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Abstract

With the rise of increasingly advanced reverse engineering technique, especially
more scalable symbolic execution tools, software obfuscation faces great challenges.
Branch conditions contain important control flow logic of a program. Adversaries
can use powerful program analysis tools to collect sensitive program properties and
recover a program’s internal logic, stealing intellectual properties from the original
owner. In this thesis, we propose a novel control obfuscation technique that uses
lambda calculus to hide the original computation semantics and makes the original
program more obscure to understand and reverse engineer. Our obfuscator replaces
the conditional instructions with lambda calculus expressions that simulate the
same behavior with a more complicated execution model. Our experiment result
shows that our obfuscation method can protect sensitive branch conditions from
state-of-the-art symbolic execution techniques, with only modest overhead.
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Chapter 1

Introduction

With the notable advancement of binary analysis techniques, reverse engineering

is becoming more effective than ever before. As a result, malicious parties are

able to employ the latest binary analysis tools to identify software vulnerabilities

and exploit them to inject malicious codes into legit applications. Binary analysis

tools can also get misused to reveal important internal logic of the distributed

software copies, potentially leading to intellectual property thefts and therefore

severe financial loss to the original developers.

One of the protection techniques that prevents undesired reverse engineering

is software obfuscation. Generally, software obfuscation is the program transfor-

mation that makes software more complicated than its original form and difficult

for adversaries to understand and analyze, while preserving the program’s original

semantics [1].
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In this thesis, we propose a novel obfuscation method, called lambda obfusca-

tion, which utilizes the concept of lambda calculus, a powerful formal computation

system widely adopted by the programming language community. The main idea

of our approach is to utilize the unique computation model of lambda calculus,

which is vastly different from the widely used imperative programming paradigm,

to simulate the computation of certain parts in the original programs. Instead

of performing computation with data and control in imperative programming,

lambda calculus is entirely based on function application and reduction. The con-

cept of control flow becomes insignificant in lambda calculus, and all data struc-

tures, including primitive data types like integers, can be represented as high-order

functions, potentially making conventional information flows implicit. With this

highly abstract computation model implemented by the low-level machine code,

there will be a huge semantics gap that imposes great challenges on automated

program analysis and reverse engineering. Being Turing complete and considered

as the smallest universal programming language [2], lambda calculus is capable of

using its reduction rules to express any kind of imperative computation. If the

simulated computation is free of side effects, the source-level conversion can be

quite straightforward, yet the resulting program binary after transformation will

become much more complicated and obscure.

To demonstrate the value of our technique, we have implemented a prototype of

the lambda obfuscation based on LLVM [3]. The obfuscator can transform quali-

fied conditional instructions into corresponding function calls that simulate original

behavior using lambda calculus. An interpreter that evaluates lambda calculus is

linked to compiled binaries to return correct signals that can guide following con-

ditional jump instructions. In such way, the behavior of conditional instructions
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is preserved while the execution is through lambda calculus to increase the com-

plexity. We evaluate our obfuscation technique in four aspects, namely potency,

resilience, cost and stealth. The evaluation result shows that our method can make

the obfuscated programs more obscure and prevent automatic software analyzers

from revealing possible execution paths. In particular, we assessed lambda obfus-

cation’s resilience against KLEE, an advanced symbolic execution engine [4] and

obtained promising results.

The rest of the thesis is organized as follows. We first discuss related work on

control obfuscation in Chapter 2. We then briefly introduce the basics of lambda

calculus, followed by the design of lambda obfuscation in Chapter 3. The technical

details of the implementation are presented in Chapter 4. Chapter 5 presents

the evaluation result of our approach. Some research questions are discussed in

Chapter 6 and we finally conclude the thesis in Chapter 7.



Chapter 2

Related Work

Software obfuscation techniques can be divided into four major categories: layout

obfuscation, preventive obfuscation, data obfuscation, and control obfuscation [5].

Arguably as the most popular one, control obfuscation focuses on concealing and

complicating control flow information of the program. There has been diverse re-

search striving to develop effective control obfuscation techniques through different

angles.

One of the classic approaches to develop control obfuscation technique is to

design resilient opaque predicates. An opaque predicate is a predicate that always

evaluates to True or False, which is only known to the creator of the program but

difficult for adversaries to identify [6]. Most of these opaque predicate are derived

from algebraic theorems [7] or quadratic residues [8]. However, one of the funda-

mental flaws of opaque predicates is that opaque predicates always evaluate to the

same value during multiple runtime. The invariant nature of opaque predicates can



5

result in a likely detection by adversaries through sophisticated program analysis.

In order to overcome this disadvantage of invariant opaque predicates, Palsberg et

al. [9] introduced dynamic opaque predicates in which a family of correlated pred-

icates retain to the same value in one given execution but change the evaluation

value in another run.

Sharif et al. [10] proposed a conditional code obfuscation technique that lever-

ages the inconvertibility of hash function to protect the conditional branch. In their

study, they used the hash function to obfuscate the value of variable for which the

branch condition can be satisfied. Because of the cryptographic characteristics of

hash function, it is not feasible for code analyzers to reconstruct the values that

satisfy the condition and the control flow logic information is therefore concealed

and protected. However, their approach is only effective in protecting equality

operator while not suitable for obfuscating relational operators that check ranges

of values, such as larger than, smaller than or not equal to.

There are also multiple research studies building their obfuscation techniques

based on code mobility [11, 12, 13]. These obfuscation approaches only deploy

partial and incomplete application code on the local machine and retrieve the

rest of binary instructions from a remote trusted server. While these obfuscation

techniques can reduce attacker’s visibility to the software semantics, they also

severely rely on the availability of remote servers which decreases the feasibility of

their techniques.

Control flow obfuscation can also be implemented using neural networks. Ma

et al. [14] proposed to replace important branch conditions with trained neural
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networks that simulate the program behavior when the branch conditions are trig-

gered. Their approach can protect program against concolic testing due to the

complexity of neural networks. However, it is required to train corresponding neu-

ral networks in advanced based on the target branch conditions. Their approach

becomes less flexible and tedious to deploy when the number of branch conditions

requiring obfuscation increases.

Wang et al. introduced another obfuscation framework called transligual ob-

fuscation [15]. They proposed to embed a different programing language into the

original program by translating partial of the source code. Because the original

languages and embedded language have different programming paradigms and ex-

ecution models, translingual obfuscation can make the program more obscure for

attackers to understand and reverse engineer. Our research shares a similar idea

with transligual obfuscation in that we both propose to leverage the execution

model of a different programming language.



Chapter 3

Design

The basic idea of lambda obfuscation is to leverage the unique computation model

of lambda calculus for protecting the relatively straightforward imperative compu-

tation procedures in common programs. While different programming languages

have different execution models, imperative languages whose computation scheme

aligns the best with the underlying hardware are considered to be relatively easier

to reverse engineer. Typical imperative languages include C, Fortran, and Pas-

cal. On the contrary, execution models of functional languages, such as lambda

calculus, result in greater differences between the source code and compiled bi-

nary code, which can enhance the difficulty of de-obfuscation. Therefore, we can

translate and implement functionalities of a program using different programming

language to mix two execution models and conceal sensitive program information.

In this thesis, our obfuscator embeds functional execution model of lambda calcu-

lus into C programs that use imperative execution model. It translates the path

condition instructions in original compiled binary code into function calls that are
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implemented using lambda calculus. In this way, we are able to make the execu-

tion model of the obfuscated programs more complicated, thus hindering reverse

engineering.

3.1 Lambda Calculus Basics

Lambda calculus is a formal system that uses the basic operations of function

abstraction and application to describe all computation [16]. The basic building

blocks of lambda calculus are expressions called lambda terms. There are three

types of lambda terms, namely variable, abstraction and application, the syntax of

which is defined by the following BNF specifications:

〈expression〉 ::= 〈variable〉 Variable

| λ〈variable〉.〈expression〉 Abstraction

| 〈expression〉〈expression〉 Application

A variable in lambda calculus is an arbitrary identifier. An abstraction can be

viewed as a notation for defining anonymous functions. For example, lambda term

(λx.e) defines an anonymous function whose parameter is variable x and function

body is expression e, that can be another valid lambda term. An application

captures the action of applying a function to its arguments. For example, lambda

expression (x y) represents applying function x to an input parameter y. All the

other valid lambda terms can be formed by repeated combinations of the three
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basic lambda terms. The following are some examples of valid lambda terms:

x

λx.x

(λx.x) y

λp.λq.p q p

When the λ symbol precedes a variable, it binds all the occurrences of this

variable in the abstraction body. A variable is called bound variable if it is bound

by a λ symbol. Other variables in the function body are called free variables

[17]. For example, in the following expression, variable x is a bound variable while

variable y is a free variable.

λx.x y

3.1.1 Reduction

The meaning of lambda calculus is defined by how lambda calculus can be reduced

[18]. This reduction process is achieved by substituting all free variables in a

way similar to passing the defined parameters into the function body during a

function call [19]. The main rule to perform reduction in lambda calculus is called

β-reduction, which can be defined as follows:

(λx.e1) e2 ⇒ e1[x→ e2]
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where notation e1[x→ e2] indicates substituting the argument e2 for all free occur-

rences of the variable x in body e1. β-reduction captures the essence of function

application and can be used to simplify and evaluate lambda terms. During the

reduction process, all intermediate function applications are carried out and elim-

inated. The reduction process stops when β-reduction rule cannot be performed

any more. Here are several β-reduction examples.

(λx.x) y ⇒ y

(λx.x)(λy.y)⇒ λy.y

(λx.x x)(λy.y)⇒ (λy.y)(λy.y)⇒ λy.y

3.1.2 Church Encoding

In lambda calculus, all expressions can be considered as functions, which means

function is the only primitive data type that lambda calculus originally supports.

To perform arithmetic calculation using lambda calculus, it is imperative that

we encode arithmetic operators and integeral numbers in the obfuscator. Lambda

calculus is capable of representing all computable operators along with its operands

[20]. In this thesis, we employ Church encoding to encode natural numbers and

operators to implement lambda obfuscation.

The idea of Church numerals is to count how many times a function has been

applied to a value. For example, Church numeral 2 means a function is applied to
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a input value twice. In Church encoding, Church numerals are defined as follows:

0 ≡ λf.λx.x

1 ≡ λf.λx.f x

2 ≡ λf.λx.f (f x)

3 ≡ λf.λx.f (f (f x))

n ≡ λf.λx.fn x

As the definition indicates, Church numeral n can be viewed as a high-order

function that takes a input function f and applies it to a value x for n times.

Therefore, a successor (SUCC) operator that takes a Church numeral n and returns

n + 1 essentially is appending another application of function f to Church numeral

n, which is defined as follows:

SUCC = λn.λf.λx.f (n f x)

While adding m to n is equivalent to adding 1 to n for m times, a PLUS oper-

ator that adds m to n is identical to applying SUCC operator to n for m times.

Therefore, PLUS operator can be defined using SUCC operator as follows:

PLUS = λm.λn.m SUCC n

The predecessor (PRED) operator that takes a Church numeral n and returns

n − 1 is more complicated to define, but conceptually it is still equivalent to get-

ting the high-order function that applies its argument one less time than Church
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numeral n. Similarly, subtraction (SUB) operator can be defined based on PRED

operator. Other important operators and logical predicates are defined as follows:

PRED = λn.λf.λx.n (λg.λh.h (g f)) (λu.x) (λu.u)

SUB = λm.λn.n PRED m

TRUE = λx.λy.x

FALSE = λx.λy.y

ISZERO = λn.n (λx.FALSE) TRUE

LEQ = λm.λn.ISZERO(SUB m n)

GEQ = λm.λn.LEQ n m

Through implementing the Church encoding of necessary operators, we are able

to perform basic arithmetic operations in lambda calculus, like plus, subtraction,

multiplication and divide and compare operations such as larger than, equal to.

For example, 0+1 is equivalent to perform reduction on the following lambda term

in lambda calculus:

PLUS 0 1 ≡ (λm.λn.m SUCC n)(λf.λx.x)(λf.λx.f x)

≡ (λm.λn.m (λn.λf.λx.f (n f x)) n)(λf.λx.x)(λf.λx.f x)

In other words, the Church encoding provides the lambda calculus functions we can

replace path condition instructions with. Our obfuscator also implements Church

numerals so both operands of instructions can be encoded into Church numerals

to support the computation.
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From the obfuscation perspective, the Church encoding “accidentally” possesses

the capability of eliminating explicit control flows. As an example, the ISZERO

lambda term simualtes a typical branch operation in imperative programming.

However, the computation, or more precisely the reductionas, of ISZERO does not

contain any explicit decision making. Therefore, no logic-significant control flows

can be observed, which is one of the major advantages of lambda obfuscation over

traditional techniques.

3.2 Data Structures

To implement lambda obfuscation, we need to first design the data structure to

represent lambda terms in the C language. Lambda terms belong to one of the

three types, which are variable, abstraction and application. We use enum struc-

ture to enumerate all three types, namely Tlam, Tapp and Tvar. Because lambda

terms are defined inductively, the data structure we use needs to be capable of re-

ferring and linking to other lambda terms easily. We define a C struct called term

including two main fields, type and data. Type field stores the type of lambda

terms. Data field stores different information based on the type of the lambda

term: for a variable, it only stores the identifier, which is a char; for an abstrac-

tion, it includes a char to store the variable and a term pointer as the function

body; for an application, it includes two term pointers to link the two expressions.

Table 3.1 shows the data structure terms used in our implementation and Figure

3.1 presents the SUCC operator and Church numeral 2 using our data structure.

The benefit of representing lambda calculus using the term data structure is
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Type Data
Tvar Char var

Tlam
Char var
term* body

Tapp
term* left
term* right

Table 3.1. C data structure: term

Figure 3.1. SUCC operator and Church numeral 2 in term structure

twofold. First of all, our data structure along with the computation model of

lambda calculus makes the execution flow more complicated for analysis tools to

make sense. In imperative execution model, computation is conducted through

series of explicit instructions that modify memory state [21]. When performing

computation in lambda obfuscation, it becomes manipulating term objects, such

as creating new term objects, changing term pointers, modifying variable identi-

fier or removing term objects. It requires the analysis tools to trace modifications

of every intermediate steps to understand the internal logic, which is not only

resource-intensive but also time-consuming. Our data structure along with lambda

calculus’s unique execution model significantly increases the cost and difficulty for
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binary analysis tools to make sense the internal logic of obfuscated programs.

Secondly, using structure term to represent numbers can also make the program

more confusing for analysis tools to understand. While Church encoding adopts

a significant different approach to encode integer numbers, there is no more clear

indications of what integer numbers the function is operating on. Instead, numbers

become a link of term objects. It increases the cost to trace a value in lambda

calculus because it requires adversaries to trace the whole link of term objects to

identify the number. Moreover, in lambda calculus, every expression can be consid-

ered as a function. The Church numerals are simply high-order functions that take

functions as arguments and return functions as results. From this point, Church

numerals are no different than other lambda calculus operators, such as PLUS

operator or SUB operator. During evaluation process, data and operator logic are

mixed together and can be difficult to differentiate and make sense. Therefore,

leveraging this simple data structure we design to represent lambda calculus in

our implementation can make the obfuscated program more obscure for attackers

to reverse engineer.

3.3 Lambda Obfuscation

Theoretically, the lambda calculus is able to express all kinds of computation

available through modern programming languages, thanks to its Turing complete-

ness. However, obfuscating the entire program is usually against the common

software engineering practices due to considerable performance and maintenance

cost. Therefore, software developers usually need to manually pick the part of code



16

they consider sensitive and vulnerable as obfuscation candidates.

To demonstrate the value of work, we particularly pick path conditions as the

obfuscation targets. To be specific, we re-implement the computation of path

predicates with lambda calculus. In most cases, path conditions are the crux of

understanding software behavior and computation logic. By focusing on this part,

we are able to evaluate lambda obfuscation without domain-specific knowledge

about the software we obfuscate.

Branches are usually implemented through comparison. To obfuscate a path

condition instruction, we combine the corresponding lambda comparison operator

with the compared parameters also encoded as lambda terms, forming a lambda ex-

pression that represents the path condition computation. At run time, the lambda

expression is evaluated to a form that cannot be further reduced. This irreducible

lambda term, which is the computation result, will be decoded back to the im-

perative value it represents. Typically, a boolean value will be returned and guide

the execution of following branching instructions. In this way, the branch informa-

tion gets protected by lambda obfuscation and the potential leakage of sensitive

information to adversaries is prevented.



Chapter 4

Implementation

We build our obfuscator based on LLVM, a compilation framework that is capable

of processing various high-level programming languages, such as C language. As

shown in Figure 4.1, there are three stages in our obfuscation work-flow. First of

all, we compile all related source code into LLVM intermediate representation (IR)

code. Our obfuscator identifies all eligible path condition instruction candidates

and transforms such instructions into corresponding function calls to lambda cal-

culus interpreter. The obfuscated IR codes are finally linked and compiled into

executable binary in the last stage. We implement our lambda calculus interpreter

in C language which consists of total 736 lines of code.
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Figure 4.1. The workflow of lambda obfuscation

Figure 4.2. LLVM IR code of a C program before and after obfuscation
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4.1 Stage One: Preprocessing

In the LLVM framework, the majority of program analysis and optimization phases

are conducted at LLVM IR level. In order to leverage the strength of LLVM frame-

work, we first compile related source code into LLVM IR code in preprocessing

stage. The compilation is conducted without any optimization selections so the

IR code captures unmodified behavior of the original program. Input source code

comprises not only source code of the program to be obfuscated but also the im-

plementation code of our lambda calculus interpreter. However, only the LLVM

IR code generated from the target program source code will be obfuscated in our

transformation stage. Because we select C programs to evaluate the effectiveness

of our obfuscator, we use Clang as our front-end compiler to generate LLVM IR

code during our preprocessing stage.

4.2 Stage Two: Transformation

The strength of LLVM comes from the fact that it provides an easy-to-extend

LLVM pass framework. In LLVM, a pass takes LLVM IR code to perform trans-

formation and optimization on the program. Users can customize and implement

various passes based on their needs and requirements. We implement a LLVM pass

to identify potential path condition instruction candidates and perform obfuscation

transformation.
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4.2.1 Identifying Instruction Candidates

After preprocessing stage, LLVM IR code that generated from source code will

be fed into our LLVM pass for analysis. Every IR instruction is analyzed by our

pass to determine whether it meets our obfuscation requirement. In theory, our

technique is capable of obfuscating all kinds of computation. To demonstrate the

value of our approach, currently our prototype obfuscates path conditions which

serve as crucial parts to determine program’s control flow logic. As for the types

of instruction, our pass selects the following 6 different types of instructions that

compute different path conditions: equal, not equal, greater than, greater or equal,

less than, less or equal. Besides, our pass picks instruction candidates randomly

based on a predefined percentage.

4.2.2 Transforming Instruction

After identifying instruction candidates, our LLVM pass performs obfuscation

transformation on these instructions. Path condition instructions are replaced

with corresponding lambda calculus function calls to lambda calculus interpreter

with proper input parameters, including the type of instruction and both operands.

Our lambda calculus interpreter executes the computation of path condition and

returns the result to a register which guides the following branching instruction. In

this way, the behavior of path condition instruction is preserved while the branch

information is protected and obfuscated. Figure 4.2 shows the LLVM code of a

example C program before and after our obfuscation.
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4.3 Stage Three: Compilation

In stage three, we compile the obfuscated IR code along with the IR code of our

lambda calculus interpreter into native object files using llc, a static LLVM com-

piler that takes LLVM IR and outputs assembly codes. All the native object files

are linked and compiled into the final binary executable by gcc. It is worth not-

ing that since we implement our lambda calculus interpreter in C language, an

extra runtime environment to execute our lambda calculus interpreter is not re-

quired. This implementation decision also increases the stealthy of our obfuscation

approach.



Chapter 5

Evaluation

We evaluate lambda obfuscation in four aspects proposed by Collberg et al. [22]:

potency, resilience, cost and stealth. Potency measures how complicated and unin-

telligible the program has become after obfuscation. Resilience indicates how much

difficulty the obfuscation can raise for automated reverse engineering techniques.

Cost measures how much the software is slowed down as the cost of obfuscation.

Stealth describes to what extent the obfuscated program resembles the original

program such that the presence of obfuscation is hard to detect.

For the purpose of evaluation, we pick two real-world open source C programs to

obfuscate with our lambda obfuscation prototype. The two programs are bzip2, a

file compressor, and regexp, a regular expression engine. Both applications contain

many integer conditional branches so they can provide enough path condition

instruction candidates. The variety of application areas also helps prove that our

obfuscator can be applied to different real-world application scenarios.
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In our experiments, we obfuscate the two applications at different obfuscation

levels, defined as the percentage of qualified path condition instructions that are

obfuscated. For example, an application obfuscated at the 20% obfuscation level

indicates that the 80% of the original integral path conditions remain unmodified

while the rest 20% are transformed into lambda calculus function calls. To avoid

biased experiment conditions, we randomly select path conditions to obfuscate.

In reality, however, the program components to protect are usually identified by

developers with care to achieve the highest possible cost-effectiveness.

5.1 Potency

In order to quantify the potency of lambda obfuscation, we first measure three basic

program metrics that are derived from call graphs and control flow graphs before

and after transformation. The metrics are the number of edges in the call graph,

the number of edges in the control flow graph, and the number of basic blocks.

With the help of IDA pro, a widely-used disassembler, we generate call graphs and

control graphs from binaries that compiled from original and obfuscated source

code.

In addition to these basic metrics, we also calculate two advanced indicators of

software complexity which are widely used in the software engineering community,

i.e., the cyclomatic number [23] and the knot count [24]. The cyclomatic number

is defined as E − N + 2 where E is the number of edges and N is the number of

vertices in the program’s control flow graph. The knot count, on the other hand,

is the count of intersections among the control flow paths through a function.
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bzip2 Obfuscated bzip2 regexp Obfuscated regexp
# of Call Graph Edges 620 1049 144 380

# of Basic Blocks 2590 2839 392 643
# of CFG Edges 3795 4155 562 883

Knot Count 3162 3304 482 616
Cyclomatic Complexity 1207 1278 172 242

Table 5.1. Program metrics before and after obfuscation at obfuscation level 30%

Table 5.1 presents the potency-related statistics of the two evaluated appli-

cations before and after obfuscation at obfuscation level 30%. As can be seen

through the results, the complexity of both applications has increased by a signif-

icant amount after being obfuscated indicating that lambda obfuscation is able to

make programs more difficult for attackers to reverse engineer.

5.2 Resilience

For resilience evaluation, we perform concolic testing on an arbitrary C program

before and after obfuscation using our approach. Concolic testing is initially a soft-

ware verification technique combing concrete execution of a program with symbolic

execution. Concolic testing aims at covering as many feasible execution paths of a

program as possible [25]. However, attackers can use concolic testing to reveal sen-

sitive control flow information of a program and steal valuable program semantics.

By performing concolic testing experiment, we try to imitate a reverse engineering

attack on programs protected by lambda obfuscation. We select a popular concolic

testing tool, KLEE, which is capable of automatically generating test cases and

achieving a high coverage of possible execution paths [4]. The subject program to

be obfuscated is a simple C program shown in 5.1. We use this extremely simple

program so that we can rule out irrelevant factors that will affect the performance
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1 int test(int a) {
2 int Var = a;
3 if(Var > 16) {
4 Var++;
5 }
6 return Var;
7 }
8
9 int main() {

10 int a;
11 klee make symbolic(&a, sizeof(a), "a");
12 return test(a);
13 }

Figure 5.1. C program to be obfuscated in KLEE experiment

of KLEE.

We report that KLEE can easily perform concolic testing on the original C

program. It succeeds in discovering both paths of the C program and generating

test cases for the original program. In contrast, KLEE fails to generate any possible

paths for our obfuscated C program. While there are too many possible states for

KLEE to explore and reason, KLEE keeps hitting the maximum memory capacity

and eventually stops without returning any possible paths. This result indicates

that lambda obufscation makes an extremely simple program so complicated that

KLEE is no longer capable of revealing any useful control flow information of the

protected program.

5.3 Cost

The main overhead introduced by lambda obfuscation mainly comes from the en-

coding and decoding translation process and the reduction time of lambda calculus.

In order to measure the cost of our technique, we apply obfuscation to bzip2 and
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Program before after executed times overhead
bzip2 0.0625s 15.574s 375,351 41.492µs
regexp 0.413s 28.716s 822,873 34.89µs

Table 5.2. Overhead of lambda calculus obfuscation on bzip2 and regexp

regexp at the obfuscation level of 30%, meaning 30% of the path conditions are

obfuscated. The test inputs we use for the experiments are shipped with the orig-

inal source code. Each application is ran 10 times and the average run time is

presented with the slowdown.

Table 5.2 compares the execution time of both applications before and after

obfuscation. We also record how many times is our lambda calculus interpreter

invoked during each application’s runtime and we calculate the average overhead.

As Table 3 shown, on average every single call to our lambda calculus interpreter

requires 38.19 µs. We believe the cost is moderate and comparable to normal

function calls. Besides, we argue that the overhead of our lambda calculus ob-

fuscation is reasonable and can be reduced. Since we choose our path condition

instruction candidates totally at random, some of the obfuscated path condition

instructions reside in hot spots, which means these path condition instructions are

being intensively called and used during runtime. For example, some of the path

condition instructions we obfuscated in bzip2 reside in for loops which eventually

accumulate to slowdown the program. In such cases, the overhead introduced by

lambda obfuscation is inevitable and forgivable. In practice, users can obfuscate

path conditions that are sensitive while less intensively-used to gain the maximum

benefit from our obfuscation technique.
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Figure 5.2. Instruction distribution of bzip2

5.4 Stealth

To measure how stealthy our obfuscation technique can be to avoid detection, we

collect instruction distribution of our obfuscated sample C programs and compare

them with the distribution of their original source code.

Figure 5.2 and Figure 5.3 show the instruction distribution of the original and

obfuscated programs at obfuscation level of 30%. As we can see from the figures,

the distribution of our obfuscated programs is very similar to their original dis-

tributions. In this case, we believe that the behavior of our obfuscated programs

resembles their original behavior and the existence of our obfuscation can avoid

being detected by adversaries.
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Chapter 6

Discussion

6.1 Countering Dynamic Monitoring

Opaque predicates and many other control flow obfuscation methods are inherently

vulnerable to dynamic analysis, i.e., attackers monitoring the execution of the ob-

fuscated software and checking control flows at run time. Lambda obfuscation may

face similar challenges when only partially applied to protecting branch conditions.

Learning from previous work, we found that there are several ways to alleviate this

issue. One possible countermeasure is to blur the boundaries between lambda sim-

ulation and the original program code, using heuristics like function inlining and

jumps across functions [26].
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6.2 Potential Extensions

Currently, our lambda calculus obfuscator is applied to path condition instruc-

tions that involve integer calculation. The limitation of our technique is caused

by the fact that Church encoding is only capable of encoding natural number in-

stead of real number. According to Church-Turing thesis, any data types can be

encoded using lambda calculus [20]. One way to encode real number is using a

Cauchy sequence of rational numbers [27]. After properly encoding real number in

lambda calculus, we can extend our approach to obfuscate instructions involving

real number.

Lambda calculus can also be extended to obfuscate other instructions besides

path condition instructions that we currently focus on. Lambda calculus inter-

preter is capable of handling multiple arithmetic operations, such as addition,

subtraction. Our obfuscator can be applied to any instructions containing such

operations. In order to obfuscate these instructions, we can extend our LLVM

obfuscator to identify suitable instructions and replace them with corresponding

lambda calculus function calls.

Another way to enhance the obfuscating effect is to implement indirect con-

trol transferring similar to the obfuscation schema proposed by Ma et al. [14].

Currently, our obfuscator replaces path condition instructions with lambda func-

tion calls that return boolean signals to guide following conditional jump instruc-

tions. Instead of returning boolean signals, the obfuscator can return instruction

addresses and we can modify following conditional jump instructions to be un-

conditional jump instructions that take instruction addresses. In this way, we
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can transform conditional logic into unconditional control transfer to make the

obfuscated programs even more confusing for attackers to make sense.

6.3 Combining with Other Obfuscation

In this thesis, we implement the lambda transformation at LLVM IR level using

pass framework. In LLVM, every pass can be considered as an independent op-

timization of the original program and multiple different passes can be applied

if needed. Therefore, lambda calculus is compatible with other obfuscation tech-

niques if they happen at source code level or at LLVM IR level. Lambda calculus

obfuscation can served as an extra obfuscation layer to be applied before com-

pilation of the program with other obfuscation techniques to make the program

more obscure and secure. Besides, lambda obfuscator comes with reduction rules

to evaluate lambda calculus which means the obfuscated program can run without

an extra runtime environment. It can independently encode and decode lambda

numerals and perform the whole evaluation process. This independent character-

istic makes lambda calculus obfuscation less possible to affect other obfuscation

techniques if applied together.

6.4 Obfuscating Complete Branch Predicates

Currently, in the obfuscated program, path condition instructions are replaced

with lambda calculus function calls with instruction type and operands as input
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parameters. In order to further limit adversaries’ knowledge to program semantic,

we can further obfuscate instruction information. One possible solution is to en-

code all instruction information using lambda calculus and combine them into one

single lambda term. Every instruction can be transformed into a different lambda

calculus function which encapsulates the lambda calculus term that represents the

instruction type and operands. By calling every instruction-specific function, our

lambda calculus evaluator can still simulate the behavior of each obfuscated in-

struction. In this way, the instruction information is concealed through lambda

calculus encoding and less program semantic is leaked to attackers.



Chapter 7

Conclusion

In this thesis, we propose a novel obfuscation technique based on lambda calculus.

The behavior of path condition instructions is simulated using lambda calculus

while sensitive instruction information is concealed. The complicated execution

model of lambda calculus makes the obfuscated programs more obscure for the

adversaries to make sense and reverse engineer. We implement a lambda obfusca-

tor that transforms path condition instructions into corresponding lambda calculus

function calls. A lambda interpreter is also implemented to evaluate lambda calcu-

lus function calls and return boolean signals to guarantee the behavior of original

path condition instructions is still preserved. We evaluate our prototypical im-

plementation of lambda obfuscation with respect to potency, resilience, cost and

stealthy. Our experiment result shows that our obfuscation technique can make

the program more obscure with moderate overhead.
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