
Received July 9, 2020, accepted August 27, 2020, date of publication September 2, 2020, date of current version September 15, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021184

Plagiarism Detection of Multi-Threaded
Programs via Siamese Neural Networks
ZHENZHOU TIAN 1,2, QING WANG1,2, CONG GAO1,2, LINGWEI CHEN3,
AND DINGHAO WU 3, (Member, IEEE)
1School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
2Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an 710121, China
3College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA 16802, USA

Corresponding author: Zhenzhou Tian (tianzhenzhou@xupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61702414, in part by the Natural
Science Basic Research Program of Shaanxi under Grant 2018JQ6078 and Grant 2020GY-010, in part by the Science and Technology of
Xi’an under Grant 2019218114GXRC017CG018-GXYD17.16, in part by the International Science and Technology Cooperation
Program of Shaanxi under Grant 2018KW-049 and Grant 2019KW-008, and in part by the Key Research and Development Program of
Shaanxi under Grant 2019ZDLGY07-08.

ABSTRACT Widespread intentional or unintentional software plagiarisms have posed serious threats
to the healthy development of software industry. In order to detect such evolving software plagiarism,
software dynamic birthmark techniques of better anti-obfuscation ability serve as one of the most promising
methods. However, due to the perturbation caused by non-deterministic thread scheduling in multi-threaded
programs, existing dynamic approaches optimized for sequential programs may suffer from the randomness
in multi-threaded program plagiarism detection. Some thread-aware birthmarking methods have been then
proposed to address this issue, which nevertheless largely rely on manual feature engineering and empirical
observations without any ground-truth training, and thus require domain knowledge, making them inflexible
to be deployed in the wild. Inspired by the success of self-guided optimization using deep neural networks
and their superior feature learning ability, in this article, we transform multiple execution traces for each
multi-threaded program under a specified input to the plain feature matrix, and feed it to the deep learning
framework to learn latent representation as thread-aware birthmark that enjoys better semantic richness and
perturbation resistance; instead of empirically determining the plagiarism over direct birthmark similarity
metric, we further build up sophisticated siamese neural networks to supervise birthmark construction,
similarity measurement, and decision making. Integrating our proposed method, a system called NeurMPD
is developed to perform Neural network-based Multi-threaded program Plagiarism Detection. The exper-
imental results based on a public software plagiarism sample set demonstrate that NeurMPD copes better
with multi-threaded plagiarism detection than alternative approaches.

INDEX TERMS Software plagiarism detection, multi-threaded programs, dynamic birthmark, semantic
behaviors, deep learning, siamese neural network.

I. INTRODUCTION
Open-source software communities and social coding plat-
forms, such as GitHub, Stack Overflow, and CodeShare,
have been enjoying explosive growth for recent years. For
example, GitHub is hosting more than 100 million software
projects maintained by over 50 million registered developers
in 2019 [12]. The worldwide accessibility to these highly
interoperable and collaborative social coding environments

The associate editor coordinating the review of this manuscript and
approving it for publication was Haider Abbas.

has drastically reshaped the software programming ecosys-
tem that allows the developers all around the globe to con-
veniently reuse code snippets and libraries or adapt existing
ready-to-use projects during the process of software develop-
ment [39], [44]. Unfortunately, such apparent benefits attract
not only developers and researchers to legitimately study pro-
gramming and understand software structure for extensions
and comparisons, but also some individuals and companies
to violate the open source license to illegally incorporate
others’ software code into their own commercial products
for profit. To put it into perspective, the recent software

160802 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-7608-8908
https://orcid.org/0000-0002-0741-5511


Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

plagiarism incidents include the lawsuit against Verizon by
Free Software Foundation for distributing Busybox in its
FIOS wireless routers [3], the crisis of Skype’s VOIP service
for the violation of licensing terms of Joltid [2], the suspi-
cion on APICloud for directly misappropriating dll files and
source code from DCloud [1], and the scandal surrounding a
Chinese startup’s ‘‘self-made’’ web browser Redcore for pla-
giarizing the substantial code from Google Chrome [4]. Due
to the openness of Android [9], application (app) plagiarism
has become even more severe through repackaging [7] such
that about 13% of apps hosted in third-party marketplaces
are repackaged [8], [48]. In addition, some downstream
software companies may integrate the software components
delivered in binary form from upstream companies into
their own products without awareness of possible license
violations [14]. As a result, the detection of these widespread
intentional or unintentional software plagiarisms is of major
concern to both software companies and programmers in
order to curb serious threats to the healthy development of
software industry they pose.

In order to detect the evolving software plagiarism, differ-
ent birthmarking techniques [17], [18], [27], [32], [38] have
been developed in recent years. In these methods, software
birthmark, which is a set of features of good invariability,
is first extracted from a program to uniquely identify the
programs, and then birthmark similarities are measured to
determine the potential plagiarism between the programs.
Compared to the static birthmark analysis on programs’
lexical, grammatical or structural characteristics [32], [33],
dynamic birthmarking techniques [17], [34], [38], [46] con-
struct birthmarks using the captured execution traces from
running the programs, which can depict the behaviors and
semantics of the programs more accurately and thus enjoy
better anti-obfuscation ability and detection performance.

However, due to the perturbation caused by non-
deterministic thread scheduling in multi-threaded programs,
existing dynamic approaches optimized for sequential pro-
grams may suffer from the randomness in plagiarism analysis
for multi-threaded programs [36]. For instance, given an
input, birthmarks constructed from multiple runs of the same
multi-threaded program can be very different; in the extreme
cases, such constructed birthmarks may even fail to detect
plagiarism between a multi-threaded program and itself [35].
In recent years, some dynamic birthmarking methods have
been proposed to cope with multi-threaded program plagia-
rism detection [35], [36], [40], [47]. Despite the promising
results accomplished, most of these methods have largely
relied on manual feature engineering over execution traces
to extend the traditional dynamic birthmarks and empirical
observation to determine the plagiarism without any ground-
truth training. Defining such features and detection models,
nevertheless, requires domain knowledge a priori, making
these methods faced with either weak universality or limi-
tation of behavior understanding and representation learning
in multiple threads, and thus cumbersome and inflexible to be
deployed in the wild. To this end, it calls for a better paradigm

to formulate dynamic thread-aware birthmarks for the multi-
threaded programs and detect the plagiarism among them in
an automatic way.

Deep neural networks (DNNs) have been widely adopted
in a variety of machine-learning tasks, ranging from com-
puter vision [22], speech recognition [15] to natural language
processing [5], many of which have achieved state-of-the-art
performance. More importantly, they leverage many layers of
non-linearities to capture invariances from transformation in
the raw input space [21], and have thus boosted the semantic
richness and robustness for the learned representations [16].
Inspired by the success of this self-guided representation
learning through DNNs, we would like to enable such a
paradigm to automatically abstract the behaviors of the multi-
threaded programs from their plain execution traces. More
specifically, we first explore dynamic monitoring to capture
multiple execution traces for each multi-threaded program
under the same input, and then elaborate deep learning frame-
work [24] to learn the representation that encodes not only
the semantics and structures of each execution trace but also
the inherent relationships among them. These representations
for the multi-threaded programs are powerful, flexible, and
difference-tolerant because they are learned via a supervised
metric-based approach without imposing any prior knowl-
edge, and thus more task-specific to be capable of distin-
guishing one plagiarized program from the rest. Accordingly,
these latent representations can be considered as our thread-
aware birthmarks to thwart the impact of interleaving threads.
Furthermore, in order to facilitate the supervised representa-
tion learning and proceed with automatic similarity measure-
ment and decision making, we further devise the deep learn-
ing framework with siamese neural networks [21] to train
the model with labeled pairs of multi-threaded programs,
which enables the model to generalize successfully to the
test programs. We develop a system called NeurMPD (i.e.,
Neural network-based Multi-threaded program Plagiarism
Detection) integrating our proposedmethod. In summary, this
article has the following major contributions:

• We explore a novel perspective of dynamic birthmark
construction for multi-threaded programs, where we
take advantage of superior feature learning ability of
DNNs, transform multiple execution traces for each
multi-threaded program under the same input to the
plain feature matrix, and feed it to the deep learning
framework to learn the latent representation as thread-
aware birthmark. The proposed method is automatic and
computationally tractable, while the constructed birth-
marks can capture intrinsic properties of programs and
tolerate differences among execution traces as well.

• Instead of empirically determining the plagiarism
between the programs over direct birthmark similarity
metric, we further build up siamese neural networks to
supervise the birthmark construction, similarity mea-
surement, and decision making, and then reuse the
trained networks over multiple pairs of birthmarks under

VOLUME 8, 2020 160803



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

different program inputs to approximate the final infer-
ence output without any retraining.

• Comprehensive experimental studies on a public soft-
ware plagiarism sample set are conducted to demon-
strate that our developed plagiarism detection system
NeurMPD can achieve the state-of-the-art results, which
also outperforms alternative baselines.

The rest of this article is organized as follows. Section II
introduces the problem statement. Section III presents our
proposed method in detail. Section IV systematically eval-
uates the effectiveness of our developed system NeurMPD in
plagiarism detection of multi-threaded programs. Section V
discusses the related work. Finally, Section VI concludes.

II. PROBLEM STATEMENT
In this section, we first define the software plagiarism detec-
tion problem before diving into the technical details for
NeurMPD in the following section. Table 1 shows some
important notations used in this article. Given two programs
plaintiff and defendant where plaintiff refers to the original
program and defendant refers to the suspect program, the goal
of software plagiarism detection is to determine whether the
defendant is a copy of the plaintiff. To this end, software
birthmarks are typically extracted from programs in an either
static or dynamic fashion to measure the similarity between
plaintiff and defendant [36], [38]. However, as aforemen-
tioned, these traditional static and dynamic birthmarks are
ineffective to deal with multi-threaded program plagiarism
due to its non-deterministic thread scheduling under a fixed
input. Thread-aware software birthmarking is hence in need
to address this challenge.

TABLE 1. Notations.

Specifically, given two multi-threaded programs p and q,
an input I and a thread schedule ζ to p and q, a thread-
aware dynamic software birthmark can be defined as a
set of attributes f (p, I , ζ ) extracted from program p when

executing p with the input I and schedule ζ if and only if
both of the following conditions are satisfied [37]:

- f (p, I , ζ ) is obtained only from p itself when executing
p with input I and thread schedule ζ .

- Program q is a copy of p implies f (p, I , ζ ) = f (q, I , ζ ).
Obviously, this is an abstract guideline without considering
any implementation feasibility. In practice, even if there is
a plagiarism correlation between two programs, the con-
structed birthmarks may not be exactly the same. Therefore,
instead of enforcing exact birthmark matching, the similarity
between the original program p’s birthmark and the suspect
program q’s birthmark sim(f (p, I , ζ ) , f (q, I , ζ )) is gener-
ally measured to determine the plagiarism. The higher the
similarity, the more possible the suspect program q copies
code from the original program p. Built upon the similarity,
a threshold ε is accordingly set up to obtain the final results:

sim(pf , qf ) =


≥ 1− ε q is a copy of p
< ε q is not a copy of p
Otherwise Inconclusive

(1)

Such an empirical and simple inference procedure over direct
similarity metric is error-prone and difficult to generalize to
other unknown datasets. In this article, we leverage siamese
neural networks [21] to train themodel with a large number of
ground-truth sample pairs, while the trained model is further
used to determine the plagiarism through ensemble.

III. PROPOSED METHOD
In this section, we present the details of NeurMPD
that how we construct thread-aware birthmarks for multi-
threaded programs over their execution traces and how we
elaborate siamese neural networks over such constructed
dynamic birthmarks for plagiarism detection. The overview
of NeurMPD is shown in Figure 1, which consists of the
training and detection (testing) phases with steps of execution
trace extraction, thread-aware birthmark construction, model
training using siamese neural networks, and plagiarism detec-
tion through ensemble.

A. EXECUTION TRACE EXTRACTION
The thread interleaving in multi-threaded programs leads
to changes in the program execution traces, an example of
which is illustrated in Figure 2. To capture such unique
behaviors and semantics so that the constructed birthmarks
are difference-tolerant to the changes among execution traces,
we take as input multiple execution traces from a multi-
threaded program under the same input, and learn the latent
representation over execution traces to formulate birthmark.

Specifically, execution trace for a multi-threaded program
is a sequence of system calls related to program and thread
operations, such as thread and process management (e.g.,
creation, join and termination, capability setting and getting),
thread synchronization, signal manipulating, thread and pro-
cess priority setting, etc., while system calls are essential
for user applications to request the kernel services of the

160804 VOLUME 8, 2020



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

FIGURE 1. The overview of system NeurMPD integrating execution trace extraction, thread-aware birthmark construction, similarity measurement, and
decision making chained by siamese neural networks.

FIGURE 2. Execution examples of a multi-threaded program [35].

operating system and thus difficult to delete, replace and
tamperwith. In ourwork, we run a dynamic profiler to capture
those execution traces for multi-threaded programs. With the
help of the Pin dynamic instrumentation framework and the
use of the interface functions PIN_AddSyscallEntryFunction
and PIN_AddSyscallExitFunction, monitoring and analysis
codes are implanted before and after the system call invok-
ing positions respectively to capture the relevant system call
information during the execution of the program. The form
of each system call is specified as <ID of the thread where
the call occurs, system call number, system call name, spe-
cific parameter, return value>. Accordingly, a system call
sequence is formulated by the system call numbers.

However, the raw execution traces are not applicable for
direct thread-aware birthmark construction. First, those sys-
tem calls that fail to correctly reflect the program’s behaviors
[25] should be considered noises to be filtered out using their
return values. For example, some system call serves to close
the files; if there is a failure, this system call will be revoked
multiple times until it succeeds. Second, those system calls
that are invoked randomly may perturb the execution traces,
which should be also removed. For example, futex, essentially
designed to reduce the number of system calls for perfor-
mance issue, is called only when the program is likely to be
blocked for a longer time until the condition becomes true.
Its occurrences show intrinsic randomness under different
executions. Another kind of system calls that are responsi-
ble for memory management, such as mmap and brk, also
greatly depend on real-time memory chunk needs. To this
end, we perform the pre-processing to prune the captured
execution traces before fed to birthmark construction.

B. THREAD-AWARE BIRTHMARK CONSTRUCTION
Given a set of extracted execution traces for each multi-
threaded program under the same input, it is promising to
utilize sequence learning [31] to learn the embedding for
each execution trace, and then explore max-pooling, aver-
aging or concatenation to aggregate the embeddings of all
execution traces as the final representation (i.e., birthmark)
for each program. However, such an implementation may not
significantly capture the variations and associations among
different execution traces. In order to learn the representation
that encodes not only the semantics and structures of each
execution trace but also the inherent relationships among
them, we transform the multiple execution traces for each
multi-threaded program under the same input to the plain
feature matrix, and feed it to the deep learning framework
to learn the latent representation as thread-aware birthmark.

1) FEATURE MATRIX FORMULATION
Given a set of pre-processed execution traces, we denote a
multi-threaded program under the input I to be of the form
TraSetIp = {s1, s2, · · ·, sn} of n execution traces, where each
execution trace s = (e1, e2, · · · , em) contains m system call
numbers. Therefore, the plain feature matrix XI

p ∈ Rn×m can
be formulated as follows:

XI
p =


e11, e12, e13, · · ·, e1m
e21, e22, e23, · · ·, e2m
e31, e32, e33, · · ·, e3m
...

en1, en2, en3, · · ·, enm

 (2)

Note that, the lengths of the extracted execution traces for
the same program p under the same input I may be different
due to the thread interleaving, while obviously, the lengths of
the extracted execution traces vary in different programs with
different inputs and different execution times. Accordingly,
we only intercept the firstm system calls from n executions to
obtain our initial feature matrix. For the case that the number
of the captured system calls in the execution trace is less than
m, we zero-pad that execution trace to the right so that its
length can be extended to m.

VOLUME 8, 2020 160805



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

Considering that each element in the plain feature matrix
XI
p specifies an individual system call number, we need to

map each of them into a d-dimensional embedding vector
before proceeding with representation learning for birthmark
construction. Here we shift the word-context concept in a
text corpus into execution traces, and utilize computationally
efficient skip-gram [26] to learn the embedding for each
system call, which is applied on execution traces to minimize
the loss of observing a system call’s neighborhood (within a
window w) conditioned on its current embedding [43]. The
objective function of skip-gram can be defined as [29]:

argmin
φ

∑
−w≤j≤w,i6=j

− log p(ei+j|φ(ei)), (3)

where φ(ei) is the current embedding of ei. After embedding
each system call,XI

p can be further transformed to an n×m×
d-dimensional space.

2) LATENT REPRESENTATION LEARNING FOR BIRTHMARK
As advanced neural network structures, both convolutional
neural network (CNN) [24] and Long Short-Term Memory
(LSTM) [13] have achieved great success in learning salient
features for classification tasks, where CNN is known to
capture the local correlations while LSTM excels in modeling
the sequential dependency. Therefore, taking the generated
plain feature matrices from the previous section as inputs,
we devise a deep learning framework leveraging the crafty
architecture of CNN and LSTM to learn the latent repre-
sentations for programs, which serves as our thread-aware
birthmarks.

First, we take advantage of CNN’s capability of learning
local correlations with shared weights, and feed each multi-
threaded program’s plain feature matrix to the convolutional
layer to aggregate the system call information in the same
column but different rows (i.e., different execution traces) and
thus formulate a new single execution trace of higher-level
concept for sequence modeling in the next step. Specifically,
given XI

p ∈ Rn×m×d (n can be also interpreted as number
of channels for the input), the designed CNN builds up a
pair of convolutional layer and normalization layer; in the
convolutional layer, the raw feature matrix gets convoluted
by 1× 1 kernel, and then abstracted to X̂I

p of 1 channel with
dimensionality reduction to m× d .

Afterwards, the resulting feature matrix X̂I
p ∈ Rm×d

from CNN (i.e., an execution trace with m abstracted sys-
tem calls in a new d-dimensional embedding space), is then
passed through LSTM to learn the sequential dependency and
output the final representation. A LSTM is an architecture
designed for recurrent neural network to address the van-
ishing/exploding gradient issue [31]. The designed LSTM
reads the input execution trace (e1, e2, · · · , em) through the
hidden layer function H so that each hidden layer vector ht
at timestep t can be denoted as

ht = H(et ,ht−1), ht ∈ Rk (4)

where H is implemented using memory cells to store infor-
mation, which can be formulated as the following composite
functions [13]:

it = σ (Weiet +Whiht−1 +Wcict−1 + bi) (5)

ft = σ (Wef et +Whf ht−1 +Wcf ct−1 + bf ) (6)

ct = ft ◦ ct−1 + it ◦ tanh(Wecet +Whcht−1 + bc) (7)

ot = σ (Weoet +Whoht−1 +Wcoct−1 + bo) (8)

ht = ot ◦ tanh(ct ) (9)

where σ is the logistic sigmoid function, it , ft , ot , ct are the
input gate, forget gate, output gate, and cell activation vectors
respectively, Ws are the weight matrices, bs are the bias
vectors, and ◦ is the point-wise product between two vectors.
In order to learn both the forward and backward sequential
dependency and global contextual information in the execu-
tion trace, we utilize bidirectional LSTM (BiLSTM) so that
hidden layer vector ht at timestep t can be concatenated as

ht = [
−→
ht ;
←−
ht ]. (10)

After forward and backward reading the execution trace
(e1, e2, · · · , em), the concatenation of the last two hidden
states [

−→
hm;
←−
hm] acts as the program’s thread-aware birthmark

xIp ∈ R2k under a specified input I .

C. TRAINING USING SIAMESE NEURAL NETWORKS
The representation learning process presented in the previ-
ous section is a complete forward propagation, which still
requires a backpropagation optimization to update the param-
eters and thus learn useful and predictive representations for
birthmark construction. Also, as discussed in Section I and
Section II, traditional software plagiarism inference proce-
dure [35], [36], [40], [47] simply measures the similarities
between pairs of birthmarks and empirically analyzing such
similarities to determine the plagiarism, which lacks nec-
essary training and requires significant domain knowledge,
and is hence error-prone and infeasible to be deployed in the
practical use. To address this issue, we elaborate sophisticated
siamese neural networks [21], [30] to supervise the represen-
tation learning, similarity measurement, and decision making
over ground truth.

Siamese networks [6] have been widely used to leverage
similarities of input sample pairs for a variety of tasks (e.g.,
one-shot image recognition, image matching, etc.). They are
generally applicable to the scenarios that the number of
categories is relatively large and the number of samples in
each category is small, while especially feasible to address
the learning issues that the number of categories is unknown
and in a changing state. More specifically, a siamese neural
network consists of twin networkswith the same structure and
shared weights, which reads different inputs, maps them to
the target space respectively, and then uses the distance func-
tion to join them for similarity measurement; in the training
phase, some optimization strategy is adopted to evaluate the
loss between the output and the corresponding ground truth.

160806 VOLUME 8, 2020



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

FIGURE 3. The structure of siamese neural networks for multi-threaded
program plagiarism detection, including twin networks consisting of CNN
and BiLSTM, feature fusion, and multilayer perceptron for similarity
metric.

Therefore, such a network of symmetric structure guarantees
that two similar inputs will be mapped by their respective
networks to similar feature space, while distinct inputs can
be effectively differentiated.

In this article, our designed model, which is displayed
in Figure 3, is a deep siamese neural network, where each
twin network accepts two plain feature matrices XI

p and XI
q,

and successively passes them through CNN and BiLSTM
for representation learning to obtain birthmarks xIp and xIq
respectively, which has been detailed in Section III-B. Typ-
ically, in the top conjoining layer, similarity metric is directly
computed over like and unlike pairs to update the energy [10].
Differently, in our work, we perform feature fusion over birth-
marks xIp and xIq, and use a multilayer perceptron [30] with
multiple fully-connected layers to learn the similarity metric
before a sigmoid activation that maps onto the interval [0, 1]
to facilitate minimizing cross-entropy loss. Thus, the fused
feature space can be presented as the concatenation of xIp and
xIq as follows:

xI = [xIp; x
I
q], xI ∈ R4k (11)

and the similarity metric ϕ is learned by:

ϕθ (xIp, x
I
q) = MLPθ (xI ). (12)

The θ are additional parameters that are learned by the net-
work during training. Let (XI

p,X
I
q) ∈ D represent the training

sample pairs, and y ∈ Y denote the ground truth label where
y = 0 implies that q is not a copy of p, while y = 1 specifies
that q is a copy of p. The cross-entropy loss on our binary
classifier can be formulated as:

L =
∑

(XIp,XIq)∈D
−y log(P)− (1− y) log(1− P) (13)

s.t. P = σ (ϕθ (xIp, x
I
q)) (14)

where σ is sigmoid activation function. All the parameters
can be efficiently updated using some gradient descent opti-
mization algorithms (e.g., Adam [19]). From the training pro-
cedure, we can see that the final output of the siamese neural

networks is the probability for the input sample pair (XI
p,X

I
q)

that program p is plagiarized by program q. Considering that
this is a binary classification problem, we can simply use
0.5 or other well-defined thresholds shown in Eq. (1) to make
the decision.

Our designed siamese neural networks for supervised
thread-aware birthmark construction and software plagiarism
detection yield some significant benefits: (1) the learning
process does not rely upon domain knowledge by instead
exploiting deep learning frameworks; and (2) the neural net-
works are easily trained using standard optimization tech-
niques on paired samples yet the learned representations are
task-specific and difference-tolerant which can be flexibly
generalized to the unseen data.

D. DETECTION THROUGH ENSEMBLE
In the previous section, a siamese neural network is pre-
sented to train our software plagiarism detection model in
a supervised setting. Based on the trained neural networks
with updated weights, we can effectively and automatically
birthmark a multi-threaded program and output the plagia-
rism probability (or prediction label) between plaintiff and
defendant programs under a specified input. However, a birth-
mark merely abstracts part of the semantics and behaviors
of the program under a single input, resting with which,
the plagiarism detection decision is clearly biased and not
reliable. For instance, two different programs may adopt the
same standard exception handling mechanism, while any
inputs that invoke the exception handling will enforce the
same behavioral patterns for both programs.

To address this issue, we formulate different inputs and
performmultiple executions for each multi-threaded program
under each of these inputs to cover as many functional blocks
as possible, so that we can construct a series of birthmarks
to thoroughly represent the semantics and behaviors of the
program. Given a plaintiff program p, a defendant program
q, and a set of inputs {I1, I2, · · · , Iu}, we can generate a set of
plain feature matrix pairs for p and q, which can be denoted
as {(XI1

p ,X
I1
q ), (X

I2
p ,X

I2
q ) · · · , (X

Iu
p ,X

Iu
q )}; passing these plain

feature matrix pairs through the trained siamese neural
networks, we can accordingly obtain the corresponding
plagiarism probabilities {σ (ϕθ (x

I1
p , x

I1
q )), σ (ϕθ (x

I2
p , x

I2
q )) · · · ,

σ (ϕθ (x
Iu
p , x

Iu
q ))}. Instead of determining the plagiarism using

a single pair of execution trace inputs, we utilize a bagging-
like ensemble to average the predictions over all the individ-
ual outputs, and take their mean value to approximate the
inference result between p and q, which can be denoted as
follows:

sim
(
pf , qf

)
=

u∑
i=1

σ (ϕθ (xIip , x
Ii
q ))
/
u (15)

Based on sim
(
pf , qf

)
and Eq. (1), we can obtain the final pla-

giarism detection results, where the threshold ε can be fine-
tuned for best detection performance; trained by the ground

VOLUME 8, 2020 160807



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

TABLE 2. Benchmark multi-threaded programs.

truth, the specified ε may work for plagiarism detection over
other datasets as well.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we conduct experimental studies using a
public software plagiarism sample set to fully evaluate the
performance of our developed system NeurMPD which inte-
grates the above proposed method in multi-thread program
plagiarism detection.

A. EXPERIMENTAL SETUP
a: DATASETS
We evaluate the effectiveness of our proposed detection sys-
tem NeurMPD on a public software plagiarism sample set
[35], including 234 versions of 35 mature multi-threaded
programs implemented in C or Java. These different versions
are derived from a series of obfuscations as follows:
• Use relatively weak obfuscations provided by different
compilers, optimization levels and debugging options
(gcc, llvm, o0-os, -g) to generate the target code.

• Apply professional obfuscation tools, including Sand-
mark, Zelix KlassMaster, Allatori, DashO, Jshrink, Pro-
Guard and RetroGuard, to construct strong obfuscated
programs.

• Exploit packing tool UPX (the ultimate packer for exe-
cutables) to process the target code.

The data statistics are summarized in Table 2, where Column
#Ver gives the number of versions for each multi-threaded
program including the original and its obfuscated ones; Col-
umn Size lists the number of kilobytes for the largest version,
with its version number listed in Column Version; the pro-
grams include six compression/decompression software, five
audio players, ten web browsers, four Java programs from
the JavaG benchmark, and ten programs from the PARSEC
3.0 benchmark.

b: PARAMETER SETTING
The parameter setting to implement our model for evaluation
is specified as: under each input, n = 4 for the number of exe-
cution traces extracted andm = 256 for the number of system
calls in each execution trace; d = 50 for the dimension of

each system call embedding space; k = 100 for the dimen-
sion of LSTM hidden layer space. Some other fine-tuned
hyperparameters set for siamese neural network training are
detailed in Table 3. We leverage the EarlyStopping mech-
anism for model learning, where training is stopped when
the accuracy rate no longer rises, so as to avoid over-fitting,
non-convergence and other problems. As for the baselines,
we compare our approach with two multi-threaded program
plagiarism detection methods TreSB [35] and TOB [36], and
system call-based dynamic birthmark technique SCSSB [41].

TABLE 3. Setting of model parameters.

c: DATA SAMPLING FOR TRAINING AND TESTING
In the model training stage, 7,830 pairs of program samples
are used, including 7,647 positive pairs and 183 negative
pairs. Since our classification is binary and the positive and
negative samples are not balanced, the over-sampling algo-
rithm SMOTE is used to generate new samples by interpola-
tion method, which solves the training data imbalance prob-
lem. Specifically, It employs k-nearest neighbor method for
a minority sample (k value needs to be specified in advance)
to find the k nearest minority samples that are close in the
feature space, which is measured using Euclidean distance,
and then one of these neighbors is randomly selected to
facilitate new sample generation in the way that:

xnew = xi +
(
x̂i − xi

)
× δ (16)

where xi is the nearest neighbor, and δ ∈ [0, 1] is a random
number. The minority samples generated by SMOTE are easy
to overlap with the surrounding majority samples such that
it is difficult to perform classification. To address this issue,
data cleaning techniques can be integrated with SMOTE
to deal with overlapping samples after oversampling. Such

160808 VOLUME 8, 2020



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

FIGURE 4. Data oversampling using SMOTE and SMOTEENN.

major pipelines include ‘‘SMOTE + ENN’’ and ‘‘SMOTE
+ Tomek’’, while ‘‘SMOTE + ENN’’ usually manages to
removemore overlapping samples than ‘‘SMOTE+Tomek’’.
To put it into perspective, we create an example dataset that
accords with our actual data, where the number of samples
is 20,000 and the ratio of positive and negative samples
is 30:1, and we use SMOTE and SMOTEENN (short for
‘‘SMOTE + ENN’’) to over-sample the negative data (and
further clean the overlapping samples for SMOTEENN). The
oversampling results are illustrated in Figure 4: the original
data is displayed on the left side, while the upper right is
the samples generated by SMOTE and the lower right is
the data generated by SMOTEENN. Clearly, SMOTEENN
not only increases the number of the negative samples, but
also removes those that overlap with the positive, which
benefits our experimental evaluations. Therefore, we adopt
SMOTEENN to over-sample the negative program pairs, such
that we prepare 15,290 pairs of samples (7,647 positive and
7,643 negative) for model training, where sample pairs are
randomly split as 80% for training and 20% for testing.

B. EVALUATION OF NeurMPD
With aforementioned experimental setup, we first evaluate
the effectiveness of our developed plagiarism detection sys-
tem NeurMPD by classification performance, and resilience
and credibility.

1) EVALUATION ON CLASSIFICATION PERFORMANCE
To quantitatively validate the classification effectiveness of
NeurMPD, we use Recall, Precision, F-Measure,
and ROC (receiver operating characteristic) as the perfor-
mance measures. In this regard, the ‘‘uncertain’’ part of the
criteria given in Eq. (1) is removed here, and plagiarism
detection is described as a binary classification problem:

sim(pf , qf ) =

{
≥ ε q is a copy of p
< ε q is not a copy of p

(17)

Accordingly, given true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN), Recall and

Precision can be defined as follows:

Recall =
TP

TP+ FN
(18)

Precision =
TP

TP+ FP
(19)

For F-Measure measurement, the harmonic average of Recall
and Precision is used here, which is described as:

F-Measure =
2× Precision× Recall
Precision+ Recall

(20)

To obtain ROC curve that is a powerful tool to study the gen-
eralization performance of the classifier from the perspective
of threshold selection, we change the value of threshold ε
from 0 to the maximum according to the prediction results.
In this process, two values true positive rate (TPR) and false
positive rate (FPR) are further calculated to facilitate ROC
curve formulation.

Based on the model parameter settings described
in Table 3, the experimental results under different threshold
values are illustrated in Figure 5(a) and Figure 5(b). From the
results, we can observe that when ε ≥ 1, NeurMPD succeeds
in retaining all of our classification measures (i.e., Recall,
Precision, and F-Measure) at 99%, while false negative rate
(FNR = 1 − Recall) achieves less than 1%. This implies that
(1) most of plagiarism pairs and independently developed
pairs are both correctly classified; and (2) the similarity
metric for plagiarism pairs is extremely close to 1 while
the similarity metric for independently developed pairs is
approaching to 0. The reason behind this is that the latent
representations learned by our designed deep learning frame-
work can significantly capture the semantics and behaviors of
the multi-threaded programs, while supervised learning with
siamese neural networks further enhance the birthmarks to be
task-specific. In this respect, the impact of thread interleaving
in multi-threaded programs can be effectively alleviated.

FIGURE 5. Evaluation on classification performance (a) Recall, Precision,
and F-Measure and (b) ROC curve under different thresholds.

We also report the training accuracy and loss with respect
to different epochs for our designed siamese neural networks
in Figure 6(a), and classification accuracy regarding different
sample size in Figure 6(b). Figure 6(a) demonstrates that
NeurMPD guarantees efficient convergence where the train-
ing accuracy and validation accuracy reach to the optimum,
and the loss drops to a very low and stable value at the third
epoch. From Figure 6(b), we can see that as the number of

VOLUME 8, 2020 160809



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

sample pairs increases, the test accuracy increases as well.
It is not difficult to understand that deep neural networks ben-
efit from large data sets, while a smaller number of training
sample pairsmay easier enforcemodel over-fitting and under-
performing. These encouraging classification performances
and reasonable model parameter requirements show that our
proposed NeurMPD can be applied in a realistic setting to
detect the plagiarism of multi-threaded programs.

FIGURE 6. The influence of epoch and sample size on NeurMPD: (a)
training accuracy and loss; (b) test accuracy.

2) EVALUATION ON RESILIENCE AND CREDIBILITY
In this set of experiments, we mainly evaluate the resilience
and credibility of our thread-aware birthmarks constructed in
NeurMPD (i.e., detection capability of NeurMPD), which can
be specified as [28]:

• Resilience. Let q be a program p’s copy generated by
applying semantics-preserving code transformations τ .
A birthmark is resilient to τ if sim

(
pf , qf

)
≥ 1− ε.

• Credibility. Let p and q be independently developed
programs. A birthmark is credible if it can differentiate
the two programs, that is sim

(
pf , qf

)
< ε.

In other words, resilience reflects the ability of plagiarism
detection model to be resistant to all kinds of semantic-
retention code obfuscations, while credibility characterizes
the ability of plagiarism detection model to distinguish inde-
pendently developed software.

a: RESILIENCE
The benchmark program is taken as the plaintiff program p
while the obfuscated program is considered as the defendant
program q so that a series of plaintiff-defendant program pairs
are formulated to evaluate the resilience of NeurMPD. The
experimental results with respect to the similarity distribution
under three different obfuscations (C1, C2 and C3) are illus-
trated in Figure 7(a), where C1 uses different compilers and
optimizations (e.g., llvm, gcc, o0-oS) for weak obfuscation,
C2 applies professional obfuscation tools (e.g., Zelix, Pro-
Guard, Allatori, Jshrink) for strong obfuscation, and C3 uses
UPX for packing. From the results, we can observe that most
of the program pairs enforce a similarity higher than 0.95 and
a few fall between 0.9 and 0.95; this indicates that NeurMPD
enjoys an excellent resistance to the obfuscation strategies
performed in this data set.

FIGURE 7. Evaluation on resilience and credibility.

b: CREDIBILITY
The programs independently developed are selected from the
data set to evaluate the credibility of NeurMPD. Specifically,
the selected programs include 6 multi-threaded compres-
sion/decompression software, 10 web browsers, and 5 audio
player software. Figure 7(b) shows the distribution of sim-
ilarity over similar software and different software, where
S stands for software included in the same category and D
represents software distributed in different categories. From
the results, we can see that the similarity between soft-
ware belonging to different categories is very low, with the
mean similarity below 0.05. This indicates that NeurMPD
can effectively distinguish different kinds of software. Due
to their remarkable consistency in functions, the similarity
between software in the same category is slightly higher,
but most of them still fall into a very low similarity range.
There are few program sample pairs with a similarity between
0.05 and 0.1 as their designs adopt the same algorithm or both
rely on some functional modules. For example, the average
similarity between browser Dooble and Epiphany is higher
than others, since both browsers use WebKit layout engines.
Overall, NeurMPD performs well in differentiating indepen-
dently developed software.

C. COMPARISONS WITH OTHER DETECTION MODELS
We also compare NeurMPD with two multi-threaded pro-
gram plagiarism detection methods TreSB [35] and TOB [36]
(TOB on slice aggregation (TOBSA) and TOB on slice set
(TOBSS ), and a system call-based dynamic birthmark method
SCSSB [41] by detection performance and time cost.

1) COMPARATIVE ANALYSIS ON DETECTION PERFORMANCE
In this section, we measure the detection performance for
each model using URC (union of resilience and credibility),
F-Measure, MCC (matthews correlation coefficient), and
AUC (area under the curve). URC is an indicator designed for
comprehensively measuring the model in terms of resilience
and credibility:

URC = 2×
R× C
R+ C

(21)

where R represents the true positive rate (TPR), and C rep-
resents the true negative rate (TNR). The value of URC is
between 0 and 1, and the higher the URC, the better the
performance of the detection model. According to the criteria
given in Eq. (1), the plagiarism detection result is decided

160810 VOLUME 8, 2020



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

FIGURE 8. Comparative analysis on detection performance with respect to URC, F-Measure and MCC.

by the threshold ε. We set the effective value range of the
threshold as 0-0.5, that is, 1 − ε ≥ ε. Figure 8(a) shows
the comparison between NeurMPD and other techniques
under different thresholds. As the blue line shows, NeurMPD
performs better than the other three methods. To use F-
Measure (defined above) andMCC for measuring, plagiarism
detection decision is made according to Eq. (17). MCC is
an evaluation metric that can be used to make a reasonable
assessment of test effectiveness in the case of unbalanced
positive and negative samples, which is denoted as:

MCC =
TP× TN − FP× FN

√
(TP+ FP) (TP+ FN ) (TN + FP) (TN + FN )

(22)

The comparative results on F-Measure and MCC for
NeurMPD and other birthmark techniques under different
thresholds are respectively displayed in Figure 8(b) and
Figure 8(c), where NeurMPD outperforms TreSB, TOBSA,
TOBSS , and SCSSB in most measurements.

With the help of AUC, we can perform the quantitative
analysis of the technical performance of each model with
respect to URC, F-Measure, and MCC. Table 4 summarizes
the specific AUC values of different measure metrics for
each detection technique. It can be observed that all three
AUC values of NeurMPD are higher than those of other
detection methods, which indicates that NeurMPD yields
a better advantage of coping with thread interleaving, and
thus achieves better performance for multi-threaded program
plagiarism detection.

TABLE 4. Quantitative comparison of detection techniques on AUC.

2) COMPARATIVE ANALYSIS ON TIME COST
The three dynamic birthmark based detections (i.e., TreSB,
TOB, and SCSSB) mainly include three phases: execution

trace capture, birthmark generation, and similarity calcula-
tion, while our proposed method NeurMPD is also imple-
mented in three phases: execution trace extraction, model
training using siamese neural networks (including super-
vised birthmark construction and similarity measurement),
and detection through ensemble. Considering that the exper-
iments are conducted on the same set of execution traces,
in this section, we focus on comparing the time cost of
NeurMPD with others in the last two phases with respect to
Phase II and Phase III. Table 5 gives the average time cost of
each plagiarism detection method in Phase II and Phase III.

TABLE 5. Average time cost (ms) of detection techniques in
Phase II and III.

The results illustrate that the average time of NeurMPD
in Phase II is significantly higher than others. The reason
behind this is that in Phase II, other methods use k-gram
directly over execution traces to construct birthmarks without
any ground truth training, while NeurMPD feeds a large
number of program pairs to train the deep siamese neural
networks to not only construct thread-aware birthmarks, but
also leverage multilayer perceptron to learn similarity metric.
Such extra time cost leads to an advantage that NeurMPD can
automatically generalize to other unknown multi-threaded
program plagiarism detection without any retraining, while
others may suffer fromweak generalizability and dependency
on domain knowledge. Since NeurMPD is built upon deep
learning framework, it takes a little more time (0.15 ms on
average) for decision making through ensemble, which is still
far less than TOBSS using maximum weighted dichotomy
matching. Phase III further proves that once the model is
trained, NeurMPD can effectively and efficiently determine
the plagiarism among the programs. It is worth remarking
that (1) our training for NeurMPD is conducted on CPU and
its Phase II time can be significantly reduced by resorting
to GPUs or TPUs, while such optimization is very limited
to other models; and (2) the offline training for NeurMPD

VOLUME 8, 2020 160811



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

is a one-time effort, while other models have to repeatedly
perform the whole process to deal with different datasets.
In this respect, though it is more time-consuming for train-
ing, NeurMPD is still significant and promising for multi-
threaded program plagiarism detection for its better detection
effectiveness and better feasibility in practice.

V. RELATED WORK
This article focuses on the plagiarism detection of multi-
threaded programs. The recent research works in this field
mostly belong to the category of software birthmark. The
software birthmark was first proposed by Tamada et al. [32]
and Collberg et al. [28]. Since then, software plagiarism
detection works have mainly fallen into two categories:
static birthmark and dynamic birthmark. For static birthmark,
DroidMoss [48] took hash value of bytecode fragments as
birthmark. Ko et al. [20] used k-gram algorithm to slice the
decompiled bytecode, and used the generated short sequence
set as a software birthmark. ViewDroid [45] presented a func-
tional view graph birthmark. Cop [25] is a static birthmark
technique based on strict semantic analysis, but it is difficult
to analyze large-scale software. Generally, static birthmarks
cannot resist obfuscation.

For dynamic birthmark, Myles et al. [28] first proposed the
concept of dynamic software birthmark and designed WPP
(Whole Program Path) birthmark. After that, Wang et al. [41]
designed SCSSB (System Call Short Sequence Birthmark)
and IDSCSB (Input Dependent System Call Subsequence
Birthmark). These traditional dynamic birthmarks cannot
well address the uncertainty caused by multi-threaded pro-
grams. Tian et al. [37] introduced the concept of thread-aware
birthmark for the first time. Accordingly, two dynamic birth-
marking methods TreSB (thread-related system call birth-
mark) [35] and TOB (thread-oblivious birthmark) based on
slicing-merging [36] were proposed to detect multi-threaded
program plagiarism. For a systematic introduction of soft-
ware birthmark techniques, please refer to the work by Tian
et al. [34]. Differently, our proposed NeurMPD leverages
supervised siamese neural networks for thread-aware birth-
mark construction and plagiarism detection without imposing
any prior knowledge, and thus more semantics-preserving
and task-specific to generalize to unknown data.

Recently, deep learning and representation learning tech-
niques are starting to be leveraged for binary code similarity
detection. Asm2Vec [11] generated vector representations
for assembly sequences by designing and training a rep-
resentation learning model that is improved upon the PV-
DM [23] model, and compared the vectors with cosine simi-
larity. Xu et al. [42] designed a deep neural network based
graph embedding model for processing program CFGs to
vectors, followedwith a siamese architecture and cosine simi-
larity metric to achieve similarity detection. INNEREYE [49]
trained a LSTM based neural network model by feeding in
basic-block level instructions to obtain embedding vectors
for basic blocks, based on which program-level similarity can
also be detected. Different from these methods which process

statically disassembled assembly instructions or CFGs, our
method operates on dynamically captured execution traces.
Besides, the similarity metric is also learned through a multi-
layer perceptron in our model rather than adopting manually
defined measures as the other works do.

VI. CONCLUSION
Existing thread-aware birthmarking techniques may suf-
fer from weak generalizability and dependency on domain
knowledge. To address this issue, we build up deep siamese
neural networks to supervise thread-aware birthmark con-
struction, similarity measurement, and plagiarism decision
making. More specifically, we transform multiple execution
traces for each multi-threaded program under a specified
input to the plain feature matrix, and successively pass it
through CNN and BiLSTM to learn latent representation as
thread-aware birthmark that enjoys better semantic richness
and perturbation resistance; afterwards, we further use a mul-
tilayer perceptron to learn the similarity metric, which is then
fed to sigmoid activation to obtain the output. Integrating
our proposed method, a system called NeurMPD is devel-
oped to detect plagiarism of multi-threaded programs. The
experimental results based on a public software plagiarism
sample set demonstrate that NeurMPD achieves encouraging
detection effectiveness and excellent resilience and credibil-
ity, which outperforms other alternative techniques.

REFERENCES
[1] China’s Courts Pass Controversial Rulings on Open-Source Licencing.

Accessed: Aug. 31, 2020. [Online]. Available: https://www.lexology.com/
library/detail.aspx?g=597bfc93-0e53-4ffb-8311-a8fe3129d7f

[2] Joltid Vs. Skype: Is There a Workaround. Accessed: Aug. 31, 2020.
[Online]. Available: https://www.zdnet.com/article/joltid-vs-skype-is-
there-a-workaround/

[3] Open Source Compliance Trend. Accessed: Aug. 31, 2020. [Online]. Avail-
able: http://sourceauditor.com/blog/open-source-compliance-trend/.

[4] Redcore. Accessed: Aug. 31, 2020. [Online]. Available: https://en.
wikipedia.org/wiki/Redcore

[5] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta, K. Ganchev,
S. Petrov, and M. Collins, ‘‘Globally normalized transition-based neural
networks,’’ in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics (Long
Papers), vol. 1, 2016, pp. 2442–2452.

[6] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, ‘‘Signature
verification using a, ‘siamese’ time delay neural network,’’ in Proc. Adv.
Neural Inf. Process. Syst., 1994, pp. 737–744.

[7] K. Chen, P. Liu, and Y. Zhang, ‘‘Achieving accuracy and scalability simul-
taneously in detecting application clones on Android markets,’’ in Proc.
36th Int. Conf. Softw. Eng. ICSE, 2014, pp. 175–186.

[8] K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu, ‘‘Finding unknown malice in 10 seconds: Mass vetting for new
threats at the Google-Play scale,’’ in Proc. 24th USENIX Secur. Symp.,
2015, pp. 659–674.

[9] L. Chen, S. Hou, and Y. Ye, ‘‘SecureDroid: Enhancing security of
machine learning-based detection against adversarial Android malware
attacks,’’ in Proc. 33rd Annu. Comput. Secur. Appl. Conf., Dec. 2017,
pp. 362–372.

[10] S. Chopra, R. Hadsell, and Y. LeCun, ‘‘Learning a similarity metric
discriminatively, with application to face verification,’’ in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2005,
pp. 539–546.

[11] S. H. H. Ding, B. C. M. Fung, and P. Charland, ‘‘Asm2 Vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472–489.

160812 VOLUME 8, 2020



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

[12] Y. Fan, Y. Zhang, S. Hou, L. Chen, Y. Ye, C. Shi, L. Zhao, and S. Xu, ‘‘iDev:
Enhancing social coding security by cross-platform user identification
between GitHub and stack overflow,’’ in Proc. 28th Int. Joint Conf. Artif.
Intell., 2019, pp. 2272–2278.

[13] A. Graves, ‘‘Generating sequences with recurrent neural networks,’’ 2013,
arXiv:1308.0850. [Online]. Available: https://arxiv.org/abs/1308.0850

[14] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dolstra, ‘‘Finding software
license violations through binary code clone detection,’’ in Proc. 8th Work.
Conf. Mining Softw. Repositories MSR, 2011, pp. 63–72.

[15] G. Hinton, L. Deng, D. Yu, G. Dahl, A.-R. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury, ‘‘Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,’’ IEEE Signal Process. Mag., vol. 29, no. 6,
pp. 82–97, Nov. 2012.

[16] S.-J. Huang, J.-W. Zhao, and Z.-Y. Liu, ‘‘Cost-effective training of deep
CNNs with active model adaptation,’’ in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 1580–1588.

[17] Y.-C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, ‘‘Program char-
acterization using runtime values and its application to software plagia-
rism detection,’’ IEEE Trans. Softw. Eng., vol. 41, no. 9, pp. 925–943,
Sep. 2015.

[18] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, ‘‘Value-based pro-
gram characterization and its application to software plagiarism detection,’’
in Proc. 33rd Int. Conf. Softw. Eng. ICSE, 2011, pp. 756–765.

[19] D. P. Kingma and J. L. Ba, ‘‘Adam: Amethod for stochastic optimization,’’
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–15.

[20] J. Ko, H. Shim, D. Kim, Y.-S. Jeong, S.-J. Cho, M. Park, S. Han, and
S. B. Kim, ‘‘Measuring similarity of Android applications via reversing
and K-gram birthmarking,’’ in Proc. Res. Adapt. Convergent Syst. RACS,
2013, pp. 336–341.

[21] G. Koch, R. Zemel, and R. Salakhutdinov, ‘‘Siamese neural networks for
one-shot image recognition,’’ inProc. ICMLDeep Learn.Workshop, vol. 2,
2015, pp. 1–8.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[23] Q. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. Int. Conf. Mach. Learn., 2014, pp. 1188–1196.

[24] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[25] L. Luo, J. Ming, D.Wu, P. Liu, and S. Zhu, ‘‘Semantics-based obfuscation-
resilient binary code similarity comparison with applications to software
plagiarism detection,’’ in Proc. 22nd ACM SIGSOFT Int. Symp. Found.
Softw. Eng. FSE, 2014, pp. 389–400.

[26] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of
word representations in vector space,’’ in Proc. ICLR (Workshop Poster),
2013, pp. 1–12.

[27] J. Ming, F. Zhang, D. Wu, P. Liu, and S. Zhu, ‘‘Deviation-based
obfuscation-resilient program equivalence checking with application
to software plagiarism detection,’’ IEEE Trans. Rel., vol. 65, no. 4,
pp. 1647–1664, Dec. 2016.

[28] G. Myles and C. Collberg, ‘‘Detecting software theft via whole program
path birthmarks,’’ in Proc. Int. Conf. Inf. Secur. Berlin, Germany: Springer,
2004, pp. 404–415.

[29] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of
social representations,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining KDD, 2014, pp. 701–710.

[30] V. G. Satorras and J. B. Estrach, ‘‘Few-shot learning with graph neural
networks,’’ in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–13.

[31] I. Sutskever, O. Vinyals, and Q. V. Le, ‘‘Sequence to sequence learning
with neural networks,’’ in Proc. Adv. neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[32] H. Tamada, M. Nakamura, A. Monden, and K.-I. Matsumoto, ‘‘Design and
evaluation of birthmarks for detecting theft of java programs,’’ in Proc.
IASTED Conf. Softw. Eng., 2004, pp. 569–574.

[33] H. Tamada, ‘‘Java birthmarks–detecting the software Theft–,’’ IEICE
Trans. Inf. Syst., vol. E88-D, no. 9, pp. 2148–2158, Sep. 2005.

[34] Z. Tian, T. Liu, Q.-H. Zheng, F. Tong, D. Wu, S. Zhu, and K. Chen,
‘‘Software plagiarism detection: A survey,’’ J. Cyber Secur., vol. 1, no. 3,
pp. 52–76, 2016.

[35] Z. Tian, T. Liu, Q. Zheng, M. Fan, E. Zhuang, and Z. Yang, ‘‘Exploiting
thread-related system calls for plagiarism detection of multithreaded pro-
grams,’’ J. Syst. Softw., vol. 119, pp. 136–148, Sep. 2016.

[36] Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan, and Z. Yang, ‘‘Reviv-
ing sequential program birthmarking for multithreaded software plagia-
rism detection,’’ IEEE Trans. Softw. Eng., vol. 44, no. 5, pp. 491–511,
May 2018.

[37] Z. Tian, Q. Zheng, T. Liu, M. Fan, X. Zhang, and Z. Yang, ‘‘Plagiarism
detection for multithreaded software based on thread-aware software birth-
marks,’’ in Proc. 22nd Int. Conf. Program Comprehension ICPC, 2014,
pp. 304–313.

[38] Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang, ‘‘Software
plagiarism detection with birthmarks based on dynamic key instruction
sequences,’’ IEEE Trans. Softw. Eng., vol. 41, no. 12, pp. 1217–1235,
Dec. 2015.

[39] B. Vasilescu, V. Filkov, and A. Serebrenik, ‘‘StackOverflow and GitHub:
Associations between software development and crowdsourced knowl-
edge,’’ in Proc. Int. Conf. Social Comput., Sep. 2013, pp. 188–195.

[40] Q. Wang, Z. Tian, C. Gao, and L. Chen, ‘‘Plagiarism detection of multi-
threaded programs using frequent behavioral pattern mining,’’ in Proc.
32nd Int. Conf. Softw. Eng. Knowl. Eng., 2020, p. 1.

[41] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, ‘‘Detecting software theft via
system call based birthmarks,’’ in Proc. Annu. Comput. Secur. Appl. Conf.,
Dec. 2009, pp. 149–158.

[42] X. Xu, C. Liu, Q. Feng, H. Yin, L. Song, and D. Song, ‘‘Neural network-
based graph embedding for cross-platform binary code similarity detec-
tion,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2017,
pp. 363–376.

[43] Y. Ye, S. Hou, L. Chen, J. Lei, W. Wan, J. Wang, Q. Xiong, and F. Shao,
‘‘Out-of-sample node representation learning for heterogeneous graph in
real-time Android malware detection,’’ in Proc. 28 Int. Joint Conf. Artif.
Intell., Aug. 2019, pp. 4150–4156.

[44] Y. Ye, S. Hou, L. Chen, X. Li, L. Zhao, S. Xu, J. Wang, and Q. Xiong,
‘‘ICSD: An automatic system for insecure code snippet detection in stack
overflow over heterogeneous information network,’’ in Proc. 34th Annu.
Comput. Secur. Appl. Conf., Dec. 2018, pp. 542–552.

[45] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, ‘‘ViewDroid: Towards
obfuscation-resilient mobile application repackaging detection,’’ in Proc.
ACM Conf. Secur. Pivacy Wreless Mbile Netw. WiSec, 2014, pp. 25–36.

[46] F. Zhang, D. Wu, P. Liu, and S. Zhu, ‘‘Program logic based software
plagiarism detection,’’ in Proc. IEEE 25th Int. Symp. Softw. Rel. Eng.,
Nov. 2014, pp. 66–77.

[47] T. Zhenzhou, W. Ningning, W. Qing, G. Cong, L. Ting, and Z. Qinghua,
‘‘Plagiarism detection of multi-threaded programs by mining behavioral
motifs,’’ J. Comput. Res. Develop., vol. 57, no. 1, pp. 202–213, 2020.

[48] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, ‘‘Detecting repackaged smart-
phone applications in third-party Android marketplaces,’’ in Proc. 2nd
ACM Conf. Data Appl. Secur. Privacy CODASKY, 2012, pp. 317–326.

[49] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, ‘‘Neural machine
translation inspired binary code similarity comparison beyond function
pairs,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

ZHENZHOU TIAN was born in Shandong, China,
in 1987. He received the B.S. and Ph.D. degrees
in computer science and technology from Xi’an
Jiaotong University, China, in 2010 and 2016,
respectively. He is currently a Lecturer with the
School of Computer Science and Technology,
Xi’an University of Posts and Telecommunica-
tions. His research interests include software and
system security, program similarity analysis, and
software behavior analysis.

QING WANG was born in Shaanxi, China,
in 1995. She is currently pursuing the mas-
ter’s degree with the Xi’an University of Posts
and Telecommunications. Her research interests
include software plagiarism detection and deep
learning-based program analysis.

VOLUME 8, 2020 160813



Z. Tian et al.: Plagiarism Detection of Multi-Threaded Programs via Siamese Neural Networks

CONG GAO was born in Shaanxi, China, in 1985.
He received the B.S. and Ph.D. degrees in com-
puter science and technology from Xidian Uni-
versity, China, in 2008 and 2015, respectively. He
is currently a Lecturer with the School of Com-
puter Science and Technology, Xi’an University
of Posts and Telecommunications. His research
interests include information security, artificial
intelligence, and network computing services.

LINGWEI CHEN received the Ph.D. degree in
computer science from West Virginia University,
in 2019. He is currently a Postdoctoral Scholar
with the College of Information Sciences and
Technology, Pennsylvania State University. Prior
to that, he was a Software Engineer with the Soft-
ware Development Center, Agricultural Bank of
China. He also has internship experience at Ten-
cent andYahoo! for research and development. His
research interests include machine learning and
cybersecurity.

DINGHAO WU (Member, IEEE) received the
Ph.D. degree from Princeton University, in 2005.
He is currently an Associate Professor with the
College of Information Sciences and Technology,
Pennsylvania State University. His research inter-
ests include software systems, including software
security, software analysis and verification, soft-
ware engineering, and programming languages.
Prior to joining Penn State, he was a Research
Engineer with the Microsoft with the Center for

Software Excellence and the Windows Azure Division.

160814 VOLUME 8, 2020


