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Abstract

Obfuscation is an important technique to protect software from adversary analysis.
Control flow obfuscation effectively prevents attackers from understanding the
program structure, hence impeding a broad set of reverse engineering activities.
In this thesis, a novel control flow obfuscation method is proposed. It employs
Turing machines to simulate the computation of branch conditions. By weaving
the original program with Turing machine components, program control flow graph
and call graph would become more complex. Moreover, due to the computation
complexity of a Turing machine, program execution flow would become much
more complicated and resilient to advanced reverse engineering approaches through
symbolic execution and concolic testing.

A prototype tool based on the proposed technique is implemented. Comparing
with previous work, the proposed control flow obfuscation technique bears three
distinct advantages. 1). Complexity: the complicated implementation of a Turing
machine makes it hard for attackers to understand the program control flow struc-
ture. 2). Universality: theoretically, Turing machines can encode any computation.
The obfuscation is built on top of the LLVM intermediate representation so the
application scope is broadened to almost every language with an LLVM front-end
compiler. 3). Resiliency: our obfuscation is shown to be very resilient to advanced
analysis tools. We have evaluated the method in terms of functionality correct-
ness, potency, resilience, stealth, and cost, respectively. The experimental results
show that the proposed technique can obfuscate programs in stealth with good
performance and robustness.
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Chapter 1 |

Introduction

Obfuscation is an important technique for software protection. Attackers could

take advantage of the state-of-the-art techniques [21–23] to recover program source

or high-level code from executables, exploit software vulnerabilities, and steal

algorithm implementations. Software obfuscation is mostly designed to impede

such (malicious) reverse engineering process. It is also used by malware developers

to hide their malicious intent.

Recently, software security has drawn more and more attention because of,

for example, infamous ransomware attacks and severe vulnerabilities such as the

“WannaCry” incidence [34] and the OpenSSL “Heartbleed” bug [33]. All of these

malware programs exploit vulnerabilities inside a program. To launch such attacks,

attackers usually need to recover the control flow structures of the victim programs

first. Symbolic execution and concolic testing are widely-adopted techniques to

cover execution paths and explore program structure [1, 30–32]. Typical symbolic

execution engines such as SAGE [17] and KLEE [19] could yield new input which

leads to a new execution path by solving branch conditions with a constraint solver.

After all execution paths are traversed, control flow graph of the program could be

restored with the traversing information. Such tools have been proven to be very
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effective in analyzing program control flow structures [25].

Hence, a lot of anti-reverse engineering research has focused on preventing

adversaries from analyzing important path conditions in a program [5, 7–9, 20].

Control flow obfuscation is one of these cutting-edge techniques to combat these

reverse engineering tools. Control flow obfuscation aims at hiding path conditions

and complicating the execution flow within a program. By rewriting or adding extra

control flow components, the program path conditions become difficult or even

impossible to analyze. Existing research [2] have demonstrated the effectiveness of

control flow obfuscation.

In this thesis, we propose a novel control flow obfuscation method which leverages

Turing machine to compute path conditions. The Church-Turing thesis [24] states

that the power of Turing machines and λ-calculus is the same as algorithms, or the

informal notion of effectively calculable functions. Formally, Turing computable,

λ-computable, and general recursive functions are shown to be equivalent, and

informally, the thesis states that they all capture the power of algorithms or

effectively calculable functions. This means any functional component of software

can be re-implemented as or transformed into a Turing machine; the replaced code

component and its corresponding semantic equivalent Turing machine is called

Turing Equivalent.

Our method is to simulate important branch condition statements in a program

with semantically equivalent Turing machines. A Turing machine behaves as a

state machine so it would bring in a large amount of extra control flow transfers

and basic blocks to the overall program control flow graph. Moreover, a typical

Turing machine leverages a transition table to guide the computation, and such

transition table-based execution would introduce additional computations and

make the overall execution flow much more complicated. We envision the proposed
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technique would largely complicate the protected program, and also bring in new

challenges for reverse engineering tasks. Our method can also be used to obfuscate

other computation as well.

To obfuscate a program through the proposed Turing machine obfuscation

technique, we first translate the original program source code into a compiler

intermediate representation. Our Turing machine obfuscator then selects branch

condition statements for transformation; the transformed instructions will invoke its

corresponding Turing machine component, which is semantically equivalent to the

original branch condition. After finishing the execution in the Turing machine “black

box”, the execution flow returns back to the original instruction, with a return value

which determines the branch selection. Inspired by previous work [4], we evaluate

our obfuscator regarding five aspects which are functionality correctness, potency,

resilience, cost, and stealth. Results indicate that Turing machine obfuscator could

effectively obfuscate commonly-used software with acceptable cost and robustness.

This thesis is organized as follows. Section 2 discusses related works on obfus-

cation, especially control flow obfuscation. Section 3 presents the overall design

of Turing machine obfuscator. Obfuscator implementation is discussed in Section

4. Section 5 presents the evaluation result of our proposed technique. We further

present discussion in Section 6, and conclude the theis in Section 7.

In Turing machine obfuscator, we collect all comparison instructions for branch

predicate instructions (e.g., icmp). Through use-def chain analysis, we also locate

all instructions that determine the value of the conditional branch instruction, all

these instructions are deemed as transformation candidates.
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Chapter 2 |

Related Work

Generally speaking, reverse engineering techniques are categorized into static track

and dynamic track. To battle static reverse engineering, researchers usually focus on

hardening disassembling and decompiling process. To combat the dynamic reverse

engineering techniques such as concolic testing, sensitive conditional transfer logic

must be hidden from adversaries. Control flow obfuscation has been proved effective

in this scenario.

Sharif et al. [5] propose a technique to rewrite certain branch conditions and

encrypt code components that are guarded by such conditions. Branch conditions

that are dependent on the input are selected and branch condition outputs are

transformed with a hash function. Moreover, the code component which is depen-

dent on a transformed condition would be encrypted; the encryption key is derived

from the input which satisfies the branch condition. In general, their technique

focus on selectively translate branch conditions that are dependent on the input,

which could leave many branch conditions unprotected. Also, since the branch

condition statement itself is mostly untouched (only the boolean output is hashed),

the original branch condition code is still in the obfuscated program, which could

be leveraged to reveal the original semantics.
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Popov et al. [7] propose to replace unconditional control transfer instructions such

as jmp and call with “signals”. Their work is used to impede binary disassembly,

usually the starting point of reverse engineering. Moreover, dummy control transfers

and junk instructions are also inserted after the replaced control transfers. This

method is effective in fooling disassemblers in analyzing unconditional transfers

but it becomes mal-functional where the conditional transfers need to be protected

as well. Another related work proposes to protect control flow branches leveraging

a remote trusted third party environment [8]. In general, their technique mostly

introduces notable network overhead and also relies on trusted network accessibility

which may not be feasible in practice.

Ma et al. [2, 28] propose to use the neural network to replace certain branch

condition statements; the proposed technique is evaluated to conceal conditional

instructions and impede typical reverse engineering analysis such as concolic testing.

Although the idea is promising and the experimental results indicate the effectiveness

to a certain degree, in general the neural network approach may not be suitable

for security applications. To the best of our knowledge, neural network works like

a black box; it lacks a rigorous theoretical foundation to show a correct result

can always to generated given an input. In other words, neural networks may

yield results which lead to an incorrect branch selection. Overall, neural networks

introduce complexity as well as (unwanted) uncertainty to the transformed programs.

In addition, we notice that neural network usually consumes too much memory in

transforming non-trivial programs.
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Chapter 3 |

Turing Machine Obfuscator

3.1 Design Overview

In a program, a branch condition statement compares two operands and selects

a branch for control transfer based on the comparison result. As aforementioned,

Turing machine has been proved to be able to simulate the semantics of any

functional component of a program. Hence, any program branch condition statement

can be modeled by a Turing machine. Taking advantage of its powerful computation

ability as well as execution complexity, we propose to employ Turing machine to

obfuscate branch condition statements (the branch condition statement is referred

as “branch predicate” later in this thesis since its output is usually a boolean value)

in a program. A Turing machine obfuscated branch condition statement is shown

in Figure 3.1. Instead of directly computing a boolean value through a comparison

instruction, we feed a Turing machine with the inputs (the value of operands) and

let the Turing machine to simulate the comparison semantics.
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Figure 3.1: Obfuscate a branch condition statement through a Turing machine.

3.2 Turing Machine

As shown in Figure 3.2, a typical Turing machine consists of four components:

• An infinite-long tape which contains a sequence of cells. Each cell holds a

symbol defined in the tape alphabet (the alphabet is introduced shortly).

In this work, our proposed Turing machine obfuscator would dynamically

allocate new tape cells to construct an infinite tape to store intermediate

results.

• A tape head which could perform read, write, move left and move right

operations over the tape.

• A state register used to record the state of the Turing machine. Turing

machine states are finite and defined in the transition table.

• A transition table that consists of all the transition rules defining how a

Turing machine transfers from one state to another.

Although simple, Turing machine model resembles a modern computer in several

ways. The head is I/O device. The infinite tape acts as the computer memory.

The transition table defines the mission of this Turing machine which is like the
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* . . . . . * . * *

S1

State Register

Infinite Tape

Transition Rule 1

Transition Rule 2

Transition Rule 3

...

Transition Table

Head

Figure 3.2: Turing machine components.

program code and data. Hence, Turing machine is also deemed as the foundation

of modern computer science development.

3.2.1 Transition Table

A transition rule could be represented by a five-element tuple (Sc, Tc, Sn, Tn, D)

where:

• Sc is the current Turing machine state

• Tc is the current tape cell symbol read by the head

• Sn is the new Turing machine state

• Tn is the symbol head writes to the current tape cell

• D is the direction the head should move (i.e., “left” or “right”)

In general, every five-element tuple represents a transition table rule shown in

Figure 3.2.
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3.2.2 Turing Machine Encoding

Initially, Turing machine is at the “start” (S0) state and the tape records the Turing

machine input. Consistent with existing Turing machine simulator project [6], blank

symbol is denoted as “*” on the tape, while the length of “·” is used to encode an

operand of integer type (our current implementation only focuses on operand of

integer type, we present further discussion on this in §4.3). For instance, integer 5

is represented as five continuous “·” on the tape. Note that a Turing machine could

be encoded with various of ways, our prototype represents only one of them. Turing

machine with different encoding strategies operates with totally distinct execution

pattern. This also makes Turing machine obfuscation hard to be analyzed.

In general, our Turing machine tape alphabet includes two symbols, i.e., {·, ∗}.

The tape in Figure 3.2 shows an initial state of a Turing machine. The head

of Turing machine is placed on the leftmost cell. Different integer operands are

separated by a blank symbol “*”. Operands encoded on the tape of Figure 3.2 are

five and one. When Turing machine starts to run, the head reads the current tape

cell, combines with current state register to locate a transition rule in the transition

table, and then moves to next state accordingly.

3.2.3 Turing Machine Execution

The Turing machine keeps running step by step directed by the transition table

until it reaches a Halt state. On the other hand, Turing machine may keep running

forever since the process of solving some problems cannot terminate. In our research,

we implement a Turing machine to simulate branch predicates (i.e., simple algebra

computations) so it should always reach a Halt state. When reaching the Halt

state, the machine stops running and the computation result is shown on the tape.
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Current State Current Symbol New State New Symbol Direction
S0 * S0 * Right
S0 . S1 . Right
S1 * S2 . Right
S1 . S1 . Right
S2 * S3 * Left
S2 . S2 . Right
S3 * S3 * Left
S3 . S4 * Left
S4 * Halt * -
S4 . S4 . Left

Table 3.1: Transition table of the add operation in a Turing machine.

Table 3.1 shows a transition table example, which supports a Turing machine to

conduct the addition operation in our implementation.

3.2.4 Addition Turing Machine

In this section, we elaborate the design of the addition Turing machine which simu-

lates the semantics of the add operation. Other Turing machines (e.g., subtraction

and multiplication Turing machine) used in this research are designed in a similar

way. Through constructing this machine, we essentially build rules which could

concatenate two series of · cells on the tape together. Take initial tape in Figure 3.2

as an example. Following the rules in table 3.1, after a sequence of read and write

operations based on the transition table, left operand (integer value 5) and right

operand (integer value 1) which are separated by a blank symbol “*” are merged

into a long series of · cells on tape; the length of the outcome dot cells is 6, which

represents integer value 6 as shown in Figure 3.3.

Reading transition table directly is difficult for a human being. To represent an

understandable description on how the transition table for the addition operation

works, we summarize the transition table logic and represent it in an algorithm

10



*
. . . . . .

* *

Figure 3.3: Turing machine execution result.

description. Algorithm 1 describes the transition table; in fact it states a method to

combine two sequences of dot cells on tape into a longer sequence of cells. Following

the algorithm, the isolator cell (i.e., the blank symbol) is written to · when the

Turing machine finally enters the “Halt” state.

Algorithm 1 Description of the addition transition table.
1: procedure
2: head← the blank cell before the left operand starting cell
3: while head != the blank cell after the right operand do move right
4: move left
5: the last dot cell of the right operand← blank symbol
6: while head != the blank cell within these two operands do move left
7: the blank cell← dot
8: while head != the blank cell before the left operand do move left
9: Halt;

3.2.5 Turing Machine of Other Operations

Since our Turing machine obfuscator essentially focuses on obfuscating branch

predicates which usually involve with arithmetic operations, Turing machine obfus-

cator also needs to provide other transition tables of arithmetic operations (such as

−,×,÷).

To implement the arithmetic operations, besides the addition transition table

shown in Table 3.1, we construct three more transition tables for subtraction,

multiplication and division operations. Their transition tables are relatively more
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complex than Table 3.1. Actually in our implementation, we build transition table

consisting of 16, 34 and 80 transition rules entries for subtraction, multiplication

and division Turing machines, respectively. As for the comparison operations such

as ≤,≥, 6=, we take advantage of the subtraction Turing machine to calculate them.

Based on the calculation result, a boolean value is returned. In sum, we construct

4 transition tables, with overall 140 transition table entries.

3.3 Universal Turing Machine

While a Turing machine could perform powerful algorithm simulation, its com-

putation ability is predetermined by its initial tape state and intrinsic transition

table. For instance, a Turing machine capable of doing addition operation could

only simulate the “add” operation since other operations would have very different

transition rules. That is, an “add” Turing machine could not represent the “sub-

tract” operations. Also, since the initial state needs to be encoded on the tape

before the computation, a Turing machine encoded with 2 + 3 could not conduct

addition operation for 5 + 6.

In non-trivial programs, branch predicate could include various arithmetic

and comparison operations, and many of these expressions would correspond

to different Turing machines. Hence, we need a unified translator to represent

arbitrary computations. Universal Turing machine is designed to simulate arbitrary

computations. As shown in Figure 3.4, both input data and transition table

are initialized on tape as a single tape universal Turing machine. As a result,

all the information needed for computations exists. In some sense, a universal

Turing machine acts as the interface for us to employ Turing machines of different

semantics.
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Figure 3.4: Universal Turing machine.

Universal Turing machine bears the essence of the modern computer which is

being programmable. Through storing different transition tables and inputs on

the tape, a universal Turing machine can actually perform the semantic equivalent

computation to arbitrary programs; as aforementioned, such Universal Turing

Machine and the replaced expression are Turing Equivalent. In our Turing machine

obfuscator, different branch predicates invoke a unified interface, which bridges the

obfuscated instruction and a universal Turing machine.

13



Chapter 4 |

Implementation

Our proposed obfuscator is made up of several components including a universal

Turing machine model implemented in C and several transformation passes based

on the LLVM compiler suite [18]; As shown in Figure 4.1, our Turing obfuscator

performs a three-phase process to generate the obfuscated output. The first step

translates both target program and universal Turing machine source code into LLVM

intermediate representation (IR). The obfuscator then iterates IR instructions to

identify obfuscation candidates (the second phase). Given all the transformation

candidates, we then perform the obfuscation transformation (the third phase). The

instrumented IR codes are further compiled into the final executable output. We

implement the universal Turing machine model with in total 580 lines of C code

and LLVM passes with 341 lines of C++ code. We now elaborate on each phase in

details.

4.1 Phase One: Translate Source Code to IR

As aforementioned, we first compile the target source program into LLVM IR

with an appropriate LLVM front end compiler; the obfuscation transformation is

14



Universal Turing 
machine 

Subject Program

C

C

IR

IR

Clang

Clang

LLVM-Linker

Analysis 
pass

OBJ

llc

Binary

gcc

IR IR IR

Transformation 
pass

Figure 4.1: Workflow of the Turing machine obfuscator.

performed on the IR level. Considering a broad set of front end compilers provided

by LLVM which can turn programs written by various programming languages into

its IR, this IR-based implementation could broaden the application scope comparing

with previous work [2,8,28]. Since we employ C programs for the evaluation, Clang

(version 5.0) is used as the front end compiler in this thesis.

4.2 Phase Two: Collect Transformation Candidate

The LLVM Pass framework is a core module of the LLVM compiler suite to

conduct analysis, transformation and optimization during the compile time [18].

We build a pass within this framework to iterate and analyze every IR instruc-

tion in each module of the input program. During the analysis pass, our Turing

machine obfuscator locates all transformation candidates on the IR instruction level.

Locate Candidate Predicates While the proposed technique is fundamentally

capable of obfuscating any program component, the implementation currently

focuses on branch predicate since control-flow obfuscation is efficient to defeat many

reverse engineering activities (§1). In general, the transformation candidate set

includes 10 kinds of branch predicate instructions as: equal, not equal, unsigned

less than, unsigned greater than, unsigned less or equal, unsigned greater or equal,

15



...

%77 = load i32, i32* %14, align 4

%78 = load i32, i32* %17, align 4

 %79 = add nsw i32 %77, %78

%80 = load i32, i32* %9, align 4

%81 = icmp slt i32 %79, %80

br i1 %81, label %82, label %318

...

...

define zeroext i1 @UTM(i32, i32, i32, i8*, i8*) #0 {

%6 = alloca i1, align 1

%7 = alloca i32, align 4

%8 = alloca i32, align 4

%9 = alloca i32, align 4

%10 = alloca i8*, align 8

...

%81 = call i1 (i32, i32, i32, ...) @UTM(i32 39, 
i32 %79, i32 %80)

%79 = call i1 (i32, i32, i32, ...) @UTM(i32 2, i32 
%77, i32 %78)

Use-def 
Chain

Figure 4.2: Obfuscation transformation for an icmp instruction. “UTM” stands for
universal Turing machine.

signed less than, signed greater than, signed less or equal, signed greater or equal.

4.3 Phase Three: Obfuscation Transformation

The second phase provides all the eligible transformation candidates. We further

build another transformation pass within the LLVM Pass framework to perform

the obfuscation transformation. As shown in Figure 4.2, predicate instructions are

obfuscated; we rewrite the instructions into function calls to the universal Turing

machine interface. The computation of the branch predicate is launched inside the

Turing machine, and the computation result is passed to a register which directs

the associated path selection. Our technique is able to obfuscate all the branch

predicates in a program or only transform a subset of (security sensitive) candidates.

Such partial obfuscation is denoted as “obfuscation level” and we present discussion

on this shortly.

For an obfuscated predicate, our current “transform to function call” implemen-

tation utilizes the boolean return value to select a branch for control transfer. On

the other hand, we notice existing work (e.g., [2, 28]) leverages a cross-procedure

jump at this step; an indirect jump from the black box of obfuscation component

16



to a selected branch. We present a further discussion on both control transfer

strategies in §6.

Operand Type In general, a branch predicate instruction can have either pointer

type or numerical data type (i.g., integer or float type). While the proposed

technique is generally capable of translating branch predicate with any operand

type, considering processing operands of pointer (and float) type would bring in

additional complexity, our current prototype is designed to only handle operands

of integer type. Actually our tentative study shows that most of the branch predi-

cate instructions would have operands of integer type, hence, this implementation

choice is indeed able to handle most of the real-world cases. On the other hand,

we emphasize there is no additional research challenge to extend our technique

to handle other cases. We leave it as one future work to provide such functionalities.

Def-use Chain Analysis Since our analysis is performed on IR expressions of

three-address form, one branch predicate in the original program shall be translated

into a sequence of IR instructions. Hence, to perform a faithful obfuscation of one

branch predicate, we need to first identify a “region” of IR instructions that are

translated from this predicate.

As shown in Figure 4.2, we perform def-use analysis to recover such “region”

information. In particular, given a comparison IR instruction (which indicates

one branch predicate and the end of the “region”), we calculate the use-def chains

of its two operands, respectively. The identified instructions which provide the

“definition” information of these two operands will be included in the “region”. After

the def-use analysis, we obfuscate all the instructions in the “region”.
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Obfuscation Level Obfuscation level is an indicator which weighs how much

of a program is transformed by the obfuscation pass. Consistent with previous

work [3], the obfuscation level is defined as the ratio between the obfuscated

instruction and total eligible candidates:

O = M/N

M is the number of instructions transformed by the obfuscation pass. N is the

number of all the transformable instructions (i.e., the branch predicate instructions

identified in §4.2).

18



Chapter 5 |

Evaluation

Inspired by previous research [2, 4, 28], we evaluate our Turing machine obfuscator

based on five metrics which are functionality, potency, resilience, stealth and cost

respectively. Potency weighs the complexity of the obfuscated programs, which

is straightforward to show how competent an obfuscator is. A good obfuscator

also needs to protect itself from being deobfuscated; to measure how well an

obfuscated program is resilient to automatic deobfuscation techniques, we evaluate

the resilience of our Turing machine obfuscator. Moreover, in the battle against

experienced attackers, obfuscated programs should not be too distinguishable from

its origins otherwise it would be easy to be recognized. Hence, we measure the

stealth to show how well an obfuscated program resembles the original one. Cost is

naturally employed to measure the execution overhead of a software program. While

obfuscation would inevitably introduce some performance penalty, we measure the

execution time of the obfuscated code to show the overall cost is acceptable.

Two widely-used open source programs are employed in our evaluation: compress

tool bzip2 (version 1.0.6) [10] and regular expression engine regexp (version

1.3) [11]. Obfuscation level is an index which represents the ratio between obfuscated

instructions and all predicate candidates. In our experiments, the ratio is set as
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50% which means half of all conditional transfer candidates are randomly selected

and obfuscated.

5.1 Functionality

Both programs evaluated in our research (bzip2 [10] and regexp [11]) provide test

cases to verify the functionality of the compilation outputs. In particular, the bzip2

test cases deliver 3 compression samples and 3 decompression samples, while the

regexp contains 149 test cases of various regular expression patterns. We leverage

those shipped test cases to verify the functionality correctness of our obfuscated

programs. For all the evaluated obfuscation levels (i.e., 30%, 50%, 80% and 100%),

we report all the obfuscated programs can pass all the test cases, hence preserving

the original semantics after obfuscation.

5.2 Potency

Control flow graph (CFG) and call graph provide insights on the general structure

of a program and they are the foundation for most static software analysis. With

the help of IDA Pro [13], a well-known commercial binary analysis tool, we recover

CFG and call graph information from both original and obfuscated binaries. By

traversing the graphs, we further calculate the number of basic blocks, number

of call graph and control graph edges. We use such information to measure the

complexity of a program, which is aligned with previous research [12]. Analysis

result are shown in Table 5.1. Comparing the original and obfuscated programs, it

can be observed that program complexity is increased in terms of each metric.

We further quantify the Turing machine obfuscated programs w.r.t. the cy-
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Table 5.1: Potency evaluation in terms of program structure-level information.

Program # of CFG Edges # of Basic Blocks # of Function
bzip2 3942 2647 78

obfuscated bzip2 4195 2828 134
regexp 906 619 25

obfuscated regexp 1122 773 43

Table 5.2: Potency evaluation in terms of knot and cyclomatic number.

Program # of Cyclomatic # of Knot
bzip2 1297 5596

obfuscated bzip2 1369 5720
regexp 289 478

obfuscated regexp 351 1068

clomatic number and knot number (these two metrics are introduced in [14,15]).

Cyclomatic metric is defined as

Cyclomatic = E −N + 2

where E and N represent the number of edges and the number of nodes in a CFG,

respectively. Knot number shows the number of edge crossings in a CFG. These two

metrics intuitively weigh how complicated a program is in terms of logic diversion

number. Results in Table 5.2 shows that both knot number and cyclomatic number

notably increase after Turing machine obfuscation. Overall, we interpret Table 5.1

and Table 5.2 as promising results to show program becomes more complex after

the Turing machine obfuscation.

Besides picking 50% as the obfuscation level in evaluating potency, we also con-

duct experiments with obfuscation levels as 30%, 80% and 100%. Figure 5.1 shows

the number of call graph edges regarding different obfuscation levels. Observation

shows that with a higher obfuscation level, the number of call graph edges increases.

21



 300

 400

 500

 600

 700

 800

 900

 0  0.2  0.4  0.6  0.8  1

c
a

ll 
g

ra
p

h
 n

u
m

b
e

r

obfuscation level

regexp
bzip2

Figure 5.1: Number of call graph edges in terms of different obfuscation levels.

We interpret the results that the obfuscated program become more complicated

with the obfuscation level increasing.

5.3 Resilience

A good obfuscation technique should resist deobfuscation tools as well. Concolic

testing is an advanced deobfuscation technique aiming at finding bugs or vulnerabil-

ities in software through the mixture of symbolic execution and concrete execution.

Whereas, it is also used by adversaries to analyze or restore software control flow

graph [1, 25, 26]. KLEE [19] is a symbolic execution tool based on the LLVM

platform. Starting with a concrete input it could explore a certain execution path.

By negating the last branch condition, it would diverge from the last “crossing”

node and explore a new path. KLEE repeats this process unceasingly like doing
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1 int get_sign(int x) {
2 if (x == 0)
3 return 0;
4
5 if (x < 0)
6 return −1;
7 else
8 return 1;
9 }

10
11 int main() {
12 int a;
13 klee_make_symbolic(&a, sizeof(a), "a");
14 return get_sign(a);
15 }

Figure 5.2: KLEE sample code used in our evaluation. All the path conditions are
obfuscated.

depth first search until all execution paths are found. With the help of KLEE,

it would be easy to conduct automated deobfuscation. We choose KLEE as the

deobfuscation tool to evaluate resilience of Turing Machine obfuscator. We used a

piece of sample code from KLEE [29] as the subject program (the sample code is

shown in Figure 5.2). The subject program need to be converted to IR codes since

KLEE works on IR level.

KLEE could detect three paths in the original subject program as expected.

Based on different value of x, this program may traverse branches in which x equals

0, x is less than 0 and x is greater than 0, respectively. In contrast, after subject

program is obfuscated by our Turing machine obfuscator, we report that KLEE

could only figure out one path. We interpret the evaluation result that Turing

machine obfuscator can impede automated deobfuscation tools from restoring the

structure of a program.

Due to limited information released by KLEE, we could not figure out the

underlying reason that leads to the failure of KLEE. Since Turing machine obfuscator

makes the conditional branches more complicated, we envision that the internal

constraint solver employed by KLEE is unable to yield a proper symbolic input
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Figure 5.3: bzip2 instruction distribution comparison.

which “drill” into the branches protected by our Turing machine obfuscator.

5.4 Stealth

As mentioned in the beginning, software obfuscation technique should not only

combat automated deobfuscation tools, but also manual deobfuscation methods. In

the evaluation of stealth, Wang et al. [3] compare the instruction distributions of

the original and obfuscated programs. If instruction distribution of the obfuscated

program is distinguishable from its original program (e.g., call or jmp instruction

proportions are abnormally high), it would be an indicator that the program is ma-

nipulated. We adopted this metric to evaluate our Turing obfuscator. Obfuscation

level for stealth evaluation is set to 50%.

Consistent with previous research [3], we put assembly instructions into 27
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Figure 5.4: regexp instruction distribution comparison.

different categories. Figure 5.3 and Figure 5.4 present the instruction distribution

of the original and obfuscated programs (bzip2 and regexp). Experiment results

indicate that the instruction distribution after obfuscation is very close to the origin

distribution. In sum, small instruction distribution variation is a promising result

to show the proposed technique would obfuscate programs in a stealthy way.

5.5 Cost

Software running cost is another critical factor in evaluating an obfuscation tech-

nique. In most obfuscation research work, execution cost is inevitably increased

because obfuscation would bring in extra instructions. Measuring the execution

time is a convincing way to evaluate to the cost.

In our evaluation, both original and obfuscated programs are executed on a server
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Figure 5.5: Execution overhead in terms of different obfuscation levels.

with 2 Intel(R) Xeon(R) E5-2690 2.90GHz processors and 128GB system memory.

bzip2 is used to compress three different sample files and regular expression engine

regexp runs 149 samples provided in its shipped test cases. We run each program

three times and record the average time cost as the final result.

Figure 5.5 shows that for both test cases, the execution slowly grows w.r.t the

increase of obfuscation levels. As expected, program takes more time to execute

with more instructions are obfuscated. On the other hand, we interpret the overall

time cost is still confined to a reasonable level. We also notice that there exists a

difference between slopes of the two curves. Turing obfuscator randomly obfuscates

candidate instructions within the program before execution. Hence the transformed

instructions may not be indeed executed in the runtime. Difference between two

curve slopes is probably due to such uncertainty of execution. In addition, some

further study on the source code show that regexp employs more recursive calls
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than bzip2, thus may lead to more invocations of the Turing machine component

and contribute to the performance penalty.

27



Chapter 6 |

Discussion

To provide more insights and guideline for further adoption of our proposed tech-

nique, we discuss the multiple aspects of the proposed Turing machine obfuscation

technique in this section.

6.1 Complexity

In general, Turing machine model is a powerful calculator that is capable of solving

any algorithm problem. Note that even a simple operation (e.g., “add”) may lead

to the change of Turing machine states for hundreds of times; every “move left”

and “move right” operation lead to the tape modification and “read tape” or “write

tape” operations.

Considering Turing machine as a state machine, it is hard—if possible at all—for

adversaries with manual reverse engineering to follow the calculation logic without

understanding the transition table rules and state variables. In addition, automated

deobfuscation tools (e.g., KLEE) can also be defeated due to the intrinsic complexity

of a Turing machine. As reported in our resilience evaluation (§5.3), the constraint

solver of KLEE failed to yield proper inputs to cover two of three execution paths.
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6.2 Application Scope

Previous obfuscation work [5] usually targets one or several specific kinds of predicate

expressions. Also, most of them performs source code level transformations for

specific kind of program languages [3]. Turing obfuscator broadens the application

scope to any kind of conditional expression. In addition, it works for programs

written in any language as long as they could be transformed into the LLVM

IR. Considering a large portion of programming languages have been supported

by LLVM, we envision Turning machine obfuscator would serve to harden many

softwares implemented with various kinds of programming languages.

6.3 Branch Selection Techniques

As previously presented, our current implementation rewrites path condition in-

structions to invoke the Turing machine component. While it is mostly impossible

for attackers to reason the semanic of the Turing machine code, return value of

executing the Turing machine component is observable (since the predicate compu-

tation is modeled as a function call to the Turing machine component). Certain

amount of information leakage may become feasible at this point.

We notice that existing work [2, 28] proposes a different approach at this step;

control flow is directly guided (via goto) to the selected branch from the neural

network obfuscator. While this approach seems to hide the explicit return value,

we argue such technique is not fundamentally more secure since the hidden return

value can be inferred by observing the execution flow. Another solution that may

be employed to protect the predicate computation result is to use matrix branch

logic [27]. Suppose we model a branch predicate with a Turing machine function,
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the general idea is to further transform Turing machine into a matrix function,

and then randomize the matrix branching function. The involved matrix branch

logic and randomness shall provide additional security consideration at this step.

Overall, we argue the current implementation is reasonable, and we leave it as one

future work to present quantitative analysis of the potential information leakage

and countermeasures at this step.

6.4 Execution Overhead

During the Turing machine computation, frequent state change would indicate lots

of read and write operations. Also, since tape is infinite in Turing machine model,

it needs to allocate enough memory to accommodate complex computations. In

general, the complexity of Turing machine may be considered as a double edge sword;

it impedes adversaries and potentially increases overhead to certain degree. As

reported in the cost evaluation (Figure 5.5), we observed non-negligible performance

penalty for both cases. One countermeasure here is to perform selective obfuscation;

users can mark sensitive program codes and guide the Turing machine obfuscator

to only harden those parts. Such strategy would improve the overall execution

speed without sacrificing the major security considerations.
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Conclusion

In this thesis, a novel obfuscation technique using a universal Turing machine

model is proposed. We have implemented a research prototype, the Turing machine

obfuscator, on the LLVM platform and evaluated it on open source software with

respect to functionality correctness, potency, resilience, stealth, and cost. The

results indicate effectiveness and robustness of the Turing machine obfuscator. We

believe the Turing machine obfuscator is a promising and practical obfuscation tool

to battle malicious reverse engineering.
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