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ABSTRACT
The system call interface defines the services an operating
system kernel provides to user space programs. An oper-
ating system usually provides a uniform system call inter-
face to all user programs, while in practice no programs
utilize the whole set of the system calls. Existing system
call based sandboxing and intrusion detection systems fo-
cus on confining program behavior using sophisticated finite
state or pushdown automaton models. However, these au-
tomata generally incur high false positives when modeling
program behavior such as signal handling and multithread-
ing, and the runtime overhead is usually significantly high.
We propose to use a stateless model, a whitelist of system
calls needed by the target program. Due to the simplicity
we are able to construct the model via static analysis on
the program’s binary with much higher precision that in-
curs few false positives. We argue that this model is not
“trivial” as stated by Wagner and Dean. We have validated
this hypothesis on a set of common benign benchmark pro-
grams against a set of real-world shellcode, and shown that
this simple model is, instead, very effective in preventing
exploits. The model, encoded as an per-process tailored
system call table, incurs virtually no runtime overhead, and
should be practical to be deployed to enhance application
and system security.

1. INTRODUCTION
System calls represent an important abstraction layer of ser-
vices provided by an operating system kernel. A commodity
operating system usually provides the same set of system
calls to all the programs. In practice, however, no programs
utilize all the services provided by the kernel. While a lot
of system calls may never be used by a benign program,
they can be exploited by the injected malicious code. Cur-
rent operating systems provide very limited mechanisms to
prevent system calls from being abused. For example, root
privileges may be required for a few system services, and

policies may be relaxed for setuid programs.1 Once a pro-
gram is compromised, a uniform set of kernel services are
potentially exposed to attackers as a versatile and handy
toolkit. While a uniform system call interface simplifies op-
erating system design, it does not meet the principle of least
privileges in the perspective of security, as the interface is
not tailored to the needs of applications.

Existing researches on system call based sandboxing and
intrusion detection focus on system call pattern checking
[16, 12, 31, 35, 7], arguments validation [35, 23, 25, 4, 3],
and call stack integrity verification [10, 15]. Some establish
sophisticated models such as Finite State Automata (FSA)
[31, 35, 15, 13] and Pushdown Automata (PDA) [35, 14]
by training [12, 31, 34, 10] or static analysis [35, 14, 15,
13], while others rely on manual configuration to specify the
rules and policies [16, 3, 7].

There are several severe practicality limitations in the exist-
ing approaches. First, the effort and cost of policy construc-
tion is usually high when manual configuration is involved.
For example, from the point of view of users who intend to
confine system call invocation of applications, how to effi-
ciently and precisely construct system call policies without
high false positives (denial of services)? Systrace [28], for
instance, allows one to build system policies interactively.
However, system calls usually represent low-level services
provided by an operating system kernel, such that users
typically have difficulty in identifying system call invoca-
tion rules in terms of types, sequences and arguments. Even
program developers may find it obscure since system calls
are generally not invoked directly but through library APIs.
If no manual configuration is involved, from the intrusion
detection point of view, how to identify or learn the intru-
sion pattern based on system call behaviors with low false
positive rates? This leads to the second limitation below.

Second, it is difficult to construct a model that incurs few
false positives without dramatically degrading detection ef-
fect. If a policy or model is constructed by training, it is hard
to ensure every execution path has been exercised, while
many theoretical and practical barriers remain for static
analysis based approaches. In addition, it usually imposes
a significant overhead to enforce the models and policies.
Due to those limitations and unsolved questions, few sys-

1Due to this reason, they are the most common victims of
privilege escalation attacks.
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tem call based sandboxing and intrusion detection systems
are deployed in practice.

In this paper, we propose System Interface Tailor (SIT) us-
ing a application-specific whitelist, instead of system call
sequences, FSA, or other sophisticated models, to confine
system calls used by a specific program. Given a program,
its whitelist includes all the system calls needed by the pro-
gram; any invocation to system calls not included in the
whitelist are sandboxed or identified as intrusion at run-
time. Wagner and Dean [35] stated that the whitelist is a
“trivial” model. We argue that this model is not only more
feasible to be constructed automatically(, compared to con-
structing an automaton model), but can block a significant
number of exploits. Moreover, it incurs virtually zero run-
time overhead to enforce the model by representing it as a
tailored application-specific system call table.

Our hypothesis is that many programs use only a relatively
small set of system calls, and intrusion such as code injec-
tion may invoke system calls that are not used by the origi-
nal programs. We have validated this hypothesis on a set of
popular server program, including apache, bind, and send-
mail, and common benchmarks, against a set of real-world
shellcode. The experiment results show that 35% of the
shellcode attacks can be prevented from over 90% of the be-
nign programs after applying our technique, while 80% of
the benign programs can prevent 70% of the exploits.

Consider the system call execve as an example, about half of
shellcode instances invoke this system calls, while only 15%
of the benign programs use it. This means that, by merely
disabling this system call, 85% of the benign programs can
block about half of the shellcode exploits.

The whitelist is extracted from executables automatically by
a static analyzer. Compared to models based on training or
configuration, which is usually time-consuming and error-
prone, our model construction is automatic. Due to the
simplicity of the model, many limitations that exist in static
analysis for FSA or PDA models can be overcome.

A whitelist can be precisely represented as a tailored application-
specific system call table during runtime, which routes the
valid system calls to original system service routines and the
invalid ones to an intrusion response procedure. Each appli-
cation has its own (virtual) system call table in the kernel, as
opposed to a uniform system call table for all applications.
The runtime enforcement overhead is near zero. Consider-
ing its extremely low overhead, the sandbox can be applied
at system level to protect all the user programs and improve
system security, which is another sharp contrast with other
costly techniques that are not affordable by the system to
protect many processes.

We have implemented our approach in the Linux platform.
Our system consists of two parts: a static analysis module
that can automatically extract from an executable all the
system calls used, and a runtime enforcement module that
enforces the whitelist blocking all the system calls not in-
cluded in this list.

Our stateless model avoids a lot of challenges faced by state-
ful automaton models, such as signal handling and multi-
threading; it also simplifies the analysis of indirect calls by
exploiting the information contained in the binary. So it
incurs few false positives. We also ran our benchmark pro-
grams with varying inputs and did not encounter denial of
service. Our efficiency test has shown that the per system
call invocation overhead is less then 7 CPU cycles, and there
is no measurable slowdown in macrobenchmark test. We
have also tested at system level, that is, interposing every
system call invocation in the system and have not experi-
enced any noticeable slowdown.

In summary, we make the following contributions:

• We first propose a whitelist based model for system
call sandboxing represented as an application-specific
system call table tailored to per program’s needs. The
approach is significantly more practical than the exist-
ing system call based sandboxing and intrusion detec-
tion systems. Many theoretic and technical challenges
that impede the deployment of the sophisticated mod-
els are avoided or mitigated in our stateless model.

• We have validated our hypothesis that injected mali-
cious code such as shellcode very often invokes some
system calls outside the set used by benign programs
with 134 applications against 120 shellcode.

• We have implemented a prototype including a static
analyzer and the enforcement. We have demonstrated
that our system can be enforced with near zero run-
time overhead and it does not incur false positives in
practice. It costs virtually nothing from either devel-
opers or system. Therefore, it has the potential to be
deployed at system level to enhance security.

The remainder of the paper is organized as follows. We
present our key observations and validate the hypothesis in
§2. We then review system call models and compare the
existing ones with ours in §3. We present our system design
in §4 and implementation in §5 (Static Analyzer) and §6
(Enforcement). We briefly discuss deployment options in §7.
The evaluation of our research is presented in §8. We discuss
related work in §9 and future work in §10, and conclude in
§11 .

2. KEY OBSERVATIONS
Our hypothesis is that many exploits via code injection use
some system calls that are not used by the program be-
ing exploited. If this hypothesis holds, blocking the system
calls not included in the whitelist of system calls of the host
program is an effective way to defend exploits. Figure 1 il-
lustrates such a situation that the exploit can be prevented
by disabling any of the system calls in the shadow area with-
out incurring denial of service in the benign program. We
validate this hypothesis based on the following two observa-
tions. In §8 we present more evidences on the validity of our
hypothesis.

2.1 Observation 1: Most programs only use a
small set of system calls.
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Figure 1: System calls used by a shellcode and a
host program being attacked.

Table 1: System call count.
Program Size Count Percentage (%)
Apache-2.2.14 1.2M 79 23.1
Bind-9.9 486K 93 27.6
Sendmail-8.14 806K 97 28.8
Finger-0.17 13K 28 8.3
Openssh-5.3 416K 38 11.3
Vsftpd-2.2.2 116K 84 24.9
Monkey-0.9.3.1 46K 49 14.5
Hypermail-2.2.0 277K 33 9.8
Grep-2.5.4 99K 17 5.0
Gzip-1.3.12 57K 25 7.4
Tar-1.22 247K 66 19.6
Openssl-0.9.8 441K 38 11.3
Bison-2.4.1 251K 21 6.2
Binutil-2.22* 70–359K 13–25 3.9–7.4
Coreutil-8.13* 0.7–4.3M 14–24 4.2–7.1
Ccrypt-1.7 44K 26 7.7
Gnupg-2.1 26K 33 9.8

*Binutil-2.22 and Coreutil-8.13 contain 16 and 103
programs, respectively. Their system call counts
ranges are 13–25 and 14–24, respectively.

A commodity operating system kernel usually provides the
same set of system calls to every application. For example,
Linux kernel 2.6.32.59 has 337 system calls in total.2 How-
ever, in practice no program uses the whole set of system
calls. Table 1 shows the number of system call types used
by 134 benchmark programs including both popular server
applications and common utility programs and the percent-
age of used system calls over the total 337 system calls. (We
present the method we used to extract system calls from ex-
ecutable binaries automatically in §5.) The first column lists
the software name and version number; the second column is
the executable size in bytes; the third column is the number
of different system calls invoked by a program; the fourth
column shows the percentage of the system calls used by a
program. From the table, we can see that all the programs
use less than 100 system calls, which is about 30% of the
337 system calls in Linux.

Figure 2 shows the percentage of the benchmark programs
that use more than certain numbers of different system calls.

2We refer to NR syscalls, which is defined as 337 in this ver-
sion. However, there are some (21) system calls that are
not implemented or deprecated, and some system calls are
actually redundant in functionality. We will take this into
account when measuring the effectiveness.
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Figure 2: System call coverage.
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Figure 3: System call usage statistics for some dan-
gerous system calls for benign programs and shell-
code.

From the figure, we can see that over 70% of the programs
use less than 20 system calls, while only 8% of the programs
use more than 40 system calls.

This fact implies that, by disabling system calls not used by
a host program, we may block a rich set of attack vectors
if they rely on any of the disabled system calls, which is
validated by our second observation.

2.2 Observation 2: The system calls not in the
whitelist of a host program are viable parts
of many attack vectors.

To show how shellcode in reality uses system calls, we col-
lected 120 off-the-shelf exploits and shellcode developed by
professionals from Shell-storm.org [32], a hacking organiza-
tion. Table 2 shows some of the dangerous system calls used
by shellcode, the number of their occurrences and the aver-
age shellcode sizes. It shows that the dangerous system calls
such as execve and setuid are frequently used in shellcode.

We also observed that many exploits use system calls outside
the white list of a host program. We have compared how
each system call is used by shellcode and benign programs.
The result for system calls listed in Table 2 is shown in
Figure 3. Consider execve in the graph as an example, over
50% of shellcode instances invoke this system calls, while
only less than 15% of the benign programs use it. This
means that, by merely disabling just this system call, 85%
of the benign programs can block over half of the shellcode
exploits.
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Table 2: The real-world shellcode.
System call Function Shellcode count* Average LOC*

execve execute any program 67 64
setuid privilege elevation 14 18
chmod steal password from /etc/shadow 10 23
lchown privilege elevation 8 23

socketcall set up backdoor connection 18 72

*Shellcode count indicates the number of shellcode instances that use that system call.
The average LOC tells the average lines of shellcode in the x86 assembly language.
It shows even small shellcode contains those dangerous system calls.

Combining Observation 1 and 2, we can see that indeed
many exploits use the system calls outside the whitelist of
the host program. We conclude that the whitelist model is a
very effective and practical defense solution to enhance the
system security. Note that our goal is not to prevent all the
attacks, but to terminate a rich set of attack vectors and
thus block the exploits. Actually the overall detection and
prevention effect is significant according to our experiments
(§8.1): 35% of the shellcode attacks can be detected by 90%
of the benign programs, while 80% of the benign programs
can prevent 70% of the exploits.

3. SYSTEM CALL INVOCATION MODELS
3.1 Existing Models
A lot of models have been proposed [12, 31, 35, 14, 10] for
the intrusion detection systems based on modeling system
call behaviors. These models can be roughly categorized
into two types: (1) Finite State Automata (FSA) and (2)
Pushdown Automata (PDA). By training or static analysis,
an automaton is established to model the normal program
behaviors in terms of system call requests. Each system
call triggers a state transition, which is verified against the
model; if the transition is not accepted by the automaton,
an attack is reported.

There are a diversity of FSA models, which are constructed
either by training or by static analysis. The training-based
models learn valid transitions through exercise. The com-
mon limitation is that false alarms may occur if some legal
execution paths are not gone through during training [12,
31, 10]. On the other hand it is difficult to construct a pre-
cise FSA model via static analysis. A lot of challenges and
questions, for example, how to deal with signal handling and
multithreaded programs, and setjmp/longjmp, have not been
well resolved [31, 14, 15, 13]. In addition, most implementa-
tions trace the system call requests using the inter-process
system call tracing mechanism, which typically incurs high
running time overhead. Although some work states that a
kernel-space implementation can improve the efficiency [31,
35], the expected overhead is still high. For example, the
models usually rely on mapping the system call back to the
call site of the original program to determine the state transi-
tion, which requires traversing over the user space call stack
and thus incurs significant overhead. To the best of our
knowledge, none of the models has been widely applied and
deployed in practice due to the various limitations and is-
sues.

In addition to modeling system call sequences, the PDA

further captures the calling context information and makes
sure the return addresses on the stack are not corrupted,
so that it is more difficult for attackers to evade the detec-
tion. This model is prohibitively expensive, typically with
minutes, sometimes hours, of overhead per transaction, e.g.,
sending an email [35]. Although Giffin et al. reported high
efficiency in their experiment [14], as pointed out in [10], it is
due to the context of remote execution and the low overhead
cannot be expected under the host-based intrusion detection
environment.

3.2 Mimicry Attack and the whitelist Model
Instead of putting forward a more advanced model by trac-
ing the program behavior more precisely and thus introduc-
ing even higher overhead, we propose a“degraded”model—a
whitelist of system calls, which can be regarded as an ex-
tremely simple FSA which accepts the set of system call
sequences Σ∗, where Σ is the set of valid system calls used
by the application in consideration. The insights include
(1) a static analysis on binaries for extracting the white-
list is more feasible compared to constructing a FSA and
PDA(§5); (2) the whitelist model can be easily implemented
as an application-specific system call table (§6.2), which is
then enforced with near zero overhead; (3) more importantly
and surprisingly, the “degraded” model does not really de-
grade the detection effect for typical applications compared
to the sophisticated FSA/PDA model, which is elaborated
as follows.

A typical attack can be divided into a penetration phase
when the attacker hijacks the control flow and an exploita-
tion phase when the attacker exploits the control of the ap-
plication to harm the rest of the system [36]. Most anomaly
detection systems are based on detecting the harmful ef-
fects shown in the exploitation phase, rather than detecting
the penetration itself. For example, a buffer overflow attack
overwrites a function pointer or a return address to alter
the execution path without issuing any system calls; thus,
no syscall-based IDS can detect the buffer overflow itself.
After hijacking the control flow, the attacker can force any
system call sequence accepted by an FSA model. Given an
attack consisting of a specific system call sequence, the at-
tacker can simply pass effectively null arguments to system
calls of no interest, which is referred to as no-op system calls.
for example, open(null, 0) if open is not needed, and pass the
arguments she needs when a system call in the malicious se-
quence is reached. The attacker can synthetically construct
the malicious sequence by mixing the no-op and attacking
system calls, which is called mimicry attacks [36]. An ap-
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Table 3: Model comparison.
Model whitelist FSA PDA
Model Construction Easy Difficult Difficult
False alarms Few Various Various
Enforcement overhead Near zero High Very high
Security Good Good Good
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Figure 4: Architecture.

plication usually has an outer loop implementing the major
functionality. For example, a web server repeatedly services
incoming requests and a database server keeps processing
the queries. The majority system calls in the whitelist of a
given application should be contained in the loop. There-
fore, one can expect that most system call that can be found
in the whitelist may become reachable with a mimicry at-
tack, which renders the FSA model effectively a whitelist
in the perspective of attackers. The implications are two
folds: some attacks that were deemed detectable can evade
an FSA via mimicry attacks; on the other hand, a wide
range of attacks that can be detected by an FSA even after
applying mimicry attacks can be detected using the much
simpler whitelist model.

3.3 Model Comparison
We summarize the comparison of FSA, PDA, and the white-
list models in Table 3. The model construction for the white-
list is much easier with few false positives; we have not en-
countered any false positives in our experiments. We have
near zero model enforcement overhead, while for FSA and
PDA the runtime overhead is high to very high. In summary
the whitelist model is feasible to be constructed and achieves
good detection effectiveness with virtually zero overhead.

4. SYSTEM OVERVIEW
Our system, named System Interface Tailor (SIT), as shown
in Figure 4, consists of two components, the Static analyzer
and the Tiny Enforcer. The Static Analyzer, given a pro-
gram binary, discovers its whitelist. When a program is
executed, the Tiny Enforcer creates an application-specific
system call table based on the program’s whitelist. For each
entry in the system call table, if the corresponding system
call belongs to the whitelist, the entry is filled out with the
original handler function’s address; otherwise, it points to
an alarm function. During runtime, the Tiny Enforcer in-
terposes each system call request and dispatches the request
using the current process’s system call table.

The Static Analyzer disassembles the binary to do an inter-

procedure analysis to extract the system calls needed by the
target binary. Although the whitelist model avoids some
common difficulties faced by the stateful models, the anal-
ysis has to deal with challenges such as indirect procedure
calls, implicit and explicit dynamic linking, and special sys-
tem call invocations (§5).

After comparing the design choices for enforcing the model,
we present the Tiny Enforcer, which encodes the whitelist
model as a per-process system call table in kernel space(§6).
The design incurs minimum time and memory overhead.

The whitelist generated via binary static analysis has to be
stored at a safe place. The deployment and software updat-
ing issues will be discussed in §7.

We assume the Linux operating system on the x86 plat-
forms when discussing the implementation details, although
all the techniques presented are applicable to many other
well-known hardware and operating systems, e.g., Solaris
and FreeBSD. We target applications of the ELF binary
format which are popular on Unix platforms.3

5. STATIC ANALYZER
Since it is much easier to obtain the system calls used in
a statically linked program, we focus on dynamically linked
programs, which are more common in modern operating sys-
tems. We first briefly introduce the methods of invoking a
system call provided by Linux on the x86 platforms. Then
we present, given a program, how to discover the system
calls issued via dynamic library functions, and apply the
techniques of data flow analysis to deal with some special
cases. We describe some implementation issues at the end
of this section.

5.1 Background
The Linux kernel provides two different ways for user pro-
grams to issue a system call.

int 80h: it issues a system call through the 0x80 interrupt.

sysenter: the sysenter instruction was introduced in the In-
tel Pentium II CPU to speed up the switch from the user
mode to kernel mode and has been supported since the Linux
2.5 kernel.

A user program saves the ID of a system call to be invoked
in the eax register and executes one of the two instructions
above to issue a system call. The net effect of either of the
two instructions is a jump to a function called system call
handler. The kernel maintains a system call table, which is
an array of function addresses with the ith entry containing
the service routine address of the system call having the ID
number i. The system call handler uses the system call ID
saved in eax as an index to locate the address of the service
routine in the system call table and invoke it.

5.2 Interprocedural Analysis for System Call
Discovery

3Our system will be open sourced and available at http:
//anonymized-url/.
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In this section we present the interprocedural analysis for
system call discovery. Instead of applying the low level prim-
itives above, programs usually rely on the libc library to in-
voke system calls. The libc library contains wrapper routines
whose only purpose is to issue system calls. It is trivial to
establish a one-to-one mapping from a wrapper to a system
call. We then perform an interprocedural analysis from the
program binary to search all the wrappers reachable.

An ELF format binary file contains one dynamic linking sec-
tion that list all the dynamic library functions referenced by
the binary directly. These functions become the entry points
of the interprocedural analysis. The algorithm consists of
the following steps.

1. Three data structures are maintained: two sets, the
Processed Function Set (the functions that have been
processed) and the whitelist Set (the system call white-
list), and one queue, which contains functions to be
processed. Initially, the whitelist Set is empty, while
the Processed Function Set and the queue contain the
functions listed in the program binary file’s dynamic
linking section.

2. If the queue is empty, the algorithm ends. Otherwise,
one node is dequeued from the queue as the current
function. The algorithm goes to the next step.

3. If the current function is a libc wrapper routine, it
is added into the whitelist Set. Otherwise, the in-
terprocedural analysis is performed starting from the
function. The analyzer simulates the dynamic linker
to locate the library defining the current function and
generates a control flow graph for it. For each of the
functions called by the current function, if it is not an
element of the Processed Function Set, the callee func-
tion associated with the library defining the function is
enqueued into the queue and added into the Processed
Function Set. Go back to Step 2.

When the algorithm ends, the system calls needed by the
given program are obtained from the whitelist Set.

5.3 Indirect Procedure Calls
When dealing with indirect procedure calls via, e.g., function
pointers or dynamic dispatching, we consider the following
cases and solutions.

First, if the indirect procedure calls reside in the program’s
binary file, the dynamic linking library functions referenced
by the invocation are contained in the dynamic linking sec-
tion of the binary file, so they are processed as above.

Second, a function pointer is usually used for callback pur-
poses, which is also the main usage of function pointers. For
example, by passing a custom function to the sort function,
e.g., qsort, one can affect how to sort the data. the pro-
gram can also pass functions to signal or sigaction to register
custom signal handlers. The functions passed are usually
contained in the binary file. So the library functions ref-
erenced by these functions are also listed in the dynamic
linking section.

Third, we rely on points-to analysis, which is a well-researched
problem, to do a conservative interprocedural analysis using
0CFA [33]. While the targets of indirect calls are not decid-
able in theory, substantial research in this area has shown
reasonable results [17, 38, 24].

Based on the observations and solutions above, we are able
to discover the majority of the whitelist. Finally, we propose
to use a runtime remedy component to deal with incomplete
whitelist. When an invocation to a system call outside the
whitelist is detected, we pause the program and traverse
the integrity of the call stack and the jump table of all the
libraries, and make sure every return address and function
address points to binary or library code pages. Once one
address pointing to heap or stack data is found, an attack
is detected. Otherwise, we add the current system call into
the whitelist. Although this kind of checking pauses the
program execution, it occurs very occasionally, and thus will
not affect the performance much in practice. We have not
encountered incomplete whitelist issues in the experiments.
The remedy solution may incur false positives in the case of
self-modifying code, which is not addressed in this research.

5.4 Special Cases
While system calls are generally issued via regular library
function calls, the following special cases have to be taken
into account:

• Invoking system calls through sysenter or int 80h di-
rectly. Some C programs contain inline assembly code
which is capable of using these instructions directly.
The value saved in the eax register when issuing the
low-level primitive is the system call ID.

• Explicit dynamic linking via dlopen/dlsym. Some appli-
cations determine the library to be referenced from a
set of alternatives during runtime. Our principle is to
consider all the alternative libraries regardless of which
will be used finally. The first argument passed to dlsym

is the handle of the opened library which is returned
by a call to dlopen, while the second one indicates the
name of the function to be used.

• Issuing system calls through libc function syscall, which
accepts the system call ID as the first argument.

While it is straightforward to identify the patterns above,
how to recover the arguments (including the value saved in
the eax register) needs special handling. Once the arguments
in a pair of dlopen and dlsym are recovered, we can apply the
algorithm described in §5.2 to discover the referenced system
calls.

Therefore the critical task is to, given an argument variable
used in those special cases, determine the possible values of
the argument. We use interprocedural data flow analysis
techniques to solve this problem in three stages[29, 30]. (1)
We compute the use-def chain [2] in terms of the argument
variable and intend to calculate its possible values. If the
values can be determined by following the use-def chain, the
algorithm stops. Otherwise, if the values depends on the for-
mal arguments of the containing function, we generate a data
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flow summary function that describes the relations between
the function’s formal arguments and the target variable. (2)
We search all the calls to that function and continue data
flow analysis at the caller functions as the first stage. This
stage can be recursive. (3) By composing the data flow func-
tion summary with the knowledge of use-def, we can recover
the argument values that are statically known.

If the argument values depends on external input or it is
too complicated to generate precise function summaries, the
argument recovery will fail. The runtime remedy component
can be used to deal with the incompleteness of the whitelist
of undecidable arguments.However, generally the arguments
passed as the system call ID, the library or function names
are constant, static values.

5.5 Avoided Challenges
Multithreading: The threaded program is another chal-
lenge for FSA model enforcement. Specifically, the model
enforcer usually resides in another process, so that the thread
context-switch events, which normally imply exceptional con-
trol flow change, are not received by the enforcer and thus
may be viewed as deviations from the model. Our enforcer
resides in the kernel and can interpose such events conve-
niently.

Signal handling: The signal handling also introduces ex-
ceptional control flow change, which is hard to be modeled
using FSA, while our whitelist model is not control flow sen-
sitive and the signal handler functions are processed as other
functions.

6. ENFORCEMENT
We first compare different design choices and explain why
we choose kernel-space implementation. Then we present
the virtual application-specific system call table.

6.1 Why Kernel-space?
As there are a variety of approaches to enforcing the white-
list model, we will compare various designs and demonstrate
that the kernel-space enforcement is promising in terms of
robustness and efficiency. We believe the two requirements
are most important. In an adversary setting or given a
flawed and buggy program, it is desirable to guarantee the
enforcement itself is not corrupted. The runtime overhead
due to the security enhancement should be low.

System call monitoring in user space has been well explored [21,
19]. It usually replaces the default libc library with another
library to add additional functionality, e.g., buffer overflow
checking. To enforce our model, we can rewrite the wrap-
pers forwarding or denying the libc calls according to the
whitelist. The implementation is straightforward and the
overhead is low. However, it assumes all the system calls
are issued via libc function calls, which is not the case. In
particular, once the control flow is hijacked, the attacker can
issue any system call via traps evading the wrappers.

Intrusion detection systems based on system call monitor-
ing [12, 35, 15, 31, 10, 15] usually trace the execution of the
target process in a separate process. When a system call is

issued in the target process, the kernel pauses its execution
and notifies the monitor process, which responds according
to the policies or the model and switches back to the ker-
nel and resumes the execution of the target process. This
incurs an overhead of multiple context switches per system
call, which renders IDSes based on this system call tracing
mechanism very inefficient and thus impractical.

By enabling Linux Security Modules (LSM), we can imple-
ment the model as a security module. However it introduce
system-level overhead, although it is not significant. More
importantly LSM exports all of its symbols; it facilitates
the insertion of malicious modules, e.g., rootkits, as well as
security modules.

Hypervisor-based system call hooking does not require changes
to the kernel, which is particularly useful when the kernel
code is not available. However, the interposition also in-
volves extra context switches between the hypervisor and
the kernel. The scalability is also problematic due to the
need of maintaining the mapping between the processes and
their whitelists in the typically small hypervisor memory
space. After all, it violates the principle of the hypervi-
sor to enforce high-level semantics. Nevertheless, we regard
hypervisor-based approach as a viable alternative when the
kernel code cannot be accessed or modified.

We note that each commodity operating system provides
only a few mechanisms for issuing system calls from user
space. Each entry of the mechanism takes the system call
number to index the system call table, dispatching the han-
dling. We finally decide to use an application-specific system
call table based on the whitelist for dispatching. The details
are elaborated in §6.2. The overhead is virtually zero ac-
cording to our evaluation. Each system call request has to
pass the enforcement before it is serviced. Therefore, the en-
forcement cannot be evaded from user space. On the other
hand, if the kernel has been compromised, the enforcement
can also be undermined. However, in that case, the attacker
does not need to rely on system calls to exploit at all. While
how to protect the kernel is a separate topic, it is noticeable
that by confining the set of system call that can be issued
from a program, it usually helps enhance the system security
as it imposes extra obstacles against attackers. For example,
an attacker is not able to escalate the privileges (setuid) and
install kernel modules containing rootkits (create module) if
either of the unusual system calls does not belong to the
whitelist of the compromised process.

6.2 Virtual App-specific System Call Table
A straightforward implementation for the kernel-space en-
forcement is to generate a separate system call table for
each process (or application) and fill out each entry with
the real system call handler’s function address if this system
call belongs to the process’s whitelist, or a common alarming
function’s address, otherwise. However it may increase the
pressure of data cache and imposes kernel memory overhead.

We, instead, propose a more compact representation, named
Virtual Application-specific System Call Table, which is a
bitmap saved directly in the process descriptor. Each entry
(bit) in the bitmap corresponds to an entry in the system
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call table. If a system call belongs to the whitelist, the
corresponding bit in the bitmap is 1; otherwise, 0. There is
only one copy of the real system call. The enforcement logic
is to, given a system call, check the bitmap of the current
process. If the bit indexed by the system call number is 1,
the system call is dispatched using the real system call table
as normal. Otherwise, the alarming function is invoked.

Each Virtual Application-specific System Call Table only
needs to occupy around N/32 words on 32-bit OSes, where
N is the total number of system calls. That is, less than 12
words on current Linux for most platforms. Thus it incurs
minimum memory overhead and virtually zero extra pres-
sure on data cache. The Virtual Application-specific System
Call Table design involves one more memory read to retrieve
the containing word from the bitmap. However, since pro-
cess descriptor probably has to be read into the data cache
during system call handling, the one more memory read can
be counted as one data cache read.

In addition, as in Linux each thread has its own process de-
scriptor (task struct), this design simply fits the multithreaded
programs by putting a copy of 12-word bitmap into each
thread’s task struct, compared to maintaining a reference counter
to the process’s single system call table. The per-thread Vir-
tual System Call Table is also more extensible to enforce a
per-thread system call whitelist.

6.3 Dealing with fork/exec
When a new thread or process is forked due to a fork or clone

system call, the new task struct instance will be copied from
the parent’s inside do fork, so that the new task struct inherits
the virtual system call table from the parent.

When an execve system call is made to run a new program,
we retrieve its whitelist and fill out the bitmap according
to it. If the whitelist does not exist, the program must be
foreign code and an intrusion detection is reported. How to
save and retrieve the whitelists is a deployment issue and is
discussed in §7.

7. DEPLOYMENT
The deployment of SIT involves a safe store of the whitelist
and a patch and update of the kernel. Our static analyzer
can go through all the programs and generate a whitelist for
each of them with a one-time effort. The whitelists are then
saved in a protected registry file like the passwd file for later
reference. The whitelist needs to be re-generated whenever
a program or a dependent shared object is updated. This
deployment can also defeat some trojan attacks that replace
existing programs on the system, since the whitelist may not
fit the malware.

8. EVALUATION
8.1 Effectiveness
We implemented our static analysis component as the plu-
gins on IDA Pro [18], a professional disassembler and re-
verse engineering tool. Figure 5 shows the detection ratio of
our benchmark programs against the shellcode. There are
two sets of shellcode. One is the original shellcode, while
the other is the modified shellcode, taking into account of
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Figure 5: Shellcode detection ratio.

equivalent system calls, which is listed in Table 4.4 We as-
sume attackers may revise the shellcode to circumvent our
system by trying to use equivalent system calls included in
the whitelist of the victim program. We thus calculate the
prevention ratio in the case of modified shellcode as follows.
If, for example, a benign program uses chdir, we add both
chdir and fchdir into the whitelist.

From the Figure 5, we can see that our system can prevent
about 35% of the original shellcode on all the benign pro-
grams, and 70% of the original shellcode are prevented by
about 82% of the benign programs. In the case of modified
shellcode the prevention ratio degrades a little. 90% and
80% of the benign programs can prevent 35% and 70% of
the modified shellcode, respectively. This shows that our
system is very effective in protecting benign programs from
shellcode exploits.

8.2 Correctness
To evaluate whether our system incurs false positives or de-
nial of services in practice, we ran the benchmark programs
in Table 1, in total 134 benign programs. For utility pro-
grams such as ls and objdump, we use the test input of the
distribution and other random input data. For server pro-
grams like bind/named, we deploy them online and send re-
quests for a period of time. The testing time ranges from a
few seconds to days. During our evaluation period, we did
not see any false positive.

8.3 Efficiency
We evaluated the runtime efficiency on a Dell Precision Work-
station T5500 with two 2.26GHZ Intel Xeon E5507 quad-
core processors and 4GB of RAM running 32-bit Ubuntu
10.04 with Linux kernel 2.6.32.59. The memory overhead is
constantly 12 words for each thread due to the bitmap for
the 337 system calls and the data alignment. We focused on
time overhead.

8.3.1 Microbenchmark
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Table 4: Equivalent system call sets
Function System calls
change working directory chdir, fchdir
reposition read/write file offset lseek, llseek
map files or devices into memory mmap, mmap2
create pipe pipe, pipe2
create a child process fork, vfork
open a file open, openat
delete a name the file refers to unlink, unlinkat
unmount filesystems oldumount, umount
duplicate a file dup, dup2, dup3
read value of a symbolic link readlink, readlinkat
synchronize a file’s state on disk fsync, fdatasync
get list of supplementary group IDs getgroups16, getgroups
set list of supplementary group IDs setgroups16, setgroups
get real group ID getgid16, getgid
get real user ID getuid16, getuid
get effective group ID getegid16, getegid
get effective user ID geteuid, geteuid16
get real, effective and saved user ID getresuid16, getresuid
get real, effective and saved group ID getresgid16, getresgid
set real user ID setuid16, setuid
set real group ID setgid16, setgid
set real and effecive user ID setreuid16, setreuid
set real and effecive group ID setregid16, setregid
set real, effecive and saved user ID setresuid16, setresuid
set real, effecive and saved group ID setresgid16, setresgid
send signal to a process or process group kill, tkill, tgkill
enter virtual 8086 mode ptregs vm86old, ptregs vm86
retrieve an extended attribute value getxattr, lgetxattr, fgetxattr
list extended attribute names stxattr, llistxattr, flistxattr
get information about current kernel olduname, uname, newuname
read from a file read, readv, pread64, preadv
wait for process to change status wait4, waitpid, waitid
synchronous I/O multiplexing old select, select, pselect6
change permissions of a file chmod, fchmod, fchmodat
set an extended attribute value setxattr, lsetxattr, fsetxattr
change times of an inode utime, utimes, futimesat, utimesat
write to a file write, writev, pwrite64, pwritev
make a new name for a file link, linkat, symlink, symlinkat
create a special or ordinary file mknod, mknodat, mkdir, mkdirat
get file system statistics statfs, fstatfs, statfs64, fstatfs64
remove an extended attribute removexattr, lremovexattr, fremovexattr
truncate a file to a specified length truncate, ftruncate, truncate64, ftruncate64
change ownership of a file chown, fchown, lchown, chown16, fchown16, lchown16, fchownat
get file status stat, lstat, fstat, newstat, newlstat, newfstat, stat64, lstat64, fstat64, fstatat64
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Table 5: Microbenchmark tests.
getpid system

Without SIT 0.081µs 1,109µs
With SIT 0.084µs 1,124µs
Overhead ∼6.5 cycles 15µs

We ran the system call getpid (issued using sysenter) and the
libc function system for one million times each with and with-
out the enforcement, respectively. The average times for
each call are presented in Table 5. The overhead for each
getpid call, which counts for 6.5 CPU cycles on our test ma-
chine, is due to a bitmap read and a cmp-jmp instruction
combination inlined in per system call handling. The over-
head (1.4%) for each system invocation represents the slow-
down due to the whitelist retrieval and system call table
assembling when starting a new process.

8.3.2 Macrobenchmark
We ran SPEC CPU2006 Integer benchmark suite, which
comprises a variety of compute intensive programs includ-
ing perlbench, bzip2, h264ref, etc. The scores (13.4) with
and without our enforcement are the same. We also mea-
sured the time for compiling the Linux kernel 2.6.32.59 with
the concurrency level set as the number of CPU cores using
the command time make -j8 bzImage, and the overhead is also
zero.

9. RELATED WORK
We break down the related work into two groups: (a) sand-
boxing, and (b) intrusion detection systems based on system
call models.

Sandboxing. Since the seminal work of Software Fault
Isolation (SFI) [37], substantial research has been done on
confining the problematic operations of faulty, untrusted, or
compromised program components. These efforts could be
categorized as follows. (C1) Software-based fault isolation
mechanisms, such as [8, 5, 26], focus on confining kernel
modules, e.g., kernel drivers, through code annotations and
rewriting to protect other parts of the kernel. Our work
intend to prevent compromised applications from harming
the rest of the system. (C2) System call interposition for
confinement. MAPbox [1] groups application behaviors into
classes based on their expected functionality and grants the
resources required to achieve that functionality. REMUS
[3] defines the rules with respect to valid argument values
passed to system calls and enforces the rules by instrument-
ing the implementation of the system call service routines
in a loadable kernel module. SubDomain [7] allows the ad-
ministrator to specify the least privileges needed by a pro-
gram and enforces it using the same technique as REMUS.
Vx32 [11] allows an application to host untrusted guest plug-
ins in a safe way by defining confined virtual system calls
that can be invoked by the plug-ins. Goldberg et al. pro-
posed to, given an application, manually identify dangerous
system calls, which are filtered out by tracing the system call
invocations of the target program in a separate process us-
ing ptrace [16]. Systrace [28] generates policies based on both

4Note that we do not really modify the shellcode.

training and configuration. Its enforcement combines both
the kernel instrumentation and an inter-process system call
tracing. (C3) Hardware-based approaches rely on specific
hardware support, e.g., tagged memory [40], or special hard-
ware not available in any existent processor [39] to enforce
security policies. (C4) Language-based approach. Singular-
ity [9] is an experimental operating system that achieves
strong isolation and controlled communication leveraging
type-safe languages such like Sing#, an extended version
of Spec#, which itself is an extension of C#). (C5) Vir-
tual machine based isolation. Apiary [27] isolates desktop
applications in ephemeral containers. Overshadow [6] and
Proxos [20] enforce security policies by interposing kernel
APIs from a hypervisor. Mechanisms in this category usu-
ally incur significant overhead.

Our proposal belongs to class C2. Two main differences
distinguish our proposal from existing C2 techniques. (1)
Most C2 techniques require manual configuration to define
the policies and rules, for example, specifying the set of
dangerous system calls for the target application, which is
error-prone, time-consuming, and may lead to false posi-
tives, while our static analyzer identifies the set of invalid
system calls rigorously and automatically. (2) Compared to
techniques that enforce their policies at the cost modest to
significant runtime overhead, our approach is much simpler
in both logic and implementation and leads to virtually no
overhead (6.5 CPU cycles per system call checking on our
test machine) based on the bitmap-based virtual system call
table.

Intrusion detection. Host-based intrusion detection sys-
tems that detect anomaly based on system call models have
evolved from the earliest N -gram system call sequence mod-
els [12] to FSA [31, 35] and PDA [35] models. They share
similar obstacles with the system call level sandboxing tech-
niques regarding precise model construction and effective
enforcement mechanisms [12, 31, 35]. Our whitelist model
is much simpler, with virtually no developer cost on model
construction, near zero runtime enforcement overhead, prac-
tically no false positives or denial of services.

As detailed in §3, the mimicry attack transforms a malicious
attack sequence to a cloaked seemingly valid sequence by,
e.g., inserting no-op system calls, evading FSA models [36].
Kruegel et al. [22] further demonstrates that even a PDA
model can be evaded by counterfeiting the call stack before
issuing a system call and regaining the control flow after the
system call returns. Their work illustrates that launching
a mimicry attack is easy [36] and can be automated [22].
Consequently, both in theory and practice the effect of a
stateful FSA or PDA model is actually similar or equivalent
to that of a stateless model, that is, a whitelist of system
calls. This insight leads us to this work in order to show
the net detection effect of the FSA or PDA model-based
IDS and the efficiency it can achieve with our dramatically
simplified model.

To better detect the mimicry attack, two branches of ef-
forts have been made. Some work intends to capture more
information on the call stack [31, 10, 15], which has been
proven ineffective [22]. Others exploit the environment vari-
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ables, configuration files, and the command input to discover
constraints on the arguments passed to the system call at
each call site [35, 13, 4]. They are usually based on FSA or
PDA models. While different argument rules are associated
with different call sites, with the mimicry attack an adver-
sary can again freely choose the call site. In other words,
the argument verification does not benefit from the complex
and heavy-weight FSA model by distinguishing different call
sites. Considering the mimicry attack, if we apply the ar-
gument constraints to the whitelist model, we can expect a
similar detection effect with much less overhead in runtime
and complexity in terms of the model generation.

10. FUTURE WORK
Applying intrusion characterizing techniques to the
whitelist model. Based on the fact that the mimicry at-
tack that can be easily launched by attackers, which renders
the state-based models stateless in detection effect, a lot of
intrusion detection techniques previously based on the so-
phisticated and costly FSA or PDA models can be deployed
on the highly efficient application-specific system call based
intrusion scheme. For example, techniques that learn or dis-
cover system call argument constraints can work with the
whitelist model to further confine the system call invoca-
tions [35, 4]. Another example is that the white list model
can be further parametrized with the command line input,
environment variables, and configuration files, so that it can
be further tailored as some execution paths may be pruned
due to the runtime environment [13]. These techniques have
been proven effective but are not widely deployed mainly
due to the complicated and inefficient underlying models.
Our simple but effective model launches new possibilities
for applying these techniques.

Per-thread system call table. Each thread actually owns
a virtual system call table (a 12-word bitmap). Currently,
all threads belonging to the same process have the same sys-
tem call table. However, a lot threads only run a relatively
short piece of code and therefore, we can further confine the
program behaviors by enforcing system call tables tailored
for each thread.

Mapping high-level system functionality to a few
bits. With the per-process or per-thread system call table,
we can map each high-level system service, for example, net-
work access and device manipulation, to a few system calls.
Users specify which services should be disabled for a specific
program; accordingly, we can reset the corresponding bits of
the services.

11. CONCLUSION
The insight that the mimicry attack actually renders the
complicated and inefficient FSA and PDA models as state-
less in terms of detection effect has motivated the explo-
ration of the simple whitelist model, which can be enforced
as a compact per-process virtual system call table. Due to
the simplicity of the model we are able to construct a pre-
cise whitelist with practically no or few false positives. Its
enforcement imposes near zero runtime overhead. It is cer-
tainly not a panacea for all the code injection attacks, how-
ever, the experiments have shown that the model is effective
for defeating a significant number of exploits. Our system

also provides a much more feasible approach to applying the
ideas previously working with FSA and PDA, such as argu-
ment constraints, to further enhance application and system
security.
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