
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 1

Program Characterization Using Runtime Values
and Its Application to Software Plagiarism

Detection
Yoon-Chan Jhi, Xiaoqi Jia,† Member, IEEE, Xinran Wang, Sencun Zhu, Member, IEEE,

Peng Liu, Member, IEEE, and Dinghao Wu, Member, IEEE

Abstract—Illegal code reuse has become a serious threat to the software community. Identifying similar or identical code fragments
becomes much more challenging in code theft cases where plagiarizers can use various automated code transformation or obfuscation
techniques to hide stolen code from being detected. Previous works in this field are largely limited in that (i) most of them cannot
handle advanced obfuscation techniques, and (ii) the methods based on source code analysis are not practical since the source code
of suspicious programs typically cannot be obtained until strong evidences have been collected. Based on the observation that some
critical runtime values of a program are hard to be replaced or eliminated by semantics-preserving transformation techniques, we
introduce a novel approach to dynamic characterization of executable programs. Leveraging such invariant values, our technique is
resilient to various control and data obfuscation techniques. We show how the values can be extracted and refined to expose the critical
values and how we can apply this runtime property to help solve problems in software plagiarism detection. We have implemented a
prototype with a dynamic taint analyzer atop a generic processor emulator. Our value-based plagiarism detection method (VaPD)
uses the longest common subsequence based similarity measuring algorithms to check whether two code fragments belong to the
same lineage. We evaluate our proposed method through a set of real-world automated obfuscators. Our experimental results show
that the value-based method successfully discriminates 34 plagiarisms obfuscated by SandMark, plagiarisms heavily obfuscated by
KlassMaster, programs obfuscated by Thicket, and executables obfuscated by Loco/Diablo.

Keywords—Software plagiarism detection, dynamic code identification.

F

1 INTRODUCTION

IDENTIFYING same or similar code fragments among
different programs or in the same program is very

important in some applications. For example, duplicated
codes found in the same program may degrade efficiency
in both development phase (e.g., they can confuse pro-
grammers and lead to potential errors) and execution
phase (e.g., duplicated code can degrade cache perfor-
mance). In this case, code identification techniques such
as clone detection can be used to discover and refactor
the identical code fragments to improve the program [1],
[2], [3], [4], [5], [6], [7], [8]. For another example, same
or similar code found in different programs may lead
us to even more serious issues. If those programs have

• Y.C. Jhi is with Samsung SDS R&D Center, Korea. E-mail: yoon-
chan.jhi@samsung.com

• X. Jia is with Institute of Information Engineering, Chinese Academy of
Sciences, China. E-mail: jiaxiaoqi@iie.ac.cn

• X. Wang is with Shape Security, Mountain View, CA 94040.
• S. Zhu is with the Department of Computer Science and Engineering,

Pennsylvania State University, University Park, PA 16802.
• P. Liu is with the College of Information Sciences and Technology,

Pennsylvania State University, University Park, PA 16802.
• D. Wu is with the College of Information Sciences and Technology,

Pennsylvania State University, University Park, PA 16802.

A preliminary version of this paper has been published in the Proceedings of
the ACM/IEEE 33rd International Conference on Software Engineering
(ICSE 2011), Software Engineering in Practice Track, Honolulu, Hawaii,
USA, May 21–28, 2011.
† Corresponding author.

been individually developed by different programmers,
and if they do not embed any public domain code in
common, duplicated code can be an indication of software
plagiarism or code theft. In code theft cases, determining
the sameness of two code fragments becomes much
more difficult since plagiarizers can use various code
transformation techniques including code obfuscation
techniques to hide stolen code from detection [9], [10],
[11]. In order to handle such cases, code characterization
and identification techniques must be able to detect
semantically equivalent code (i.e., two code fragments
belonging to the same lineage) without being easily
circumvented by code transformation techniques.

Previous works are largely insufficient in meeting the
following two highly desired requirements: (R1) Re-
siliency to the automated semantics-preserving obfusca-
tion tools that can easily transform most of the syntactic
features such as strings [9], [12], [13], [14], [15]; and
(R2) Ability to directly work on binary executables of
suspected programs since, in some applications such as
code theft cases, the source code of suspect software
products often cannot be obtained until some strong
evidences have been collected.

The existing schemes can be broken down into four
classes to see their limitations with respect to the afore-
mentioned three requirements: (C1) static source code
comparison methods [16], [17], [18], [19], [20], [21], [22],
[23]; (C2) static executable code comparison methods

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 2

[24]; (C3) dynamic control flow based methods [25];
(C4) dynamic API based methods [26], [27], [28]. We
may briefly summarize their limitations as follows. First,
Class C1, C2 and C3 do not satisfy requirement R1
because they are vulnerable to semantics-preserving
obfuscation techniques such as outlining and ordering
transformation. Second, C1 does not meet R2 because it
has to access source code.

To address the above issues, we introduce a novel
approach to dynamic characterization of executable pro-
grams. After we examined various runtime properties
of executable programs, we found an interesting obser-
vation that some runtime values (or computation results
of some machine instructions) of a program are hard to
be replaced or eliminated by semantics-preserving trans-
formation techniques such as optimization techniques,
obfuscation techniques, different compilers, etc. We call
such values core values. Note core values are values
computed at runtime from program execution, not the
static constants embedded in the executables such as
strings, which can be easily obfuscated.

To investigate the resilience of core values (to
semantics-preserving code transformation), we gener-
ated e1..5, five different versions of executable files of test
program p written in C, by compiling p with each of the
five optimization switches of GCC (-O0, -O1, -O2, -O3,
and -Os). From each of e1..5 given the same test input,
we extracted a value sequence, a sequence of values (4-
bit, 8-bit, 16-bit, or 32-bit) written as computation results
of arithmetic instructions and bit-wise instructions in
the execution path. As a way of retaining (in the value
sequence) only the values derived from input, we imple-
mented a dynamic taint analyzer.1 When we analyzed
the value sequences of e1..5, we found that some values
survived all of the five optimization switches. Moreover,
the sequence of the values surviving all of the five opti-
mization switches was enclosed almost perfectly by the
value sequences of executables generated by compiling
p with different compilers (we tested Tiny C Compiler
[29] and Open Watcom C Compiler [30]). This indicates
that core-values do exist and we can use them to check
whether two code fragments belong to the same lineage.

In this paper, we show (1) how we extract the values
revealing core-values; and (2) how we apply this run-
time property to solve problems in software plagiarism
detection. We have implemented a value extractor with
a specific dynamic taint analyzer and value refinement
techniques atop a generic processor emulator, as part of
our value-based program characterization method. As a
machine code analyzer which directly works on binary
executables, our technique satisfies R2. Regarding the
requirement R1, we have implemented a value-based
software plagiarism detection method (VaPD) that uses
similarity measuring algorithms based on sequences and
dependence graphs constructed from the extracted val-

1. We also have noticed that there are studies on identifying and
overcoming limitations of dynamic taint analysis. Dealing with those
limitations is out of our scope.

ues. We have evaluated it through a set of real world
obfuscators including two commercial products, Zelix
Pty Ltd.’s KlassMaster [15] and Semantic Designs Inc.’s
Thicket [14]. Our experimental results indicate that the
VaPD successfully discriminated 34 plagiarisms obfus-
cated by SandMark [12] (totally 39 obfuscators, but 5
of them failed to obfuscate our test programs); pla-
giarisms heavily obfuscated by KlassMaster,2 programs
obfuscated by the Thicket C obfuscator, and executables
obfuscated by Control Flow Flattening implemented in
the Loco/Diablo link-time optimizer [13].

Contributions: In summary, we make the following
contributions:

1) We present a novel code characterization method
based on runtime values. To our best knowledge,
our work is the first one exploring the existence of
the core-values.

2) By exploiting runtime values that can hardly be
changed or replaced, our code characterization
technique is resilient to various control and data
obfuscation techniques.

3) Our plagiarism detection method (VaPD) does not
require access to source code of suspicious pro-
grams, thus it could greatly reduce plaintiff’s risks
through providing strong evidences before filing a
lawsuit related to intellectual property.

4) We evaluate VaPD through a set of real world
programs.

This paper is organized as follows. In the next section,
we briefly discuss related works. In Section 3, we discuss
the existence of core-values implied by our experimental
results. In Section 4 and 5, we evaluate our value-
based code characterization method by applying it to the
problems of software plagiarism detection. In Section 6,
we address reordering attacks and evaluate our depen-
dence graph based method. Finally, the limitations, some
potential counterattacks, and future work are discussed
in Section 7.

2 STATE OF THE ART

We roughly group the literature into four categories:
code obfuscation techniques, static analysis based pla-
giarism detection, dynamic analysis based plagiarism
detection, and smartphone app repackaging detection.

2.1 Code Obfuscation Techniques
Code obfuscation is a semantics-preserving transforma-
tion to hinder figuring out the original form of the
resulting code. A generic code obfuscation technique is
not as simple as adding x before computation and sub-
tracting x after the computation. Collberg et al. provided
an extensive discussion on automated code obfuscation
techniques [9]. They classify code obfuscation techniques

2. Since SandMark and KlassMaster work on Java bytecode, we
use GCJ, GNU ahead-of-time compiler for Java, to convert obfuscated
programs to x86 native executables.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 3

in the following categories depending on the feature that
each technique targets: data obfuscation, control obfusca-
tion, layout obfuscation, and preventive transformations.
Collberg et al. also introduced Opaque Predicates to
thwart static disassembly [10]. Other techniques such as
indirect branches, control-flow flattening, and function-
pointer aliasing were introduced by Wang [11].

Several code obfuscation tools are available. Sand-
Mark is one of such tools implementing 39 obfuscators
applicable to Java bytecode [12]. Array representation
and orientation, functions, in-memory representation of
variables, order of instructions, and control and data
dependence are just a small set of the features that
SandMark can alter. Another Java obfuscator is Zelix
KlassMaster [15]. It implements comprehensive flow ob-
fuscation techniques, making it a heavy duty obfuscator.
Semantics is the only characteristic guaranteed to be
preserved across the obfuscation.

2.2 Static Analysis Based Plagiarism Detection

The existing static analysis techniques except for the
birthmark-based techniques are closely related to the
clone detection [1], [2], [3], [4], [5], [6], [7], [8], [31].
While possessing common interests with the clone de-
tection, the plagiarism detection is different in that (1)
we must deal with code obfuscation techniques which
are often employed with a malicious intention; (2) source
code analysis of the suspicious program is not possible
in most cases. Static analysis techniques for software
plagiarism detection can be classified into five cate-
gories: string-based [1], AST-based [18], [19], [20], token-
based [21], [22], [23], PDG-based [4], [16], and birthmark-
based [17], [24]. String-based: Each line of source code is
considered as a string. A code fragment is labeled as pla-
giarism if the corresponding sequence of strings matches
certain code fragment from original program. AST-based:
The abstract syntax trees (AST) are constructed from
two programs. If the two ASTs have common subtrees,
plagiarism may exist. Token-based: A program is first
parsed to a sequence of tokens. The sequences of tokens
are then compared to find plagiarism. PDG-based: A
program dependency graph (PDG) represents the control
flow and data flow relations between the statements in
a program procedure. To find plagiarism, two PDGs are
constructed and compared to find a relaxed subgraph
isomorphism. Birthmark-based: A software birthmark is
a unique characteristic of a program that can be used
to determine the program’s identity. Two birthmarks are
extracted from two programs and compared.

None of the above techniques is resilient to code
obfuscation. String-based schemes are vulnerable even
to simple identifier renaming. AST-based schemes are
resilient to identifier renaming, but weak against state-
ment reordering and control replacement. Token-based
schemes are weak against junk code insertion and state-
ment reordering. Because PDGs contain semantic in-
formation of programs, PDG-based schemes are more

robust than the other three types of the existing schemes.
However, the PDG-based methods are still vulnerable
to many semantics-preserving transformations such as
inlining/outlining functions and opaque predicates. The
existing birthmark-based schemes are vulnerable to ei-
ther obfuscation techniques mentioned in [24] or some
well-known obfuscation such as statement reordering
and junk instruction insertion. Moreover, all existing
techniques except for [24], [31] need to access source
code. Luo et al. [32] proposed the concept of Longest Com-
mon Subsequences (LCS) of Semantically Equivalent Basic
Blocks, which combines the flexible LCS with rigorous
program semantics for code equivalence checking at the
binary level. This method is quite obfuscation-resilient;
however, the computational overhead is quite high due
to the use of advanced techniques such as symbolic
execution and constraint solving.

2.3 Dynamic Analysis Based Plagiarism Detection

Myles and Collberg proposed a whole program path
(WPP) based dynamic birthmark [25]. WPP was origi-
nally used to represent the dynamic control flow of a
program. WPP birthmarks are robust to some control
flow obfuscation such as opaque predicates insertion,
but are still vulnerable to many semantics-preserving
transformations such as flattening and loop unwinding.
Tamada et al. also introduced two types of dynamic
birthmarks for Windows applications: Sequence of API
Function Calls Birthmark (EXESEQ) and Frequency of
API Function Calls Birthmark (EXEFREQ) [27], [28]. In
EXESEQ, the sequence of Windows API calls is recorded
during the execution of a program. These sequences are
directly compared to find the similarity. In EXEFREQ, the
frequency of each Windows API call is recorded during
the execution of a program. The frequency distribution
is used as a birthmark. Schuler et al. proposed a dynamic
birthmark for Java [26]. The call sequences to Java stan-
dard API are recorded and the short sequences at object
level are used as a birthmark. Their experiments showed
that their API birthmarks are more robust to obfuscation
than WPP birthmarks. These birthmarks, however, can
only identify the same source code compiled by different
compilers with different options, and the performance
against real obfuscation techniques is questionable. For
example, attackers may simply embed some of API
implementations into their program so that fewer API
calls will be observed. Wang et al. [33] proposed a sys-
tem call based birthmark, addressing the problems with
API based techniques. However, the proposed technique
cannot be applied to computation oriented softwares
containing few system calls, and is sill vulnerable to
injecting transparent system calls in the middle of an
edge on the system call dependence graph. More re-
cently, Zhang et al. [34] proposed a dynamic approach to
the algorithm plagiarism detection, a different but related
research problem. Zhang et al. [35] proposed a method
to search for path deviations for plagiarism detection

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 4

TABLE 1
Proportion of refined value sequences of GCC compiled
executables that overlap value sequences of TCC and

WCC compiled executables.

Compiler Optimization bzip2 gzip oggencswitches tested
TCC NA 100% 100% 92%
WCC 20 switches 100% 100% > 91%

(avg. 95%)

using symbolic execution and constraint solving on the
execution traces.

2.4 Smartphone App Repackaging Detection

App repackaging, a form of software plagiarism, has be-
come a common phenomenon in the mobile app markets
like Google Play and Apple iTunes. Dishonest users
may repackage others’ apps under their own names or
embed different advertisements, and then republish it to
the app market to earn monetary profit. Furthermore,
to leverage the popularity of mobile apps to increase
the propagation of their malware, malware writers may
modify popular apps to insert malicious payloads into
the original apps.

Prior work in this area includes the following meth-
ods: Opcode-based approach: DroidMOSS [36] and Jux-
tapp [37], AST based approach: [38], and PDG based
approach: DNADroid [39]. A common drawback is that
most of them are not obfuscation-resilient. Our research
is obfuscation-resilient and can be potentially applied
to the smartphone app repackaging detection. More
recently, Huang et al. [40] developed a repackaging de-
tection evaluation framework so that different methods
can be systematically evaluated and compared, with
obfuscations applied. ViewDroid [41] applied a user
interface based birthmark, which is designed for user
interaction intensive and event dominated programs, to
detect smartphone application plagiarism.

3 CORE VALUES

The runtime values of a program are defined as values
from the output operands of the machine instructions
executed. While examining the runtime values of exe-
cutable programs, we observed that some runtime values
of a program could not be changed through automated
semantics-preserving transformation techniques such as
optimization, obfuscation, different compilers, etc. We
call such invariant values core-values.

Core-values of a program are constructed from run-
time values that are pivotal for the program to transform
its input to desired output. We can practically elimi-
nate non-core values from the runtime values to retain
core-values. To identify non-core values, we leverage
taint analysis and easily accessible semantics-preserving
transformation techniques such as optimization tech-
niques implemented in compilers. Let vP be a runtime

value of program P taking I as input, and f be a
semantics-preserving transformation. Then, the non-core
values have the following properties: (1) If vP is not
derived from I , vP is not a core-value of P ; (2) If vP
is not in the set of runtime values of f(P), vP is not a
core-value of P .

To examine the existence of core-values, we perform
a dynamic analysis on three test programs gzip, bzip2,
and oggenc: Gzip and bzip2 are well-known compres-
sion utilities, and oggenc is a OggVorbis audio format
encoder. For the dataset to be used as the input to
the programs, we generate ten wav audio files (seven
16KB files, two 24KB files, and one 8KB file), cropped
from a 43.5MB wav file containing an 8’37”-long speech.
In each set of experiments, we use these ten inputs,
and take the average outcome as the final result. With
each of the three programs, we generate five different
versions of executable files by compiling it with each
of the following optimization switches of GCC: -O0,
-O1, -O2, -O3, and -Os. From each of the executables
given the same input, we extract a value sequence, a
sequence of values (4-bit, 8-bit, 16-bit, or 32-bit) that
are the computation results of arithmetic and bit-wise
instructions in the execution path. We also implement
refinement techniques (Section 4.1 and 4.2) including a
dynamic taint analyzer to retain only the values derived
from input in the sequence. Then, we refine the value
sequences by computing their longest common subse-
quence, which contains the runtime values that survive
all of the five optimization switches.

To verify that the refined value sequences are not
from compiler-specific common routines such as stan-
dard C library or C startup code, we compare the refined
value sequences against value sequences extracted from
the same programs compiled by different compilers,
Tiny C Compiler (TCC) and Open Watcom C Compiler
(WCC). Compared to GCC, TCC uses different com-
piler components such as parser and optimizer, and
support library (libtcc.a), however the code it produces
borrows GCC’s runtime libraries (libc.so). WCC is a self-
contained development suite implementing its own C
libraries. Therefore, the code it produces does not need to
use GCC’s runtime libraries. Also, WCC provides plenty
of optimization options, and we test all the 20 optimiza-
tion switches to examine the refined value sequences. As
shown in Table 1, the longest common subsequence of
the five sequences are enclosed almost completely by the
value sequences of executables generated by compiling
the same test program with TCC and WCC. Although
92% and 95% matches shown in the cases of oggenc
indicate that the refined value sequences still contain
some non-core values, these are much higher scores than
those between irrelevant programs: as we will show
shortly, the scores between irrelevant programs range
from 0% to 11% in our experiments.

We further investigate the core-values through real
obfuscation tools. For a source code obfuscation tool,
we use Semantic Designs, Inc.’s Thicket C obfuscator

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 5

TABLE 2
Proportion of refined value sequences that overlap value

sequences of executables obfuscated by Thicket and
control flow flattening

Obfuscator bzip2 gzip oggenc
Thicket C Obfuscator 100% 100% 95%

Control Flow Flattening 100% 100% 100%

that implements abstract syntax tree (AST) based
code transformation. Its features include, but not
limited to, identifier scrambling, format scrambling,
loop rewriting, and if-then-else rewriting. As a more
advanced obfuscation technique, we use control flow
flattening [11] implemented in Loco based on Diablo
link-time optimizer [13]. Control flow flattening can
transform statements ‘s1; s2;’ into ‘i=1; while(i)
{switch(i) {case 1: s1; i++; break; case
2: s2; i=0; break;}}’ of which the control flow
graph is hugely different from the original. As shown
in Table 2, again our refined value sequences are
almost completely enclosed by the value sequences of
obfuscated executables.

To see overlapping portion of value sequences of
different programs, we compare the refined value se-
quences of bzip2, gzip, and oggenc against irrelevant
pairs (i.e., the refined value sequence of bzip2 to value
sequence of oggenc optimized with -O1). In 30 compar-
ison cases (three test programs, each of which has two
irrelevant peers, five optimization switches), the value
sequences of each program contain only 0% to 11% of
the refined value sequences of different programs. This
indicates that the core-values do exist and we can use
them to identify the sameness of codes.

4 DESIGN

With the rapid development of software industry and
the burst of open source projects (e.g., SourceForge.net
is hosting over 430,000 open source projects as of March
2014), software theft has become a very serious concern
to software companies and open source communities.
In the presence of automated semantics-preserving code
transformation tools [12], [13], [14], [15], the existing code
characterization techniques may face an impediment to
finding sameness of plagiarized code and the original.
In this section, we discuss in detail how we apply our
technique to software plagiarism detection. Later, we
evaluate our value-based code characterization method
against such code obfuscation tools in the context of
software plagiarism detection.

Scope of Our Work: We consider the following types
of software plagiarisms in the presence of automated ob-
fuscators: whole-program plagiarism, where the plagiarizer
copies the whole or majority of the plaintiff program
and wraps it in a modified interface, and core-part pla-
giarism, where the plagiarizer copies only a part such
as a module or an engine of the plaintiff program. Our

main purpose is to develop a practical solution to real-
world problems of the whole-program software plagia-
rism detection, in which no source code of the suspect
program is available and various automated obfuscation
techniques have been applied to the suspect program.
Our proposed technique, VaPD, can also be a useful
tool to solve many partial, or core-part, plagiarism cases
where the plaintiff can provide the information about
which part of his program is likely to be plagiarized.
We present applicability of our technique to core-part
plagiarism detection in the discussion section. We note
that if the plagiarized code is very small or functionally
trivial, VaPD would not be an appropriate tool.

4.1 Value Sequence Extraction

Since not all values associated with the execution of
a program are core-values, it is important to limit the
types of values to be included in a value sequence. We
establish the following requirements for a value to be
added into a value sequence: The value should be output
of a value-updating instruction and be closely related to
program’s semantics. In the following, we discuss the
rationale for these requirements.

Informally, a computer is a state machine that makes
state transition based on input and a sequence of ma-
chine instructions. After every single execution of a ma-
chine instruction, the state is updated with the outcome
of the instruction. Because the sequence of state updates
reflects how the program computes, the sequence of
state-updating values is closely related to the program’s
semantics. As such, in value-based characterization, we
are interested only in the state transitions made by value-
updating instructions. More formally, we can concep-
tualize the state-update as the change of data stored in
devices such as RAM and registers after each instruction
is performed, and we call the changed data a state-
updating value. We further define a value-updating in-
struction as a machine instruction that does not always
preserve input in its output. For example, add is a value-
updating instruction, but mov is not. Being an output of
a value-updating instruction is a sufficient condition to
be a state-updating value. Therefore, we exclude output
values of non-value-updating instructions from a value
sequence. In our x86 implementation, the value-updating
instructions are the standard mathematical operations
(add, sub, etc.), the logical operators (and, or, etc.),
bitshift arithmetic and logical (shl, shr, etc.), and rotate
operations (ror, rcl, etc.).

The above technique helps dramatically reduce the
size of a value sequence; however, in practice it is still
challenging to analyze all values produced by all the
value-updating instructions. Therefore, we must apply
further restrictions to refine value sequences. There are
two classes of values computed by value-updating in-
structions: Class-1 includes those derived from input of
the program, and Class-2 consists of those that are not.
For example, when program P is processing input I in

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 6

TABLE 3
Applicability of value sequence refinement techniques.

Refinement technique Plaintiff Suspect
program program

Sequential refinement
√

Optimization-based refinement
√

Address removal
√ √

environment E, some instructions take values derived
from input I as their input, but some others take input
from environment E such as program load location,
stack pointer, size of stack frame, etc. Since the semantics
is a formal representation of the way that a program
processes the input, it is obvious that the values in
Class-1 are more closely related with the semantics of a
program. So, we include only the values of Class-1 in a
value sequence. To identify the values included in Class-
1, we run a program in a virtual machine environment
and perform a dynamic taint analysis [42]. We start with
tainting the input, and then our analyzer in the virtual
machine propagates the taint to every byte in registers,
memory cells, and files derived from the input. Registers
and memory cells appearing in destination operands of
all the instructions that take input from tainted registers
or tainted memory locations are also tainted, and the out-
put values of value-updating instructions are appended
into the value sequence. In the example of JLex used as a
case study in this paper, the value sequences contain less
than 7,000 values after applying taint analysis, which is
significantly shorter, approximately 1

250 of the original
sequences.

4.2 Value Sequence Refinement
In this section, we discuss heuristics to refine value se-
quences. An initial value sequence constructed through
the dynamic taint analysis may still contain a number
of non-core values produced by intermediate or insub-
stantial computational steps. We need to eliminate those
values to make the value sequence (1) as close to core-
values as possible; and (2) capable of characterizing
larger programs. We believe a number of heuristics such
as control/data flow dependence analysis and abnormal
code pattern detection can be adopted to achieve these
goals, and below we introduce some of them. One
principle that we consider here is that we have to be
conservative in processing value sequences of suspect
programs. Since some heuristics may be abused by so-
phisticated plagiarizers, we summarize applicability of
each heuristic that we will introduce in Table 3.

4.2.1 Sequential Refinement
Inside the value sequence extractor, we implement a
refinement technique named sequential refinement. Fig. 1
shows a partial list of instructions compiled by GCC for
“a=1; a=(a+1)*11;.” The registers %eax and %edx
are initialized to value 1. When variable a is initially
tainted, our taint analysis extracts value sequence s =

{4, 5, 10, 11, 22}. Note that sequence s1:4 = {4, 5, 10, 11},
a subsequence of s is generated by intermediate steps
computing ‘(a + 1) × 11’. All the values in s1:4 are
overwritten in register eax without affecting any other
memory locations until line 005. Since instructions after
line 005 would never read (or be affected by) the values
in s1:4, we can remove s1:4 from s and retain only {22}.
We formalize this heuristic in the following rule:

Sequential Reduction Rule: Let ik,v denote k-th instruc-
tion updating variable (register or memory) v. Then, we
can skip logging output of ik,v if v is immediately killed
in the next instruction ik+1,v). Repeat the same process
until the first instruction that reads n and updates a
variable (6= n) is executed. Note that we do not imple-
ment reduction to remove all intermediate values. We
simply only remove those that are sequentially killed
immediately because it effective and can be implemented
with little cost.

Through out our experiments presented in this paper,
average reduction rate by the sequential refinement is
16%, and the maximum is 34%. Note that the sequential
refinement only applies to plaintiff programs because,
in obfuscated programs, original values could appear as
the results of the intermediate computational steps.

4.2.2 Optimization-Based Refinement

Only for plaintiff programs, we perform optimization-
based refinement as shown in Fig. 2. One of the easiest
way to obtain different executable files that are seman-
tically identical is to compile the same source code with
the same compiler with different optimization switches
enabled. Motivated by this idea, we use several opti-
mized executables of the same program to sift non-core
values out. With GCC and its five selected optimization
flags (-O0, -O1, -O2, -O3, and -Os), we can extract
five optimized value sequences from the plaintiff program.
Each optimized value sequence has been processed with
the sequential refinement while it is extracted. Then,
we compute a longest common subsequence of all the
optimized value sequences to retain only the common
values in the resulting value sequence. As we do not
assume we have access to the source code of suspect
programs, this refinement heuristic is only applicable to
plaintiff programs.

4.2.3 Address Removal

Memory addresses or pointer values stored in registers
or memory locations are transient. For example, some
binary transformation techniques such as word align-
ment and local variable reordering can change pointers
to local variables or offsets in stack; and heap pointers
may not be the same next time the program is executed
even with the same input. Therefore, we do not include
pointer values in a refined value sequence.

In our VaPD prototype, we implement a range check-
ing based heuristic to detect addresses. Our test bed
dynamically monitors the changes of memory pages

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 7

Assembly code IN OUT Output value Note
001: shl $0x2,%eax eax eax 4 Invisible

at line 6
002: add %edx,%eax edx,eax eax 5
003: add %eax,%eax eax eax 10
004: add %edx,%eax edx,eax eax 11
005: add $0xb,%eax eax eax 22
006: mov %eax,-8($ebp)

Fig. 1. Sequential refinement example (EAX is initially tainted)

Source code Executables
Value

sequences

Value

sequence

extractor

LCS

extractor

Refined

value

sequence

Compiling with different

optimization switches Sequential refinement

Address removal

Optimization-based refinement

Fig. 2. Optimization-based refinement on plaintiff programs.

allocated to the program being analyzed, and it main-
tains a list of ranges of all the allocated pages with
write permission enabled. If a runtime value is found
to be within the ranges in the list, VaPD discards the
value, regarding the value as an address. Although this
heuristic may also delete some non-pointer values, it can
remove pointers to stack and to heap with no exception.
Address removal heuristic is applicable to both plaintiff
and suspect programs.

4.3 Similarity Metric
In the literature, there are many metrics for measur-
ing the degree of similarity of two sequences. In our
prototype, we define it based on the longest common
subsequence (LCS). It should be noted that the definition
of the LCS does not require every subsequence to be a
continuous segment of the mother sequence. For exam-
ple, both {1, 6, 120} and {2, 24} are valid subsequences of
value sequence {1, 2, 6, 24, 120}. Let |LCS (s1, s2)| denote
the length of the LCS of sequence s1 and s2. Given vP , a
fully refined value sequence of a plaintiff program and
vS , a value sequence of a suspect program, similarity
score of the suspect program over the plaintiff program
is intuitively defined as:

Sim (vP , vS) =
|LCS (vP , vS)|

|vP |

4.4 Design Overview
Fig. 3 shows overall design of VaPD. Here, provided
with executable files of plaintiff program P and suspect
program S, and common test input I , Value Sequence
Extractor(VSE) extracts vP and vS , the value sequences
of P and S. After refining vP and vS , Similarity Detector
computes Sim (vP , vS), the similarity score of vP and vS .
VaPD repeats this process with different inputs (say, 10

or 20 inputs), and claims plagiarism if the average of the
scores shows a significant similarity.

By default, VaPD uses value sequences vP and vS
extracted through the entire execution of P and S respec-
tively. However, when it deals with the cases where only
part of P is reused in S, VaPD can extract partial value
sequence from only the suspicious part of P . To extract
partial value sequences, we insert special system calls
into the source code of P (note that we do not assume
access to the source code of S) to notify VSE when to
start (or resume) and when to stop (or pause) extracting
the value sequence. Provided by the plaintiff with the
intelligence about which part of his program is likely to
be plagiarized, we can annotate plaintiff’s source code
and capture the sequence from the part that is believed
to be stolen.

VSE is a virtual machine that executes given program
instruction by instruction. We implement two opera-
tion modes in VSE: normal mode and partial extraction
mode. In the normal mode, VSE operates as follows. Af-
ter fetching an instruction, Taint Analyzer taints the
destination operands if any of the source operands is
tainted. After the instruction is executed by the vir-
tual machine, VSE checks whether the instruction is a
value-updating instruction and whether its output is
tainted; if this is true, the output of the instruction
is added to the value sequence. VSE then fetches and
decodes the next instruction and repeats the same pro-
cess until the program is finished. When the program
terminates, VSE stops extracting values and passes com-
pleted value sequence to VaPD. Note that VSE also
performs the address removal refinement. In the partial
extraction mode, VSE intercepts two special system calls
START_EXTRACT() and STOP_EXTRACT() (system call
numbers are 0xFFFFFFFF and 0xFFFFFFF0 respectively)
requested by the test program. When VSE starts in the
partial extraction mode, value sequence recording is

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 8

Source code Optimization-

based refinement

Similarity

detector

Refined

value

sequence

Address removal

Plaintiff program

Wrapper /

source code

annotation if

necessary

Test input(s)

Executable

Suspect program

Value

sequence

extractor

Value

sequence

Similarity

score

Fig. 3. Plagiarism detection process

initially turned off. It starts (or resumes) recording values
when the test program requests START_EXTRACT() sys-
tem call, and it stops (or pauses) storing values when the
program calls STOP_EXTRACT() system call. Using the
partial extraction mode, we can extract value sequences
from part of plaintiff programs. Note that the partial
extraction mode is to extract partial value sequence of
plaintiff programs. Malicious plagiarizers will not be
able to prevent this mode from excluding plagiarized
part in value sequence extraction process.

To reduce the number of values added into the value
sequence, VSE does not extract values from dynamic
linked libraries or shared libraries by default. However,
if necessary, we can enable VSE to include specific shared
libraries in the value sequence extraction because the
virtual machine knows which libraries are loaded and
where they are.

5 EXPERIMENT

We implement Value Sequence Extractor (VSE) inside
QEMU 0.9.1 [43]. QEMU improves execution speed
mainly through block translation and caching the trans-
lated blocks. QEMU translates each basic block on-the-
fly into instrumented machine instructions and directly
executes the translated code. Translation block cache, the
cache of once translated blocks prevents QEMU from
re-translating the same code many times. For a rapid
prototyping, we tweak QEMU’s block translation into
instruction translation and implement VSE within the
translation. In addition, we disable the translation cache
to force QEMU to invoke VSE for every single instruction
that it executes. Our measurement indicates that the
QEMU without block translation and translation block
cache is observed to be 56 time slower than the original
QEMU, and the performance overhead attribute to our
taint analyzer is relatively insignificant. We can improve
the performance if we enable the block translation and
translation block cache features by embedding taint up-
dating code in all translated code blocks.

During our evaluation of the prototype, we answer
three questions. First, how resilient is VaPD to obfus-

cation techniques? Second, how likely will it make
a false accusation? Finally, how credible is VaPD when
tested with very similar programs independently imple-
mented to meet the same specification? We thoroughly
test obfuscation resiliency of VaPD using the obfusca-
tors implemented in SandMark [12], Zelix Pty Ltd.’s
KlassMaster [15], and Semantic Designs Inc.’s Thicket
C obfuscator [14]. SandMark and KlassMaster are Java
bytecode obfuscators: The latest SandMark includes 15
application obfuscations, 7 class obfuscations, and 17
method obfuscations; Zelix Pty Ltd. claims KlassMaster
is a heavy duty obfuscator implementing name obfus-
cation, comprehensive flow obfuscation techniques, and
string encryption. The Thicket C obfuscator is a C source
code rewriting tool based on abstract syntax tree. It per-
forms several obfuscation techniques including identifier
scrambling, format scrambling, replacing/simplifying
statements, loop rewriting, and rewriting if-then-else
conditionals [44]. Because VaPD analyzes x86 machine
code, we convert Java byte code (used in SandMark and
KlassMaster experiments) to x86 executable using GCJ
4.1.2, the GNU ahead-of-time Compiler for Java. As a
front-end of GCC, GCJ benefits from GCC’s optimization
features. We also examine VaPD’s credibility by deliber-
ately using programs that are similar to but disparate
from each other. Experiments are performed on a Linux
machine equipped with an Intel Quad-Core 2.00 GHz
CPU and 4GB RAM.

5.1 Case Study I: Obfuscation Tools

We evaluated resiliency of VaPD against advanced ob-
fuscation techniques of SandMark and KlassMaster.
Since SandMark and KlassMaster are Java bytecode
obfuscators, we selected JLex [45], a lexical analyzer
generator written in Java, as the subject of out tests.
In this case study, we set up two cases of experiments:
a single-obfuscation experiment, where only one obfus-
cation technique is applied at a time, and a multiple-
obfuscation experiment, where multiple obfuscators are
applied to one program at once. As a dynamic analysis

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 9

Fig. 4. Similarity scores (y-axis) of original JLex to obfuscated ones (x-axis)

Fig. 5. Similarity scores (y-axis) of original JLex to other programs written in Java and C (x-axis)

based solution, VaPD may not reliably identify (non-
)plagiarism based on a single high similarity score.
Hence, in this experiment, we used 20 different inputs
and compute the average similarity scores.

5.1.1 Impact of Single Obfuscation

In single-obfuscation experiments, original JLex is com-
pared to obfuscated versions of itself. Also, we compare
JLex to 19 additional programs, 8 of which are Java
programs (zip4j, ase, des, md2, md5, sha1, base64, and
jchardet) and 11 of which are C programs (bzip2, cksum,

gzip, md5sum, zip, and openssl computing MD2, MD4,
MD5, RMD160, SHA1, and SHA), totally different from
JLex while processing the same input. The results are
shown in Fig. 4 and Fig. 5, where the x-axis shows
suspect program names (JLex’s obfuscated versions3 and
other programs), and the y-axis shows the similarity
scores.

We observed that in all cases of comparing original
JLex to its obfuscated versions (totally 680 comparisons,

3. We could not test all 39 obfuscators because some of them failed
in transforming JLex.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 10

TABLE 4
Names of obfuscation techniques applied to JLex to

generate multiply obfuscated versions

Control obfuscation Data obfuscation
Transparent Branch Insertion Array Folder
Simple Opaque Predicates Integer Array Splitter
Inliner Promote Primitive Registers
Insert Opaque Predicates Variable Reassigner
Dynamic Inliner Duplicate Registers
Interleave Methods Boolean Splitter
Method Merger Merge Local Integers
Reorder Instructions

given by 34 obfuscators and 20 inputs), the similarity
scores mark 1.0. In contrast, the similarity scores between
JLex and 19 other programs mark very low scores with
average of 0.064. The maximal is only 0.19, which is still
very low considering that the similarity score for a real
plagiarism is 1.0.

Therefore, the results shown in Fig. 4 and Fig. 5
provide us with clear answers to the questions we raised
earlier: Regardless of obfuscation techniques, VaPD com-
puted noticeably high similarity scores between the orig-
inal and obfuscated programs, and discernably lower
similarity scores between different programs. In all cases,
VaPD can identify the identical programs with no false
accusation with an appropriate threshold (say 0.90).

5.1.2 Impact of Multiple Obfuscation

We also notice that a plagiarist may attempt to hide pla-
giarism by heavily transforming a plagiarized program
through a series of obfuscators. Therefore, evaluating re-
siliency of VaPD against multiple obfuscation techniques
applied to single program is necessary.

Although it is theoretically possible for a series of
multiple obfuscators to transform a program, applying
many obfuscators to a single program could raise prac-
tical issues of correctness of the target program and
efficiency. For example, we attempted to apply all the 39
obfuscation techniques of SandMark to JLex, but after
trying several obfuscation orders, only some of them
could be successfully applied. To address this prob-
lem, we selected two groups of obfuscation techniques,
following the classification of Collberg et al. [9]: data
obfuscation and control obfuscation. By transforming
JLex through each group of obfuscators, we created two
multiply obfuscated programs JLexcontrol and JLexdata. In
summary, we could apply 8 control obfuscators and 7
data obfuscators to JLex as shown in Table 4. We also
generated JLexzkm by transforming JLex through Klass-
Master with the most aggressive configuration options
enabled.

We compared each of JLexcontrol, JLexdata, and JLexzkm
to original JLex. In all three groups of comparisons
between heavily obfuscated JLex and original JLex, we
observe similarity score of 1.00. This shows that VaPD is
effective in detecting plagiarisms obfuscated heavily.

TABLE 5
Similarity scores of five XML parsers cross compared.

(P=Plaintiff, S=Suspect)

HHH
HP
S expat libxml2 parsifal rxp xercesc

expat 0.12 0.09 0.17 0.03
libxml2 0 0.01 0 0.01
parsifal 0.02 0.1 0.04 0.23

rxp 0.08 0.09 0.08 0.02
xercesc 0 0.02 0.01 0.02

5.2 Case Study II: Similar Programs
To investigate the credibility of VaPD on analyzing
highly similar but disparate programs, we cross analyze
five individual XML parsers: RXP, used by the LT XML
toolkit and the Festival speech synthesis system; Expat
XML parser, the underlying XML parser for the open
source Mozilla project and Perl’s XML::Parser; Libxml2,
the XML C parser and toolkit of Gnome; Xerces-C++
supported by Apache XML project; and Parsifal XML
parser C library. For each of the five XML parsers, we
wrote a simple test program that parses test input and
prints the parser’s internal information to the termi-
nal. We cross-compared the refined value sequences of
plaintiff programs to the value sequences of suspect
programs through 375 distinct comparison cases given
by five programs, five different optimization switches
(O0-3 and Os), and three test inputs.

To our best knowledge, these five XML parsers do
not share code. Since they are all individually developed
projects, it would be a false accusation if VaPD computes
a higher similarity score (say, greater than 0.9) for any
of them. Average and standard deviation of similarity
scores of 75 cases comparing same programs are 1.0
and 0 respectively. Average and standard deviation of
300 cases comparing different programs are both 0.06.
Table 5 summarizes the results (We show only average
of similarity scores per each program pair for brevity). In
all cases comparing different programs, except one case,
we observe similarity scores lower than 0.17. Only one
comparison case shows a similarity score of 0.23, which
is still very low. Therefore, it is safe to say VaPD claims
no false accusation in this case study.

5.3 Case Study III: Different Programs
Previously, at the end of Section 3, we presented pre-
liminary results on the likelihood of VaPD raising false
accusations by cross-comparing bzip2, gzip, and oggenc.
In this section, we investigate even further by comparing
each of bzip2, gzip, and oggenc against 9 of 11 programs
used in Section 5.1.1—two are excluded because they
overlap bzip2 and gzip. Bzip2, gzip, and oggenc used in
this experiment are compiled from self-contained, single
compilation-unit C programs [46], therefore they need
no external libraries other than the standard C library.

The results are shown in Fig. 6. From 270 distinct
comparisons given by three plaintiff programs (bzip2,

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

cksum

m
d5sum

openssl-com
puting-m

d2

openssl-com
puting-m

d4

openssl-com
puting-m

d5

rm
d160

sha1
sha

zip

bzip2

gzip

oggenc

Fig. 6. Similarity scores (y-axis) between different programs (x-axis)

gzip, and oggenc), 9 suspect programs (cksum; md5sum;
openssl computing MD2, MD4, MD5, RMD160, SHA1,
and SHA; and zip), and 10 input files, we observe
similarity scores between 0 and 0.27 except the cases
of zip and gzip pairs in which all the similarity scores
are 1.0. According to the documentations of zip and
gzip projects, we found that zip and gzip are based
on the same compression algorithm deflate which is
also implemented in the zLib library. Our source code
analysis confirms that the gzip used in this experiment
contains code from zLib 1.1.4 in itself, and the zip
is dynamically linked to the system-wide zLib 1.2.3.
Therefore, high similarity scores of zip and gzip pairs
are not false positives. Rather, it gives more credential
to VaPD’s detection. In addition, zip scored very low
similarity scores (0.01 to 0.03) against bzip2 which is also
a compression utility. This result is also correct because
bzip2 uses a different compression algorithm called block
sorting.

6 ADDRESSING REORDERING ATTACKS

As we have seen in Section 5, our results show that
the runtime value sequence based method is resilient
to various obfuscation techniques. However, our metric
LCS is sensitive to reordering. For example, an adver-
sary can reduce the length of common sequences by
exchanging the order of independent instructions or
independent basic blocks. In this section, we present
value dependence graphs (dynamic data dependence
graphs of the runtime values) and an efficient algorithm,
which is resilient to reordering attacks, to determine
similarity of two programs based on the graphs.

In general, runtime value dependence graphs can be
constructed and we can apply subgraph isomorphism to

defend the reordering attacks. However, subgraph iso-
morphism algorithms are not practical for large graphs.
Instead, we propose a technique to organize a value se-
quence into subsequences showing unchangeable partial
ordering of the values. To get such subsequences that
cannot be reordered, we build specific value dependence
graphs (dynamic data dependence graphs of the run-
time values) denoted by VDG. Then we use a novel
path containment test technique to check whether the
reordering-intolerant subsequences of the plaintiff pro-
gram are contained in the VDG of the suspect program.
Such path containment checks (and the checking results)
may replace LCS metrics in measuring the similarity of
two programs. Through a Lemma, we show that such
containment checks are “immune” to reordering attacks.

The overall process of VDG based plagiarism detection
is shown in Fig. 7. To avoid using expensive graph
matching algorithms, we develop two techniques, path
containment test and graph reduction. In the following
sections, we discuss about how we compare paths of
the plaintiff program against the VDG of the suspect
program, how we select the paths to compare, and how
we reduce the search space through the VDG reduction.

6.1 VDG Construction
Construction of VDG is done based on the dynamic data
dependence extracted while VaPD performs a dynamic
taint analysis to extract a value sequence of a program.
We define the value dependence graph (VDG) as follows:

Definition 1 (Dynamic Instruction Sequence): Given a
program P , a dynamic instruction sequence of P is a
sequence of ιn representing the machine instructions
executed during an execution of P in a temporal order.
For any two dynamic instructions ιi and ιj (i 6= j), ιi

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 12

Plaintiff value

sequence

VDG(P)

Selected

paths

Suspicious

value

sequence

VDG(S)

Reduced

VDG(S)

Path

selection

VDG

reduction

Path Containment

Check

Fig. 7. VDG based detection overview

is executed prior to ιj if and only if i < j. Multiple
instances of one static instruction can appear in a
dynamic instruction sequence if the static instruction
is executed more than once due to backward branches,
i.e., loops or subroutine calls.

Definition 2 (Direct Ancestors and Direct Descendants):
Given two runtime values vi and vj in a value sequence,
vi is a direct ancestor of vj and vj is a direct descendant
of vi if and only if the dynamic instruction computing
vj takes vi as an input parameter. A dynamic value may
have multiple direct ancestors and direct descendants.
The set of direct ancestors of vj is given as Φ(vj) where
vi ∈ Φ(vj), and the set of direct descendants of vi is
given as Ψ(vi) where vj ∈ Ψ(vi). When vi is removed
from P ’s value sequence during the value sequence
refinement phase, for all vj ∈ Ψ(vi), vi is removed from
Φ(vj) and Φ(vi) is migrated into Φ(vj). If vi ∈ Φ(vj), we
say vj is derived by vi.

Definition 3 (Value Dependence Graph): Given a pro-
gram P and an execution trace Tp, its value dependence
graph VDG(Tp) is a directed acyclic graph G(Vp, Ep).
Here Vp is a set of vertices each of which represents
a runtime value output from some dynamic instruc-
tion of ι. Ep is a set of edges between two distinct
dynamic instructions a and b of Vp, and the runtime
value represented by b is derived from the runtime value
represented by a.

We construct a VDG from a program execution
trace, i.e., runtime value sequences in our context and
the dynamic instructions that have computed the run-
time values. Given a runtime value sequence T =
{v0, v1, . . . , vn−1}, for any two runtime values vi and
vj , i < j, if vi ∈ Φ(vj), we add an edge (vi, vj) in the
resulting VDG.

Note that a value dependence graph is constructed
from a program execution trace which is a dynamic trace,
not from the static program text. The execution trace
in our context can be viewed as a list of the output
values of a straight-line program, with loops and back-
edges unfolded. For example, in a dynamic trace, a single
instruction pointer executed many times due to some
backward branches such as a loop yields as many output
values as the instruction is revisited. Thus the value
dependence graph resulted from such traces, or runtime
value sequences, does not have back-edges. Thus, VDGs
are directed acyclic graphs (DAG). We construct the
value dependence graphs on the fly during the simulated
execution in QEMU.

6.2 Path Selection

Since there could be large number of paths in a
VDG, we pick representative paths to improve efficiency.
Instead of enumerating all the paths of VDG(Tp), we pick
one dynamic data dependence path per each group of
paths that transform an initial input to a final output,
since our focus is to capture the dependence among
critical values monitored when an input is processed to
an output.

Given that we have the plaintiff program P and its
execution trace Tp, we construct the value dependence
graph from VDG(Tp) the runtime values (refined to
expose the core-values) of the plaintiff program from its
execution trace. As we discussed in section 6.1, VDG(Tp)
is a DAG. Then, with VDG(Tp), we chop the graph into
paths starting from each leaf node to the root node. We
extract one path per leaf node. Instead of enumerating
all the paths of VDG(Tp), we pick one dynamic data
dependence path per each group of paths that transform
an initial input to a final output because our focus is to
capture the dependence among critical values monitored
when an input is processed to an output.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 13

Algorithm 1 SELECT PATH(g)
Require: Directed acyclic graph g.
Ensure: List of selected paths.

Mark all nodes in g as not visited.
for all v ∈ leaf nodes of g do
w ← v
while w do

Add w at the beginning of path
for all p ∈ the list of parent nodes of w do

if p is not visited then
Mark p as visited.
w ← p
Exit the for loop.

end if
end for
if all p were visited then
w ← randomly pick a parent of w

end if
end while
Add path to path list.

end for
return path list

Our path selection algorithm is shown in Algorithm 1.
Let us denote by p the path being constructed. For each
leaf node of VDG(Tp), we mark the leaf node as visited,
and add it to p. Then we pick an unvisited predecessor
of the leaf node, mark it as visited, and add it to p.
If all predecessors are visited, we randomly pick one.
After repeating this procedure until the root of VDG is
reached, p is ready to be added to the set of selected
paths.

This simplification could increase the chances of false
positives, but the impact would be insignificant since we
perform the path containment test on hundreds of paths
containing thousands of values in each.

6.3 Path Containment Test
All the values contained in a path of VDG have partial
ordering dependence; therefore reordering techniques
cannot change their orders. Given the paths of VDG(Tp)
of the plaintiff, we check whether these paths are con-
tained in VDG(Ts) to measure the similarity of S to
P . This turns out to be a critical observation that has
deeper implications which we formalize as follows in
the form of a lemma. This lemma suggests that VDG-
based similarity checking can be done efficiently using
path containment tests.

Lemma 1 (Path Containment): Given two programs P
and S, and their corresponding execution traces Tp
and Sp, resulted from the same input, if the following
conditions hold, then for any path Pp in the VDG(Tp),
there always exists a path Ps in the VDG(Ts) such that
all the values contained in Pp will be a continuous or
non-continuous subsequence of Ps.

1) S is obtained from P through semantics-preserving
transformations.

2) The values in Pp are core-values.

Algorithm 2 MATCH PATH(p, g, i, n)
Require: Source path p, target graph g, i= current posi-

tion in p, n= node to start path containment test with.
Ensure: The number of matched values.

if n matches p[i] then
if i is the end of p then

set stop flag
return 1

end if
num match← MATCH SUB(p, g, i+ 1, n) + 1

else
num match←MATCH SUB(p, g, i, n)

end if
return num match

Algorithm 3 MATCH SUB(p, g, i, n)
Require: Source path p, target graph g, i= current posi-

tion in p, n= node to start path containment test with.
Ensure: The number of matched values.

for all c ∈ children of n do
m← MATCH PATH(p, g, i, c)
num match← maximum of m
if stop flag is set then

exit the loop
end if

end for
return num match

Given a path from the plaintiff VDG, we test whether
or not this path is embedded in the suspicious VDG. If
yes, it indicates that the semantics of this path is copied
or transformed into the suspicious program. Collectively,
the path containment test indicates the semantics em-
bedding from the plaintiff into the suspicious program.
The overall process of the path-containment test based
on Lemma 1 is shown in Algorithm 2 and Algorithm 3.

Algorithm 2 defines a function called MATCH PATH,
which takes as inputs a plaintiff path p from the plaintiff
VDG, a target graph g (the suspicious VDG), an index
i, and a node n. This function computes the maximal
length of the matching subsequences between the source
path p and each path from the suspicious VDG g, starting
at the source path position p[i] and the target graph node
n. It first compares p[i] and node n in the target graph,
if it matches, increment the matching score by 1 and
continue with the path matching to each of the child
node of n at position p[i+ 1]. This is done by calling to
the function MATCH SUB in Algorithm 3. Otherwise,
do not increment the matching score, but continue with
the matching to each of the child nodes of n at position
p[i].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 14

Algorithm 3 defines a function called MATCH SUB,
which is similar to MATCH PATH defined in Algo-
rithm 2. The difference is that MATCH SUB starts the
path matching at each child node of the input node n,
and output the maximal length, while MATCH PATH
starts at the current node n. For each child node c,
it simply calls MATCH PATH to compute the max-
imal matching length, and output the maximal one
among all children. MATCH PATH and MATCH SUB
are mutually recursive. The return condition is either
MATCH PATH reaches the end of the source path p or
MATCH SUB tested all the children of node n.

At a high level, these two algorithms performs a
heuristic matching of a source path against all path s
in the VDG of a suspicious program. Since VDGs are
directed acyclic graphs, the process is quite efficient.

6.4 VDG Reduction
Moreover, we further improve path matching perfor-
mance through removing useless nodes and edges from
VDG(Ts). When constructing VDG(Ts) from the runtime
values of Ts, we remove the nodes whose values do not
appear in VDG(Tp). Construction of VDG(Ts) is done
within O(Es) time where Es is the number of edges in
VDG(Ts) since, by nature of dynamic trace, the nodes
appearing in the dynamic dependence edges are created
in a topologically sorted order. Given the hash table con-
taining all the values from VDG(Tp), this reduction can
be done on-the-fly during the construction of VDG(Ts)
with little extra cost. Since the time complexity of the
DFS search on a DAG is known to be O(n2), where n
is the number of nodes, reducing the number of nodes
dramatically improves the matching performance. In the
cases shown in Table 6, we observed that VDG reduction
eliminated 80.7% of the edges in VDG(S) on average.

6.5 VDG similarity metric
When p, a path of VDG(P) is compared to VDG(S),
the per-path containment score PCSpath is computed as
follows:

PCSpath(p,VDG(Ts)) =
of matching nodes in p

|p|
Given a set of paths extracted from VDG(Tp), we use

the weighted average of the per-path containment scores.
The longer the path is, the lower the chance of false
positives is. Since P is provided by the plaintiff, we
have control over the source code and the compilation
process to make sure that P would not contain a large
number of dummy instructions to minimize the chance
of false positives and false negatives caused by noise
in the plaintiff paths. Therefore, we define the path
containment score of VDG(Tp) and VDG(Ts) as follows,

PCS(VDG(Tp),VDG(Ts)) =

|P|∑
i=1

ωiPCSpath(pi,VDG(Ts)),

where P is the set of paths selected from VDG(Tp), |P|
is the number of paths in P , pi is the i-th path of P , and
|pi| is the length of path pi. ωi, the weight of i-th path is
defined as

ωi =
|pi|∑|P|

k=1 |pk|
.

6.6 Evaluation of the VDG Based Method

As we discussed in the previous subsections, VaPD can
be extended to use the VDG based plagiarism detec-
tion. First, we evaluate the effectiveness of VDG-based
VaPD in comparison to LCS-based VaPD. We performed
the same experiments shown in Section 5.1 and 5.3 to
compare the results of the VDG based method with the
results of the LCS based method. The detailed results
are shown in Fig. 8, 9 and 10. Under all 34 types of
obfuscation from SandMark, VDG-based method reports
similarity scores of 1.0. For different program com-
parison, VDG-based approach reports similarity scores
which are (up to 24%) lower than those from the LCS-
based approach, indicating that VDG is effective in
filtering out noise values. Second, to see the impact
of a large VDG, we evaluate the performance through
running a test case where each VDG contains more than
a million edges. We perform path containment test on
VDGs constructed from three versions of GCC (3.4.6,
4.1.2, and 4.3.2) compiling a long C source file (xlfun2.c)
from XLisp source tree. The results are shown in Table 6,
where P is a plaintiff program, S is a suspect program,
Ep and Es are the number of edges in VDG(Tp) and
VDG(Ts), respectively, E′s is the number of edges in
VDG(Ts) after VDG reduction, |P| is the number of paths
in VDG(Tp), t is the elapsed time when testing all paths,
and t10 is the elapsed time when testing the top 10
percent longest paths. Note that the only reason that we
tested all the paths of VDG(Tp) generated from a long
input is to see the impact on the performance. In this
experiment, we got similar results by testing only the
top 10% longest paths obtained from a smaller input file.

In addition, GCC 3.4.6 uses a Bison generated parser,
and it was completely rewritten into a hand-written
recursive descent parser since GCC 4.1.0 was released.
Our path-containment scores confirm this fact: The con-
tainment scores of GCC 3.4.6 against GCC 4.1.2 and 4.3.2
are 0.68 and 0.72, respectively, and the containment score
of GCC 4.1.2 against 4.3.2 is 0.92.

7 DISCUSSION

7.1 Obfuscation Transformations and Attacks

Since the value based approach leverages selected run-
time values to characterize a code fragment, it can be
affected by the data obfuscation techniques that can alter
majority of the runtime values. We discuss about the
impact of data obfuscation and potential attacks to VaPD
in this section.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 15

TABLE 6
Number of edges and elapsed time of the VDG based method comparing GCC versions.

P S Ep Es E′s |P| t(min) t10(min) PCS
3.4.6 4.1.2 1,725K 1,968K 303K 215K 276 90 0.68
3.4.6 4.3.2 1,725K 1,491K 298K 215K 273 130 0.72
4.1.2 4.3.2 1.928K 1,457K 330K 90K 92 55 0.92

Fig. 8. VDG-based similarity scores (y-axis) of original JLex to obfuscated ones (x-axis)

Fig. 9. VDG-based similarity scores (y-axis) of original JLex to other programs written in Java and C (x-axis)

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 16

 0

 0.2

 0.4

 0.6

 0.8

 1

cksum

m
d5sum

openssl-com
puting-m

d2

openssl-com
puting-m

d4

openssl-com
puting-m

d5

rm
d160

sha1
sha

zip

bzip2

gzip

oggenc

Fig. 10. VDG-based similarity scores (y-axis) of different programs (x-axis)

001: x = 10 ;

002: x = x + 1 ;

003: y = ... (x - 1) ... ;

004: x = x - 1 ;

005: out(x) ;

006: out(y) ;

(a) Simple Data Transformation

001: x = 0 ;

002: y = 1 ; // y is tainted

003: i = 0 ;

004: while (i < 5) {

005: i ++ ;

006: x = x + i ;

007: y = y * i ;

008: }

009: out(y) ;

001: x = 0 ;

002: y = 1 ; // y is tainted

003: i = 0 ;

004: while (i < 5) {

005: i ++ ;

006: x = x + i ;

007: y = (y + i - x) * i + x ;

008: }

009: out(y - x) ;

Original Code Transformed Code

(b) More Complex Data Transformation

Fig. 11. Data Transformation Examples. Underlined codes are added by the transformation.

7.1.1 Data Transformation
Simple data transformations expose the core-values of
the original program. Fig. 11(a) is an example where the
original values of x are transformed by adding a constant.
Assuming that x is tainted and is 10 at the beginning,
the value sequence of the transformed code is {11, ..., 10,
..., y, 10}. In this sequence, {..., 10, ..., y} are the values
captured from intermediate data for computing y, and
this must appear in the value sequence of the original
code as well. Let us look at a more complex example,
variable encoding transformation. In general, variable en-
coding transforms variable v to αv + β. In Fig. 11(b),
variable y at line 7 of the original code is transformed
to be y + x. For this transformation, we apply the same
procedure as Drape et al. used [47]. Assuming that y is
tainted at line 2, the refined value sequence that VaPD
extracts from the original code is {1, 2, 6, 24}, and the
value sequence extracted from the transformed code is
{2, 1, 1, 2, 4, 1, 2, 5, 8, 2, 6, 12, 16, 6, 24, 34, 39, 24, 120,
135, 120, 24}. Again we see some of the encoded values
are restored to original data at some points during the
execution. Splitting a variable and merging two variables
into one also have similar characteristics. Those invariant
values are very close to the core-values of the original

program, and will be included in the values extracted
by VaPD.

7.1.2 Inserting Arbitrary Instructions (Noise)

Under the LCS metrics, injection of a huge amount
of noise might increase the similarity score. If a naive
program happens to generate many noisy values, this
will raise the chance of false accusation. However, for
malicious programs that try to hide their plagiarisms,
intentionally injected noise values will result in a higher
chance of being accused. Therefore, if a plagiarist comes
to know the mechanism of VaPD, he will have no
motivation to evade VaPD by injecting random noise.
Moreover, automated noise injection is difficult because
if the noise is not tainted, it will be filtered due to our
dynamic taint analysis. However, if injected successfully,
noise could dramatically increase the size of an extracted
value sequence, thus slowing down the similarity score
computation, consuming more memory space. To defend
this, we can consider sliding over a stream of values
so that we may keep only a small portion of a value
sequence in memory during runtime.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 17

7.1.3 Loop Rewriting

Another possible counterattack is rewriting a loop in
a reverse order. However, automatic loop reversing is
quite difficult because it might result in semantically
different programs. So far, we are not aware of such
tools to our best knowledge. Although some specific
types of loops that are not tightly bound with the loop
counters could theoretically be reversed, only reversing
the loop counter variable will not affect the whole value
sequence because we can eliminate values produced by
loop counters by dynamic taint analysis. One might
manually reverse a loop, if at all possible, but its impact
could be very limited in a large program.

7.1.4 Other Obfuscations

While we have experimented with several popular au-
tomated obfuscation tools including KlassMaster [15],
Thicket [14], and SandMark [12], we discuss here a few
others in the literature.

DonQuixote4 obfuscates Java programs based on dy-
namic name resolution techniques [48]. It implements
two types of obfuscations. The first type is called API
Blinder, which hides reference and invocation to classes,
methods and fields. This does not affect VaPD at all since
VaPD is a dynamic method and only cares about runtime
values. The second type is string encryption, which hides
strings in Java programs. Note again that VaPD is based
on runtime values, not static strings, and thus this type
obfuscation has limited effect on VaPD.

There are a number of other strong (non-automated)
data obfuscations. Chow, Johnson, and Gu [49] proposed
several encoding methods, including polynomial coding
and residue number coding. Polynomial coding is briefly
discussed in Section 7.1.1. Residue number coding makes
use of Chinese Remainder Theorem and is often used for
high-precision arithmetic [50]. In such case, VaPD will
not be able to catch the original runtime values as they
are encoded with a modular base. However, this encod-
ing is usually not applied widely for normal arithmetic
due to its increased cost. Moreover, arbitrary division
using residue coding is impossible. This is manifested
that this method has not been implemented in those
available obfuscation tools. Chow et al. [51] proposed
a white-box DES implementation that can hide a key in
the program. VaPD will not be able to catch the hidden
secrets in this case; however, this method is prohibitively
expensive for the obfuscation purpose.

Lastly, obfuscation techniques that aim at thwarting
static program analysis do not affect VaPD, simply be-
cause VaPD relies on the runtime value sequences, not
static program text based features. Linn and Debray [52]
proposed obfuscations techniques to improve resistance
to static disassembly. Kanzaki et al. [53] proposed to
use self-modification mechanism for program protection.
Both try to thwart certain static program analysis, but do

4. http://se-naist.jp/DonQuixote/

not affect runtime program execution behavior, and thus
does not have any impact on VaPD.

7.2 Core-Part Plagiarism
Core-part plagiarism detection is a harder problem. In
such cases, only some part of a program or software
product is plagiarized. For example, a less ethical devel-
oper may steal code from some open source projects and
fit the essential module into his project with obfuscation.
Let IPM and ISM be the input to the plagiarized module
and suspect module, respectively, and V(P) be a value
based characteristic such as a value sequence extracted
from P , a program or a module. Then the value based
method can be applied to a subproblem of the core-
part plagiarism detection where IPM = ISM. This often
happens in the situations where two software products
serve the same purpose. In this case, we can directly
search in V(S) of the suspect program, for V(PM) of
the plaintiff module to check whether the module has
been plagiarized and where it is located in the suspect
program. For example, in the case of web browser layout
engine plagiarism, given an input URL I , we can first
obtain V(PM) from the plaintiff layout engine module;
then, using the same input I we can obtain V(S) from
the suspect program. If the plaintiff program and the sus-
pect program use the same layout engine, then V(PM)
and part of V(S) (i.e., V(SM)) bear significantly similar
patterns. Therefore, we can search for V(PM) in V(S).

7.3 Semantics Analysis Based Malware Detection
Some malware detection methods use similar techniques
as the clone or software plagiarism detection. While
the clone detection techniques mainly focus on syntactic
similarities of the program source code to find dupli-
cated code fragments, malware detection and plagiarism
detection must utilize some indicators of the program
semantics to deal with the automated obfuscation tech-
niques which the plagiarizers and malware writers may
easily use to avoid detection.

For example, Alzarooni [54] proposed a semantic sig-
nature to detect malware variants. A semantic signature
is expressed as sequences of program states (i.e., regis-
ters and memory locations) representing the evaluation
of the execution environment. Our proposed technique
(VaPD) is similar in that its semantic indicator is the
runtime output values written to the registers and mem-
ory locations as a result of the execution of machine
instructions. However, to filter out irrelevant values,
VaPD uses a dynamic taint analysis technique with the
input of the program as the taint seed while Alzarooni’s
work uses a dynamic backward slicing technique.

7.4 Limitations
Our technique bears the following limitations. First,
besides the ability of extracting value sequences from
the entire scope of the plaintiff program, VaPD provides

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 18

the partial extraction mode in which it can extract value
sequences from only a small part of the program. Based
on this, we discuss about the feasibility of applying
VaPD to the partial plagiarism detection problems in
Section 7.2. However, we have not yet comprehensively
evaluated this issue with real world test subjects. In such
case, a more efficient and scalable program emulator or
logger other than QEMU may be needed.

Second, VaPD may not apply if the program imple-
ments a very simple algorithm. In such cases, the value
sequences can be too short, which increases sensitivity to
noises. Our metric is more likely to cause false positives
when a very short value sequence is compared to a much
longer one.

Third, as a detection system, there exists a trade-off be-
tween false positives and false negatives. The detection
result of our tool depends on the similarity score thresh-
old. Unfortunately, without many real-world plagiarism
samples which are often not available, we are unable to
show concrete results on such false rates. As such, rather
than applying our tool to “prove” software plagiarisms,
in practice one may use it to collect initial evidences
before taking further investigations, which often involve
nontechnical actions. The similarity threshold and the
credibility and resilience requirements are discussed by
Myles and Collberg [25], Lim et al. [55], and Mahmood
et al. [56]. While we do not have experimental results on
real-world software plagiarism cases, our experimental
results clearly show the different scores between similar
and irrelevant software. For all the independent software
we evaluated, the similarity scores are all below 0.3,
with most of them below 0.1, while for the similar or
obfuscated software, the scores are close to 1.0.

Fourth, built upon a dynamic taint analyzer, VaPD
may generate much shorter value sequences if tainted
data is used as an index into a translation table, or
a plagiarist attempts anti-taint-analysis techniques [42].
Anti-taint attacks and some countermeasures (e.g., taint-
ing the program counter when a tainted conditional is
tested [57]) are well summarized by Cavallaro et al. [58].
Addressing those issues is orthogonal and out of the
scope of this research.

Finally, our prototype implementation is based on
QEMU [43], a processor emulator, on the x86 platform.
We have experimented with executables compiled from
C and Java. In general, our approach is applicable to
other platforms and programming languages and sys-
tems as runtime core values are difficult to avoid, but
we have not tested on those platforms and systems such
as .NET, JVM, and other hardware platforms.

7.5 Future and Ongoing Work

As our future work, we are interested in examining
the relationship between values. A better understanding
of the logical connection among the values will enable
us to further remove system noise or less significant
values. We are particularly interested in the impact of

inputs on value sequences. As a dynamic analysis, VaPD
requires the programs being analyzed to be fed with
the same input. This requirement sometimes is difficult
to meet especially in the partial plagiarism cases. For
example, a software plagiarist may illegally use a real
time computer vision library as a part of their motion
recognition software, whereas the original program uses
the library for different purposes, say face recognition.
As an extension to VaPD, we are conducting a study
on using symbolic values and constraints, which reveal
the relationship between concrete runtime values, to
compare program similarity. Symbolic values and con-
straints, combined with LCS, can naturally lead to more
precise modeling of program semantics. In addition, it
would be interesting to study the impact of emulation-
based obfuscators such as Themida and Code Virtualizer
[59] on VaPD’s performance. Such obfuscators encode
original program into a specially designed bytecode
instruction set and run the bytecode program in an
emulator. Our our value-based detection method may
be able to handle such obfuscators.

8 CONCLUSION

Obfuscation resilient code characterization is important
for many code analysis applications, including code theft
detection. Prior techniques have limited applicability in
detecting code theft because they either require source
code analysis or cannot handle automated obfuscation
tools. Motivated by an observation that some outcome
values computed by machine instructions survive vari-
ous semantics-preserving code transformations, we have
proposed techniques to extract and refine runtime values
from the outcome of machine instructions. Leveraging
such invariant values, our technique is resilient to var-
ious control and data obfuscation techniques. To our
best knowledge, our work is the first one to explore
the existence of runtime core-values and use them to
characterize code fragments. The proposed approach
directly examines executable files and does not need to
access the source code of suspicious programs. We have
analyzed a number of real world programs, including
five XML parsers, bzip2, gzip, oggenc, openssl, zip,
and JLex, along with a comprehensive set of obfus-
cation techniques in Sandmark, KlassMaster, Thicket,
and Loco/Diablo. Our results show that the value-based
method is effective in identifying software plagiarism.

ACKNOWLEDGMENTS

The authors would like to thank Jonas Maebe of Uni-
versity of Ghent for his help in compiling and using
Loco and Diablo; Semantic Designs, Inc. for donating
C/C++ obfuscators. This work was supported by NSF
CCF-1320605, NSF CNS-1223710, NSF CNS-0905131,
NSF CNS-0916469, AFOSR FA9550-07-1-0527 (MURI),
ARO W911NF-09-1-0525 (MURI), ARO W911NF-13-1-
0421 (MURI), and AFRL FA8750-08-C-0137. Xiaoqi Jia
was supported by National Natural Science Foundation

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 19

of China (NSFC) under Grant No. 61100228, the Na-
tional High-tech R&D Program of China under Grant
No. 2012AA013101, and the Strategic Priority Research
Program of the Chinese Academy of Sciences under
Grant No. XDA06030601 and XDA06010701.

REFERENCES

[1] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Proceedings of 2nd Working Conference on
Reverse Engineering (WCRE ’95), 1995, pp. 86–95.

[2] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees.” in Int. Conf. on Software
Maintenance, 1998.

[3] K. Kontogiannis, M. Galler, and R. DeMori, “Detecting code
similarity using patterns.” in Working Notes of 3rd Workshop on
AI and Software Engineering, 1995.

[4] J. Krinke, “Identifying similar code with program dependence
graphs.” in Proceedings of Eighth Working Conference on Reverse
Engineering (WCRE ’01), 2001, pp. 301–309.

[5] T. Kamiya, S. Kusumoto, and K. Inoue., “CCFinder: a multilin-
guistic token-based code clone detection system for large scale
source code.” IEEE Transactions on Software Engineering, vol. 28,
no. 7, pp. 654–670, 2002.

[6] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic
clones,” in Proceedings of the 30th International Conference on Soft-
ware Engineering (ICSE ’08), 2008, pp. 321–330.

[7] L. Jiang, Z. Su, and E. Chiu, “Context-based detection of clone-
related bugs,” in Proceedings of the the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT
symposium on the Foundations of Software Engineering, ser. ESEC-
FSE ’07, 2007, pp. 55–64.

[8] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD: Scal-
able and accurate tree-based detection of code clones,” in Pro-
ceedings of the 29th International Conference on Software Engineering
(ICSE ’07), 2007, pp. 96–105.

[9] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfus-
cating transformations,” The Univeristy of Auckland, Tech. Rep.
148, Jul. 1997.

[10] C. S. Collberg, C. Thomborson, and D. Low, “Manufacturing
cheap, resilient, and stealthy opaque constructs,” in Proceedings
of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’98), 1998, pp. 184–196.

[11] C. Wang, “A security architecture for survivability mechanisms,”
Ph.D. dissertation, University of Virginia, Charlottesville, VA,
USA, 2001, adviser-John Knight.

[12] C. Collberg, G. Myles, and A. Huntwork, “Sandmark–a tool for
software protection research,” IEEE Security and Privacy, vol. 1,
no. 4, pp. 40–49, 2003.

[13] M. Madou, L. Van Put, and K. De Bosschere, “Loco: An interactive
code (de)obfuscation tool,” in Proceedings of the 2006 ACM SIG-
PLAN symposium on Partial evaluation and semantics-based program
manipulation (PEPM ’06), 2006, pp. 140–144.

[14] Semantic Designs, Inc., “ThicketTM,” http://www.
semanticdesigns.com.

[15] Zelix Pty Lt, “Java obfuscator - Zelix KlassMaster,” online, http:
//www.zelix.com/klassmaster/features.html.

[16] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of
software plagiarism by program dependence graph analysis,” in
Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’06), 2006, pp. 872–881.

[17] H. Tamada, M. Nakamura, A. Monden, and K. ichi Matsumoto,
“Design and evaluation of birthmarks for detecting theft of Java
programs,” in IASTED Conference on Software Engineering (IASTED
SE ’04), February 2004, pp. 569–574, innsbruck, Austria.

[18] W. Yang, “Identifying syntactic differences between two pro-
grams,” Software: Practice and Experience, vol. 21, no. 7, pp. 739–
755, 1991.

[19] Y.-C. Kim and J. Choi, “A program plagiarism evaluation system,”
in Information and Communication Technology Education Workshop,
2005.

[20] N. Truong, P. Roe, and P. Bancroft, “Static analysis of students’
Java programs,” in ACE ’04: Proc. of the 6th conf. on Australasian
computing education, 2004.

[21] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms
among a set of programs with JPLAG,” Universal Computer Science,
2000.

[22] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting.” in ACM SIGMOD Int.
Conf. on Management of Data, 2003.

[23] J.-H. Ji, G. Woo, and H.-G. Cho, “A source code linearization
technique for detecting plagiarized programs,” in Proceedings of
the 12th annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE ’07), 2007, pp. 73–77.

[24] G. Myles and C. Collberg, “K-gram based software birthmarks,”
in Proceedings of the 2005 ACM symposium on Applied computing
(SAC ’05), 2005, pp. 314–318.

[25] G. Myles and C. S. Collberg, “Detecting software theft via whole
program path birthmarks,” in Proceedings of 7th International Con-
ference on Information Security (ISC ’04), 2004.

[26] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for
Java,” in Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering (ASE ’07), 2007, pp.
274–283.

[27] H. Tamada, K. Okamoto, M. Nakamura, and A. Monden, “Dy-
namic software birthmarks to detect the theft of Windows ap-
plications,” in Int’l Symp. on Future Software Technology (ISFST),
October 2004.

[28] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. ichi
Matsumoto, “Design and evaluation of dynamic software birth-
marks based on API calls,” Nara Institute of Science and Tech-
nology, Info. Science Technical Report NAIST-IS-TR2007011, ISSN
0919-9527, May 2007.

[29] F. Bellard, “Tiny C compiler,” http://bellard.org/tcc/.
[30] Open Watcom Contributors, “Open Watcom,” http://www.

openwatcom.org.
[31] A. Sebjornsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su,

“Detecting code clones in binary executables,” in Proceedings of the
eighteenth international symposium on Software testing and analysis
(ISSTA ’09), 2009, pp. 117–128.

[32] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with ap-
plications to software plagiarism detection,” in Proceedings of the
22nd ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE 2014), November 2014.

[33] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based software
theft detection,” in Proceedings of the 16th ACM conference on
Computer and communications security (CCS ’09), 2009, pp. 280–290.

[34] F. Zhang, Y. Jhi, D. Wu, P. Liu, and S. Zhu, “A first step towards
algorithm plagiarism detection,” in Proceedings of the 2012 Inter-
national Symposium on Software Testing and Analysis (ISSTA ’12).
ACM, 2012, pp. 111–121.

[35] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based
software plagiarism detection,” in Proceedings of the 25th annual
International Symposium on Software Reliability Engineering (ISSRE
2014), November 2014.

[36] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party Android marketplaces,”
in Proceedings of the second ACM conference on Data and Application
Security and Privacy (CODASPY ’12), 2012.

[37] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Jux-
tapp: A scalable system for detecting code reuse among android
applications,” in Proceedings of the 9th Conference on Detection of
Intrusions and Malware & Vulnerability Assessment, 2012.

[38] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang, “Pla-
giarizing smartphone applications: Attack strategies and defense
techniques,” in Engineering Secure Software and Systems, Lecture
Notes in Computer Science, 2012, pp. 106–120.

[39] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detect-
ing cloned applications on Android markets,” Computer Security–
ESORICS 2012, pp. 37–54, 2012.

[40] H. Huang, S. Zhu, P. Liu, and D. Wu, “A framework for evaluating
mobile app repackaging detection algorithms,” in Proceedings of
the 6th International Conference on Trust and Trustworthy Computing
(TRUST ’13), 2013.

[41] F. Zhang, S. Zhu, D. Wu, and P. Liu, “ViewDroid: towards
obfuscation-resilient mobile application repackaging detection,”
in Proceedings of the 7th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec 2014), July 2014.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. VV, NO. NN, MM YYYY 20

[42] J. Newsome and D. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS ’05), 2005.

[43] F. Bellard, “Qemu, a fast and portable dynamic translator,” in
ATEC ’05: Proc. of the annual conference on USENIX Annual Technical
Conference. Berkeley, CA, USA: USENIX Association, 2005, pp.
41–41.

[44] I. D. Baxter, C. Pidgeon, and M. Mehlich, “DMS: Program trans-
formations for practical scalable software evolution,” in Proceed-
ings of the 26th International Conference on Software Engineering
(ICSE ’04), 2004, pp. 625–634.

[45] E. J. Berk and C. S. Ananian, “JLex: A lexical analyzer gen-
erator for Java,” online, http://www.cs.princeton.edu/∼appel/
modern/java/JLex/.

[46] S. McCamant, “Large single compilation-unit C programs,”
Jan 2006, http://people.csail.mit.edu/smcc/projects/
single-file-programs/.

[47] S. Drape, A. Majumdar, and C. Thomborson, “Slicing aided
design of obfuscating transforms,” in 6th IEEE/ACIS International
Conference on Computer and Information Science (ICIS ’07). Los
Alamitos, CA, USA: IEEE Computer Society, 2007, pp. 1019–1024.

[48] H. Tamada, M. Nakamura, A. Monden, and K. ichi Matsumoto,
“Introducing dynamic name resolution mechanism for obfuscat-
ing system-defined names in programs,” in Proc. IASTED Inter-
national Conference on Software Engineering (IASTED SE 2008, 598-
074), February 2008, pp. 125–130.

[49] S. T. Chow, Y. Gu, and H. J. Johnson, “Tamper resistant software
encoding,” Jan. 11 2005, uS Patent 6,842,862.

[50] D. Knuth, The Art of Computer Programming, Volume Two, Seminu-
merical Algorithms. Addison-Wesley, 1998.

[51] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, “A white-
box DES implementation for DRM applications,” in Digital Rights
Management. Springer, 2003, pp. 1–15.

[52] C. Linn and S. Debray, “Obfuscation of executable code to im-
prove resistance to static disassembly,” in Proceedings of the 10th
ACM conference on Computer and communications security (CCS
2003). ACM, 2003, pp. 290–299.

[53] Y. Kanzaki, A. Monden, M. Nakamura, and K.-i. Matsumoto, “Ex-
ploiting self-modification mechanism for program protection,” in
Proceedings of the 27th Annual International Computer Software and
Applications Conference (COMPSAC 2003). IEEE, 2003, pp. 170–
179.

[54] K. M. A. Alzarooni, “Malware variant detection,” Ph.D. disserta-
tion, Unversity College London, 2012.

[55] H. il Lim, H. Park, S. Choi, and T. Han, “A method for detecting
the theft of Java programs through analysis of the control
flow information,” Information and Software Technology, vol. 51,
no. 9, pp. 1338–1350, 2009. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0950584909000469

[56] Y. Mahmood, Z. Pervez, S. Sarwar, and H. Ahmed, “Similarity
level method based static software birthmarks,” in High Capacity
Optical Networks and Enabling Technologies, 2008. HONET 2008.
International Symposium on, Nov 2008, pp. 205–210.

[57] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song, “Dy-
namic spyware analysis,” in USENIX Annual Technical Conference.
USENIX, 2007, pp. 233–246.

[58] L. Cavallaro, P. Saxena, and R. Sekar, “On the limits of information
flow techniques for malware analysis and containment,” in Pro-
ceedings of the 5th international conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA ’08), 2008, pp.
143–163.

[59] Oreans Technologies, “Code Virtualizer,” http://www.oreans.
com/codevirtualizer.php.

