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Abstract. Software-defined networking (SDN) is a promising paradigm
to improve network security protections. A lot of security enhancements
through SDN have been proposed. However, current SDN-based secu-
rity solutions can hardly provide sufficient protections in a real SDN
network, due to several reasons: 1) they are implemented at either the
centralized SDN controllers or the decentralized network devices, which
are subject to a performance limitation; 2) their designs are confined
by SDN network characteristics and can only provide limited security
functions; 3) many solutions have deployment challenges and compati-
bility issues. In this paper, we propose SecControl, a practical network
protection framework combining the existing security tools and SDN
technologies, to produce a comprehensive network security solution in
an SDN environment. By employing the capabilities of existing security
tools, SecControl is able to perceive the real-time security events dynami-
cally and adjust the protected network environment correspondingly. It
can be easily extended with various methods for different security thre-
ats. With SecControl, we construct a traditional-security-tool-friendly
network security solution for software-defined networks. We implement
a SecControl prototype with OpenFlow and evaluate its effectiveness and
performance. Our experiment shows that SecControl can cooperate with
many mainstream security tools and provide effective defense responses
over SDN-supported networks.

Key words: Software-defined networking (SDN); Network Function
Virtualization (NFV); OpenFlow; SDN security application; SDN con-
troller

1 Introduction

Software-defined networking (SDN) has gained much attention in both academia
and industry [22]. By decoupling the control logic from the closed and prede-
signed network devices, SDN enables the reprogramming capability of network
devices. Previously, traditional network devices can only work as they are manu-
factured, and all their traffic control and forwarding functions are not changeable
once produced. With SDN, the traffic control functions and traffic forwarding
functions are divided as control plane and data plane. The separation of cont-
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rol plane and data plane provides a powerful and flexible network structure for
various network applications.

A lot of network-related research has been conducted with SDN, such as net-
work management [9, 8, 20], network QoS [14], network load balancing [35, 17],
and content delivery system [36]. Similarly, researchers tried to take advantage
of SDN technologies to devise new network security solutions as well. Many in-
novations [31, 33, 32, 34] tried to provide better security services over software-
defined networks, and they are provided either at the centralized controllers or
the distributed inline network devices.

However, the existing SDN-based security solutions can hardly compete with
traditional security solutions due to various reasons. First, they are designed with
limitations inherently. When security functions are implemented at centralized
controllers [32], the processing capabilities of controllers will become a potential
bottleneck; when security functions are deployed at network devices[34], it can
hardly provide a comprehensive protection over the network. Second, most of
them are focusing on maximizing the control flexibility of SDN. Maximizing
network control flexibility does not necessarily lead to strengthened network
protection ability. Third, the existing SDN-based security solutions are mainly
on a certain aspect of network protection [19], which can hardly satisfy the
general network protection requirements. Last, many of them have deployment
challenges and compatibility issues.

As a result, the current SDN-based security solutions cannot provide the
same protection capabilities as traditional security tools can provide over SDN
networks. Actually, the key innovations brought by SDN are over network control
instead of security processing capability. Network protection demands more po-
werful security processing capabilities, such as packet payload inspection, traffic
pattern analysis, and so on. Therefore, we need a practical network security so-
lution which can provide competitive security protection and, at the same time,
can take advantage of the flexible control over SDN networks.

Traditional security tools, like firewalls and intrusion detection systems, have
strong security processing capabilities in protecting traditional network infra-
structures, and each type of security tool is specialized to deal with a certain
type of security threat. They are composed together to form a comprehensive
network security solution. However, traditional security tools can hardly be used
directly in software-defined networks because of the following reasons: 1) existing
security tools are designed under the traditional network infrastructure, which
does not fit into SDN network structure; 2) most security tools are devised to
deal with a certain type of security threat. Their exclusive designs decide they
can only be used individually and cannot cooperate with each other; and 3)
there is no interface on existing security tools to let them take advantage of
SDN benefits.

In this paper, we propose SecControl, a new network protection framework
bridging the gap between security tools and SDN technologies, to provide suf-
ficient protection capabilities in an SDN environment. Our goal is to design a
practical and comprehensive network security solution over SDN networks by
leveraging existing security tools and SDN control flexibility. Unlike existing
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SDN-based security solutions, SecControl is designed on a new security control
layer above SDN controllers, which releases SDN controllers from security pro-
cessing pressure. SecControl is able to perceive the real-time security threats,
generate real-time defense reactions, and adjust corresponding network beha-
viors dynamically. With SecControl, security engineers can easily add different
security tools into the protection boundary and make use of their detection abi-
lities to serve the entire network. Our method can be applied on mainstream
SDN platforms without difficulty.

In summary, the main contributions of SecControl are as follows:

– We propose a novel network protection framework for software-defined net-
works, which combines the existing security tools and SDN technologies. Our
framework retrofits and reuses the existing security tools in the SDN context,
which avoids re-development of many security defense functionalities.

– Our method equips an SDN network with strong security processing capabi-
lities in an economic way. Existing security tools can be used to protect SDN
networks without difficulty.

– SecControl layer provides an additional layer above SDN controllers, which
release controllers from security processing pressures. SecControl has a full
security view of the protected network domain, which enables SecControl to
offer a unified protection.

– We design a practical method to dynamically translate defense responses into
SDN rules to adjust network behaviors. We provide a set of SDN primitives,
namely drop, forward, reflect, isolate, and copy, and these primitives can be
translated to OpenFlow flow rules automatically.

– SecControl separates the security processing logic from the security enforce-
ment components. With our method, a SecControl domain can receive remote
protection instructions from other SecControl domains, which enables a uni-
fied SecControl protection over different SDN networks.

The remainder of the paper is organized as follows. We introduce the challen-
ges of SecControl in Section 2. In Section 3, we discuss SecControl’s architecture
and how it is designed. Section 4 describes a SecControl prototype implementing
with OpenFlow. The evaluation is presented in Section 5. In Section 6, we talk
about a few insights obtained from this work. We briefly summarize the related
work in Section 7. Finally, a conclusion is given in Section 8.

2 Challenges

Our goal is to design a practical network security solution in SDN networks by
employing the security processing capabilities of traditional security tools and
SDN technologies. To achieve it, we need to answer several research questions.

RQ1. How Does SDN Improve Network Security Protection?
Network security was once regarded as a subset of network management pro-

blem [9]. The key innovation of SDN is separating control plane and data plane
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which maximizes the network control flexibility. However, Maximizing network
control flexibility does not necessarily lead to the strengthened network pro-
tection ability. We may need to think how can we use SDN to improve security.
For example, how to assign security responsibilities to control plane and data
plane? How to dynamically adjust network behaviors against security threats?

RQ2. How to Fit Traditional Security Tools into SDN Networks?
Although traditional security tools have powerful security processing capa-

bilities, they cannot be used in an SDN environment directly. The reasons are
summarized as follows: 1) traditional security tools are invented for traditional
network infrastructure, which can hardly fit into the SDN structure; 2) these
tools do not have interaction interfaces for using SDN features to improve se-
curity; and 3) seldom can existing security tools share threat information with
each other since they are designed individually, and that is a weak point in de-
fending SDN networks. Based on the above reasons, we need to answer how to
fit existing security tools into SDN networks? For example, How do we place
security tools in an SDN network? How can we collect threat information from
traditional security tools?

RQ3. How Can We Combine Them Together?
To make use of the protection capabilities of traditional security tools and

maximize the SDN benefits in securing networks, we need to make them work to-
gether. Consider most security tools are designed for traditional networks instead
of SDN networks, there are several practical issues when combining them toget-
her. The first issue is the current security tools are heterogeneous, and their
detection results are not compatible. For instance, a host-based intrusion de-
tection system will be mainly monitoring system behaviors, while a firewall will
be interested in suspicious network activities. The log generated by the two
tools can hardly join together for further security analysis. The second issue is
we lack an interaction mechanism for security tools to communicate with SDN
networks. We want to employ real-time threats information to adjust network
behaviors dynamically. The last issue is we need a unified method to translate
the semantics of threat information into SDN rules. For example, how do we
extract effective threats information from heterogeneous security event informa-
tion? Given a certain security threat, how do we adjust network behaviors for an
effective defense? How do we distribute defense decisions in an SDN network?

3 Architecture and Design

In this section, we introduce the SecControl architecture and design. We first give
an overview of the SecControl architecture. Then, we explain how SecControl
works. Last, we explain how the SecControl components are designed and how
these components cooperate with each other.
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3.1 Overall Architecture

SecControl seeks to build up a practical and comprehensive protection framework
for SDN networks by combining existing security tools and SDN technologies.
Through collecting various threats information from various security tools, Sec-
Control converges heterogeneous security alerts at one point. SecControl iden-
tifies attack evidence, accesses an overall security situation, and generate corre-
sponding defense responses.

Figure 1 shows the SecControl architecture. The SecControl architecture has
three layers, Threat Collecting Layer, SecControl Layer, and SDN Controller
Layer. Each layer plays a different role in the SecControl protection framework.
The Threat Collecting Layer is composed of various security tools and Threat
Collecting Agents. Each security tool will be attached a customized Threat Col-
lecting Agent, which is represented by a small triangle. The Threat Collecting
Agent is responsible for collecting and sending threat information to the Sec-
Control Layer. After receiving threat information, the SecControl Layer will run
a series of standard steps, which includes converging all the collected security
events, correlating related alerts, analyzing alert information, and abstracting
attacking evidence. Then, the SecControl Layer will decide a defense response
against the detected security attack, and the defense response will be translated
into SDN rules and distributed to the SDN Controller Layer. The SDN Controller
Layer will enforce the SDN rules and adjust network behaviors.
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3.2 How SecControl Works

As Figure 1 shows, the four working steps of SecControl are: (1) The security
threats are detected by security tools and the detection results are recorded and
preprocessed by Threat Collecting Agents (ThreatCA). (2) The preprocessed
threat information is sent from ThreatCA to the SecControl Node. (3) The
SecControl Node converges and analyzes the threat information to decide how
to make a defense response over SDN networks. And, the defense responses will
be translated to SDN rules. (4) The SecControl Node distributes the generated
SDN rules to the corresponding SDN controllers for enforcement.

In step one, security threat information is generated by various security tools,
and ThreatCA preprocesses the recorded security threat information and trans-
forms it into a uniform format. The collected threat information will be sent
to SecControl Layer in step two. ThreatCA should be able to extract effective
threat information based on the main functions of security tools. For example,
a processed firewall alert could be (firewall, network position, alert level, threat
source, detection time, ...). Actually, the preprocessing of threat information can
be quite complicated. More details will be given in the design section.

Step three happens inside of the SecControl Node. The SecControl Node ana-
lyzes the threat information, decides defense responses and generates correspon-
ding SDN rules to adjust the network behaviors. In step four, the generated SDN
rules will be distributed to corresponding SDN controllers. SecControl Layer is
maintaining a list which records the location information of all the controllers
in the protected SDN networks. The SDN rules can be sent to the related con-
trollers based on the list. When the SDN rules are transmitted, the transmission
process will be protected and secured. There will be a secure protocol between
the SecControl Node and controllers to protect their communications.
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3.3 SecControl Components

The SecControl framework is composed of four components, as shown in Figure
2. The first component is Threat Collecting Agent, which is running outside of
the SecControl Node and responsible for collecting various security threat infor-
mation from security tools. The second one is Threat Analyzer, which is in charge
of converging and analyzing the collected threat information and decides corre-
sponding defense responses. The third component is SDN Rule Engine, whose
responsibility is transforming the generated defense responses to specific SDN
rules. The last component, SDN Rule Distributer, is designed for distributing
the platform-specific SDN rules to SDN controllers.

Threat Collecting Agent The inputs of the ThreatCA are various detection
results of security tools, while the outputs of the ThreatCA are uniform and well-
structured threat information, which can be directly used by Threat Analyzer.
Consider existing security tools are separately targeting different threats, their
detection results could be quite different. To handle different detection results,
we need to provide each type of security tool at least one specialized ThreatCA.

The purpose of ThreatCA is to provide effective threats information to
Threat Analyzer. We design a preprocess function on ThreatCA. The preprocess
function is responsible for transforming the raw detection results to a unified
format which can be used by Threat Analyzer for further analysis. For each
ThreatCA, it is designed specially to understand the raw detection results of
the security tool it is attached. To release the Threat Analyzer from tedious
format details, we present the detection results in a unified format (the format
is IDEMF [2]) so that Threat Analyzer can use a uniform interface to deal with
all detection results.

Threat Analyzer The preprocessed threat information will be sent to the
Threat Analyzer. The Threat Analyzer will be analyzing threat information, as-
sessing security situations, and deciding defense responses. It is designed as a
configurable, adaptable, and extendable module for different protection purpo-
ses. Security engineers are able to adjust defense strategies in Threat Analyzer
to practice different security analysis and detection algorithms. Analyzing threat
information in a large number of detection records is quite complicated, and a
lot of algorithms have been proposed [27, 10, 12].

With our design, security engineers can easily customize these algorithms and
deploy them in SecControl Node. Once a security threat is identified, the Threat
Analyzer will choose a predefined defense response as a reaction to the security
threat. In different protection scenarios, defense responses may refer different
reactions. For example, on a firewall, a defense response could be blocking the
threaten traffic; while on a host system, a defense response could be isolating a
suspicious executable file. In SecControl, we focus on network level responses,
which means we adjust network behaviors through SDN technologies as defense
responses.
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SDN Rule Engine SDN Rule Engine, as the name suggests, generates the
corresponding SDN rules based on the received defense responses. The generated
SDN rules instruct how to adjust the network behaviors at SDN network devices.
We design a systematic method to achieve the generation process through using
SDN primitives, which stands for the basic network operations when dealing
with security threats. We define five SDN primitives based on the network flow
features. They are Drop, Forward, Reflect, Isolate, and Copy. The five SDN
primitives can be used individually or in combination against security threats.

The five SDN primitives are as follows:

1. Drop, which means discarding the identified network traffic. This primitive
is usually used to block unwanted network traffic.

2. Forward, which just tells the network devices to pass the identified traffic
to its destination based on the existing SDN rules. When we do not want to
do any operation on the identified network traffic for passing certain network
device, we use forward.

3. Reflect, changes the destination of the identified network traffic both for
inbound and outbound directions. For example, A wants to build up a con-
nection with B. When A’s connection traffic is reflected to C, A will be
connected with C instead of B. After this, C will use B’s network address
and communicate with A, and A knows nothing about this. Reflect primitive
can be used in deploying a shadow server or a honeypot.

4. Isolate, limits the identified traffic to a certain host or network area. When
a node (or a node group) is identified as a source of an attack, we use this
primitive to confine its network activities.

5. Copy, duplicates the identified packets, which is usually used for monitoring
or logging use. Most current network devices have been equipped with this
primitive. It could be used for real-time traffic analysis and other purposes.

The five SDN primitives can be used in combination, repeatedly, and in
any sequence to form a wanted defense response. Each defense response will be
translated into one or several SDN primitives. For example, a defense response
may require directing the suspicious source to a honeynet, where the suspicious
traffic will be recorded and analyzed. In this situation, the defense response will
be translated into two SDN primitives, reflect and isolate. The suspicious traffic
will be first reflected to a honeynet and then isolated in the honeynet area.

Usually, each SDN rule contains one SDN primitive, which represents the
specific action of this rule. Some SDN primitives, like drop and forward, have
been supported on most SDN platforms. For those SDN primitives that cannot
be well supported, we may need additional translation processes to turn these
primitives into corresponding SDN rules. Besides, we design an SDN rule uniform
format interface to transform general SDN rules to platform-specific SDN rules.
The platform-specific SDN rules can be distributed to SDN controllers by SDN
Rule Distributer for execution.

SDN Rule Distributer The generated SDN rules will be sent to SDN control-
lers through the SDN Rule Distributer. In an SDN network, network devices are
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Fig. 3. The SDN Rule Distributer

divided into groups and each group will be connected and managed by a con-
troller. Only the controller can send SDN rules to its connected SDN devices.
The SDN Rule Distributer needs to distribute the SDN rules to controllers first,
then have controllers send SDN rules to corresponding SDN devices.

To ensure the SDN rules can be delivered to the right controller, the SDN
Rule Distributer should have a full map of the SDN networks. As can be seen
in Figure 3, the SDN Rule Distributer stores a local copy of network device
lists for all the SDN controllers. In this paper, we use OpenFlow to build up
SDN networks. When we dynamically update OpenFlow rules, it may cause
inconsistencies [19, 23] at OpenFlow devices. A lot of research has been done on
verifying the consistency of OpenFlow rules. Consider SDN rules consistency is
not our research focus, we assume this problem is well solved in our design.

3.4 Components Communication

Based on the workflow of SecControl, we need two communication mechanisms
which reside in step two and step four separately. In step two, the Threat Col-
lecting Agents need to communicate with the SecControl Node to send collected
security threat information, and that communication can be happening all the
time. The other communication happens between the SecControl Node and SDN
controllers, which serves to distribute SDN rules and maintain network devices
information. Besides, we also need another communication mechanism among
the SecControl Nodes, which enables the exchange of SDN rules between diffe-
rent SecControl Nodes.

We can achieve the step two communication like any typical network ap-
plication by using TCP/IP protocols. The Threat Collecting Agents can send
security threat information over TCP or UDP protocol, which can both be used
for typical network communication. The communication between the SecControl
Node and SDN controllers is a little bit different. Except for distributing SDN
rules, it is also used to synchronize network device information. Because it is
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related to device information update on SDN controller, it should be extended
with existing SDN protocols. Similarly, the communication among SecControl
Nodes can be implemented like any typical network application over TCP/IP.

4 A SecControl Prototype

We develop a prototype of the SecControl framework. For a proof of concept
purpose, we implement both SecControl Node and SDN controller together. We
chose to modify and extend an open source SDN controller, NOX [16], to finish
all the related functions. Our implementation includes all the necessary functions
for the SecControl components and is able to show the effectiveness of SecControl
protections.

The SecControl Node is implemented on NOX version 0.9.0 with OpenFlow
v1.0. NOX is an open source OpenFlow controller in C++/Python, which can
be used to manage OpenFlow switches. We implemented the Threats Analy-
zer in Python and SDN Rule Engine in C++. The Threat Analyzer module
is running as an OpenFlow application on NOX, while the SDN Rule En-
gine is inserted as an extension of NOX. We modified the built-in functions,
send_openflow_command and install_datapath_flow, of NOX to implement
the SDN Rule Distributer.

We pick three most used security tools for a demonstration purpose. They
are Snort IDS, Linux iptables, and Linux system logs. Snort IDS is a popular
open source IDS; Linux iptables is a kernel-supported firewall tool on Linux sy-
stem; Linux system logs are native log system of Linux system which is often
used for audit purposes. Each tool is attached a customized ThreatCA. Because
the three tools use different alert formats, we implement three different Threa-
tCAs to collect security threat information. Besides, to simplify the protection,
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<IDMEF -Message version="1.0">
<Alert ident="abc123456789">

<Analyzer analyzerid="analyzer1">
<Node category="dns">

<location >HTTP Server </location >
<name>host.domain.org</name>

</Node>
</Analyzer >

<CreateTime ntpstamp="0xbc72b2b4 .0 x00000000">
2020 -05 -19 T15:31:00 -08:00

</CreateTime >

<Source ident="abc01">
<Node ident="abc01 -01">

<Address ident="abc01 -02" category="ipv4 -addr">
<address >192.168.1.100 </address >

</Address >
</Node>

</Source >

<Target ident="vic01">
<Node ident="vic01 -01" category="dns">
<name>www.example.com</name>

<Address ident="vic01 -02" category="ipv4 -addr">
<address >192.168.1.50 </address >

</Address >
</Node>
<Service ident="vic01 -03">

<portlist >1 -1024</portlist >
</Service >

</Target >

<Classification origin="vendor -specific">
<name>portscan </name>
<url>http://www.vendor.com/portscan </url>

</Classification >
</Alert >
</IDMEF -Message >

Fig. 5. A Scan Detection in IDEMF.

we categorize security events into attack events and suspicious events. The at-
tack events should be reacted with a defense response instantly, while suspicious
events need further analysis before deciding a defense response. When a Threa-
tCA meets an attack event, it just tags the event and sent it to Threat Analyzer
to get an instant defense response. For the suspicious events, the ThreatCA ex-
tracts the critical information of the events and put them in a unified format,
Intrusion Detection Exchange Message Format (IDEMF) [2]. IDEMF provides
a unified format and structure that allows the security detection results can be
transferred among different parties. A scan detection involving three nodes can
be demonstrated in IDEMF as shown in Figure 5.

The collected IDEMF messages are stored in a local DB for further analysis.
If a defense response is determined, it will be translated into OpenFlow flow
rules. In OpenFlow, each flow rule will have a set of attributes, such as match
field, counter, timeout, actions, and so on, to match network flows. The acti-
ons field contains an action set, which indicates the operations to be executed
for the matched network traffic. To enforce the SDN primitives at the Open-
Flow switches, we translate the five SDN primitives into compatible OpenFlow
actions. Figure 6 shows generateOFactions() function translating five SDN pri-
mitives to the OpenFlow flow rule actions. Finally, the new flow rules are sent
to switch through function install_datapath_flow (self, dp_id, attrs,
idle_timeout, hard_timeout, actions, buffer_id, priority, inport,
packet).
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FlowAction generateOFActions(defenseResponse){
FlowAction flowaction;
switch (defenseResponse) {

case drop:
addAction(flowaction ,drop);

case forward:
addAction(flowaction ,forward);

case reflect:
addAction(flowaction ,reflect);

case isolate:
addAction(flowaction ,isolate);

case copy:
addAction(flowaction ,copy);

}
return flowaction;

}

Fig. 6. Translate Five SDN Primitives into OpenFlow Flow Actions

5 Prototype Evaluation

In this section, we evaluate the SecControl prototype with respect to effective-
ness and extendibility. The evaluation testbed is deployed as shown in Figure 4.
It is running on a desktop with an Intel Core i7-3370 3.4Ghz processor and
16GB RAM. We use KVM, Open vSwitch [29, 1], NOX [16], Linux firewall
iptables, Snort IDS, and Linux built-in log system to construct a SecControl
protected virtual network. The evaluation environment is built on a virtual net-
work 192.168.1.0/24. The physical machine is running CentOS 6.0 with kernel
2.6.32 and qemu-kvm-0.15.1 for virtualization. The three hosts are running as
guest OSes with CentOS 6.0 as well. As can be seen in Figure 4, all the nodes are
in a virtual network and connected by an Open vSwitch. We have security tools,
Snort 2.9.7.5, iptables 1.4.7, and Linux Syslog systems, running at host machine.
Each security tool is attached with a Threat Collecting Agent (each blue triangle
in Figure 6 stands for a ThreatCA), and the ThreatCAs are communicating with
the SecControl Node through the virtual network.

5.1 Effectiveness

We demonstrate the effectiveness of the SecControl framework with several se-
curity threats, regular scan threat, and payloads specific attacks. As Figure 4
shows, host A, and host B are attacking machines, and host C is the victim
machine (for some attacking scenarios, we may deploy more attacker nodes). We
use attacking machines to send out attack traffic to the victim machine.

Regular Scan Threat Regular network scan is typically conducted by a
single attacker to locate easy targets in an open network environment, like
a public network. In our network environment, we assume an attacker owns
host A 192.168.1.152, and he wants to sniff the network status of host C
192.168.1.153. We configure Snort with a scan detection rule: alert tcp any
any -> $HOME_NET any (msg: "TCP SYN"; flow: stateless; flags:S;
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Reflect to B

Fig. 7. A Simple Network Scan

detection_filter:track by_dst, count 100, seconds 5; sid:1000001;
rev:1). We tag the detected scan threats as attack events and configure pri-
mitive reflect as default defense response to a scan threat. All the scan traffic
for host C will be reflected to host B 192.168.1.154. We open port 22, 23, 25,
80, 111, and 443 on B, and 22, 25, and 111 on C. Figure 7 shows the reflecting
process, from which we can see the scan results are from host B instead of host
C. That is, the scan traffic is successfully reflected to B.

An Attack with Specific Payloads When an attacker knows a specific vul-
nerability of a target machine, he can attack the target machine by sending a
well-designed exploit. The attacking exploit sent through network packets is cal-
led malicious payloads. Malicious payloads can help the attacker take over the
victim machine and gain an absolute control over it. We install an old Windows
2000 OS on host C 192.168.1.153 and open the vulnerable service SMB on port
445, which holds a dangerous vulnerability through which an attacker can easily
obtain a remote shell with admin privileges. We configure the Snort to match the
signature of the attacking payload windows/vncinject/bind_tcp. We choose
block as the default defense response if any malicious payload is matched. Cor-
respondingly, the block defense response is translated to primitive drop on the
controller. We use host A 192.168.1.152 as the attacking machine. The attacking
payload is sent with metasploit, a penetrating test tool. Figure 8 shows the
metasploit console window. The result shows the exploit fails due to a con-
nection timeout, which proves we successfully block the attacking traffic to host
C.

5.2 Extendibility

We demonstrate the extendibility of the SecControl framework by using different
security analysis principles. We use time-based threat correlation and target-
based threat correlation to identify several advanced attacks, which usually may
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Fig. 8. An Attack with Specific Payloads

not be easily detected by existing security tools. And, we show the scalability
of the SecControl framework by deploying multiple SecControl instances over
different SDN networks, and our results show different SecControl instances can
cooperate to offer protections across SDN networks.

Distributed Scan Threat Distributed Scan is an advanced and hidden net-
work scan, which is achieved by multiple scanning sources. Smart attackers can
take multiple attacking sources to start a distributed scan, in order to bypass
existing security tools. In this attacking scenario, we use host A and host B to
start a distributed port scan on host C. Our target port range is 0-500. Host C is
opening port 22, 25, and 111, while host D has port 22, 25, 80, 111, and 443 open
(we add one more host D as a honeypot to communicated with the reflected scan
traffic. Host D share the same configuration with host B). We choose redirect
defense response to deal with the distributed scan, and it is translated to reflect
primitive. To detect the distributed scan threat, we extend the security analy-
sis process of Threat Analyzer by following the target-based threat correlation
principle. We configure Snort to record all the traffic. Figure 9 shows the results
of distributed scan. From the scan result of A and B, we can see the port 80 and
443 is open, which shows D is the real scanned node and the distributed scan
traffic is successfully reflected to D.

Step-Stone Attack Step-stone attack is another advanced attack [6]. To reduce
the risks of being detected, attackers choose to start an attack on step-stone
nodes instead of his own machine. Step-stone nodes are immediate nodes taken
by attackers. Through step-stone nodes, an attacker can get more accesses or
conveniences in taking over the target node. Following the time-based threat
correlation principle, we design a two step-stones attack detection algorithm.
We use redirect and block as the defense response for the step-stone attack. In
our defense, the attacker node will be blocked, and the step-stone node will be
redirected to a honeypot. We use host A as the attacker’s machine and host B
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Fig. 9. A Distributed Network Scan

as the step-stone to attack host C. As the attacking side on host A, we first
open and login a shell remotely on host B, then we use B as a step-stone to send
malicious payloads to host C. We record all the outside connections of host B,
including the connection between A and B. We configure Snort to record the
SSH connections between A and B. The remote login attempt is recorded in
the system log of host B. Targeted by the detection algorithm, the SSH traffic
is tagged as attack traffic. The results show SecControl detected the step-stone
attack and the host B’s traffic is successfully reflected to the honeypot node.

Cooperations among SecControl Nodes We show the scalability of the Sec-
Control framework with multiple SecControl deployments. We use two physical
machines, and each physical machine is deployed with one SecControl instance.
Two SecControl frameworks are running in two different virtual networks. We
configure routing information of two virtual networks so that they can commu-
nicate with each other. In our evaluation, we manually send a set of OpenFlow
rules from one SecControl Node to the other, and the result shows the other
SecControl Node can successfully receive and enforce the OpenFlow rules. Ho-
wever, there could be an information inconsistency problem when we have more
different SecControl Nodes. In order to send SDN rules to the proper SecControl
Node, every SecControl Node should have a full picture of all other SecCont-
rol Nodes’ network positions and their network device lists. A lot of algorithms
studied in distributed computing can be borrowed and used in this scenario.
Consider this is not the focus of this paper, we will not elaborate further on this.

5.3 Overhead

SecControl is a practical network security solution aiming to provide a compre-
hensive protection for SDN networks. Since SecControl uses different strategies
and algorithms to deal with different security threats, we can hardly find a uni-
fied method to evaluate its overall performance. We evaluate the time interval
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between a SecControl flow rule leaves NOX and the flow takes effect in the
network. For the forward primitive, the time interval is 7.542 ms; for the drop
primitive, the time interval is 13.152 ms; for the reflect primitive, the time in-
terval is 17.684 ms. Besides, consider our evaluation testbed is deployed on one
physical machine and all the involved nodes share the same set of physical re-
sources, we should be able to shorten the time interval value if it is conducted
on a more powerful machine.

6 Discussion

We discuss some limitations of the SecControl framework in this section. First,
SecControl may have a delay reaction issue when providing defense responses.
This is a common issue for many monitor-based security tools for there is always
a delay between threat detection and defense reaction. Also, the network effi-
ciency may affect the protection effect of SecControl. Consider security events
are transmitted over network between the Threat Collecting Agents and the
SecControl Node, the network transmission efficiency can affect SecControl’s
protection effect. In some protection scenarios, security engineers may require
an instant response on a detected threat. A possible way to alleviate this issue
is to build an exclusive network channel between the Threat Collecting Agents
and SecControl Node. Further, to improve the performance of security event
collecting, we may design built-in threat collecting interfaces on security tools.

Second, SecControl relies on existing security tools to gather security events
and generate defense responses. We may face an accuracy issue because the
accuracy of the security threat information is not exactly guaranteed. Almost
all mainstream security solutions follow a detection-based protection policy, and
the protection is affected by detection accuracy. Consider the current detection
algorithms are not perfect, the detection results may suffer false positive and
false negative issues. Therefore, SecControl may produce inaccurate defense re-
sponses. One possible solution is to manually record the real attacks and pick
up corresponding defense responses. We believe a lot of further research can be
done on this issue.

Third, consider the SecControl framework relies on a distributed architec-
ture, it may suffer all possible issues that can happen in a distributed network
environment. For example, a potential issue is the single failure problem. If the
SecControl Node is down, our protection will be discontinued. In fact, single
failure and all other related issues have been well researched in the distributed
system field. We can just take whatever comes to our protection scenarios and
adopt these solutions.

7 Related Work

Security Incident and Event Management (SIEM) [26, 28] is a set of technologies
which are used to gather, analyze and present information from network and se-
curity devices. SIEM is designed to collect security-related information from all
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kinds of devices and applications such as firewalls, IDS, antivirus, and so on.
When an attack happens, security engineers will turn to SIEM for a complete
record of that attack for security investigations and audits. SIEM mainly focu-
ses on monitoring and tracing purposes. Compared with SecControl, although
SIEM is capable of collecting and analyzing security threats, it does not provide
interaction interfaces for the latest SDN networks.

SecControl combines traditional security tools and SDN technologies to pro-
vide a practical network security solution. For one hand, SecControl makes use
of security processing abilities of existing tools; for the other hand, SecControl
maximizes the security benefits of taking SDN technologies. Shin et al. pro-
pose FRESCO [32], a modular security application development framework for
OpenFlow networks. FRESCO provides a fine-grained framework to implement
security functions as OpenFlow applications. However, it requires security engi-
neers to reimplement all security functions to fit FRESCO design, which brings a
lot of engineering work. Besides, consider FRESCO is implemented at controller
side, it is greatly confined by the processing capabilities of the controller. As a re-
sult, the security functions requiring complicated computation and analysis can
hardly be deployed with FRESCO. AVANT-GUARD [33] aims to improve the
data plane performance in order to provide SDN security applications a more
scalable and responsive OpenFlow infrastructure. It designs a connection mi-
grations mechanism to improve OpenFlow’s weak points and protect OpenFlow
devices from saturation attacks. However, AVANT-GUARD does not change the
fact that the SDN controller could be a potential bottleneck in security appli-
cations. Different from FRESCO and AVANT-GUARD, OpenFlow Extension
Framework (OFX) [34] modifies the software system of network hardware devi-
ces to allow SDN applications dynamically load software modules. OFX achieves
a good performance because it is running on switch hardware directly. However,
not all security services can provide effective protections on a switch hardware.
Compared with existing SDN security innovations, SecControl neither introduces
heavy workload to SDN controller nor brings negative effects to existing security
tools.

Except for the SDN security application frameworks, researchers also exten-
ded the individual security tools in SDN environments. FlowGuard [19] is desig-
ned to achieve a firewall running over SDN networks. FlowGuard is capable of
checking suspicious network flows and verifying network-wide firewall policies.
However, it just provides basic firewall functions and cannot be extended with
other security functions. Similarly, some research modifies traditional intrusion
detection systems to fit SDN environments. Mehdi et.al [25] suggest using SDN
to solve home network security problems. They provide four prominent traffic
anomaly detection algorithms to detect security threats on SDN controllers. This
innovation provides an example of applying SDN technologies in home network
security solution.

Some researchers also try to innovate security functions with Network Function
Virtualization (NFV) [4]. Aaron et al. design OpenNF [15], a control plane
architecture to enable the reallocation of flows within NF instances. Through
OpenNF, network operators are able to create rich control applications, inclu-
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ding firewall, NAT, traffic loadbalancer, and so on. OpenBox [7] is designed to
decouple the control plane of middleboxes from their data planes and unify the
data plane through service instances. It provides a set of interfaces and protocols
to communicate with SDN controllers and middleboxes. OpenBox introduces a
uniform platform for network admins to design network applications cross SDN
network devices and middleboxes. Similarly, these NFV innovations focus on a
universal network architecture for general network applications instead of se-
curity applications. SecControl can be regarded as a “controller” of the SDN
controllers. It releases the security related computation logic from typical SDN
controllers that should focus on managing low-level network devices. NOX [16]
and POX [24] are two twin open source OpenFlow controllers implemented in
C++ and Python respectively. They provide a set of APIs for upper-level net-
work applications to dynamically change the flow tables of OpenFlow switches.
However, the current OpenFlow structure is problematic and may meet some
issues when deploying in a large scale network. Researchers propose different
SDN controller solutions to fit existing controllers into large scale deployments,
like HyperFlow [3], Pratyaastha [21], DISCO [30], ElastiCon [13], and ONOS [5].
These methods enhance the existing controllers by adding more supports on sca-
lability, device state synchronization, controller cooperation, fault tolerance, and
other functions. Relying on SDN controllers, many network relevant applications
have been innovated. Heller et al. [18] propose to reduce the energy consump-
tions by improving network infrastructures of data centers through centralized
SDN controllers. Curtis et al. [11] suggest using SDN controllers to optimize flow
management to further achieve a better overall network performance.

8 Conclusion

In this paper, we propose a new network protection framework bridging the gap
between existing security tools and SDN technologies, to produce a practical
and comprehensive network security solution for SDN environments. SecControl
integrates the capabilities of existing security tools and combines SDN controls
to obtain an optimized SDN network security solution. We demonstrate the ca-
pability of SecControl by implementing a prototype with the OpenFlow protocol
and evaluate its effectiveness and performance impacts with common security
threats. Our experiments show that SecControl can cooperate with many main-
stream security tools and provide effective defense responses over SDN-supported
networks.
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