
Replacement Attacks: Automatically Impeding
Behavior-based Malware Specifications

Jiang Ming1, Zhi Xin2, Pengwei Lan1, Dinghao Wu1, Peng Liu1, and Bing
Mao2

1 The Pennsylvania State University, University Park, PA 16802, U.S.A.
{jum310, pul139, dwu, pliu}@ist.psu.edu

2 Nanjing University, Nanjing 210093, China
{zxin, maobing}@nju.edu.cn

Abstract. As the underground market of malware flourishes, there is an
exponential increase in the number and diversity of malware. A crucial
question in malware analysis research is how to define malware specifica-
tions or signatures that faithfully describe similar malicious intent and
clearly stand out from other programs. It is evident that the classical
syntactic signatures are insufficient to defeat state-of-the art malware.
Behavior-based specifications which capture real malicious characteris-
tics during runtime, have become more prevalent in anti-malware tasks,
such as malware detection and malware clustering. This kind of speci-
fication is typically extracted from system call dependence graphs that
a malware sample invokes. In this paper we present replacement attacks
to poison behavior-based specifications by concealing similar behaviors
among malware variants. The essence of the attacks is to replace a be-
havior specification to its semantically equivalent one, so that similar
malware variants within one family turn out to be different. As a result,
malware analysts have to put more efforts to re-analyze similar samples.
We distill general attacking strategies by mining more than 5, 000 mal-
ware samples’ behavior specifications and implement a compiler-level
prototype to automate replacement attacks. Experiments on 960 real
malware samples demonstrate effectiveness of our approach to impede
multiple malware analyses based on behavior specifications, such as simi-
larity comparison and malware clustering. In the end, we provide possible
counter-measures to strengthen behavior-based malware analysis.

1 Introduction

Malware, or malicious software with harmful intent to compromise computer
systems, is one of the major challenges to the Internet. Over the past years, the
ecosystem of malware has evolved dramatically from “for-fun” activities to a
profit-driven underground market [3], where malware developers sell their prod-
ucts and cyber-criminals can simply purchase access to tens of thousands of
malware-infected hosts for nefarious purposes [1]. Normally malware develop-
ers do not write new code from scratch, but choose to update old code with
new features or obfuscation methods [23]. With thousands of malware instances

appearing every day, efficiently processing large quantity of malware samples
which exhibit similar behavior, has become increasingly important. A key step
to improve efficiency is to define discriminative specifications or signatures that
faithfully describe intrinsic malicious intents, so that malware samples with sim-
ilar functionalities tend to share common specifications. Malware analysts ben-
efit from general specifications. For example, every time a suspicious program is
found in the wild, malware analysts can quickly determine whether it belongs
to a previous known family by matching its specification.

As malware keeps evolving to evade detection, the classical syntactic speci-
fications are insufficient to defeat various obfuscation techniques, such as poly-
morphism [21], binary packing [31] and self-modifying code [12]. In contrast,
behavior-based specifications, which are generated during malware execution,
are more resilient to static obfuscation methods and able to disclose the natural
behavior of malware, such as replication, download and execution and remote
injection. The main means for malware to interact with an operating system
is through system calls1. The dataflow dependencies among system calls are
expressed as an acyclic graph, namely system calls dependency graph (SCDG),
where nodes represent system calls executed and a directed edge indicates a data
flow between two nodes. Typically, the dependencies derive from the return val-
ue or the arguments computed by previous system calls. When a data source is
passed to one of its succeeding native APIs, a directed edge connecting these two
nodes is created. Since data flow dependencies are hard to be reordered, SCDG
has been broadly accepted as a reliable abstraction of malware behavior [15, 18],
and widely employed in malware detection [6, 20] and malware scalable cluster-
ing [7, 28].

With quite a number of compelling applications, SCDG looks promising.
However, it is not impossible to circumvent. In order to inspire more state-of-
the-art malware analysis techniques, we exploit the limitations of the current
approaches and present replacement attacks against malware behavior specifi-
cations. We show that it is possible to automatically conceal similar behavior
specifications among malware variants by replacing a SCDG to its semantical-
ly equivalent one, so that similar malware variants show large distances and
therefore are assigned to different families. Eventually, malware analysts have to
re-analyze large number of malware samples exhibiting similar functionalities. To
achieve this goal, we first mine two large data sets to identify popular system calls
and OS objects dependencies. We summarize two general attacking strategies to
replace SCDG: 1) mutate a sequence of dependent system calls (sub-SCDG) to
its equivalent ones, and 2) insert redundant data flow dependent system calls.
Our approach ensures that the new generating dependence relationships are so
common that they cannot be easily recognized. After transformation, similar
malware samples reveal large distance when they are measured with widely used
similarity metrics, such as graph edit distance [13] or Jaccard Index [11]. As a
result, subsequent analyses (e.g., malware detection and clustering) are misled.

To demonstrate the feasibility of replacement attacks, we have developed a
compiler-level prototype, API Replacer, to automatically perform transforma-

1 The systems call in Windows NT is called as native API

tion on top of the LLVM framework [22] and Microsoft Visual Studio. Given a
single malware source code, API Replacer is able to generate multiple malware
binaries, and each one exhibits different behavior specifications. We evaluate
our replacement attacks on a variety of real malware samples with different re-
placement ratio. Our experimental result shows that our approach successfully
impede malware similarity comparison and state-of-the-art behavior-based mal-
ware clustering. The cost of transformation is low and the execution overhead
after transformation is moderate.

In summary, we make the following contributions:

– We propose replacement attacks to camouflage similar behavior specifica-
tions among malware variants by replacing system call dependence graphs.

– We summarize the rules for equivalent replacements by mining large set
of malware samples. The distilled attacking strategies tangle structure of
system call dependency as well as behavior feature set without affecting
semantics.

– We automate replacement attacks by developing a compiler-level prototype
to perform source to binary transformation. The experimental results demon-
strate our approach is effective.

– To the best of our knowledge, we are the first one to demonstrate the fea-
sibility of automatically obfuscating behavior based malware clustering on
real malware samples.

The rest of the paper is organized as follows. Section 2 introduces previous
work on behavior based malware analysis. Section 3 describes in detail about
how to generate replacement attacks rules with a case study. Section 4 highlights
some of our implementation choices. We present the evaluation of our approach in
Section 5. Possible counter-measures are discussed in Section 6 and we conclude
the paper in Section 7.

2 Related Work

In this section we first present previous work on behavior based malware analysis,
which is related to our work in that their methods rely on system call sequences
or graphs that a malware sample invokes. Then, we introduce previous research
on impeding malware dynamic analysis. In principle, our approach belongs to
this category. At last we describe related work on system call API obfuscation,
which is close in spirit to our approach.

Behavior based malware analysis Malware dynamic analysis techniques are char-
acterized by analyzing the actual executing instructions of a program or the
effects that this program brings to the operating system. Compared with static
technique, dynamic analysis is less vulnerable to various code obfuscation [26].
Christodorescu et al. [15] introduce malware specifications on data-flow depen-
dencies among system calls, which capture true relationships between system
calls and are hard to be circumvented by random system call injection. Since

then, such malware specifications based on SCDG have been widely used in mal-
ware analysis tasks, such as extracting malware discriminative feature by mining
the difference between malware behavior and benign program behavior [18], de-
termining malware family in which instances share common functionalities [7, 6,
28], and detecting malicious behavior [8, 20, 25]. However, none of the presented
approaches is explicitly designed to be resilient to our replacement attacks.

Anti-malware behavior analysis Some countermeasures have been proposed to
evade behavior based malware analysis. Since malware behavior analysis is typi-
cally performed in a controlled sandbox environment, the lion’s share of previous
work focus on run time environment detection [14, 27]. If a malware sample de-
tects itself running in a sandbox rather than real physical machine, it will not
carry out any malicious behaviors. To defeat environment-sensitive malware, D-
inaburg et al. [17] build a transparent analysis platform, which remains invisible
to such sandbox environment check. Another direction relies on contrasting dif-
ferent executions of a malware sample when running in multiple sandboxes. The
control flow deviations may indicate evasion attempts [19]. Our method does
not detect sandbox and is valid in any run time environment. Our replacement
attacks shares similar idea to subvert malware clustering with recent work [9,
10]. Our work is different from these previous works in that we attempt to obfus-
cate data flow dependencies between system calls, while the behavior features
these works attack contain no data flow dependencies. As data relationships
between behavior features are hard to be affected by random noise insertion,
our attacking method is more challenging. Furthermore, these work evaluated
their attacks by directly manipulating malware behavior feature set instead of
malware code, which means their attacks may not be feasible in practice. In
contrast, to demonstrate the feasibility of replacement attacks, we develop a
compiler-level converter to transform malware source code to binary.

System call obfuscation The original idea to obfuscate system call API can be
traced to mimicry attack against intrusion detection [35]. Illusion [34] allows
user-level malware to invoke kernel operations without calling the corresponding
system calls. To launch the Illusion attack, the attacker has to install a malicious
kernel module, which is not practical in many real attacking scenarios. Ma et
al. [24] present shadow attacks by partitioning a malware sample into multiple
shadow precesses and each shadow process presents no-recognizable malware be-
havior. But it’s still an open question to launch a multi-process malware sample
covertly. Our proposed attack is inspired by Xin et al. [37]’s approach to subvert
behavior based software birthmark. However, their attacking method is restrict-
ed to replacing a dependency edge with a new vertex and two new edges. As
shown in Section 5.2, this simple attacking method only has limited effect on
reducing Jaccard Index. In contrast, our approach provides multiple attacking
strategies. In addition, Xin et al. [37]’s attack code is pre-loaded as a dynamic
library when the program starts running. The drawback is it’s quite easy to de-
tect such library interruption. Our API Replacer embeds newly added system
calls into the native code transparently, so that our approach has better stealth.

3 Replacement Attacks Design

3.1 Overveiw

In spite of various metamorphic or polymorphic obfuscation, malware samples
within the same family tend to reveal similar malicious behavior [23]. Our goal in
this paper is to separate similar malware variants by replacing SCDG, the most
prevalent expression to represent malware behavior specifications. Fig. 1 shows
an example of SCDG before/after replacement attacks. At the top of Fig. 1, we
list pseudo code fragment written in MSVC for ease of understanding. In the
original SCDG, the return value of “NtCreateFile” is a FileHandle (“hFile1”),
denoting the new created file object. As hFile1 is passed to “NtClose”, a data
flow dependency connects “NtCreateFile → NtClose”. Windows API “SetFile-
Pointer” in the new code moves the file pointer and returns new position, which
is quite similar to “lseek” system call in Unix. The return value of “SetFile-
Pointer” is equal to moving distance plus the offset of starting point, which is
0 (“FILE BEGIN”) in this example. We exploit the fact that the data type of
“hFile1” and the distance to move are both unsigned integers, and deliberately
assign the distance to move with the same value of “hFile1” (line 2 in the new
code). As a result, the return value of “SetFilePointer” (“dwFilePosition”), is
equal to the “hFile1”. Then “dwFilePosition” is passed to “NtClose” to close
the file. When calling “SetFilePointer”, native API “NtSetInformationFile” is
invoked to change the position information of the file object represented by “h-
File1”. In this way, the new code still preserves the original data flow, while
the SCDG changes significantly. Note that compared with the original code, the
file object is updated with new position information. However, the file object is
closed immediately, imposing no lasting side effect to the final state.

1: HANDLE hFile1 = CreateFile (“logfile”,

 GENERIC_READ, ...);

2: CloseHandle (hFile1);

(a) the original SCDG (b) the new SCDG

NtCreateFile

hFile1

NtSetInformationFile

1: HANDLE hFile1 = CreateFile (“logfile”,

 GENERIC_READ, ...);

2: DWORD dwFilePosition =SetFilePointer

 (hFile1, (DWORD) hFile1, NULL, FILE_BEGIN);

3: CloseHandle ((HANDLE) dwFilePosition);

NtClose

NtCreateFile

hFile1

NtClose

dwFilePosition

Replacement

Attacks

Fig. 1. An example of SCDG before and after replacement attacks

A typical scenario to apply replacement attacks is illustrated in Fig. 2. Taking
malware source code as input to API Replacer, our compiler-level transformation
tool, malware authors generate multiple binary mutations of the initial version.

Malware

Source Code
API Replacer

 Binary 1

Malware Analysis

Sandbox

Compiler-level

Transformation

...

 Binary n

Generate Malware

Behavior Specifications

Internet

Clustering...
Clusters

Fig. 2. Illustration of replacement attacks

Each mutation shares similar malicious functionalities, but exhibits different be-
havior specifications. Then cyber-criminals spread these malware samples to the
Internet or plant them in the live vulnerable hosts. Suppose these transformed
malware samples, with other suspicious binaries are finally collected by anti-
malware companies. To process large number of malware samples, anti-malware
companies utilize automated clustering tools to identify samples with similar be-
havior. These tools execute malware instances in a sandbox and collect run time
information to generate behavior specifications, which will be normalized and
then fed to clustering algorithm. As we mentioned in Section 2, current malware
clustering tools are not designed to explicitly resist replacement attacks, there-
fore similar malware mutations after replacement attacks are probably assigned
to different clusters. In that case, malware analysts have to waste excessive efforts
to re-analyze these similar samples.

3.2 Mining Two Large Data Sets

Since there are various expressions of malware behavior based on SCDG, to find
out the possible targets we may attack, we first mine two large data sets of
malware behavior specifications used for malware detection and clustering.

– BRS-data [6] is used by Babić et al. to evaluate malware detection with
tree automata inference. BRS-data contains system calls dependency graphs
generated for 2631 malware samples and covers a large variety of malware,
such as trojan, backdoor, worm, and virus.

– BCHKK-data [7] is used for evaluating malware clustering technique pro-
posed by Bayer et al. BCHKK-data includes behavior profiles extracted from
2658 malware samples, and more than 75% samples are the variants of Al-
laple worm. Note that SCDG is not amenable to scalable clustering tech-
niques, which usually operate on numerical vectorial feature set. Bayer et al.
converted system call dependencies to a set of features in terms of operations
(create, read, write, map, etc.) on OS objects (file, registry, process, section,
thread, etc.) and dependencies between OS objects.

These two data sets reflect two typical applications of SCDG to represent
malware specifications: 1) directly utilize rich structural information contained
in SCDG [15, 29, 18], which is able to match behavioral patterns exactly but
lacks of scalability; 2) extract higher level abstractions from SCDG to fit for effi-
cient large-scale malware analysis [7, 8, 30] at the cost of precision. The similarity
of BRS-data is normally measured by graph edit distance or graph isomorphis-
m [13], while the similarity metrics of BCHKK-data is calculated by Jaccard
Index [11].

Popular dependencies We calculate popular native API dependencies from
BRS-data and OS operations and dependencies from BCHKK-data. Table 1 lists
11 popular native API dependencies out of BRS-data, which are mainly related
to the operations on Windows registry, memory and file system. The second
column is the medium data flow types passed between system calls. Most of
the medium types are handles, which stands for various OS objects such as file,
registry, section (memory-mapped file), process, etc. Table 2 presents popular
OS object types, operations and dependencies from BCHKK-data. We believe
as long as we diversify these popular dependencies and behavior features, the
similarity among malware mutations can drop significantly.

Common sub-SCDGs Although extracted from different sources, these da-
ta reveal some common malicious functions, which are mapped to sub-SCDGs.
The top 3 popular sub-SCDGs are corresponding to malware replication, reg-
istry modification for persistence and code remote injection. For example, the
several frequent dependencies regarding “NtMapViewOfSection” and OS objects
dependency between file and section, indicate malware writers commonly uti-
lize memory mapped file to facilitate file manipulation. Malware often configure
Windows registry for persistence in order to run automatically when machine
starts, leading to frequent operations on Windows registry. “NtOpenProcess →
NtWriteVirtualMemory” and “process→ thread” are mainly introduced by cre-
ating a new thread in a remote process, the most common way to launch mal-
ware covertly in vulnerable hosts [33]. If we implement these common functions
through different ways, the corresponding sub-SCDGs can be changed drastically
as well.

3.3 Attacking Strategies

In this section we elaborate how to construct replacement attacks strategies. We
propose 3 requirements that our attacking strategies have to meet:

1. (R1) Our replacement attacks should invalidate various malware behavior
similarity metrics, such as graph edit distance and Jaccard Index.

2. (R2) New system calls and dependencies impose no side effect to original
data flow.

3. (R3) Transformed SCDG should be as common as possible.

Table 1. Popular windows native API dependencies

Dependencies Data flow types Ratio (%)
NtMapViewOfSection → NtProtectVirtualMemory void *address 22.4
NtOpenKey → NtQueryValueKey KeyHandle 19.4
NtCreateSection → NtMapViewOfSection SectionHandle 9.6
NtMapViewOfSection → NtUnmapViewOfSection void *address 8.9
NtOpenSection → NtMapViewOfSection SectionHandle 6.3
NtCreateFile → NtReadFile FileHandle 5.4
NtCreateSection → NtQuerySection SectionHandle 4.8
NtOpenKey → NtQueryKey KeyHandle 4.6
NtCreateFile → NtQueryInformationFile FileHandle 4.2
NtOpenFile → NtSetInformationFile FileHandle 4.1
NtOpenProcess → NtWriteVirtualMemory ProcessHandle 3.8

Table 2. Popular OS object types, operations and dependencies

OS object type OS operation
file open, create, read, write, query information,

query directory, set information, query file
registry create, open, query value, set value
section query, create, map, open, mem read
process create, open, query
thread create, query, resume

OS object dependency
file → file, registry → file, registry → registry,

process → thread, section → file, file → section

We meet our design requirement R1 by two attacking methods. The first one
is embedding redundant data flow dependent system calls to replace original
popular dependencies. As a result, new vertices and dependencies are created
(see example in Fig. 1). At the same time, we make sure data types and values
of original dependencies are preserved (satisfy R2). Further more, we observe
that malicious functionalities can be developed with different technical meth-
ods, making it possible for SCDG mutations without undermining the intended
purpose. For example, malware replication can be implemented through either
memory-mapped file or file I/O; multiple ways exist to modify registry for the
purpose of persistence. Therefore our second attacking strategy is transforming
a sub-SCDG to its semantically equivalent mutations (satisfy R2). As a result,
the original dependencies probably do not exist anymore. A by-product of our
mining result in Section 3.2 is that popular dependencies can also be served as
possible candidates to be embedded in a SCDG, so that the new SCDG doesn’t
look unusual (satisfy R3). Note that these two attacking methods can seamlessly
weave together to amplify each other’s effect.

3.4 Replacement Attacks Arsenal

In this section we present the details of our replacement attacks arsenal. Accord-
ing to our attacking strategies, we classify them into 2 categories:

Inserting redundant dependencies We summarize attacks belong to this
category based on the medium data flow types listed in Table 1.

1. “NtSetInformationFile” attack. This attack can replace the dependencies
with FileHandle as medium, which has been illustrated in Fig. 1.

2. “NtDuplicateObject” attack. “NtDuplicateObject” returns a duplicated ob-
ject handle, which refers to the same object as the original handle.

3. “NtQuery*” attack. There are several windows native APIs for querying in-
formation of kernel objects, such as “NtQueryAttributesFile”, “NtQueryKey”,
“NtQueryInformationProcess” and “NtQueryInformationFile”. All of these
query APIs take certain object handle as one of input argument and output
object information. No any modification is introduced to the kernel object-
s. Hence “NtQuery*” native APIs are good candidates for our replacement
attacks. For example, we could insert “NtQueryInformationFile” into a pop-
ular NtCreateFile → NtSetInformationFile dependency, where the output of
“NtQueryInformationFile” (“FileInformation”) is passed to “NtSetInforma-
tionFile”. The two new dependencies also appear frequently.

4. The medium of “void *address” shown in Table 1 receives address of a
mapped memory. To handle this medium, we can insert “NtQueryVirtualMem-
ory” or “NtReadVirtualMemory”, which do not affect the mapped memory
address.

Sub-SCDG mutations We present multiple implementation ways to achieve
3 common malicious sub tasks we observed in Section 3.2, and what’s more, we
make sure that each implementation reveals different sub-SCDG with others.

1. Replication. When malware authors call Windows API “CopyFile” to repli-
cate malware sample from source to target file, it is actually achieved through
memory mapped file. When a process maps a file into its virtual address s-
pace, reading and writing to the file is simply manipulating the mapped
memory region, which produces OS objects dependencies between file and
section. First we can choose to map either source or destination file to mem-
ory section. Another implementation is only through file I/O operations.
For example, we can copy a file by calling “NtReadFile” and “NtWriteFile”
instead of using memory as medium.

2. Modify registry for persistence. Malware often add entries into the registry
to remain active in the event of a reboot. There are multiple registry keys
that can be configured to load malware at startup. The reference [4] lists 23
registry keys are accessed during system start. We leverage these multiple
choices to randomly pick up available registry keys to update.

3. Code remote injection. Malicious code can be injected into another running
process so that the process could execute the malware unwittingly. To achieve
this functionality, we can either inject the malicious code directly into a
remote process, or put the code into a DLL and force the remote process to
load it [33].

3.5 Case Study

For a better understanding of our replacement attacks, we provide a real case
to mutate the replication behavior of Worm.Win32.Hunatcha. Fig. 3(a) shows
a native API sequence fragment we collected from the initial version and the
corresponding SCDG. The malware sample replicates the file “hunatcha.exe” to
“ladygaga.mp3.exe” by first memory-mapping the source file and then writing
the memory content to the destination file. Fig. 4(a) presents the feature set
abstracted from Fig. 3(a) , following the definition of BCHKK-data [7]. The first
3 lines are operations (open, create, write, etc.) on OS objects (file, section). The
fourth line is an OS dependency from section to destination file.

Table 3. Similarity metrics of 3 mutations

a vs. a a vs. b a vs. c b vs. c
Graph edit distance 0.0 0.71 0.60 0.71

Jaccard Index 1.0 0.14 0.33 0.27

As shown in Fig. 3(b), we first mutate the generated SCDG by switching
the file mapped to the memory, that is, we explicitly map the destination file
(not source file) into the memory, so that file copying is achieved by reading
content of source file to the mapped memory region. At the same time, we also
insert redundant data flow dependent system calls to create new dependencies
and decouple original dependencies. Therefore the structure of resulting SCDG
and feature set (shown in Fig. 4(b)) are changed significantly. Fig. 3(c) presents
another round attack. Instead of utilizing memory mapped file, we directly copy
file through file I/O. Therefore no memory section appears in SCDG and feature
set. Table 3 shows the two similarity metrics for these 3 mutations. The calcu-
lation of these two metrics is introduced in Section 5.2. The graph edit distance
value of 0.0 or Jaccard Index value of 1.0 indicates that two behaviors are identi-
cal. The large graph edit distance or small Jaccard Index value means that after
our replacement attacks, the similarity of malware variants drops substantially.

4 Implementation

To automate the attacking strategies we distill in Section 3, we have implement-
ed a prototype tool, API Replacer, on top of LLVM and Microsoft Visual Studio
2012. Given an initial version of malware source code, API Replacer is able to

1: HANDLE src = NtOpenFile (“D:\hunatcha.exe”, …);

2: HANDLE dst = NtCreateFile

 (“\My Shared Folder\ladygaga.mp3.exe”, …);

3: HANDLE hSection= NtCreateSection(…, src);

4: void *base = NtMapViewOfSection (hSection, …);

5: NtWriteFile (dst, base, length (src), …);

1: NtQueryAttributesFile (“D:\hunatcha.exe”, …);

2: HANDLE src = NtOpenFile (“D:\hunatcha.exe”, …);

3: HANDLE dst = NtCreateFile

 (“\My Shared Folder\ladygaga.mp3.exe”, …);

4: HANDLE hSection= NtCreateSection (…, dst);

5: void *base = NtMapViewOfSection (hSection, …); 6:

NtQueryVirtualMemory (…, base, …);

7: *base = NtReadFile (src, length (src) , …);

(a) the original SCDG

Replacement

Attacks

NtOpenFile src NtCreateSection

NtCreateFile

NtWriteFile

NtMapViewOfSection

hSection

base

dst

NtCreateFile dst NtCreateSection

NtOpenFile NtReadFile

NtMapViewOfSection

hSection

base

(b) the new SCDG

Replacement

Attacks

NtQueryAttributesFile

“D:\hunatcha.exe”

src

NtQueryVirtualMemory

base

1: HANDLE src = NtOpenFile (“D:\hunatcha.exe”, …);

2: HANDLE dst = NtCreateFile

 (“\My Shared Folder\ladygaga.mp3.exe”, …);

3: void *buffer = NtReadFile (src, length (src) , …)

4: NtWriteFile (dst, buffer , length (src) …);

NtCreateFile

dst

NtOpenFile

NtReadFile

src

NtWriteFile

buffer

(c) the new SCDG

Fig. 3. System calls dependence graph (SCDG) of replication before and after replace-
ment attacks

automatically generate multiple versions of malware binaries, which share sim-
ilar malicious functionalities but exhibit different malware specifications. Fig. 5
describes the architecture of API Replacer. It takes malware source code as
input and first generates LLVM IR through the Clang compiler. Then the IR
code is manipulated by our transformation pass to fulfill replacement attacks.

1: op|file|D:\hunatcha.exe

 open:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe

 create:1, write: 1

3: op|section|D:\hunatcha.exe

 create:1, map:1, mem_read: 1

4: dep|section|D:\hunatcha.exe→
 file|\My Shared Folder\ladygaga.mp3.exe

(a) the original feature set

1: op|file|D:\hunatcha.exe

 open:1, query_file:1, read:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe

 create:1

3: op|section|\My Shared Folder\ladygaga.mp3.exe

 create:1, map:1, query:1, mem_write: 1

4: dep|file|D:\hunatcha.exe →
 section|\My Shared Folder\ladygaga.mp3.exe

(b) the new feature set

1: op|file|D:\hunatcha.exe

 open:1, read:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe

 create:1, write:1

3: dep|file|D:\hunatcha.exe →
 file|\My Shared Folder\ladygaga.mp3.exe

(c) the new feature set

Fig. 4. Feature set of replication before and after replacement attacks

Afterwards the new transformed code are passed to LLC to emit object code,
which are given to Visual Studio’s link.exe to generate an executable binary.
Moreover, new malware IR can be converted back to source code by LLC for
another round of transformation. We follow the instructions in [2] to integrate
LLVM system with Visual Studio. More specifically, our transformation pass in-
herits “CallGraphSCCPass” provided by LLVM to traverse the call graph and
identify candidate system calls to attack. Our pass utilizes data flow analysis of
LLVM to find out dependencies among system calls. Then two attacking strate-
gies are performed in order to change the original SCDG. Section 3.3 describes
these steps in details. After that, our pass updates the changes of call graph.
Algorithm 1 lists each step of API Replacer’s transformation pass.

The major implementation choice we made is using Windows APIs as a
proxy for Windows native APIs. The reason is Windows native APIs are not
comprehensively documented, while Windows APIs is well described in MSDN.2

According to the mapping between Windows APIs and native APIs [32], we are
able to manipulate Windows APIs directly.

Algorithm 1 API Replacer’s algorithm

1: Traverse call graph
2: Identify candidate system calls and their dependencies
3: Mutate a sequence of dependent system calls to their equivalent ones
4: Insert redundant data flow dependent system calls
5: Update new call graph

2 http://msdn.microsoft.com/

Malware

Source Code

(C/C++)

Clang

(Frontend)

Malware IR

(LLVM bitcode)
New Malware IR

(LLVM bitcode)

Malware

Source Code

(C/C++)

Clang

(Compiler)

Malware IR

(LLVM bitcode)

Link.exe

(Visual Studio)

Transformed

Malware IR

LLC

(Code Generator)
Malware

Binary

New Malware

Source Code

IR Analysis &

Transform Passes

LLVM Optimization

Object Code

Fig. 5. The architecture of API Replacer

5 Evaluation

In this section, we apply API Replacer to transform real malware samples and
evaluate the effectiveness of our approach to impede malware similarity metrics
calculation and behavior-based malware clustering. We also test with 5 SPEC
CPU2006 benchmarks to evaluate performance slowdown imposed by replace-
ment attacks.

5.1 Experiment Setup

We transform malware source code collected from VX Heavens3. These malware
samples are chosen for two reasons: 1) they do not contain any trigger-based be-
havior [36] or runtime environment checking condition [19]; 2) they have different
malicious functionalities. In this way, we ensure that each sample fully exhibits
its specific malicious intent during runtime execution and each sample presents
different behavior specifications. Malware samples under experiment are execut-
ed in a malware dynamic analysis system, Cuckoo Sandbox4, to collect windows
native API calls traces. We first filter out isolated nodes which have no depen-
dencies with others. Then we compute SCDG for each sample following the data
flow dependencies between native APIs. Statistics for lines of code and SCDG
are shown in Table 4.

5.2 Subverting Malware Behavior Similarity Metrics

In this experiment, we evaluate replacement attacks with two representative
similarity metrics, namely graph edit distance and Jaccard Index. The former
is used to measure the similarity of SCDG structure; while the latter represents
the similarity of behavior feature set, a higher level abstraction extracted from
SCDG. We first set the ratio of replaced system calls as 0%, 10%, 20%, and 30%
and then generate 4 mutations respectively for each testing malware sample.

3 http://vxheaven.org/src.php
4 http://www.cuckoosandbox.org/

Table 4. Test set statistics

Sample Type LoC #
SCDG

Node # Edge #
BullMoose Trojan 30 602 360
Clibo Trojan 90 698 342
Branko Worm 270 590 332
Hunatcha Worm 340 756 408
WormLabs Worm 420 895 506
KeyLogger Trojan 460 811 439
Sasser Worm 950 1860 1044
Mydoom Worm 3276 9342 5418

Then we run these mutations in Cuckoo Sandbox to collect SCDGs in order to
compute graph edit distance. After that, we convert SCDGs to feature sets to
calculate their Jaccard Index.

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

A v e r a g e
M y d o o m

S a s s e r
K e y L o g g e r

W o r m L a b s

H u n a t c h a
B r a n k o

C l i b o
B u l l M o o s e

Gr
ap

h e
dit

 di
sta

nc
e

 1 0 %
 2 0 %
 3 0 %

(a) Graph edit distance

0 . 2
0 . 3

0 . 4
0 . 5

0 . 6
0 . 7

0 . 8
0 . 9

1 . 0

A v e r a g e
M y d o o m

S a s s e r
K e y L o g g e r

W o r m L a b s

H u n a t c h a

B r a n k o
C l i b o

B u l l M o o s e

Ja
cca

rd
Ind

ex

 1 0 %
 2 0 %
 3 0 %

(b) Jaccard Index

Fig. 6. Graph edit distance and Jaccard Index after replacement attacks

Graph edit distance We measure the similarity of SCDG G1 and SCDG G2 via
graph edit distance [13], which is defined as

d(G1, G2) = 1− |MCS(G1, G2)|
max(|G1|, |G2|)

MCS(G1, G2) is the maximal common subgraph and |G| is the number of nodes
in a graph. The value of the distance varies from 0.0 to 1.0. Distance value 0.0
denotes that two graphs are identical. Park et al. employed the graph edit dis-
tance for malware classification and clustering [28, 29], where they set similarity
threshold as 0.3. Graph distance above the threshold means two malware sam-
ples are different. Taken the sample with 0% replacement ratio as the baseline,

Fig. 6(a) shows the graph edit distance after replacement attacks. Basically the
graph edit distance increases steadily as the amount of replaced system calls rais-
es. Please note that when we only enforce 20% replacement, all the distances are
beyond the threshold of 0.3. This experiment demonstrates that our replacement
attacks change the structure of SCDG significantly.

Jaccard Index Assume behavior feature set of malware sample a and b are Fa

and Fb, Jaccard Index is defined as

J(a, b) =
|Fa ∩ Fb|
|Fa ∪ Fb|

Bayer et al. [7] identified two similar malware feature sets by checking whether
their Jaccard Index is ≥ 0.7. Similar with the setting of Fig. 6(a), Fig. 6(b)
presents the result of Jaccard Index after replacement attacks. We can draw a
similar conclusion that Jaccard Index reduces as replacement ratio increases.
However, the decline rate of Jaccard Index is not as large as the rising rate of
graph edit distance. We attribute this to a better fault tolerance of large scale
feature set. For example, Mydoom in our testing set has more the 1000 features.
Consequently, small portion of system calls replacement imposes less effect on
Jaccard Index. In spite of this, when the replacement ratio is increased to 30%,
all of the the Jaccard Index value are below the similarity threshold of 0.7.

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

A v e r a g e
M y d o o m

S a s s e r
K e y L o g g e r

W o r m L a b s

H u n a t c h a
B r a n k o

C l i b o
B u l l M o o s e

Gr
ap

h e
dit

 di
sta

nc
e

 R a n d o m
 X i n e t a l .
 O u r w o r k

(a) Graph edit distance comparison

0 . 2
0 . 3

0 . 4
0 . 5

0 . 6
0 . 7

0 . 8
0 . 9

1 . 0

A v e r a g e
M y d o o m

S a s s e r
K e y L o g g e r

W o r m L a b s

H u n a t c h a
B r a n k o

C l i b o
B u l l M o o s e

Ja
cca

rd
Ind

ex

 R a n d o m
 X i n e t a l .
 O u r w o r k

(b) Jaccard Index comparison

Fig. 7. Our attacks vs. other approaches

Our attacks vs. other approaches Furthermore, we compared our attacks with
two other attacking approaches, that is system call random insertion (“Random”
bar) and Xin et al.’s approach [37], which obfuscates SCDG by replacing a
dependency edge with a new vertex and two new edges. The ratio of new system
calls insertion, replaced edges and replaced system calls are all set as 30%. The
comparison results are presented in Fig. 7. The quite small graph edit distance

and large Jaccard Index value show that SCDG is resilient to the attack of system
call random insertion, which does not consider data flow dependencies. As shown
in Fig. 7(a), although Xin et al.’s approach is able to subvert the structure of
SCDG (the distance is > 0.3), our attacks outperform their approach by a factor
of 1.6x on average. Moreover, Fig. 7(b) indicates that Xin et al.’s attacking only
has a marginal effect on the behavior feature set such as BCHKK-data [7]. The
reason is Xin et al.’s approach neither introduces new OS objects nor brings new
dependencies between OS objects.

5.3 Against Behavior-based Clustering

In this section, we demonstrate that replacement attacks are able to impede
behavior-based malware clustering approach. We choose the clustering approach
proposed by Bayer et al. [7], which is a state-of-the-art clustering system for
malware behavior. Bayer et al.’s approach contains two major steps: 1) employ
locality sensitive hashing (LSH) to find approximate near-neighbors of feature
sets; 2) perform single-linkage hierarchical clustering.

We use the LSH code from [5] in our experiment. To fairly evaluate the
clustering approach, we stick to a similar setup. The Jaccard Index threshold and
LSH parameters, are all exactly the same as in [7]. As mentioned in Section 5.1,
malware samples in our initial dataset belong to 8 different families. To enlarge
the dataset for our malware clustering evaluation, we generate 5 datasets:

– Dataset 0: We apply various polymorphism obfuscation and packing [31] on
our initial samples. For each family, we generate 30 variants. All mutations
in each group are only different in terms of static properties. The samples
within the same family exhibit quite similar behavior.

– Dataset 1 ∼ 3: We set system call replacement ratio as 10%, 20% and 30%
respectively and then produce 30 variants for every family under each re-
placement ratio setting. Each dataset includes 240 instances.

– Dataset 4: We mix all samples within Dataset 0 ∼ 3 to this dataset, which
comprises 960 malware samples in total.

We perform LSH-based single-linkage hierarchical clustering on each dataset.
The quality of the clustering results is measured by two metrics: precision and
recall. The goal of precision is to measure how well a clustering algorithm
assigns malware samples with different behavior to different clusters, while recall
indicates how well a clustering algorithm puts malware with the same behavior
into the same cluster. The naive clustering method that creates only one cluster
comprising all samples has the highest recall (1.0), but the worst precision. On
the contrary, the method sets up a clustering for each sample achieves the highest
precision (1.0) but with low recall number. An optimal clustering method should
provide both high precision and recall at the same time. Please refer to [7] for
detailed information.

Table 5 summarizes our results. Since the samples in Dataset 0 are only differ-
ent in terms of static features, the clustering result has the optimal precision and
recall. Because 6 samples crashed after applying virtualization obfuscators [16],

Table 5. Quality of the clustering

Dataset 0 1 2 3 4
Samples # 240 240 240 240 960
Cluster # 8 12 35 110 208
Precision 1.000 0.981 0.978 0.965 0.973
Recall 0.975 0.933 0.483 0.121 0.529

the recall value is slightly smaller than 1.0. The results of Dataset 1 ∼ 3 show
the trend that the recall value falls as system call replacement ratio raises. For
example, under the replacement ratio of 30%, on average only about 2 samples
are clustered into each family. A small recall value implies that more clusters are
created than expected. Dataset 4 simulates a real scenario we mentioned in Sec-
tion 3.1: malware samples after replacement attacks, mixed with other suspicious
binaries, are finally collected for clustering. The low recall value demonstrates
that our approach is effective in practice.

5.4 Performance

Since switching between kernel and user mode is inherently expensive, the re-
dundant system calls introduced by replacement attacks will no doubt impact
runtime performance. We measure runtime performance after applying replace-
ment attacks on 5 SPEC CPU2006 benchmarks, including bzip2, libquantum,
omnetpp, astar and xalancbmk. Our testbed is a laptop with a 2.30GHz Intel(R)
Core i5 CPU and 8GB of memory, running on the operating system of Windows
7. On average, testing programs have a slowdown of 1.33 times (normalized to the
runtime without transformation) when the system call replacement ratio is 30%.
Considering the significant effect under this replacement ratio, the performance
tradeoff is worthy.

6 Discussion

Limitations Currently the compatibility with Visual Studio and LLVM tool
chain is not perfect. For example, C++ standard library and Windows Platfor-
m SDK are not fully supported by clang, which prevent us from testing more
complicated malware. The attacking strategies we summarized in Section 3.3,
especially the sub-SCDG mutation rules are limited. Implementing the same
functionality through diverse ways need comprehensive domain knowledge. We
plan to extend our replacement attacks arsenal in future work.

Possible ways to defeat We suggest possible ways to defend against replace-
ment attacks. As one of our attacking strategies is to insert redundant depen-
dencies, the size of SCDG could be enlarged. An analyzer is able to detect such
change by comparing new SCDG with the original one. However, without more
close investigation (usually involving tedious work), analyzer cannot easily differ-
entiate whether the size change of SCDG comes from incremental updates or our

attacks. Another countermeasure is to normalize the behavior graph mutation-
s. For example, the multiple semantically equivalent graph patterns of malware
replication can be unified as a canonical form before clustering. The effort in this
direction is Martignoni et al.’s work [25]. They designed a layered architecture to
detect alternative events that deliver the same high-level functionality. However,
admitted by the authors, the layered hierarchy is generated manually and tested
only with 7 malware samples. A general and automated behavior graph normal-
ization is still missing. Moreover, high-level malware behavior abstractions may
overlook subtle distinctions among malware samples. Therefore, the higher-level
of behavior abstractions are probably valid in distinguishing malware from be-
nign program, but are incompetent to differentiate malware variants. Another
way is to perform more fine-grained data flow analysis. For example, If the data
passed in two sequential dependencies are not changed, the medium system call
is probably a redundant native API such as NtSetInformationFile and NtDupli-
cateObject. However, this approach cannot defeat sub-SCDG mutations, which
may completely change the structure of sub-SCDG.

7 Conclusion

Behavior-based malware specifications have been broadly employed in malware
detection and clustering. In this paper we study the vulnerability of current
behavior based malware analysis and propose replacement attacks to impede
malware behavior specifications. We distill general attacking strategies by mining
large malware behavior data sets and develop a compiler level prototype to
demonstrate their feasibilities. Our evaluation on real malware samples shows
that the transformed malware could evade malware similarity comparison and
impede behavior-based clustering. We expect our study can cultivate further
research to improve resistance to this potential threat.

Acknowledgements

We are very grateful to Paolo Milani Comparetti and Christopher Kruegel for
providing access to the BCHKK-data dataset. This research was supported in
part by the NSF Grant CNS-1223710, CCF-1320605 and ARO W911NF-13-1-
0421 (MURI).

References

1. Cybercriminals sell access to tens of thousands of malware-infected Russian hosts.
http://www.webroot.com/blog/2013/09/23/, last reviewed, 10/03/2014.

2. Getting started with the llvm system using Microsoft Visual Studio. http://llvm.
org/docs/GettingStartedVS.html, last reviewed, 10/03/2014.

3. Malicious software and its underground economy. https://www.coursera.org/

course/malsoftware, last reviewed, 10/03/2014.
4. Windows registry persistence, part 2: The run keys and search-order. http://

blog.cylance.com, last reviewed, 10/03/2014.

5. A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Communications of the ACM, 51(1), Jan. 2008.

6. D. Babić, D. Reynaud, and D. Song. Malware analysis with tree automata infer-
ence. In Proceedings of the 23rd Int. Conference on Computer Aided Verification
(CAV’11), 2011.

7. U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel, and E. Kirda. Scalable,
behavior based malware clustering. In Proceedings of the Network and Distributed
System Security Symposium (NDSS’09), 2009.

8. U. Bayer, E. Kirda, and C. Kruegel. Improving the efficiency of dynamic mal-
ware analysis. In Proceedings of the 2010 ACM Symposium on Applied Computing
(SAC’10), 2010.

9. B. Biggio, I. Pillai, S. Rota Bulò, D. Ariu, M. Pelillo, and F. Roli. Is data clus-
tering in adversarial settings secure? In Proceedings of the 6th ACM Workshop on
Artificial Intelligence and Security (AISec’13), 2013.

10. B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona, G. Giacinto, and F. Rol.
Poisoning behavioral malware clustering. In Proceedings of the 7th ACM Workshop
on Artificial Intelligence and Security (AISec’14), 2014.

11. A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering
of the web. In Proceedings of the Sixth International Conference on World Wide
Web, 1997.

12. D. Bruschi, L. Martignoni, and M. Monga. Detecting self-mutating malware us-
ing control-flow graph matching. In Proceedings of Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA’06), 2006.

13. H. Bunke and K. Shearer. A graph distance metric based on the maximal common
subgraph. Pattern Recognition Letters, 19(3-4):255–259, 1998.

14. X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario. Towards an understand-
ing of anti-virtualization and anti-debugging behavior in modern malware. In
Proceedings of the International Conference on Dependable Systems and Networks
(DSN’08), 2008.

15. M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of malicious
behavior. In ESEC-FSE’ 07: Proceedings of the the 6th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT symposium on the
foundations of software engineering, 2007.

16. K. Coogan, G. Lu, and S. Debray. Deobfuscation of virtualization-obfuscated
software. In Proceedings of the 18th ACM Conference on Computer and Commu-
nications Security (CCS’11), 2011.

17. A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether: Malware analysis via hard-
ware virtualization extensions. In Proceedings of the ACM Conference on Computer
and Communications Security (CCS’08), 2008.

18. M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and X. Yan. Synthesizing
near-optimal malware specifications from suspicious behaviors. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, 2010.

19. M. G. Kang, H. Yin, S. Hanna, S. McCamant, and D. Song. Emulating emulation-
resistant malware. In Proceedings of the Workshop on Virtual Machine Security
(VMSec’09), 2009.

20. C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Zho, and X. Wang.
Effective and efficient malware detection at the end host. In Proceedings of the
18th USENIX Security Symposium, 2009.

21. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic worm
detection using structural information of executables. In Proceedings of Symposium
on Recent Advances in Intrusion Detection (RAID’05), 2005.

22. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization (CGO’04), 2004.

23. M. Lindorfer, A. Di Federico, F. Maggi, P. M. Comparetti, and S. Zanero. Lines
of malicious code: Insights into the malicious software industry. In Proceedings of
the 28th Annual Computer Security Applications Conference (ACSAC’12), 2012.

24. W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu. Shadow attacks: Automatically
evading system-call-behavior based malware detection. Computer Virology, 8(1-
2):1–13, 2012.

25. L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell. A layered
architecture for detecting malicious behaviors. In Proceedings of the 10th Interna-
tional Symposium on Recent Advances in Intrusion Detection (RAID’08), 2008.

26. A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware detec-
tion. In Proceedings of the 23th Annual Computer Security Applications Conference
(ACSAC’07), December 2007.

27. R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi. A fistful of red-pills: How
to automatically generate procedures to detect cpu emulators. In Proceedings of
the USENIX Workshop on Offensive Technologies (WOOT’09), 2009.

28. Y. Park and D. Reeves. Deriving common malware behavior through graph clus-
tering. In Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security (ASIACCS’11), 2011.

29. Y. Park, D. Reeves, V. Mulukutla, and B. Sundaravel. Fast malware classifica-
tion by automated behavioral graph matching. In Proceedings of the 6th Annual
Workshop on Cyber Security and Information Intelligence Research, 2010.

30. K. Rieck, P. Trinius, C. Willems, and T. Holz. Automatic analysis of malware
behavior using machine learning. Journal of Computer Security, 19(4), 2011.

31. K. A. Roundy and B. P. Miller. Binary-code obfuscations in prevalent packer tools.
ACM Computing Surveys, 46(1), 2013.

32. M. Russinovich. Inside the native api. http://netcode.cz/img/83/nativeapi.

html, last reviewed, 10/03/2014.
33. M. Sikorski and A. Honig. Practical Malware Analysis: The Hands-On Guide to

Dissecting Malicious Software. No Starch Press, February 2012.
34. A. Srivastava, A. Lanzi, J. Giffin, and D. Balzarotti. Operating system interface

obfuscation and the revealing of hidden operations. In Proceedings of the Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA’11), 2011.

35. D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems.
In Proceedings of the 9th ACM Conference on Computer and Communications
Security (CCS’02), 2002.

36. Z. Wang, J. Ming, C. Jia, and D. Gao. Linear obfuscation to combat symbolic exe-
cution. In Proceedings of the 2011 European Symposium on Research in Computer
Security (ESORICS’11), 2011.

37. Z. Xin, H. Chen, X. C. Wang, P. Liu, S. Zhu, and B. Mao. Replacement attacks
on behavior based software birthmark. In Proceedings of the 14th Information
Security Conference (ISC’11), 2011.

