
Noname manuscript No.
(will be inserted by the editor)

Impeding Behavior-based Malware Analysis via
Replacement Attacks to Malware Specifications

Jiang Ming · Zhi Xin · Pengwei Lan · Dinghao Wu · Peng Liu · Bing

Mao

the date of receipt and acceptance should be inserted later

Abstract As the underground market of malware flour-

ishes, there is an exponential increase in the number

and diversity of malware. A crucial question in malware

analysis research is how to define malware specifications

or signatures that faithfully describe similar malicious

intent and also clearly stand out from other programs.

Although the traditional malware specifications based

on syntactic signatures are efficient, they can be eas-

ily defeated by various obfuscation techniques. Since

the malicious behavior is often stable across similar

malware instances, behavior-based specifications which

A preliminary version of this paper appeared in the Proceed-
ings of the 13th International Conference on Applied Cryptog-

raphy and Network Security (ACNS’15) , New York, June 2–5,
2015 [31].

Jiang Ming
The Pennsylvania State University, University Park, PA
16802, U.S.A.
E-mail: jum310@ist.psu.edu

Zhi Xin
Nanjing University, Nanjing 210093, China
E-mail: zxin@nju.edu.cn

Pengwei Lan
The Pennsylvania State University, University Park, PA
16802, U.S.A.
E-mail: pul139@ist.psu.edu

Dinghao Wu
The Pennsylvania State University, University Park, PA
16802, U.S.A.
E-mail: dwu@ist.psu.edu

Peng Liu
The Pennsylvania State University, University Park, PA
16802, U.S.A.
E-mail: pliu@ist.psu.edu

Bing Mao
Nanjing University, Nanjing 210093, China
E-mail: maobing@nju.edu.cn

capture real malicious characteristics during run time,

have become more prevalent in anti-malware tasks, such

as malware detection and malware clustering. This kind

of specification is typically extracted from the system

call dependence graph that a malware sample invokes.

In this paper, we present replacement attacks to cam-

ouflage similar behaviors by poisoning behavior-based

specifications. The key method of our attacks is to re-

place a system call dependence graph to its semantically

equivalent variants so that the similar malware samples

within one family turn out to be different. As a result,

malware analysts have to put more efforts into reex-

amining the similar samples which may have been in-

vestigated before. We distil general attacking strategies

by mining more than 5, 200 malware samples’ behavior

specifications and implement a compiler-level prototype

to automate replacement attacks. Experiments on 960

real malware samples demonstrate the effectiveness of

our approach to impede various behavior-based mal-

ware analysis tasks, such as similarity comparison and

malware clustering. In the end, we also discuss possible

countermeasures in order to strengthen existing mal-

ware defense.

Keywords: behavior based malware analysis, system

call dependence graph, replacement attack, obfuscation

1 Introduction

Malware, or malicious software with harmful intents

to compromise computer systems, is one of the ma-

jor challenges to the Internet. Over the past years, the

ecosystem of malware has evolved dramatically from

“for-fun” activities to a profit-driven underground mar-

ket [3], where malware developers sell their products

and cyber-criminals can simply purchase access to tens



2 Jiang Ming et al.

of thousands of malware-infected hosts for nefarious

purposes [1]. Normally malware developers do not write

new code from scratch, but choose to update the old

code with new features or obfuscation methods [28].

With thousands of malware instances appearing every

day, efficiently processing a large number of malware

samples which exhibit similar behavior, has become in-

creasingly important. A key step to improve efficiency

is to define the discriminative specifications or signa-

tures that faithfully describe intrinsic malicious intents

so that malware samples with similar functionalities

tend to share common specifications. Malware analysts

benefit from such general specifications. For example,

every time a suspicious program is found in the wild,

malware analysts can quickly determine whether it be-

longs to previously known families by matching their

specifications.

In the malware arms race, the malicious code keeps

evolving to evade detection. The classical syntactic spec-

ifications are insufficient to defeat various obfuscation

techniques, such as polymorphism [26], binary pack-

ing [39], and self-modifying code [12]. In contrast, behavior-

based specifications, which are generated during mal-

ware execution, are more resilient to static obfuscation

methods and able to represent the malicious behavior

naturally, such as download and execution, replication

and remote injection. The main interface for malware

to interact with the operating system is through system

calls1. The data flow dependencies among system calls

are expressed as an acyclic graph, namely system call

dependency graph (SCDG), where the nodes represent

the system calls executed, and a directed edge indicates

a data flow between two nodes. Typically, a dependency

edge derives from the return value or the output argu-

ment of a previous system call. When a data source

is passed to one of its succeeding system call’s input-

argument, a directed edge connecting these two nodes

is created. Since such data flow dependencies are stable

and hard to be reordered, SCDG has been broadly ac-

cepted as a reliable abstraction of malware behavior [15,

20], and widely employed in malware detection [6,25]

and large scale malware clustering [7,35].

With quite a number of compelling applications, the

malware specifications built on SCDG look promising.

However, it is not impossible to circumvent. In order

to inspire more state-of-the-art malware analysis tech-

niques, we exploit the limitations of the current ap-

proaches and present replacement attacks against behavior-

based malware analysis. We show that it is possible

to automatically conceal similar behavior specifications

among malware variants by replacing an SCDG to its

semantically equivalent ones. As a result, similar mal-

1 The systems call in Windows NT is called native API

ware variants show large distances and are assigned to

different families. Eventually, malware analysts have to

put more efforts into reanalyzing a large number of mal-

ware samples exhibiting similar functionalities. In this

way, the effect of replacement attacks looks like the

denial-of-service attack. To achieve this goal, we first

mine two large data sets to identify popular system

calls, OS objects, and their dependencies. We summa-

rize two general attacking strategies to replace SCDG:

1) mutate a sequence of dependent system calls (sub-

SCDG) to its equivalent ones, and 2) insert redundant

data flow dependent system calls. Our approach ensures

that: 1) the transformation is semantics persevering;

2) the new generating dependence relationships are so

common that they cannot be easily recognized. After

transformation, similar malware samples reveal a large

distance when they are measured with widely used sim-

ilarity metrics, such as graph edit distance [13] and Jac-

card Index [11]. As a result, the further analyses that

rely on SCDG (e.g., malware detection and clustering)

are possibly misled.

To demonstrate the feasibility of replacement at-

tacks, we have developed a compiler-level prototype,

API Replacer, to automatically perform the transfor-

mation on top of LLVM framework [27] and Microsoft

Visual Studio. Given a single malware source code, API

Replacer is able to generate multiple malware binaries,

and each one exhibits different behavior specifications.

We evaluate our replacement attacks on a variety of real

malware samples with different replacement ratio. Our

experimental result shows that our approach success-

fully clutters both SCDG structures and the higher level

abstractions from SCDG. In addition, we demonstrate

that the further analysis tasks such as malware simi-

larity comparison and behavior-based malware cluster-

ing are misled as well. The cost of transformation is

low, and the execution overhead after transformation is

moderate. Note that our approach does not look for

making malware analysis infeasible, but seeks to in-

crease the costs of automatical malware defense solu-

tions, which is practical in the malware arms race.

In summary, we make the following contributions:

– We propose replacement attacks to camouflage sim-

ilar behavior specifications among malware variants

by replacing system call dependence graphs.

– We summarize the rules for equivalent replacements

by mining a large set of malware samples. The dis-

tilled attacking strategies tangle structure of system

call dependency as well as behavior feature set with-

out affecting semantics.

– We automate the replacement attacks by develop-

ing a compiler-level prototype to perform source



Impeding Behavior-based Malware Analysis via Replacement Attacks to Malware Specifications 3

to binary transformation. The experimental results

demonstrate our approach is effective.

– To the best of our knowledge, we are the first one

to demonstrate the feasibility of automatically ob-

fuscating behavior-based malware clustering on real

malware samples.

The rest of the paper is organized as follows. Sec-

tion 2 introduces previous work on behavior based mal-

ware analysis. Section 3 describes in detail about how

to generate replacement attacks rules with a case study.

Section 4 highlights some of our implementation choices.

We present the evaluation of our approach in Section 5.

Possible countermeasures are discussed in Section 6 and

we conclude the paper in Section 7.

2 Related Work

In this section, we first present previous work on behavior-

based malware analysis, which is related to our work

in that these methods rely on system call sequences or

graphs and therefore they are the candidates of replace-

ment attacks targets. Then, we introduce previous re-

search on impeding malware dynamic analysis. In prin-

ciple, our approach belongs to this category. At last, we

describe related work on system call API obfuscation,

which is close in spirit to our approach.

Behavior based malware analysis Malware dynamic anal-

ysis techniques are characterized by analyzing the ac-

tual executing instructions of a program or the effects

that this program brings to the operating system. Com-

pared with static analysis, dynamic analysis is less vul-
nerable to various code obfuscation schemes [32]. Christodor-

escu et al. [15] introduce malware specifications built

on data flow dependencies among system calls, which

capture true relationships between system calls and are

hard to be circumvented by random system call injec-

tion. Since then, the malware specifications based on

SCDG have been widely used in malware analysis tasks,

such as extracting malware discriminative feature by

mining the difference between malware behavior and

benign program behavior [20,21,33], determining mal-

ware family in which the instances share similar func-

tionalities [7,24,6,35], and detecting malicious behav-

ior [8,25,30] by matching behavior-based malware spec-

ifications. However, none of the presented approaches

is explicitly designed to be resilient to our replacement

attacks.

Malware behavior analysis attacks As behavior-based

malware analysis has become prevalent, some counter-

measures have been proposed to evade this kind of anal-

ysis as well. Since collecting malware behavior is typ-

ically performed in a controlled sandbox environment,

the lion’s share of previous work focuses on runtime

environment detection [14,18,34,37]. If a malware sam-

ple detects itself running in a sandbox rather than real

physical machine, it will not carry out any malicious

behaviors. Multiple ways have been proposed to de-

feat such environment-sensitive malware. Dinaburg et

al. [17] utilize hardware virtualization to build a trans-

parent analysis platform, which remains invisible to

such sandbox environment check. Another direction re-

lies on contrasting different executions of a malware

sample when running in multiple sandboxes. The con-

trol flow deviations indicate possible evasion attempts [22].

Our method does not detect sandbox and is valid in any

runtime environment. Our replacement attacks share

the similar goal with recent work by Biggio et al. [9,

10] in that we all attempt to subvert malware cluster-

ing. However, our work is different from these previous

work in two ways. First, our approach obfuscates data

flow dependencies between system calls; while the be-

havior features that they attack do not contain data

flow dependencies. As the data flow relationships be-

tween system calls or behavior features are highly re-

silient to random noise insertion, our attacking method

is more challenging. Second, Biggio et al.’s work has a

common “inverse feature-mapping” problem [10], that

is, they directly manipulate malware behavior feature

set instead of real malware code. Therefore, their at-

tacks may not be feasible in practice. In contrast, to

demonstrate the feasibility of our approach, we develop

a compiler-level converter to perform the real replace-

ment attacks.

System call obfuscation The original idea to obfuscate

system call API can be traced back to mimicry at-

tack [19,43], whose primary goal is to impede intrusion

detection. Kim et al. [23] present a polymorphic attack

to sequence-based software birthmarks. Illusion [42] al-

lows user-level malware to invoke kernel operations with-

out calling the corresponding system calls. To launch

the Illusion attack, the attacker has to install a ma-

licious kernel module, which is not practical in many

real attacking scenarios. Ma et al. [29] present shadow

attacks by partitioning a malware sample into multi-

ple shadow processes and each shadow process reveals

no-recognizable malware behavior. But it’s still an open

question to launch a multi-process sample covertly. Our

proposed attacks are inspired by Xin et al. [45]’s ap-

proach to subverting behavior based software birth-

mark. However, their attacking method is restricted to

replacing a dependency edge with a new vertex and

two new edges. As shown in Section 5.2, this simple



4 Jiang Ming et al.

attacking method only has limited effect on reducing

Jaccard Index value. In contrast, our approach pro-

vides multiple attacking strategies. In addition, Xin et

al. [45]’s attack code is pre-loaded as a dynamic library

when a program starts running. However, it is quite

easy to detect such library interruption. Our API Re-

placer embeds new system call dependencies at LLVM

IL level and then compiles the modified IL to the bi-

nary code transparently. In this way, our approach has

better stealth.

3 Replacement Attacks Design

In this section, we present the key design of replacement

attacks. We start by introducing the background infor-

mation about system call dependency graph (SCDG).

Our approach attempts to obfuscate the structure of

SCDG. Then we discuss the threat model of replace-

ment attacks. The design of replacement attacks is in-

spired by two studies we performed. After that, we will

introduce our replacement attacks arsenal with a moti-

vating example.

3.1 Background

In spite of various obfuscation methods (e.g., metamor-

phism and polymorphism) that the malware authors

adopt, malware samples within the same family tend

to reveal similar malicious behavior [28]. Our goal in

this paper is to separate similar malware variants by

modifying the structure of SCDG, which is the most

prevalent specification to represent malware behavior.

Fig. 1 shows an example of SCDG before/after replace-

ment attacks. At the top of Fig. 1, we list pseudo code

fragment written in MSVC for ease of understanding2.

In the original SCDG (as shown in Fig. 1 (a) ), the re-

turn value of “NtCreateFile” is a FileHandle (“hFile1”),

denoting the new created file object. As hFile1 is passed

to “NtClose”, a data flow dependency connects “NtCre-

ateFile→ NtClose”. Windows API “SetFilePointer” in

the new code (as shown in Fig. 1 (b) ) moves the file

pointer and returns new position, which is quite simi-

lar to “lseek” system call in Unix. The return value of

“SetFilePointer” is equal to moving distance plus the

offset of starting point, which is 0 (“FILE BEGIN”) in

this example. We exploit the fact that the data type of

“hFile1” and the distance to move are both unsigned

integers, and deliberately assign the distance to move

with the same value of “hFile1” (line 2 in the new code).

2 In the code, we use Windows API as a proxy for Windows
native API. We will discuss this issue further at Section 4.

As a result, the return value of “SetFilePointer” (“dw-

FilePosition”), is equal to the “hFile1”. Then “dwFile-

Position” is passed to “NtClose” to close the file. When

calling “SetFilePointer”, the native API “NtSetInfor-

mationFile” is invoked to change the position informa-

tion of the file object represented by “hFile1”. In this

way, the new code still preserves the original data flow,

while the structure of original SCDG changes signifi-

cantly. Note that the file object in Fig. 1 (b) is updated

with new position information. However, the file object

is closed immediately, imposing no lasting side effect to

the final state.

3.2 Threat Model

A typical threat model to apply replacement attacks

is illustrated in Fig. 2. Before propagating malware

samples, malware authors take the initial version of

malware source code as input to API Replacer, our

compiler-level transformation tool. The outputs are mul-

tiple malware variants in binary form. The generated

variants share very similar malicious functionalities but

exhibit different behavior specifications. Then cyber-

criminals spread these malware samples to the Inter-

net or plant them in the vulnerable hosts to perform

malicious purposes. Suppose these new malware vari-

ants, with other suspicious binaries are finally collected

by anti-malware companies. To classify a large num-

ber of malware and select the samples that need fur-

ther investigations, anti-malware companies utilize au-

tomated clustering tools to identify samples exhibiting

similar behavior. These tools normally execute malware

instances in a sandbox and collect runtime informa-

tion (e.g., system alls and their arguments) to gener-

ate behavior specifications (e.g., SCDG), which will be

normalized and then fed to clustering algorithm. As

we mentioned in Section 2, current malware clustering

tools are not designed to defeat replacement attacks ex-

plicitly. Therefore, the very similar malware mutations

after replacement attacks are probably assigned to mul-

tiple clusters instead of one cluster. In that case, mal-

ware analysts have to waste excessive efforts to reana-

lyze these similar samples and the samples that require

more attention may be left in the basket.

3.3 Mining Two Large Data Sets

Since there are various expressions of malware behav-

ior based on SCDG, we first mine two large and repre-

sentative data sets of malware behavior specifications

used for malware detection and clustering. The min-



Impeding Behavior-based Malware Analysis via Replacement Attacks to Malware Specifications 5

1: HANDLE  hFile1 = CreateFile (“logfile”,  

    GENERIC_READ, ...);

2: CloseHandle (hFile1);

(a) the original SCDG (b) the new SCDG

NtCreateFile 

hFile1

NtSetInformationFile

1: HANDLE  hFile1 = CreateFile (“logfile”,  

    GENERIC_READ, ...);

2: DWORD dwFilePosition =SetFilePointer 

    (hFile1, (DWORD) hFile1, NULL, FILE_BEGIN);

3: CloseHandle ( (HANDLE) dwFilePosition);

NtClose

NtCreateFile 

hFile1

NtClose

dwFilePosition

Replacement 

Attacks

Fig. 1 An example of SCDG before and after replacement attacks.

Malware 

Source Code 
API Replacer

 Binary 1

Malware Analysis 

Sandbox

Compiler-level 

Transformation

...

 Binary n

Generate Malware 

Behavior Specifications

Internet

Clustering...
Clusters

Fig. 2 Illustration of replacement attacks threat model.

ing results are popular dependencies and common sub-

SCDGs, which are the possible targets we may attack.

– BRS-data [6] is used by Babić et al. to evaluate mal-

ware detection via tree automata inference. BRS-

data contains system call dependency graphs gen-

erated for 2631 malware samples and covers a large

variety of malware, such as trojan, backdoor, worm,

and virus.

– BCHKK-data [7] is used for evaluating malware clus-

tering technique proposed by Bayer et al. BCHKK-

data includes behavior profiles extracted from 2658

malware samples, and more than 75% samples are

the variants of Allaple worm. Note that the two-

dimensional structure of SCDG is not amenable to

scalable clustering techniques, which usually oper-

ate on numerical vectorial feature set. Bayer et al.

converted system call dependencies to a set of fea-

tures in terms of operations (create, read, write,

map, etc.) on OS objects (file, registry, process, sec-

tion, thread, etc.) and dependencies between OS ob-

jects.

These two data sets reflect two typical applications

of SCDG to represent malware specifications: 1) di-

rectly utilize rich structural information contained in

SCDG [15,36,20], which is able to match behavioral

patterns exactly but lacks scalability; 2) extract higher

level abstractions from SCDG to fit for efficient large-
scale malware analysis [7,8,38] at the cost of preci-

sion. The similarity of instances in BRS-data is nor-

mally measured by graph edit distance or graph isomor-

phism [13]; while the similarity metrics of BCHKK-data

is calculated by Jaccard Index [11]. Our approach is

designed to attack the malware specifications like both

BRS-data and BCHKK-data.

3.3.1 Popular Dependencies

We calculate the most popular native API dependen-

cies from BRS-data, OS operations and dependencies

from BCHKK-data. Table 1 lists eleven popular native

API dependencies out of BRS-data, which are mainly

related to the operations on Windows registry, memory,

and file system. The second column is the medium data

flow types passed between system calls. Most of the

medium types are handles, which stands for various OS

objects such as file, registry, section (memory-mapped

file), process, etc. Table 2 presents popular OS object



6 Jiang Ming et al.

Table 1 Popular windows native API dependencies.

Dependencies Data flow types Ratio (%)
NtMapViewOfSection → NtProtectVirtualMemory void *address 22.4
NtOpenKey → NtQueryValueKey KeyHandle 19.4
NtCreateSection → NtMapViewOfSection SectionHandle 9.6
NtMapViewOfSection → NtUnmapViewOfSection void *address 8.9
NtOpenSection → NtMapViewOfSection SectionHandle 6.3
NtCreateFile → NtReadFile FileHandle 5.4
NtCreateSection → NtQuerySection SectionHandle 4.8
NtOpenKey → NtQueryKey KeyHandle 4.6
NtCreateFile → NtQueryInformationFile FileHandle 4.2
NtOpenFile → NtSetInformationFile FileHandle 4.1
NtOpenProcess → NtWriteVirtualMemory ProcessHandle 3.8

Table 2 Popular OS object types, operations and dependen-
cies.

OS object type OS operation
file open, create, read, write,

set information, query file,
query information, query directory

registry create, open, query value, set value
section query, create, map, open, mem read
process create, open, query
thread create, query, resume

OS object dependency
file → file, registry → file, registry → registry,

process → thread, section → file, file → section

types, operations and dependencies from BCHKK-data.

We believe as long as we diversify these popular de-

pendencies and behavior features, the similarity among

malware variants can drop significantly.

3.3.2 Common Sub-SCDGs

Although extracted from two different sources, the data

in Table 1 and Table 2 reveal some common malicious

functions, which are mapped to sub-SCDGs. The top

three popular sub-SCDGs are corresponding to mal-

ware replication, registry modification for persistence

and code remote injection. For example, the common

dependencies about “NtMapViewOfSection” and the

OS objects dependency between file and section, in-

dicate that malware replications are commonly imple-

mented via memory mapped file, which directly maps

a malware sample into a memory area to speed up disk

I/O. Besides, malware instances often configure Win-

dows registry for persistence in order to run automati-

cally when the compromised machine restarts, leading

to frequent operations on Windows registry. “NtOpen-

Process → NtWriteVirtualMemory” and “process →
thread” are mainly introduced by creating a new thread

in a remote process, the most common way to launch

malware covertly in vulnerable hosts [41]. If we are able

to implement these common functions through differ-

ent ways, the corresponding sub-SCDGs are very likely

changed as well.

3.4 Attacking Strategies

In this section we elaborate how to construct replace-

ment attacks strategies. We propose three criteria that

our attacking strategies have to meet:

1. (R1) Potency: our replacement attacks should ob-

fuscate the malware specifications like both BRS-

data and BCHKK-data. In another word, replace-

ment attacks have to invalidate various malware be-

havior similarity metrics, such as graph edit dis-

tance and Jaccard Index.

2. (R2) Semantics-preserving: new system calls and de-

pendencies impose no side effect to the original data

flow.

3. (R3) Stealth: the transformed SCDG should be as

common as possible so that replacement attacks can-

not be easily identified.

We meet our design requirement R1 by two attack-

ing methods. The first one is embedding redundant data

flow dependent system calls to replace original popular

dependencies. As a result, new vertices and dependen-

cies are created (see example in Fig. 1). At the same

time, we make sure data types and values of original

dependencies are preserved (satisfy R2).

Furthermore, we observe that malicious functionali-

ties can be developed with different technical methods,

making it possible for SCDG mutations without under-

mining the intended purpose. For example, a popular

malicious behavior—malware replication, can be imple-

mented through two methods. The first one is utiliz-

ing memory-mapped file to speed up disk I/O, and the

native APIs such as NtCreateSection, NtMapViewOf-

Section, and NtUnmapViewOfSection are involved. The

second IO method is via the conventional file manipu-

lating native APIs, such as NtCreateFile, NtReadFile,

and NtSetInformationFile. The SCDGs under these two

methods are completely different. Therefore, our sec-

ond attacking strategy is to transform a sub-SCDG to

its semantically equivalent mutations (satisfy R2). As



Impeding Behavior-based Malware Analysis via Replacement Attacks to Malware Specifications 7

a result, the original dependencies probably do not ex-

ist anymore. A by-product of our mining result in Sec-

tion 3.3 is that popular dependencies can also be served

as possible candidates to be embedded in an SCDG so

that the new SCDG doesn’t look unusual (satisfy R3).

Note that these two attacking methods can seamlessly

weave together to amplify each other’s effect.

3.5 Replacement Attacks Arsenal

In this section we present the details of our replacement

attacks arsenal. According to our attacking strategies,

we classify them into two categories:

3.5.1 Inserting Redundant Dependencies

We summarize attacks belong to this category based on

the medium data flow types listed in Table 1.

1. “NtSetInformationFile” attack. This attack can re-

place the dependencies that use FileHandle as the

medium. NtSetInformationFile is used to adjust the

file pointer. By carefully crafting the input argu-

ments, we can make “NtSetInformationFile” as a

null operation. We have illustrated such example in

Fig. 1.

2. “NtDuplicateObject” attack. “NtDuplicateObject”

returns a duplicated object handle, which refers to

the same object as the original handle.

3. “NtQuery*” attack. There are several Windows na-

tive APIs for querying information of kernel objects,

such as “NtQueryAttributesFile”, “NtQueryKey”,

“NtQueryInformationProcess” and “NtQueryInfor-

mationFile”. All of these query APIs take certain
object handle as one of input argument and out-

put object information. No any modification is in-

troduced to the kernel objects. Hence “NtQuery*”

native APIs are good candidates for our replace-

ment attacks. For example, we could insert “Nt-

QueryInformationFile” into a popular NtCreateFile

→NtSetInformationFile dependency, where the out-

put of “NtQueryInformationFile” (“FileInformation”)

is passed to “NtSetInformationFile”. The two new

dependencies also appear commonly.

4. The medium of “void *address” shown in Table 1 re-

ceives the address of a mapped memory. To handle

this medium, we can insert “NtQueryVirtualMem-

ory” or “NtReadVirtualMemory”, which do not af-

fect the memory mapped address.

3.5.2 Sub-SCDG Mutations

We present multiple implementation ways to achieve

the top three popular malicious sub-tasks discussed in

Section 3.3.2. Furthermore, we make sure that each im-

plementation reveals a different sub-SCDG with the

others.

1. Replication. When malware authors call Windows

API “CopyFile” to replicate malware sample from

source to target file, it is actually achieved through

memory mapped file. When a process maps a file

into its virtual address space, the following read-

ing and writing to the file are simply manipulat-

ing the mapped memory region, which produces OS

objects dependencies between file and memory sec-

tion. First, we can choose to map either the source

or destination file to the memory section. Another

implementation is explicitly through file I/O oper-

ations. For example, we can copy a file by calling

“NtReadFile” and “NtWriteFile” instead of using

memory as the medium.

2. Modify registry for persistence. Malware often add

entries into the registry to remain active after re-

booting. There are multiple registry keys that can

be configured to load malware at startup. The ref-

erence [4] lists 23 registry keys are accessed during

system start. We leverage these multiple choices to

randomly pick up available registry keys to modify.

3. Code remote injection. Malicious code can be in-

jected into another running process so that the pro-

cess could execute the malware unwittingly. To achieve

this functionality, we can either inject the malicious

code directly into a remote process; or put the code

into a DLL and force the remote process to load

it [41].

3.6 Case Study

For a better understanding of our replacement attacks,

we provide a real case to mutate the replication be-

havior of Worm.Win32.Hunatcha. Fig. 3(a) shows a na-

tive API sequence fragment we collected from the ini-

tial version and the corresponding SCDG. The mal-

ware sample replicates the file “hunatcha.exe” to “lady-

gaga.mp3.exe” by first memory-mapping the source file

(“hunatcha.exe’) and then writing the memory content

to the destination file (“ladygaga.mp3.exe”). Fig. 4(a)

presents the feature set abstracted from Fig. 3(a) ac-

cording to the definition of BCHKK-data [7]. The first

three lines are operations (open, create, write, etc.) on

OS objects (file, section). The fourth line is an OS de-

pendency from section to the destination file.

As shown in Fig. 3(b), we first mutate the SCDG

shown in Fig. 3(a) by switching the file mapped to the

memory; that is, we explicitly map the destination file

(not source file) into the memory. Then file copying is



8 Jiang Ming et al.

1: HANDLE src =  NtOpenFile (“D:\hunatcha.exe”, …);

2: HANDLE dst =  NtCreateFile 

    (“\My Shared Folder\ladygaga.mp3.exe”, …);

3: HANDLE  hSection= NtCreateSection(…, src);

4: void *base =  NtMapViewOfSection (hSection, …);

5: NtWriteFile (dst, base, length (src), … );

1: NtQueryAttributesFile (“D:\hunatcha.exe”,  …); 

2: HANDLE src =  NtOpenFile (“D:\hunatcha.exe”, …);

3: HANDLE dst =  NtCreateFile 

    (“\My Shared Folder\ladygaga.mp3.exe”, …);

4: HANDLE  hSection= NtCreateSection (…, dst);

5: void *base =  NtMapViewOfSection (hSection, …); 

6: NtQueryVirtualMemory (…, base, …);

7: *base = NtReadFile (src, length (src) , …);

(a) the original SCDG

Replacement 

Attacks

NtOpenFile src NtCreateSection

NtCreateFile

NtWriteFile 

NtMapViewOfSection 

hSection

base

dst

NtCreateFile dst NtCreateSection

NtOpenFile NtReadFile 

NtMapViewOfSection 

hSection

base

(b) the new SCDG

Replacement 

Attacks

NtQueryAttributesFile 

“D:\hunatcha.exe”

src

NtQueryVirtualMemory

base

1: HANDLE src =  NtOpenFile (“D:\hunatcha.exe”, …);

2: HANDLE dst =  NtCreateFile 

    (“\My Shared Folder\ladygaga.mp3.exe”, …);

3: void *buffer = NtReadFile (src, length (src) , … )

4: NtWriteFile (dst, buffer , length (src) … );

NtCreateFile

dst

NtOpenFile

NtReadFile 

src

NtWriteFile 

buffer

(c) the new SCDG

Fig. 3 System calls dependence graph (SCDG) of replication before and after replacement attacks.



Impeding Behavior-based Malware Analysis via Replacement Attacks to Malware Specifications 9

1: op|file|D:\hunatcha.exe

         open:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe 

       create:1, write: 1

3: op|section|D:\hunatcha.exe

      create:1, map:1, mem_read: 1

4: dep|section|D:\hunatcha.exe→
    file|\My Shared Folder\ladygaga.mp3.exe

(a) the original feature set

1: op|file|D:\hunatcha.exe

         open:1, query_file:1, read:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe

        create:1

3: op|section|\My Shared Folder\ladygaga.mp3.exe

      create:1, map:1, query:1, mem_write: 1

4: dep|file|D:\hunatcha.exe →
    section|\My Shared Folder\ladygaga.mp3.exe

(b) the new feature set

1: op|file|D:\hunatcha.exe

         open:1, read:1

2: op|file|\My Shared Folder\ladygaga.mp3.exe

        create:1, write:1

3: dep|file|D:\hunatcha.exe →
    file|\My Shared Folder\ladygaga.mp3.exe

(c) the new feature set

Fig. 4 Feature set of replication before and after replacement attacks.

Table 3 Similarity metrics for the variants a, b and c.

a vs. a a vs. b a vs. c b vs. c
Graph edit distance 0.0 0.71 0.60 0.71

Jaccard Index 1.0 0.14 0.33 0.27

achieved by reading the content of source file to the al-

located memory region. At the same time, we also insert

redundant data flow dependent system calls to create

new dependencies and decouple original dependencies.

At line 1 and line 6 at the top of Fig. 3(b), we add Nt-

QueryAttributesFile and NtQueryVirtualMemory, re-

sulting in two redundant dependencies. As a result, the

structure of resulting SCDG and feature set (shown in

Fig. 4(b)) are changed significantly. Fig. 3(c) presents

another round attack. Instead of utilizing memory mapped

file, we copy the sample only through disk file I/O. In

this way, no memory section appears both in SCDG and

feature set. Table 3 shows the two similarity metrics for

these mutations. The calculation of these two metrics is

introduced in Section 5.2. The graph edit distance value

of 0.0 or Jaccard Index value of 1.0 indicates that two

behaviors are identical. As shown in table 3, the large

graph edit distance and small Jaccard Index value af-

ter replacement attacks3 indicate that the similarities

of malware variants drop substantially.

3 The similarity metrics and threshold will be discussed in
detail in Section 5.2.

4 Implementation

To automate the attacking strategies (discussed in Sec-

tion 3), we have implemented a prototype tool, API

Replacer, on top of LLVM and Microsoft Visual Studio

2012. Given an initial version of malware source code,

API Replacer is able to automatically generate multi-

ple versions of malware binaries, which share similar

malicious functionalities but exhibit different malware

specifications. Fig. 5 describes the architecture of API

Replacer. It takes malware source code as input and

first generates LLVM IR through the Clang compiler.

Then the IR code is manipulated by our transformation

pass to fulfill replacement attacks. More specifically, our

transformation pass inherits “CallGraphSCCPass” pro-

vided by LLVM to traverse the call graph and iden-

tify candidate system calls to attack. Our pass utilizes

data flow analysis of LLVM to find out dependencies

among system calls. Then two attacking strategies are

performed to change the original SCDG. Section 3.4

describes these steps in details. After that, our pass

updates the changes of the call graph. Algorithm 1 lists

each step of API Replacer’s transformation pass.

The transformed LLVM IR code is passed to LLC

to emit object code. Then the object code is given to

Visual Studio’s link.exe to generate an executable bi-

nary. Moreover, new malware IR can be converted back

to source code by LLC for another round of transfor-

mation. We follow the instructions in [2] to integrate

LLVM system with Visual Studio. The major imple-



10 Jiang Ming et al.

Malware 

Source Code 

(C/C++)

Clang

(Frontend)

Malware IR 

(LLVM bitcode)
New Malware IR 

(LLVM bitcode)

Malware 

Source Code 

(C/C++)

Clang

(Compiler)

Malware IR 

(LLVM bitcode)

Link.exe

(Visual Studio)

Transformed 

Malware IR 

LLC 

(Code Generator)
Malware 

Binary

New Malware 

Source Code 

IR Analysis & 

Transform Passes

LLVM Optimization

Object Code 

Fig. 5 The architecture of API Replacer.

mentation choice we made is using Windows API as

a proxy for Windows native API. The reason is Win-

dows native API are not comprehensively documented;

while Windows API is well described in MSDN.4 Ac-

cording to the mapping between Windows API and na-

tive API [40], we are able to manipulate Windows API

directly.

Algorithm 1 API Replacement Algorithm.
1: Traverse call graph
2: Identify candidate system calls and their dependencies
3: Mutate a sequence of dependent system calls to their

equivalent ones
4: Insert redundant data flow dependent system calls
5: Update new call graph

5 Evaluation

In this section, we apply API Replacer to transform

real malware samples and evaluate the effectiveness of

our approach to impede malware similarity metrics cal-

culation and behavior-based malware clustering. We

also perform comparison experiment to demonstrate

that replacement attacks outperforms two other attack-

ing methods. At last, We test with 5 SPEC CPU2006

benchmarks to evaluate performance slowdown imposed

by replacement attacks.

5.1 Experiment Setup

We transform malware source code collected from VX

Heavens5. These malware samples are chosen for two

reasons: 1) they do not contain any trigger-based behav-

ior [44] or runtime environment checking condition [22];

4 http://msdn.microsoft.com/
5 http://vxheaven.org/src.php

Table 4 Test set statistics.

Sample Type LoC #
SCDG

Node # Edge #
BullMoose Trojan 30 602 360
Clibo Trojan 90 698 342
Branko Worm 270 590 332
Hunatcha Worm 340 756 408
WormLabs Worm 420 895 506
KeyLogger Trojan 460 811 439
Sasser Worm 950 1860 1044
Mydoom Worm 3276 9342 5418

2) they have different malicious functionalities. In this

way, we ensure that each sample fully exhibits its spe-

cific malicious intent during runtime execution and each

sample presents different behavior specifications. Mal-

ware samples under experiment are executed in a mal-

ware dynamic analysis system, Cuckoo Sandbox6, to

collect Windows native API calls traces. We first filter

out isolated nodes which have no dependencies with

others. Then we compute SCDG for each sample fol-

lowing the data flow dependencies between native APIs.

Statistics for lines of code and SCDG are shown in Ta-

ble 4.

5.2 Subverting Malware Behavior Similarity Metrics

In this experiment, we evaluate replacement attacks

with two representative similarity metrics, namely graph

edit distance and Jaccard Index. The former is used to

measure the similarity of SCDG structure; while the lat-

ter represents the similarity of behavior feature set, a

higher level abstraction extracted from SCDG. We first

set the ratio of replaced system calls as 0%, 10%, 20%,

and 30% and then generate four mutations respectively

for each testing malware sample. Then we run these mu-

tations in Cuckoo Sandbox to collect SCDGs in order

to compute graph edit distance. After that, we convert

SCDGs to feature sets to calculate their Jaccard Index.

6 http://www.cuckoosandbox.org/



Impeding Behavior-based Malware Analysis via Replacement Attacks to Malware Specifications 11

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

A v e r a g e
M y d o o m

S a s s e r
K e y L o g g e r

W o r m L a b s

H u n a t c h a
B r a n k o

C l i b o
B u l l M o o s e

 

 

Gr
ap

h e
dit

 di
sta

nc
e

 1 0 %
 2 0 %
 3 0 %

(a) Graph edit distance

0 . 2
0 . 3

0 . 4
0 . 5

0 . 6
0 . 7

0 . 8
0 . 9

1 . 0

A v e r a g e
M y d o o m

S a s s e r
K e y L o g g e r

W o r m L a b s

H u n a t c h a

B r a n k o
C l i b o

B u l l M o o s e

 

 

Ja
cca

rd 
Ind

ex

 1 0 %
 2 0 %
 3 0 %

(b) Jaccard Index

Fig. 6 Graph edit distance and Jaccard Index after replacement attacks.

Graph edit distance We measure the similarity of SCDG

G1 and SCDG G2 via graph edit distance [13], which is

defined as

d(G1, G2) = 1− |MCS(G1, G2)|
max(|G1|, |G2|)

MCS(G1, G2) is the maximal common subgraph and

|G| is the number of nodes in a graph. The value of

the distance varies from 0.0 to 1.0. Distance value 0.0

denotes that two graphs are identical. Park et al. em-

ployed the graph edit distance for malware classifica-

tion and clustering [35,36], where they set the similar-

ity threshold as 0.3. Graph distance above the thresh-

old means two malware samples are different. Taking
the sample with 0% replacement ratio as the baseline,

Fig. 6(a) shows the graph edit distance after replace-

ment attacks. The graph edit distance increases steadily

as the amount of replaced system calls raises. Please

note that when we enforce only 20% replacement, all

the distances go beyond the threshold of 0.3. When the

replacement ratio is set as 30%, the graph edit distance

is as high as 0.74 on average. This experiment demon-

strates that our replacement attacks can change the

structure of SCDG significantly.

Jaccard Index Assume behavior feature set of malware

sample a and b are Fa and Fb, Jaccard Index is defined

as

J(a, b) =
|Fa ∩ Fb|
|Fa ∪ Fb|

Bayer et al. [7] identified two similar malware feature

sets by checking whether their Jaccard Index is ≥ 0.7.

Similar with the setting of Fig. 6(a), Fig. 6(b) presents

Table 5 Similarity metrics of inter-family comparisons.

10% 20% 30% inter-family
Graph edit distance 0.25 0.43 0.74 0.78

Jaccard Index 0.85 0.66 0.47 0.36

the result of Jaccard Index after replacement attacks.

We can draw a similar conclusion that Jaccard Index

reduces as replacement ratio increases. However, the

decline rate of Jaccard Index is not as significant as the

rising rate of graph edit distance. We attribute this to

a better fault tolerance of large-scale feature set. For

example, Mydoom in our testing set has more the 1000

features. Consequently, a small portion of system calls

replacement imposes less effect on Jaccard Index. In

spite of this, when the replacement ratio is increased to
30%, all Jaccard Index values are below the similarity

threshold of 0.7, with a value of 0.47 on average.

Our attacks vs. inter-family comparisons We conduct

inter-family comparisons for the malware samples listed

in Table 4. Since all these malware samples have differ-

ent malicious functionalities, the similarity metrics val-

ues of inter-family comparisons represent the approx-

imate upper bound on the degree of the obfuscation

attainable by our attacks. Table 5 shows the similarity

metrics of inter-family comparisons on average, indi-

cating that the similarities between inter-family sam-

ples are quite small. Besides, we also present the aver-

age similarity metrics under different replacement ratio

settings. It is obvious that with the replacement ratio

setting of 30%, our attacking effect is quite close to the

optimal result.

Our attacks vs. other approaches Furthermore, we com-

pared our attacks with two other attacking approaches:



12 Jiang Ming et al.

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

A v e r a g e
M y d o o m

S a s s e r
K e y L o g g e r

W o r m L a b s

H u n a t c h a
B r a n k o

C l i b o
B u l l M o o s e

 

 

Gr
ap

h e
dit

 di
sta

nc
e

 R a n d o m
 X i n  e t  a l .
 O u r  w o r k

(a) Graph edit distance comparison

0 . 2
0 . 3

0 . 4
0 . 5

0 . 6
0 . 7

0 . 8
0 . 9

1 . 0

A v e r a g e
M y d o o m

S a s s e r
K e y L o g g e r

W o r m L a b s

H u n a t c h a
B r a n k o

C l i b o
B u l l M o o s e

 

 

Ja
cca

rd 
Ind

ex

 R a n d o m
 X i n  e t  a l .
 O u r  w o r k

(b) Jaccard Index comparison

Fig. 7 Our attacks vs. other approaches.

system call random insertion [23] and Xin et al.’s ap-

proach [45]. The comparison results are presented in

Fig. 7. The approach of system call random insertion

(“Random” bar) adds redundant system calls without

considering data flow dependencies; while Xin et al.’s

method (“Xin et al.” bar) obfuscates SCDG by replac-

ing a dependency edge with a new vertex and two new

edges. The ratio of new system calls insertion, replaced

edges and replaced system calls are all set as 30%. The

small graph edit distance and large Jaccard Index value

show that SCDG is resilient to the attack of system

call random insertion, as maintaining the data flow de-

pendencies between system calls can easily remove ran-

dom system calls. As shown in Fig. 7(a), Xin et al.’s

approach is good at cluttering the structure of SCDG
(the distance is > 0.3), but our attacks still outperform

their approach by a factor of 1.6x on average. The Jac-

card Index value in Fig. 7(b) indicates that Xin et al.’s

attack only has a marginal effect on the behavior fea-

ture set such as BCHKK-data [7]. We attribute this to

the limitation of Xin et al.’s approach design, which is

unable to introduce additional new OS objects or new

dependencies between OS objects.

5.3 Against Behavior-based Clustering

In this section, we demonstrate that replacement at-

tacks are able to impede behavior-based malware clus-

tering approach. We choose the clustering approach pro-

posed by Bayer et al. [7], which is a state-of-the-art

clustering system for malware behavior. Bayer et al.’s

approach contains two major steps: 1) employ local-

ity sensitive hashing (LSH) to find approximate near-

neighbors of feature sets; 2) perform single-linkage hi-

erarchical clustering.

We use the LSH code from [5] in our experiment.

To fairly evaluate the clustering approach, we stick to

a similar setup. The Jaccard Index threshold and LSH

parameters are the same as in [7]. As mentioned in

Section 5.1, malware samples in our initial dataset be-

long to eight different families. To enlarge the dataset

for our malware clustering evaluation, we generate five

datasets:

– Dataset 0: We apply various polymorphism obfus-

cation and packing [39] on our initial samples. For

each family, we generate 30 variants. All mutations

in each group are only different in terms of static

properties. The samples within the same family ex-

hibit quite similar behavior.

– Dataset 1 ∼ 3: We set system call replacement ratio

as 10%, 20% and 30% respectively and then produce

30 variants for every family under each replacement

ratio setting. Each dataset includes 240 instances.

– Dataset 4: We mix all samples within Dataset 0 ∼ 3

to this dataset, which comprises 960 malware sam-

ples in total.

We perform LSH-based single-linkage hierarchical

clustering on each dataset. The quality of the cluster-

ing results is measured by two metrics: precision and

recall. The goal of precision is to measure how well

a clustering algorithm assigns malware samples with

different behavior to different clusters; while recall in-

dicates how well a clustering algorithm puts malware

with the same behavior into the same cluster. Assume

we have s malware samles S1, S2, ..., Ss in total. A ref-

erence clustering which has the ground truth is M =

M1,M2, ...,Mm with m clusters. The clustering we adopted



Impeding Behavior-based Malware Analysis via Replacement Attacks to Malware Specifications 13

Table 6 Quality of the clustering.

Dataset 0 1 2 3 4
Samples # 240 240 240 240 960
Cluster # 8 12 35 110 208
Precision 1.000 0.981 0.978 0.965 0.973
Recall 0.975 0.933 0.483 0.121 0.529

is N = N1, N2, ..., Nn with n clusters. For each Ni, i ∈
n, precision value Pi is defined as:

Pi = max(|Ni ∩M1|, |Ni ∩M2|, ..., |Ni ∩Mm|)

The overall precision is calcuated as:

P =
P1 + P2 + ... + Pn

s

For each Mj , j ∈ m, recall value Rj is defined as:

Rj = max(|N1 ∩Mj |, |N2 ∩Mj |, ..., |Nn ∩Mj |)

The overall recall is calcuated as:

R =
R1 + R2 + ... + Rm

s

The naive clustering method that creates only one clus-

ter comprising all samples has the highest recall (1.0),

but the worst precision. On the contrary, the method

sets up a clustering for each sample achieves the highest

precision (1.0) but with a small recall number. An op-

timal clustering method should provide both high pre-

cision and recall at the same time. Please refer to [7]

for detailed information.

Table 6 summarizes our results. Since the samples in

Dataset 0 are only different in terms of static features,

the clustering result has the optimal precision and re-

call. Because six samples crashed after applying vir-

tualization obfuscators [16], the recall value is slightly

smaller than 1.0. The results of Dataset 1 ∼ 3 show

the trend that the recall value falls as system call re-

placement ratio raises. For example, under the replace-

ment ratio of 30%, on average only about two samples

are clustered into each family. A small recall value im-

plies the similar samples after replacement attacks are

distributed into different families, and therefore more

clusters are created than expected. Dataset 4 simulates

a real scenario we mentioned in Section 3.1: malware

samples after replacement attacks, mixed with other

suspicious binaries, are finally collected for clustering.

The low recall value demonstrates that our approach is

effective in dividing similar samples into different clus-

ters, which imposes an extra workload to security ana-

lysts.

1 . 0

1 . 1

1 . 2

1 . 3

1 . 4

1 . 5

a v e r a g e
l i b q u a n t u m

x a l a n c b m
a s t a r

o m n e t p p
b z i p 2  

 

 

Slo
wd

ow
n (

no
rm

aliz
ed

 ex
ec

uti
on

 tim
e)  1 0 %

 2 0 %
 3 0 %

Fig. 8 Slowdown on 5 SPEC CPU2006 programs.

5.4 Performance

Since switching between kernel and user mode is in-

herently expensive, the redundant system calls intro-

duced by replacement attacks will no doubt impact run-

time performance. We measure runtime performance af-

ter applying replacement attacks on 5 SPEC CPU2006

benchmarks, including bzip2, libquantum, omnetpp,

astar and xalancbmk. Our testbed is a laptop with

a 2.30GHz Intel(R) Core i5 CPU and 8GB of mem-

ory, running on the operating system of Windows 7.

As shown in Fig. 8, runtime overhead raises when the

replacement ratio increases. On average, testing pro-

grams have a slowdown of 1.33 times (normalized to

the runtime without transformation) when the system

call replacement ratio is 30%. As we have demonstrated

in Section 5.2, under this replacement ratio, our attack-

ing effect is quit close to the optimal result. Consider-

ing such significant effect, we believe the performance

tradeoff is worthy.

6 Discussion

In this section, we discuss the limitations of our ap-

proach and future work. In order to strengthen current

malware defense approaches, we also provide possible

ways to defeat our replacement attacks.

6.1 Limitations

Currently the compatibility with Visual Studio and LLVM

tool chain is not perfect. For example, C++ standard

library and Windows Platform SDK are not fully sup-

ported by clang, which prevent us from testing more

complicated malware. We demonstrate the feasibility of



14 Jiang Ming et al.

replacement attacks on Windows platform, but our idea

to obfuscate SCDG can be applied in other platforms

as well. The attacking strategies we summarized in Sec-

tion 3.4, especially the sub-SCDG mutation rules are

limited. Implementing the same functionality through

multiple ways need comprehensive domain knowledge.

One direction is to automatically learn equivalent sub-

SCDGs with data mining techniques. We plan to extend

our replacement attacks arsenal in future.

6.2 Countermeasures

We suggest three possible ways to defend against re-

placement attacks and discuss their pros and cons. As

one of our attacking strategies is to insert redundant

dependencies, the size of SCDG could be enlarged. An

analyzer is able to detect such change by comparing new

SCDG with the original one. However, without more

close investigation (usually involving tedious work), it is

hard to differentiate whether the size change of SCDG

comes from incremental updates or our attacks. The

second way is to perform more fine-grained data flow

analysis. For example, If the data passed in two sequen-

tial dependencies are not changed, the medium system

call is probably a redundant native API such as NtSet-

InformationFile and NtDuplicateObject. However, this

approach cannot defeat sub-SCDG mutations, which

may completely change the structure of a sub-SCDG.

The third countermeasure is to normalize the behav-

ior graph mutations. For example, the multiple seman-

tically equivalent graph patterns of malware replication

can be unified as a canonical form before clustering. The

effort in this direction is Martignoni et al.’s work [30].

They designed a layered architecture to detect alterna-

tive events that deliver the same high-level functional-

ity. However, admitted by the authors, the layered hier-

archy is generated manually and tested only with seven

malware samples. A general and automated behavior

graph normalization is still missing. Moreover, the high-

level malware behavior abstractions may overlook sub-

tle distinctions among malware variants. Therefore, the

higher-level of behavior abstractions are probably valid

in distinguishing malware from benign programs, but

are insufficient to differentiate malware variants.

7 Conclusion

Behavior-based malware specifications have been broadly

employed in malware detection and clustering. In this

paper, we study the vulnerability of current behavior-

based malware analysis and propose replacement at-

tacks to obfuscate malware behavior specifications. We

distil general attacking strategies by mining large mal-

ware behavior data sets and develop a compiler level

prototype to demonstrate their feasibilities. Our eval-

uation on real malware samples shows that the trans-

formed malware could evade malware similarity com-

parison and impede behavior-based clustering. We ex-

pect our study can cultivate further research to improve

resistance to this potential threat.

Acknowledgements

We are very grateful to Paolo Milani Comparetti and

Christopher Kruegel for providing access to the BCHKK-

data dataset. This research was supported in part by

the Grants NSF CNS-1223710, NSF CCF-1320605, ONR

N00014-13-1-0175, and ARO W911NF-13-1-0421 (MURI).

Peng Liu was supported by ARO W911NF-13-1-0421

(MURI), NSF CCF-1320605, CNS-1422594, and NI-

ETP CAE Cybersecurity Grant.

References

1. Cybercriminals sell access to tens of thousands of
malware-infected Russian hosts. http://www.webroot.

com/blog/2013/09/23/, last reviewed, 10/03/2014.
2. Getting started with the LLVM system using Microsoft

Visual Studio. http://llvm.org/docs/GettingStartedVS.

html, last reviewed, 10/03/2014.
3. Malicious software and its underground economy. https:

//www.coursera.org/course/malsoftware, last reviewed,
10/03/2014.

4. Windows registry persistence, part 2: The run keys and
search-order. http://blog.cylance.com, last reviewed,
10/03/2014.

5. A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimen-
sions. Communications of the ACM, 51(1), Jan. 2008.

6. D. Babić, D. Reynaud, and D. Song. Malware analysis
with tree automata inference. In Proceedings of the 23rd
Int. Conference on Computer Aided Verification (CAV’11),
2011.

7. U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel,
and E. Kirda. Scalable, behavior based malware cluster-
ing. In Proceedings of the Network and Distributed System
Security Symposium (NDSS’09), 2009.

8. U. Bayer, E. Kirda, and C. Kruegel. Improving the ef-
ficiency of dynamic malware analysis. In Proceedings of

the 2010 ACM Symposium on Applied Computing (SAC’10),
2010.

9. B. Biggio, I. Pillai, S. Rota Bulò, D. Ariu, M. Pelillo, and
F. Roli. Is data clustering in adversarial settings secure?
In Proceedings of the 6th ACM Workshop on Artificial In-

telligence and Security (AISec’13), 2013.
10. B. Biggio, K. Rieck, D. Ariu, C. Wressnegger, I. Corona,

G. Giacinto, and F. Rol. Poisoning behavioral malware
clustering. In Proceedings of the 7th ACM Workshop on
Artificial Intelligence and Security (AISec’14), 2014.

11. A. Z. Broder, S. C. Glassman, M. S. Manasse, and
G. Zweig. Syntactic clustering of the web. In Proceed-
ings of the Sixth International Conference on World Wide

Web, 1997.



Impeding Behavior-based Malware Analysis via Replacement Attacks to Malware Specifications 15

12. D. Bruschi, L. Martignoni, and M. Monga. Detecting
self-mutating malware using control-flow graph match-
ing. In Proceedings of Detection of Intrusions and Malware

& Vulnerability Assessment (DIMVA’06), 2006.
13. H. Bunke and K. Shearer. A graph distance metric based

on the maximal common subgraph. Pattern Recognition

Letters, 19(3-4):255–259, 1998.
14. X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario.

Towards an understanding of anti-virtualization and anti-
debugging behavior in modern malware. In Proceedings

of the International Conference on Dependable Systems and
Networks (DSN’08), 2008.

15. M. Christodorescu, S. Jha, and C. Kruegel. Mining spec-
ifications of malicious behavior. In ESEC-FSE’ 07: Pro-

ceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium

on the foundations of software engineering, 2007.
16. K. Coogan, G. Lu, and S. Debray. Deobfuscation of

virtualization-obfuscated software. In Proceedings of the
18th ACM Conference on Computer and Communications

Security (CCS’11), 2011.
17. A. Dinaburg, P. Royal, M. Sharif, and W. Lee. Ether:

Malware analysis via hardware virtualization extensions.
In Proceedings of the ACM Conference on Computer and

Communications Security (CCS’08), 2008.
18. P. Ferrie. Attacks on virtual machines. In Proceedings of

the Association of Anti-Virus Asia Researchers Conference,
2007.

19. S. Forrest, S. Hofmeyr, and A. Somayaji. The evolution of
system-call monitoring. In Proceedings of the 2008 Annual
Computer Security Applications Conference (ACSAC’08),
2008.

20. M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and
X. Yan. Synthesizing near-optimal malware specifications
from suspicious behaviors. In Proceedings of the 2010 IEEE

Symposium on Security and Privacy, 2010.
21. G. Jacob, R. Hund, C. Kruegel, and T. Holz. Jackstraws:

Picking command and control connections from bot traf-
fic. In Proceedings of the 20th USENIX conference on Se-

curity, 2011.
22. M. G. Kang, H. Yin, S. Hanna, S. McCamant, and

D. Song. Emulating emulation-resistant malware. In
Proceedings of the Workshop on Virtual Machine Security

(VMSec’09), 2009.
23. H. Kim, W. M. Khoo, and P. Lio. Polymorphic attacks

against sequence-based software birthmarks. In Proceed-

ings of the 2nd Software Security and Protection Workshop

(SSP’12), 2012.
24. J. Kinable and O. Kostakis. Malware classification based

on call graph clustering. In Journal in Computer Virology

Volume 7, Number 4 (2011), 2011.
25. C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,

X. Zho, and X. Wang. Effective and efficient malware de-
tection at the end host. In Proceedings of the 18th USENIX
Security Symposium, 2009.

26. C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vi-
gna. Polymorphic worm detection using structural infor-
mation of executables. In Proceedings of Symposium on

Recent Advances in Intrusion Detection (RAID’05), 2005.
27. C. Lattner and V. Adve. LLVM: A compilation frame-

work for lifelong program analysis & transformation. In
Proceedings of the International Symposium on Code Gen-

eration and Optimization (CGO’04), 2004.
28. M. Lindorfer, A. Di Federico, F. Maggi, P. M. Com-

paretti, and S. Zanero. Lines of malicious code: Insights
into the malicious software industry. In Proceedings of
the 28th Annual Computer Security Applications Conference

(ACSAC’12), 2012.

29. W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu. Shadow at-
tacks: Automatically evading system-call-behavior based
malware detection. Computer Virology, 8(1-2):1–13, 2012.

30. L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and
J. C. Mitchell. A layered architecture for detecting
malicious behaviors. In Proceedings of the 10th Interna-

tional Symposium on Recent Advances in Intrusion Detec-
tion (RAID’08), 2008.

31. J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao.
Replacement attacks: Automatically impeding behavior-
based malware specifications. In Proceedings of the 13th

International Conference on Applied Cryptography and Net-

work Security (ACNS 2015), June 2015.
32. A. Moser, C. Kruegel, and E. Kirda. Limits of static

analysis for malware detection. In Proceedings of the 23th
Annual Computer Security Applications Conference (AC-

SAC’07), December 2007.
33. R. Paleari, L. Martignoni, E. Passerini, D. Davidson,

M. Fredrikson, J. Giffin, and S. Jha. Automatic gener-
ation of remediation procedures for malware infections.
In Proceedings of the 19th USENIX Security Symposium,
September 2010.

34. R. Paleari, L. Martignoni, G. F. Roglia, and D. Bruschi.
A fistful of red-pills: How to automatically generate pro-
cedures to detect cpu emulators. In Proceedings of the

USENIX Workshop on Offensive Technologies (WOOT’09),
2009.

35. Y. Park and D. Reeves. Deriving common malware be-
havior through graph clustering. In Proceedings of the 6th
ACM Symposium on Information, Computer and Commu-

nications Security (ASIACCS’11), 2011.
36. Y. Park, D. Reeves, V. Mulukutla, and B. Sundar-

avel. Fast malware classification by automated behav-
ioral graph matching. In Proceedings of the 6th Annual

Workshop on Cyber Security and Information Intelligence
Research, 2010.

37. T. Raffetseder, C. Kruegel, and E. Kirda. Detecting sys-
tem emulators. In Proceedings of the 10th International
Conference on Information Security (ISC’07), 2007.

38. K. Rieck, P. Trinius, C. Willems, and T. Holz. Auto-
matic analysis of malware behavior using machine learn-
ing. Journal of Computer Security, 19(4), 2011.

39. K. A. Roundy and B. P. Miller. Binary-code obfuscations
in prevalent packer tools. ACM Computing Surveys, 46(1),
2013.

40. M. Russinovich. Inside the native api. http://netcode.

cz/img/83/nativeapi.html, last reviewed, 10/03/2014.
41. M. Sikorski and A. Honig. Practical Malware Analysis:

The Hands-On Guide to Dissecting Malicious Software. No
Starch Press, February 2012.

42. A. Srivastava, A. Lanzi, J. Giffin, and D. Balzarotti.
Operating system interface obfuscation and the reveal-
ing of hidden operations. In Proceedings of the Detec-

tion of Intrusions and Malware & Vulnerability Assessment

(DIMVA’11), 2011.
43. D. Wagner and P. Soto. Mimicry attacks on host-based

intrusion detection systems. In Proceedings of the 9th
ACM Conference on Computer and Communications Secu-
rity (CCS’02), 2002.

44. Z. Wang, J. Ming, C. Jia, and D. Gao. Linear obfusca-
tion to combat symbolic execution. In Proceedings of the

2011 European Symposium on Research in Computer Secu-

rity (ESORICS’11), 2011.
45. Z. Xin, H. Chen, X. C. Wang, P. Liu, S. Zhu, and B. Mao.

Replacement attacks on behavior based software birth-
mark. In Proceedings of the 14th Information Security Con-
ference (ISC’11), 2011.


