1"), which

Chapter 5. Verification Using PVS 36

means use the lemma (axiom) ControlLaw1 as an antecedent formula of the
current PVS sequent. The complete proofs and proof trees of requirements
CR1 and CR2 are shown in Appendix B.3 and B.4.

5.5 Summary

This chapter is concerned with the formal verification of correctness of the
specification obtained in the previous chapters. This goal is achieved by
means of PVS specification and verification system. Using PVS, we have
mechanically verified the correctness of specifications.

Chapter 6

Concluding Remarks

The design, specification and verification of hybrid systems is becoming
increasingly important both in fields of computer science and control en-
gineering. This trend is being driven by two factors: the nature of hybrid
systems, which reflects the characteristics of most control systems nowa-
days, and the wide use of computers.

This thesis has shown that the design of hybrid systems is simplified
using the state-space based approach (see Chapter 2), and that the reliabil-
ity is increased by specification using extended Hoare logic (see Chapter 3
and Chapter 4) and verification using PVS (see Chapter 5).

This chapter begins in Section 6.1 with a brief description of the con-
tributions made in the course of demonstrating the thesis. This work has
also uncovered many avenues of further inquiry; these are presented in
Section 6.2.

6.1 Contributions of This Thesis

In this thesis, we propose a state-space based approach to the design of
control laws and synthesis of decision-maker. We apply the principle of
stepwise refinement to the design and analysis of hybrid control systems
and propose a state-space based method for the design of digital controllers

37

Chapter 6. Concluding Remarks 38

and synthesis of the decision-maker through decomposition of the corre-
sponding control laws. The main design procedure includes problem de-
scription, determination of state-space, partition of state-space and control
refinement. The central idea of this approach is illustrated by applying
it to a typical example of hybrid systems—a water level monitoring sys-
tem. Additionally, this method has been used to solve a more complex
problem—control of the inverted pendulum [38, 39]. Since the inverted
pendulum control system is a non-linear system, it is difficult to get its
control law by solving the corresponding equations. Several approaches,
such as adaptive control and optimal control etc., have been adopted to
deal with this problem. The state-space based method gives a different
approach to solving this problem.

To explore the theoretical foundation of the state-space based approach,
we analyze the generic characteristics of control laws. We conclude that
the important characteristics of control laws are their entering points, leav-
ing points and changing ranges. These three aspects can be specified by
making general assertions about the values that the relevant state vari-
ables constituting state-space will take before, after and during the action
of control laws. To describe control laws in this sense, we introduce a new
notation P { C | W } Q, where P , R, W , and C are precondition, post-
condition, duration-condition and control law, respectively. Furthermore,
in order to specify and verify the design procedures, the classical Hoare
logic system has been extended as an axiomatic basis of the method and a
compositional proof system has been formulated. Then, we show that the
system is sound in specifying and verifying hybrid control systems by con-
structing an operational model, Evolution Machine (EM), of the extended
Hoare (EH) logic system.

Following the proposed design procedure, we achieve the specification
for the example water level monitoring system using the extended Hoare
logic. The correctness of specifications has been mechanically verified by
using the PVS specification and verification system. As a result, the cor-
rectness of design procedure can be verified to some extent, and the relia-
bility of hybrid control systems is increased.

Chapter 6. Concluding Remarks 39

6.2 Future Work

The spatial and timing properties are two important aspects of a hybrid
system. In this thesis, we apply the principle of stepwise refinement and the
decomposition of control laws to the design and analysis of hybrid control
systems, and pay more attention to the spatial properties of hybrid systems
than to their timing properties; that is, we pay more attention to the sys-
tematic acquisition of the correct digital controllers and the corresponding
decision-maker from the problem description using the state-space based
approach. However, it is an important topic to analyze the timing proper-
ties of hybrid systems. Many methods, such as the Interval Temporal Logic
(ITL) [40], Duration Calculus community [41, 42, 43, 44, 45], Hybrid Tem-
poral Logic [20], VDM++ [46, 47], Metric Temporal Logic [48, 49], Hybrid
CSP [50, 51] and Clocked Transition System (CTS) [52, 53] etc., for the
specification and verification of hybrid systems and real-time systems dis-
cuss this problem in different ways. In our method, the timing properties
of the hybrid system are expressed implicitly. The next step is to express
the timing properties more directly.

To this end, the extended Hoare logic notation P { C | W } Q should
be modified to real-time; the predicates P , W , and Q should be extended
to temporal-like logic. Consider, for instance, the formula

(time = 3) { delay 4 | W } (time = 7).

In the precondition the variable time specifies the starting time of the
program, whereas in the postcondition time denotes the termination time.
Furthermore, we can use logical variables to relate pre-, duration- and
postcondition. For instance, with the variable t, the specification

(time = t) { C | W } (t+ 3 < time < t + 7)

or
P { C | 3 < duration < 7 } Q

expresses that if C terminates then it takes between 3 and 7 time units.

Chapter 6. Concluding Remarks 40

Another interesting subject for further research is the chop (;) operator
in the compositional rule of the proof system for the extended Hoare logic.
Because chop is a temporal operator, the temporal logic is implicit in the
compositional rule. The coexistence of the explicit temporal operator chop
with implicit expression style of the timing properties in EH system may
cause some theoretical problems and requires further research. A putative
way is to introduce the temporal-like logic into the EH system.

Appendix A

Proof for Soundness of the
Proof System EH

Theorem 3.4.1 (Soundness) � P{C|W}Q implies |= P{C|W}Q.

Proof. Due to the form of the proof system EH, it is sufficient to prove
that all axioms and proof rules of EH are sound. Then the result follows
by the induction on the length of proofs. We consider all axioms and proof
rules in turn.

(i) SKIP
By the definition 3.4.2

O[[P{skip|false}P]]

≡ P ⇒ P

≡ true

So, by the definition 3.4.3

|= P{skip|false}P

(ii) ATOMIC CONTROLLER
For atomic controllers, the semantics of them is assumed to be given
soundly. Thus

|= P{A|W}Q

41

Appendix A. Proof for Soundness of the Proof System EH 42

(iii) COMPOSITION

Suppose now that
|= P{C1|W1}R

and
|= R{C2|W2}Q

We prove that
|= P{C1;C2|W1;W2}Q

By the definition 3.4.1

O[[P{C1;C2|W1;W2}Q]]
≡ ∀ s, s′. (I[[P]](s) ∧ s′ = EM(C1;C2)(s)) ⇒ I[[Q]](s′)

∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W1;W2]](st)

≡ ∀ s, s′. (I[[P]](s) ∧ s′ = EM(C2) ◦ EM(C1)(s)) ⇒ I[[Q]](s′)
∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W1;W2]](st)

≡ ∀ s, s′. ∃s′′. (I[[P]](s) ∧ s′′ = EM(C1)(s) ∧ s′ = EM(C2)(s
′′))

⇒ I[[Q]](s′)
∧ ∀ t ∈ Time. ts < t < ts′

⇒ (t < ts′′ ⇒ I[[W1]](st) ∧ t > ts′′ ⇒ I[[W2]](st)

Since |= P{C1|W1}R, we have
I[[P]](s) ∧ s′′ = EM(C1)(s) ⇒ I[[R]](s′′)
∧(ts < t < ts′′ ⇒ I[[W1]](st)

Since |= R{C2|W2}Q, we have
I[[R]](s′′) ∧ s′ = EM(C2)(s

′′) ⇒ I[[R]](s′)
∧(ts′′ < t < ts′ ⇒ I[[W2]](st)

So, O[[P{C1;C2|W1;W2}Q]] ≡ true

Hence by the definition 3.4.3
|= P{C1;C2|W1;W2}Q

Appendix A. Proof for Soundness of the Proof System EH 43

(iv) CONDITIONAL

Suppose that
|= P ∧ B{C1|W1}Q

and
|= P ∧ ¬B{C2|W2}Q

We prove that
|= P{(if B then C1 else C2)|W1 ∨W2}Q

By the definition 3.4.1
O[[P{(if B then C1 else C2)|W1 ∨W2}Q]]

≡ ∀ s, s′. (I[[P]](s) ∧ s′ = EM((if B then C1 else C2)
|W1 ∨W2)(s)) ⇒ I[[Q]](s′)

∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W1 ∨W2]](st)

≡ ∀ s, s′. (I[[P]](s) ∧ s′ = cond(I[[B]](s), EM(C1|W1),
EM(C2|W2))(s) ⇒ I[[Q]](s′)

∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W1 ∨W2]](st)

≡ ∀ s, s′. (I[[P]](s)∧((I[[B]](s)∧s′ = EM(C1|W1)(s))∨(I[[¬B]](s)
∧ s′ = EM(C2|W2)(s)))) ⇒ I[[Q]](s′)
∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W1 ∨W2]](st)

≡ ∀ s, s′. (I[[P]](s) ∧ I[[B]](s) ∧ s′ = EM(C1|W1)(s)) ⇒ I[[Q]](s′)
∧ (I[[P]](s) ∧ I[[¬B]](s) ∧ s′ = EM(C2|W2)(s)) ⇒ I[[Q]](s′)
∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W1 ∨W2]](st)

Since |= P ∧B{C1|W1}Q, we have
(I[[P]](s) ∧ I[[B]](s) ∧ s′ = EM(C1|W1)(s)) ⇒ I[[Q]](s′))
∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W1]](st)

Appendix A. Proof for Soundness of the Proof System EH 44

Since |= P ∧B{C1|W1}Q, we have
(I[[P]](s) ∧ I[[¬B]](s) ∧ s′ = EM(C2|W2)(s)) ⇒ I[[Q]](s′))
∧ ∀ t ∈ Time. ts < t < ts′ ⇒ I[[W2]](st)

So, O[[P{(if B then C1 else C2)|W1 ∨W2}Q]] ≡ true

Hence by the definition 3.4.3
|= P{(if B then C1 else C2)|W1 ∨W2}Q

The proofs of rule (v) and (vi) are similar to the above, and thus are
omitted here.

Appendix B

PVS Specifications and Proofs

B.1 Theory EH

The source code of the specification for EH system, Theory EH, is as follows:

EH : THEORY

BEGIN

CONTROL_LAW: TYPE

P, P1, Q, Q1, W, W1, W2, R, B, Inv: VAR bool

C, C1, C2: VAR CONTROL_LAW

skip, A:CONTROL_LAW

P_A, W_A, Q_A:bool

Assertion: [CONTROL_LAW, bool, bool, bool -> bool]

SequenceControl: [CONTROL_LAW, CONTROL_LAW -> CONTROL_LAW]

SequenceCondition: [bool, bool -> bool]

WhileControl: [bool, CONTROL_LAW -> CONTROL_LAW]

ConditionControl: [bool, CONTROL_LAW, CONTROL_LAW

-> CONTROL_LAW]

45

Appendix B. PVS Specifications and Proofs 46

False: AXIOM Assertion(C, FALSE, W, Q)

True: AXIOM Assertion(C, TRUE, TRUE, TRUE)

Skip: AXIOM Assertion(skip, P, FALSE, P)

Atomic: AXIOM Assertion(A, P_A, W_A, Q_A)

Composition: AXIOM Assertion(C1, P, W1, R)

AND Assertion(C2, R, W2, Q)

IMPLIES Assertion(SequenceControl(C1, C2), P,

SequenceCondition(W1, W2), Q)

Conditional: AXIOM Assertion(C1, (P AND B), W1, Q)

AND Assertion(C2, (P AND (NOT B)), W2, Q)

IMPLIES Assertion(ConditionControl(B, C1, C2),

P, (W1 OR W2), Q)

Iteration: AXIOM Assertion(C, (Inv AND B), W, Inv)

IMPLIES Assertion(WhileControl(B, C), Inv, W,

(Inv AND (NOT B)))

Consequence: AXIOM ((P IMPLIES P1)

AND (W1 IMPLIES W)

AND (Q1 IMPLIES Q)

AND Assertion(C, P1, W1, Q1))

IMPLIES Assertion(C, P, W, Q)

END EH

The LATEX output of the Theory EH is shown in Figure B.1.

B.2 Theory WaterContainer

The source code of the specification for the example water level monitoring
system, Theory WaterContainer, is as follows:

WaterContainer : THEORY

BEGIN

Appendix B. PVS Specifications and Proofs 47

IMPORTING EH

C1, C3, C4, C6: CONTROL_LAW

w: nat

h: nat

WaterContainer: CONTROL_LAW =

SequenceControl(ConditionControl(w = h, C1, C6),

WhileControl(TRUE, ConditionControl((w=68), C4, C3)))

ControlLaw1: AXIOM Assertion(C1,(w=h),(w>=76 AND w<=h),(w=76))

ControlLaw3: AXIOM Assertion(C3,(w=76),(w>=68 AND w<=76),(w=68))

ControlLaw4: AXIOM Assertion(C4,(w=68),(w>=68 AND w<=76),(w=76))

ControlLaw6: AXIOM Assertion(C6,(w=0),(w>=0 AND w<=68),(w=68))

height: AXIOM h > 76

CR1: THEOREM Assertion(ConditionControl(w=h,C1,C6),(w=0 OR w=h),

((w>=76 AND w<=h) OR (w>=0 AND w<=68)),(w=68 OR w=76))

CR2: THEOREM Assertion(WhileControl(TRUE,

ConditionControl((w=68), C4, C3)), (w=68 OR w=76),

((w>=68 AND w<=76) OR (w>=68 AND w<=76)), FALSE)

END WaterContainer

The LATEX output of the Theory EH is shown in Figure B.2.

B.3 Proofs for Control Requirements

B.3.1 Proof for CR1

(CR1 "" (LEMMA "ControlLaw1")

(("" (LEMMA "ControlLaw6")

Appendix B. PVS Specifications and Proofs 48

(("" (LEMMA "Consequence")

(("" (LEMMA "Conditional")

(("" (GRIND)

(("1" (CASE "w=0" "w=h")

(("1" (USE "height") (("1" (ASSERT) NIL)))

("2" (USE "height") (("2" (ASSERT) NIL)))

("3" (ASSERT)

(("3" (CASE "w=h")

(("1" (ASSERT) (("1" (USE "False") NIL)))

("2" (ASSERT) (("2" (USE "False") NIL)))))))))

("2" (CASE "w=h")

(("1" (USE "height") (("1" (ASSERT) NIL)))

("2" (CASE "w=0")

(("1" (USE "height") (("1" (ASSERT) NIL)))

("2" (GRIND)

(("2" (USE "False") NIL)))))))))))))))))

B.3.2 Proof for CR2

(CR2 "" (LEMMA "ControlLaw4")

(("" (LEMMA "ControlLaw3")

(("" (LEMMA "Consequence")

(("" (LEMMA "Iteration")

(("" (GRIND)

(("" (DELETE 2)

(("" (LEMMA "Consequence")

(("" (LEMMA "Conditional")

(("" (GRIND)

(("1" (LEMMA "Consequence")

(("1" (GRIND)

(("1" (CASE "w=68" "w=76")

(("1" (ASSERT) NIL) ("2" (ASSERT) NIL)

Appendix B. PVS Specifications and Proofs 49

("3" (ASSERT)

(("3" (CASE "w=76")

(("1" (ASSERT) (("1" (USE "True") NIL)))

("2" (ASSERT) NIL)))))))))))

("2" (CASE "w=76")

(("1" (ASSERT) NIL)

("2" (CASE "w=68")

(("1" (ASSERT) (("1" (USE "True") NIL)))

("2" (ASSERT) NIL)))))))))))))))))))))

B.4 Proof Trees

B.4.1 Proof Tree for CR1

Graphical display of the proof Tree for CR1 is shown in Figure B.3.

B.4.2 Proof Tree of CR2

Graphical display of the proof Tree for CR1 is shown in Figure B.4.

Appendix B. PVS Specifications and Proofs 50

EH : theory

begin

CONTROL LAW : type

P,P1, Q,Q1,W,W1,W2, R, B, Inv : var bool

C,C1, C2 : var CONTROL LAW

skip, A : CONTROL LAW

Assertion : [CONTROL LAW,bool,bool, bool → bool]

SequenceControl : [CONTROL LAW,CONTROL LAW → CONTROL LAW]

SequenceCondition : [bool,bool → bool]

WhileControl : [bool,CONTROL LAW → CONTROL LAW]

ConditionControl : [bool,CONTROL LAW,CONTROL LAW → CONTROL LAW]

FALSE : axiom Assertion(C,FALSE,W,Q)

TRUE : axiom Assertion(C,TRUE,TRUE,TRUE)

Skip : axiom Assertion(skip, P,FALSE, P)

Composition : axiom

Assertion(C1, P,W1, R) ∧Assertion(C2, R,W2, Q) ⊃
Assertion(SequenceControl(C1, C2), P,SequenceCondition(W1,W2), Q)

Conditional : axiom

Assertion(C1, (P ∧ B),W1, Q) ∧ Assertion(C2, (P ∧ (¬B)),W2, Q) ⊃
Assertion(ConditionControl(B,C1, C2), P, (W1 ∨W2), Q)

Iteration : axiom

Assertion(C, (Inv ∧ B),W, Inv) ⊃
Assertion(WhileControl(B,C), Inv,W, (Inv ∧ (¬B)))

Consequence : axiom

((P ⊃ P1)∧
(W1 ⊃ W)∧
(Q1 ⊃ Q) ∧Assertion(C, P1,W1, Q1)) ⊃

Assertion(C, P,W,Q)

end EH

Figure B.1: LATEX-Printed Version of the Theory EH

Appendix B. PVS Specifications and Proofs 51

WaterContainer : theory

begin

importing EH

C1, C3, C4, C6 : CONTROL LAW

w,h : nat

WaterContainer : CONTROL LAW =
SequenceControl(ConditionControl(w = h,C1, C6),

WhileControl(TRUE,ConditionControl((w = 68), C4, C3)))

ControlLaw1 : axiom

Assertion(C1, (w = h), (w ≥ 76 ∧ w ≤ h), (w = 76))

ControlLaw3 : axiom

Assertion(C3, (w = 76), (w ≥ 68 ∧ w ≤ 76), (w = 68))

ControlLaw4 : axiom

Assertion(C4, (w = 68), (w ≥ 68 ∧ w ≤ 76), (w = 76))

ControlLaw6 : axiom

Assertion(C6, (w = 0), (w ≥ 0 ∧ w ≤ 68), (w = 68))

heigh : axiom h > 76

CR1 : theorem

Assertion(ConditionControl(w = h,C1, C6), (w = 0 ∨ w = h),
((w ≥ 76 ∧ w ≤ h)∨

(w ≥ 0 ∧ w ≤ 68)),
(w = 68 ∨ w = 76))

CR2 : theorem

Assertion(WhileControl(TRUE,ConditionControl((w = 68), C4, C3)),
(w = 68 ∨ w = 76),
((w ≥ 68 ∧ w ≤ 76)∨

(w ≥ 68 ∧w ≤ 76)),
FALSE)

end WaterContainer

Figure B.2: LATEX-Printed Version of the Theory WaterContainer

Appendix B. PVS Specifications and Proofs 52

(lemma "ControlLaw1")

(lemma "ControlLaw6")

(lemma "Consequence")

(lemma "Conditional")

(grind)

(case "w=0" "w=h")

(use "height")

(assert)

(use "height")

(assert)

(assert)

(case "w=h")

(assert)

(use "False")

(assert)

(use "False")

(case "w=h")

(use "height")

(assert)

(case "w=0")

(use "height")

(assert)

(grind)

(use "False")

Figure B.3: Graphical Display of the Proof Tree for CR1

Appendix B. PVS Specifications and Proofs 53

(lemma "ControlLaw4")

(lemma "ControlLaw3")

(lemma "Consequence")

(lemma "Iteration")

(grind)

(delete 2)

(lemma "Consequence")

(lemma "Conditional")

(grind)

(lemma "Consequence")

(grind)

(case "w=68" "w=76")

(assert) (assert) (assert)

(case "w=76")

(assert)

(use "True")

(assert)

(case "w=76")

(assert) (case "w=68")

(assert)

(use "True")

(assert)

Figure B.4: Graphical Display of the Proof Tree for CR2

Bibliography

[1] A. Nerode and W. Kohn. Models for hybrid systems: Automata,
topologies, controllability and observability. In Grossman et al. [2],
pages 317–356.

[2] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors.
Hybrid Systems. Volume 736 of Grossman et al. [2], 1993.

[3] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
dynamical systems. Proceedings of IEEE, 77(1):81–98, 1989.

[4] D. Bjørner. A formal model of robots: Geometry and kinematics.
Technical Report No. 6, International Institute for Software Tech-
nology, The United Nations University (UNU/IIST), P.O. Box 3058,
Macau, March 1993.

[5] J. E. Hopcroft. The impact of robotics on computer science. Commu-
nications of the ACM, 29(6):486–498, June 1986.

[6] S. Sastry, G. Meyer, C. Tomlin, J. Lygeros, D. Godbole, and G. Pap-
pas. Hybrid systems in air traffic control. In IEEE Control and Deci-
sion Conference, pages 1478–1483, 1995.

[7] R. F. Stengel. Intelligent flight control systems. In IMA Conference
on Aerospace Vehicle Dynamics, September 1992.

[8] Hans Langmaack, Willem-Paul de Roever, and Jan Vytopil, editors.
Proceedings of Formal Techniques in Real-Time and Fault-Tolerant

54

Bibliography 55

Systems (FTRTFT ‘94), volume 863 of Lecture Notes in Computer
Science, Lübeck, Germany, September 1994. Working Group Provably
Correct Systems—ProCoS, Springer-Verlag.

[9] Orna Grumberg, editor. Proceedings of 9th International Conference
on Computer Aided Verification (CAV ‘97), volume 1254 of Lecture
Notes in Computer Science, Haifa, Israel, June 1997. Springer-Verlag.

[10] Roger Shaw, editor. Safety and Reliability of Software Based Systems:
Twelfth Annual CSR Workshop, Bruges, September 1995. Springer-
Verlag London Limited.

[11] Proceedings of 10th International Conference on Computer Aided Ver-
ification (CAV ‘98), Lecture Notes in Computer Science. Springer-
Verlag, June 1998.

[12] Proceedings of Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT ‘98), Lecture Notes in Computer Science, Lyngby,
Denmark, September 1998. Springer-Verlag.

[13] P. J. Antsaklis, J. A. Stiver, and M. Lemmon. Hybrid system modeling
and autonomous control systems. In Grossman et al. [2], pages 366–
392.

[14] Chen Zongji, Wang Ji, Yu Xinyao, and Zhou Chaochen. An abstrac-
tion of hybrid control systems. In Proceedings of IEEE Singapore
International Conference on Intelligent Control and Instrumentation,
pages 1–6. IEEE, Singapore, 1995.

[15] P. J. Ramadge and W. M. Wonham. Supervisory control of a class
of discrete event systems. SIAM Journal of Control Optimization,
25(1):206–230, January 1987.

[16] P. J. Ramadge and W. M. Wonham. Modular feedback logic for
discrete event systems. SIAM Journal of Control Optimization,
25(5):1202–1218, September 1987.

Bibliography 56

[17] Yang Zhenyu, Yu Xinyao, and Chen Zongji. Modeling and control of
hybrid control systems. Research report, Department of Automatic
Control, Beijing University of Aeronautics and Astronautics, Beijing,
P. R. China, 1996.

[18] Dang Van Hung and Wang Ji. On the design of hybrid control sys-
tems using I/O automaton models. Research Report No. 35, Interna-
tional Institute for Software Technology, The United Nations Univer-
sity (UNU/IIST), P.O. Box 3058, Macau, November 1994.

[19] Lü Jian, Yang Dajun, and Yang Zhenyu. A state-space based approach
to the design of hybrid systems and its logic basis. Chinese Journal
of Advanced Software Research, 5(4):296–303, 1999.

[20] T. A. Henzinger, Z. Manna, and A. Pnueli. Towards refining temporal
specifications into hybrid systems. In Grossman et al. [2], pages 60–76.

[21] J. Hooman. A compositional approach to the design of hybrid systems.
In Grossman et al. [2], pages 121–148.

[22] Henny B. Sipma and Zohar Manna. Specification and verification of
controlled systems. In Langmaack et al. [8], pages 641–659.

[23] C. A. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 583, October 1969.

[24] C. A. R. Hoare and C. B. Jones. Essays in Computing Science.
Prentice-Hall International Ltd., 1989.

[25] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of Sequen-
tial and Concurrent Programs. Graduate Texts in Computer Science.
Springer-Verlag New York Inc., second edition, 1997.

[26] M. C. B. Hennessy and G. D. Plotkin. Full abstraction for a simple
programming language. In Proceedings of Mathematical Foundations
of Computer Science, volume 74 of Lecture Notes in Computer Sci-
ence, pages 108–120. Spring-Verlag, New York, 1979.

Bibliography 57

[27] G. D. Plotkin. A structural approach to operational semantics. Tech-
nical Report DAIMI-FN 19, Department of Computer Science, Aarhus
University, 1981.

[28] Jan van Leeuwen, editor. Formal Models and Semantics, volume B of
Handbook of Theoretical Computer Science. Elsevier Science Publish-
ers and The MIT Press, 1994.

[29] Wu Dinghao and Lü Jian. A state-space based approach to the design
of hybrid systems. In Proceedings of 7th National Conference of Young
Computer Scientists (NCYCS ‘98), pages 48–53, Shanghai, China,
October 1998. CCF, Shanghai Sci-Tech Press.

[30] Wu Dinghao and Lü Jian. On theoretical basis of a state-space based
approach to the design of hybrid systems. Journal of Nanjing Univer-
sity (Natural Sciences), 35(5), 1999.

[31] Wu Dinghao and Lü Jian. A state-space based approach to the spec-
ification and verification of hybrid systems and its axiomatic basis.
Research report, Institute of Computer Software, Nanjing University,
Nanjing, P. R. China, 1999.

[32] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS System Guide. Computer Science Laboratory, SRI International,
Menlo Park, CA, September 1998.

[33] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, Proceedings of 11th International
Conference on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, 1992.
Springer-Verlag, New York.

[34] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Language Reference. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, September 1998.

Bibliography 58

[35] N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert.
PVS Prover Guide. Computer Science Laboratory, SRI International,
Menlo Park, CA, September 1998.

[36] Leslie Lamport. LATEX: A Document Preparation System. Addison-
Wesley Publishing Company, Reading, MA, 2nd edition, 1994.

[37] Richard M. Stallman. GNU Emacs Manual. Free Software Foun-
dation, 675 Massachusetts Ave., Cambridge, MA, 13th edition, July
1997.

[38] Yang Zhenyu, Lü Jian, and Chen Zongji. A state-space based ap-
proach to acquisition of I/O automaton—a case study for the design
of hybrid control systems. In IEE Proceedings of the Workshop on
Discrete Event Systems (WODES96), pages 202–207, Edinburgh, U.
K., 1996.

[39] Yang Zhenyu, Lü Jian, and Chen Zongji. Control analysis, synthesis
and verification in hybrid control systems using I/O automata—a case
study. In IEEE International Symposium on Computer-Aided Control
System Design, Michigan, USA, September 1996.

[40] B. Moszkowski. A temporal logic for multi-level reasoning about hard-
ware. IEEE Computer, 18(2):10–19, 1985.

[41] Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of
durations. Information Processing Letters, 40(5):269–276, May 1991.

[42] Z. Chaochen, A. P. Ravn, and C. A. R. Hoare. An extended duration
calculus for hybrid real-time systems. In Grossman et al. [2], pages
36–59.

[43] A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying
requirements of real-time systems. IEEE Transaction on Software
Engineering, 19(1):41–55, 1993.

Bibliography 59

[44] Z. Chaochen. Duration calculi: An overview. Research Report No. 10,
International Institute for Software Technology, The United Nations
University (UNU/IIST), P.O. Box 3058, Macau, June 1993.

[45] Michael R. Hansen and Zhou Chaochen. Duration calculus: Logical
foundations. Formal Aspects of Computing, 3(1), 1997.

[46] C. B. Jones. Systematic Software Development Using VDM. Prentice
Hall International (UK), second edition, 1990.

[47] Eugè Dürr, Stephen Goldsack, and Nico Plat. Rigorous development
of current object-oriented systems. In Proceedings of TOOLS94, 1994.

[48] R. Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255–299, 1990.

[49] J. Hooman. Specification and verification of real-time systems using
metric temporal logic. In ICYCS ‘91, pages 300–304. International
Academic Publishers, China, 1991.

[50] Jifeng He. From CSP to hybrid systems. In A Classical Mind.
Prentice-Hall, 1994.

[51] Wang Ji, Yu Xinyao, and Zhou Chaochen. Refinement of digital dy-
namic systems. Research Report No. 20, International Institute for
Software Technology, The United Nations University (UNU/IIST),
P.O. Box 3058, Macau, February 1994.

[52] T. A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems.
In J. W. de Baker, K. Huizing, W.-P. de Roever, and G. Rozenberg,
editors, Real Time: Theory in Practice, volume 600 of Lecture Notes
in Computer Science, pages 226–251. Springer-Verlag, 1992.

[53] Zohar Manna and Amir Pnueli. Clocked transition systems. In Pro-
ceedings of Workshop on Verification and Control of Hybrid Systems,
New Brunswick, NJ, October 1995.

Bibliography 60

[54] R. Gotzhein, M. Kronenburg, and C. Peper. Specifying and reasoning
about generic real-time requirements—a case study. Research Report
No. 15/96, University of Kaiserslautern, 1996.

[55] R. Eschbach, T. Dei, and M. Kronenburg. A framework for the anal-
ysis of formal description techniques for timed systems. Research
Report No. 05/98, University of Kaiserslautern, 1998.

[56] M. Kronenburg, T. Dei, and R. Eschbach. Temporal logics as examples
of formal description techniques for timed systems. Research Report
No. 07/98, University of Kaiserslautern, 1998.

[57] David Y. W. Park, Jens U. Skakkebk, Mats P. E. Heimdahl, Barbara J.
Czerny, and David L. Dill. Checking properties of safety critical spec-
ifications using efficient decision procedures. In FMSP‘98: Second
Workshop on Formal Methods in Software Practice, March 1998.

[58] J. Hooman. Specification and Compositional Verification of Real-Time
Systems, volume 558 of Lecture Notes in Computer Science. Springer-
Verlag, 1991.

[59] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, and Man-
dayam Srivas. A tutorial introduction to PVS. In Workshop on
Industrial-Strength Formal Specification Techniques, WIFT ‘95, Boca
Raton, Florida, April 1995.

[60] N. Shankar, S. Owre, and J. M. Rushby. A Tutorial on Specifica-
tion and Verification Using PVS (Beta Release). Computer Science
Laboratory, SRI International, Menlo Park, CA 94025, USA, March
1993.

[61] Sam Owre and Natarajan Shankar. Abstract datatypes in PVS. Tech-
nical Report SRI-CSL-93-9R, Computer Science Laboratory, SRI In-
ternational, Menlo Park, CA, December 1993.

[62] John Rushby and David W. J. Stringer-Calvert. A less elementary
tutorial for the PVS specification and verification system. Technical

Bibliography 61

Report SRI-CSL-95-10, Computer Science Laboratory, SRI Interna-
tional, Menlo Park, CA, June 1995. Revised, July 1996. Available,
with specification files, at
http://www.csl.sri.com/csl-95-10.html.

[63] Radu Grosu, Thomas Stauner, and Manfred Broy. A modular visual
model for hybrid systems. In Formal Techniques in Real Time and
Fault Tolerant Systems (FTRTFT ‘98). Springer-Verlag, 1998.

[64] Amir Pnueli. Development of hybrid systems. In Langmaack et al.
[8], pages 77–85.

[65] Xinyao Yu, Ji Wang, Chaochen Zhou, and Paritosh K. Pandya. Formal
design of hybrid systems. In Langmaack et al. [8], pages 738–755.

[66] S. Nadjm-Tehrani and J.-E. Stromberg. From physical modeling to
compositional models of hybrid systems. In Langmaack et al. [8],
pages 583–604.

[67] S. Bradley, W. D. Henderson, D. Kendall, and A. P. Robson. Design-
ing and implementing correct real-time systems. In Langmaack et al.
[8], pages 228–246.

[68] Martin Fränzle. Synthesizing controllers from duration calculus. In
Jonsson and Parrow [69], pages 168–187.

[69] Bengt Jonsson and Joachim Parrow, editors. Proceedings of Formal
Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT ‘96),
volume 1135 of Lecture Notes in Computer Science. Springer-Verlag,
New York, 1996.

[70] Arjun Kapur, Thomas A. Henzinger, Zohar Manna, and Amir Pnueli.
Proving safety properties of hybrid systems. In Langmaack et al. [8],
pages 431–454.

[71] N. Shankar. Verification of real-time systems using PVS. In Costas
Courcoubetis, editor, Proceedings of Computer Aided Verification,
CAV ‘93, volume 697 of Lecture Notes in Computer Science, pages

Bibliography 62

280–291, Elounda, Greece, June/July 1993. Springer-Verlag, New
York.

[72] S. A. Marshall. Introduction to Control Theory. The Macmillan Press
Ltd., 1978.

[73] P. K. Pandya, Wang Hanpin, and Xu Qiwen. Towards a theory of se-
quential hybrid programs. Research Report No. 125, International
Institute for Software Technology, The United Nations University
(UNU/IIST), P.O. Box 3058, Macau, October 1997.

[74] Gavin Lowe. Formal development of aircraft control software: A case
study in the specification, design and scheduling of a real-time system.
Research Report No. PRG-TR-15-94, Programming Research Group,
Oxford University Computing Laboratory, October 1994.

[75] Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A duration cal-
culus with infinite intervals. Research Report No. 40, International
Institute for Software Technology, The United Nations University
(UNU/IIST), P.O. Box 3058, Macau, February 1995.

[76] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech:
A model checker for hybrid systems. In Grumberg [9].

[77] N. Shankar and S. Owre. The formal semantics of PVS. Technical
report, Computer Science Laboratory, SRI International, Menlo Park,
CA, August 1997.

