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ABSTRACT
We introduce a novel Data Flow Analysis (DFA) technique,
called PoL-DFA (Program-object Level Data Flow Analy-
sis), to analyze the dynamic data flows of server programs.
PoL-DFA symbolically analyzes every instruction in the ex-
ecution trace of a process to keep track of the data flows
among program objects (e.g., integers, structures, arrays),
and concatenates these pieces of data flows to obtain the
overall data flow graph of the execution. We leverage PoL-
DFA to identify malicious data flows in data leakage and
contamination forensics. In two mocked digital forensic sce-
narios, for data leakage and contamination respectively, we
tested the ability of PoL-DFA to identify data flows among
multiple inputs and outputs of server programs. Our results
show that PoL-DFA can accurately determine whether the
data (or the processed results) from a source file or socket
flow to a certain output channel. Based on this information,
security administrators can pinpoint the path of data leak-
age or data contamination. Different from existing dynamic
DFA techniques that require excessive amount of instrumen-
tation, PoL-DFA only requires logging the execution traces
of the processes being monitored. The measured perfor-
mance overhead for server programs is 4.24%, on average.
The results indicate PoL-DFA is a lightweight DFA solution
for data leakage and contamination forensics.

1. INTRODUCTION
We consider the following scenario: A company has a web

server that hosts some web services to users on the Inter-
net. The web page files in the web server can be updated or
added through FTP by authorized employees. An employee
uses FTP to upload a file that contains sensitive information
to the web server (we assume the employee has the needed
authority). He also uploads a modified index.html, which
contains a link to that file, to overwrite the index.html file
on the web server. After he goes home, he starts a web
browser and downloads the file, which contains the sensitive
information, from the company’s web server. Later, the ad-
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ministrator identifies this file on the web server and wants to
investigate who uploaded the file and whether the sensitive
information has been leaked out. If so, the admin also wants
to know which IP addresses the information has been leaked
to.

We explored the literature for possible solutions. Causal-
ity relationships can be inferred from system events such as
file operations, network I/O, and memory read/write, and
be used for attack provenance analysis[16, 28, 18, 21]. This
type of relationship is unsuitable for data flow analysis –
taking the aforementioned data leakage scenario for exam-
ple, even if the web server opens the file containing sensitive
information and later sends a packet to the Internet, it does
not necessarily indicate the packet contains the information
from that file. Using system events to correlate objects and
processes may result in a large number of false positive data
dependencies, namely dependence explosion. Dynamic Taint
Analysis (DTA) can trace data flows at the byte level and
is free from dependence explosion. However, the high run-
time overhead of DTA restricts itself as an offline analysis
technique, e.g., automatic generation of malware and exploit
signatures [7, 25], and automatic configuration troubleshoot-
ing [5]. By “offline analysis”, we mean the server programs
being protected (e.g., HTTP service), are not running at full
speed serving a large number of online requests from clients.

In this work, we propose to tackle dependence explosion
using a new fine-grained scheme named PoL-DFA (Program-
object Level Data Flow Analysis). Different from DTA which
is at the byte level, PoL-DFA targets at program object
level. Data flows are tracked among network packets, pro-
gram objects, files, and any devices modeled as file descrip-
tors by the operating system. PoL-DFA only requires the
logging of the basic blocks that the program executes. A
data flow graph containing program objects, network pack-
ets, and files can then be built based on the analysis of
the execution trace. While both PoL-DFA and DTA con-
duct instruction-by-instruction analysis, we have dramati-
cally different design goals. DTA on binary code typically
relies on dynamic binary instrumentation to propagate taint
tags at the instruction level. By contrast, PoL-DFA tracks
the data flow at program-object level. Our system mod-
els program objects, call stacks, and heaps of each process,
and simulates the process creation operations. Compared
to DTA, although PoL-DFA does not log complete runtime
values, we show that our approach can still achieve a similar
level of precision and better runtime performance.



2. OVERVIEW
This section overviews the intuitions behind our approach

and the system work flow.

2.1 Program-object Level Data Flow Analysis
(PoL-DFA)

We define PoL-DFA (Program-object Level Data Flow
Analysis) as the procedure of inferring the data flow depen-
dencies among the files and sockets ever accessed by a pro-
gram through analyzing the execution trace. We define the
execution trace as a sequence of program statements or in-
structions in the order in which they have been executed
at runtime. A data flow is essentially the consequence of a
program execution. Involved in the execution are a series of
program objects and the corresponding operations against
them. The below observations show the intuitions of how
PoL-DFA works.

Observation 1. The execution trace constructs, such
as program statements, instructions, symbols and so forth,
inherently imply data flows, even if the corresponding run-
time variable values and memory addresses are unknown.
The following code in Listing 1 shows a network packet be-
ing received, stored in a buffer, and then saved into a file.
Knowing neither the runtime memory address of buf nor the
runtime value of sockfd/fd, one can still conclude the data
flow purely based on static analysis. In addition, by corre-
lating with the system call log, one can draw an object-level
data flow graph as shown in Figure 1.

Listing 1: An example of object level data flow.

1 buf = malloc(1024);
2 recvfrom(sockfd, buf, len, src_addr, addr_len);
3 fd = fopen(’download.exe’, ’w+’);
4 fwrite(buf, 1024, 1, fd);

x.x.x.x:8080

buf

download.exe

sockfd fd

Figure 1: An object-level data flow graph resulted from the
static code analysis and runtime system call log.

Observation 2. In many cases, data flow that cannot
be statically determined can instead be resolved using the
runtime control flow information embedded in the execu-
tion trace, including branches and loop iterations. Take the
following pseudo code as an example. If the condition is
true, the data flow will be file A -> socket C; otherwise,
the data flow will become file B -> socket C. If we know
which branch has indeed been taken at runtime, we can de-
cide the correct data flow.

1 if (condition)
2 read in file A to buffer;
3 else
4 read in file B to buffer;
5 write buffer to socket C;

Observation 3. We realize that there are some cases
wherein the data flow cannot be precisely derived solely

Program IR

Compiler instrumentation 

Instrumented program

Basic Block ID log

ET analyzer

PoL-DFG

System call log

Figure 2: System work flow.

based on the execution trace. The major portion falls into
the situation that a variable (instead of an immediate con-
stant) is used as an index to an array or an offset to a buffer.
In such cases, one can choose to log all such concrete in-
dex/offset values at runtime. We find that by treating an
array/buffer as an atomic unit, we can still correctly identify
data flow in most cases (see §3.3 for further discussion).

We devise a PoL-DFA mechanism, inspired by the afore-
mentioned three observations. In particular, we sequentially
go through every instruction in the execution trace, analyze
and translate the instructions into data flow propagation op-
erations between the source operand(s) and the destination
operand(s), and in the meantime maintain and populate the
data flow states for the corresponding program objects (an
operand typically represents an object or part of an object).
Finally, a data flow starting from an input file (or socket)
to an output file (or socket) can be bridged by a series of
intermediate program objects. Currently, the intermediate
program objects include data type instances (e.g., integers,
floats, pointers), data structure subfields, and arrays. Note
that a file descriptor, which refers to a socket or file, is rep-
resented as an integer data type as well.

2.2 System Workflow
The workflow of our system is shown in Figure 2. The first

step to deploying our system is instrumentation. We imple-
mented a compiler extension to instrument the LLVM IR
(Intermediate Representation) of the programs being moni-
tored. The binary executables produced by our instrumen-
tation automatically log the basic block trace of each process
into files during runtime. The basic block log contains a se-
quence of basic block IDs, using which we can recover the
execution trace of the program. The second part of the work
flow is trace recovering and analysis, which is conducted
by ET(Execution Trace)-Analyzer. ET-Analyzer takes basic
block log, system call log (used for annotation purpose, e.g.,
annotating the file name of a file descriptor), and LLVM
IR of the program being monitored as inputs. Based on
the inputs, ET-Analyzer recovers the execution trace, con-
ducts PoL-DFA against the trace, and outputs a PoL-DFG
(Program-object Level Data Flow Graph) which shows the
data flows resulted from the program execution.



3. DESIGN
This section introduces the concept of LLVM IR-level exe-

cution trace, and how we infer data flows based on the trace.

3.1 LLVM IR-Level Execution Trace
For an execution of a program, the IR-level execution trace

is a sequence of IR instructions that correspond to the na-
tive machine instructions executed. As we know, the IR of
a program can be compiled into machine code, which can
be executed. When the program runs, a sequence of ma-
chine instructions is executed and this sequence of machine
instructions has a sequence of IR instructions as a counter-
part in the form of IR. This sequence of IR instructions is
called the IR-level execution trace of this execution.

The LLVM IR of a program contains a number of basic
blocks. An LLVM Basic Block is simply “a container of in-
structions that execute sequentially” [3]. An example LLVM
basic block is as below. In this LLVM Basic Block, a value
%2 is loaded through a pointer %i, and used as the parameter
of function %foo. The return value %call is stored through
a pointer %ret. Then the basic block exits. The execution of
a program involves entering and exiting a sequence of basic
blocks.

Listing 2: An example of IR basic block.

1 for.body: ; preds = %for.cond
2 %2 = load i32* %i
3 %call = call i32 @foo(i32 %2)
4 store i32 %call, i32* %ret
5 br label %for.inc

We statically assign a unique ID to each basic block and
then at the beginning of each basic block, we insert instruc-
tions to store the ID to the buffers. We also create a thread
to write the logs to hard disk at runtime. The logs show the
sequence in which basic blocks are entered. With the logs,
we are able to recover the IR level execution trace.

3.2 The PoL-DFA Model
Data Sources. Data sources are the files that a program

reads data from and the sockets that a program receives
packets from. Data sources are introduced via system calls
like read and recv/recvfrom/recvmsg, as well as library
functions like fread. Each incoming data source will be
assigned a unique tag, which represents a unique data source.
The tag will then be propagated to other program objects
throughout the entire analysis whenever there is a data flow.

Data Sinks. Data sinks are the files that a program
writes data to and the sockets that a program sends packets
to. Tags can be propagated to data sinks via system calls
such as write, send/sendto/sendmsg, and library functions
like fwrite. A program-object level data flow graph can be
built based on the tags that have arrived at each data sink.
In a program-object level data flow graph, a data source
could have multiple outgoing edges connecting to different
data sinks; and a data sink could have multiple incoming
edges starting from different data sources. Note that a file/-
socket could be the data sink of one data flow, and the data
source of another data flow.

Data Flow. A data flow happens when the contents of a
data source are 1) directly copied and written to a data sink,
or 2) computationally modified (e.g., compression, encryp-
tion/decryption) before being written to a data sink. We

aim to extract the data flow by looking at the operations in
the execution trace and keeping track of the tag propaga-
tion among the program objects. Particularly, we build data
flow paths between data sources and data sinks. A data flow
path is a sequence of nodes through which the data flows.
The start node is the data source and end node is data sink.
All nodes in between are program objects involved in the
operations. The operations against these program objects
can be broken down into three categories: data movement,
arithmetic, and neither. For a data movement operation,
the tags of the source operand(s) will be propagated to the
destination operand(s). For an arithmetic operation, all the
tags that have arrived at any operand will be propagated to
the destination.

To hold the tags, we associate each program object with
an abstract metadata structure, called object state. For non-
pointer variables, the object state contains only tags. For
pointers, the object state consists of tags, the symbolic link
to the program object being pointed to, and, if it belongs to
a subfield of a aggregated data type (i.e., struct, array, and
vector), the relative offset of the target object to its “con-
tainer” object. Here “container” object means the aggregate
object that contains the pointer. For aggregated data types,
the object state is a list of <offset, size, tags, polPtr>

tuples, which indicates the tags associated with each sub-
field starting from offset and ending at offset+size. The
polPtr stands for program-object level pointer. In case the
subfield happens to be a pointer, the polPtr element will
then be used to store a pointer object state, which links to
the target object being pointed to. Table 1 summarizes the
object states and the corresponding program objects.

For the lookup purpose, we build a hash map for the object
states, which we call object state map. The object state
map is a one-to-one mapping from program objects to each
of their object states. When tags need to be propagated
among program objects, we first look up the corresponding
object states in the object state map and then copy and
update the tags accordingly. We define two types of object
state maps: global object state map and local object state
map. There is only one global object state map throughout
the entire analysis, keeping track of the object states for
global variables. Local object state maps are per-function
based. In other words, local object state maps are analogous
to function stacks and global object state map is comparable
to data segment.

3.3 Policies on Tag Propagation
In this section, we focus on tag propagation. We realize

that the tags could be propagated in several possible ways.
We denote the possible ways as PoL-DFA policies. We also
realize that no single PoL-DFA policy is perfect. Below we
present our policy based on the following principles. Prin-
ciple 1—simplicity: we want everything to be as simple as
possible. Principle 2—clear semantics: to avoid ambiguity.
Principle 3—utility: it can handle the security officers’ needs
(e.g., the case studies (§5.1)). We group our policy into three
categories: direct tag propagation, indirect tag propagation,
and block tag propagation. It should be noted that since the
semantics of LLVM IR is at a higher level, certain types of
IR instructions1 do not have the correspondence in the as-
sembly language. This results in the uniqueness of IR-based

1LLVM IR Instruction Set:
http://llvm.org/docs/LangRef.html.



Table 1: Primitive data types of object state and corresponding program objects.

Object State Elements Corresponding Program Objects

polVar tags variables (e.g., i16 %i)
polPtr tags, ptr, offset pointers (e.g., i32* %ptr)

polObj
<offset, size,

tags, polPtr>

arrays (e.g., [4 x i8]), structures (e.g., {i32, i32, i32}),
and vectors (e.g., <4 x i16*>)

policy over assembly-based policy. Our PoL-DFA policy is
presented as follows.

I. Direct tag propagation If there is a direct data flow
from source operand(s) to destination operand(s), we do di-
rect tag propagation, that is, we make a union of the tags
in the source operands’ object states and copy to that of
the destination. Immediate constants are considered un-
tagged. The types of instructions involved in this category
include arithmetic instructions (e.g., add, sub), bit instruc-
tions (e.g., and, or, shl), and conversion instructions (e.g.,
truc, bitcast). Figure 3(a) shows an example of direct
propagation.

There is one particular instruction select that needs a
subtle treatment. The select instruction assigns either one
of two source operands to the destination operand based on
a condition. Due to the lack of the runtime value of the
condition, we cannot determine which candidate operand
to assign. In many cases one of the two source operands
cannot be seen in the earlier trace because the corresponding
branch has not been executed. As a result, the object state
of that operand will not be found and thus we can do the tag
propagation normally. If both object states can be found, we
then conservatively propagate both of the two candidates’
tags and give them a Possible flag (P flag). Basically, we
use P flags to incorporate such conservative tag propagation
situations.

II. Indirect tag propagation For many instructions,
there is no direct data flow among the operands. Instead, ei-
ther source or destination operand is a reference (i.e., pointer)
to a real program object that is involved in the data flow.
This type of instructions comprise a major portion of the
execution trace, including load (reading data from mem-
ory) and store (writing data to memory). In such cases, we
first look up the real program object (via the symbolic link
kept in the object state) and then propagate tags from the
real source to the real destination, based on the types of the
pointer.

First, if the pointer points to a variable, we simply do
the tag propagation using the object state of the variable.
For example, Figure 3(b) depicts how the tag is propagated
for a load instruction in this case. The handling of store

instruction is similar, just with a reverse direction of tag
propagation.

Second, a pointer could point to a subfield of an aggre-
gated data type. In LLVM IR, there are mainly two cate-
gories of aggregated data types: 1) array/vector type which
arranges element sequentially in memory, and 2) struct

type which is a predefined collection of data members. The
GEP (i.e., getelementptr) instruction is normally used to
return the pointer to a subfield of an aggregate data type.
For the struct type, the GEP instruction will always see lit-
eral values as the offset to the subfields of a data structure.
Therefore, we propagate the tag corresponds to the partic-
ular offset. For the array/vector type, we conservatively
treat the whole array as an atomic unit and do tag propaga-
tion for the array as a whole. Figure 3(c) shows how a GEP

involved in struct indexing and how a load in such a case
is handled.

III. Block tag propagation As direct and indirect tag
propagations are both for data flow between individual vari-
ables, there is another important data flow existing among
buffers, i.e., large pieces of contiguous memory. We also
consider file and socket as such kind of buffer. So in gen-
eral we call them “blocks”. Instructions that can lead to
data flow between blocks include system calls read/write,
send/recv, and library functions memcpy etc. Generally, we
treat a block as an atomic unit whenever the size and/or
offset arguments are variables whose run-time values are
unknown. Therefore, for the source blocks, we copy out all
the tags to the destination block, including those with the P
flag. For the destination blocks, we use a heuristic to decide
whether to clean up existing tags:

• First, if data is stored to a block from the beginning
(e.g., reading a file fd to a buffer buf: read(fd,buf,sz)),
we clean up all the tags in the block’s object state and
copy the new tag(s) into it. This policy is based on
the common practice that a block is always used as
an atomic buffer to relay data from/to a file or socket.
Even if an array could be used for multiple files/sockets
in different iterations, an access to it at a certain time
is only meant to get its most recent content. Moreover,
a size parameter is always used in a very careful way
by programmers to enforce boundary checks in order
to avoid buffer over-read bugs. Nevertheless, buffer
over-read bugs do exist in reality such as the notorious
Heartbleed bug [2]. Since there are better approaches
addressing such vulnerabilities, here we simply assume
the program is free from such over-read bugs.

• Second, if data is stored to the middle of a block (e.g.,
read(fd,buf+offset,sz)), this indicates that the block
is most likely used as a buffer to accumulate data from
multiple data sources (e.g., files concatenation). Since
it is impossible to predict which part of the buffer a
later-on access intends to get, we cannot simply re-
move all the existing tags. Instead our policy is to first
set the P flag for all existing tags of the array, if any,
and then merge the new tag(s) into it.

3.4 Program-object Level Data Flow Graph
Generation

Our system is designed to generate two types of PoL-DFG,
with program objects versus without program objects. For
the PoL-DFG without program objects, it contains a set of
nodes and directed edges. Each node is a system object
represented by a file descriptor, e.g., file, socket, standard
I/O, etc. Each directed edge means the existence of data
flow from the start node to the end node. For the PoL-
DFG with program objects, a node could also be a program
object. For many digital forensic needs, the details about
data flow through program objects are not needed. For some
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Figure 3: Tag propagation examples. (a) An example of direct tag propagation; (b) An example of indirect tag propagation;
(c) An example of indirect tag propagation involving aggregated data types.

other, the officer may also want to see the data flow through
program objects, so we also provide this as an option.

Node Annotation. For a node representing a file or a
socket, the file name or bound IP of the node is annotated
using the system call log. For one execution of a program,
I/O related system calls, such as open, socket, connect,
etc., are logged in the order they are called. In the IR-level
execution trace of this execution, the instructions that call
these system calls (or library calls, such as fopen, imple-
mented using these system calls) appear in the same order.
We simply sequentially match each call instruction, which
results in an I/O system call, against the corresponding en-
try in the system call log. The file names and IP addresses
can be extracted from the arguments of system calls. Espe-
cially, a socket might be created using socket system call
and bound with an IP address using connect system call.
The IP address bound to this socket is extracted from the
arguments of connect.

Edge Generation. For PoL-DFG without program ob-
jects, the edges are created when outputting system calls
and library calls, such as write, fwrite, sendmsg, etc., are
found in the IR-level execution trace. An outputting system
call usually write the contents in a buffer to a file or socket
represented by a fd. If the tag list of the buffer’s object state
is not empty, we propagate these tags to the fd. For each
propagated tag, an edge is created from the data source, cor-
responding to the tag, to the data sink represented by the
fd. For PoL-DFG with program objects, each propagation
operation of a tag results in the creation of an edge, which
starts at the source node of tag propagation and ends at the
destination node. The tag propagation operations include
data assignment, reading from a file, writing to a file, etc.

4. IMPLEMENTATION
Since assembly language does not offer type abstractions

(i.e., integers, pointers, structure, etc.), we leverage LLVM
[20] to base our system. The benefit is twofold: First,
LLVM infrastructure enables us to conduct analysis for pro-
grams written in various programming languages (e.g., C,
C++, Fortran) and running on different platforms (e.g.,
x86, PowerPC, ARM), making our tool widely applicable.
Second, LLVM IR (i.e., intermediate representation) has a
well-defined type system and preserves high level program
abstractions which can greatly ease our analysis, especially
compared with low level assembly language from which the
high level semantics has already been removed.

We implemented a prototype PoL-DFA system. The in-

strumentation component is implemented as an LLVM IR
transformation pass, which has 290 LOC. The IR of pro-
grams is obtained through compiling source code using clang.
The IR is instrumented and then transformed by clang to
binary program. The ET-Analyzer is implemented in C++
and it has 5408 LOC. The system calls that create data
sources and sinks are logged by Auditd. We use Python
scripts to parse the system call logs to extract the file names
and IP addresses of data sources and sinks. The PoL-DFG
generation is also implemented in Python. We use a Python
library named pydot to generate PoL-DFG based on the re-
sults of PoL-DFA. The Python scripts for parsing system
call log and generating PoL-DFG have 340 LOC in total.

5. EVALUATION
We measure the logging overhead, analysis efficiency, and

space overhead, on a machine with Intel(R) Xeon(R) CPU
X3440 2.53GHz, 12GB DDR3 RAM, and Samsung SSD of
250GB of model 840.

5.1 Solving Dependence Explosion
We conducted two case studies to investigate whether

PoL-DFA can solve the dependence explosion problem in
data leakage and contamination forensics. We consider two
scenarios in which, without PoL-DFA, security administra-
tors would have difficulty to spot malicious data flows, due
to the undecidability of data flows.

Case Study 1. Information Leakage: We consider
the information leakage scenario mentioned in the introduc-
tion. By conducting causality analysis, i.e., inferring data
dependencies based on system events, the data flow graph
can reach the extent as shown in Figure 4(a). Because there
is no publicly available tool for causality analysis, we in-
fer this graph based on algorithms introduced in existing
causality analysis works. The graph shows several files were
sent to the web server through FTP clients on two different
workstations. After the files were uploaded, the web server
served requests from 40 different IP addresses. Processing
these requests involved six files. Based on this graph, the
admin cannot determine who uploaded the file that contains
sensitive information and whether it was leaked through the
40 connections (although this file was opened by the web
server, this does not mean it was sent to any client). In
addition, if the admin assumes the information is leaked
through the 40 connections, the graph does not tell which
of the 40 is more likely to be the sink.

Figure 4(b) shows the PoL-DFG generated by ET-analyzer.



Figure 4: Information leakage.

Table 2: Data flow graph comparison of information leakage
case.

Statistics Causality analysis PoL-DFA

No. of nodes 50 6
No. of edges 50 6

It precisely identifies that the file, which contains sensitive
information, was uploaded to the web server from the FTP
client of IP address a.a.a.a. The PoL-DFG also pinpoints
that the file was indeed leaked out and the destination IP
address was x.x.x.x. Compared with causality analysis, PoL-
DFA slashes off false data flow edges and resolves the depen-
dence explosion problem. Without false data flow edges, the
admin can precisely identify who is responsible for the in-
formation leakage.

The comparison of the two graphs is shown in Table 2.
The graph created by PoL-DFA has 6 nodes and 6 edges,
while the other graph has 50 nodes and 50 edges. PoL-DFA
narrows the scope to much fewer nodes and edges.

Case Study 2. Data Contamination: We consider
a data contamination scenario as follows. A company has
a file server which runs FTP service. Employees can use
FTP clients on workstations to upload and download files.
There are some critical files on the server. Later, the com-
pany finds that a critical file on the server was corrupted.
The security administrator suspects someone overwrote the
original file through FTP and wants to identify who con-
ducted the actions. The admin constructs a data flow graph
related to the critical file. Causality analysis based on sys-
tem events would result in a graph as shown in Figure 5(a).
There were three clients connected to the proftpd server, and
seven files were uploaded to the server. Because causality
analysis treats programs as black boxes, it cannot identify
which IP address each file comes from. Hence the graph
does not give enough information for the admin to attribute
the data contamination actions to the culprit.

Figure 5(b) shows the PoL-DFG generated by ET-Analyzer.
It shows that the content of the contaminated file came from

Figure 5: Data contamination.

Table 3: Data flow graph comparison of data contamination
case.

Statistics Causality analysis PoL-DFA

No. of nodes 12 5
No. of edges 11 4

packets sent from IP address z.z.z.z. With the PoL-DFG,
the admin can determine that it was the employee from IP
address z.z.z.z that contaminated the critical file.

The comparison of the two graphs is shown in Table 3.
The graph created by PoL-DFA has 5 nodes and 4 edges,
while the other graph has 12 nodes and 11 edges. The ta-
ble shows that the PoL-DFG precisely pinpoints the small
subset of files and sockets that are involved in the data con-
tamination.

5.2 P-flag Edges and Accuracy
The numbers of nodes and edges for each program pro-

duced by ET-Analyzer in our case studies are shown in Ta-
ble 4. Please note that some files (e.g. log file) opened or
created by the server processes are not relevant to any data
leakage or contamination and thus we omit these files from
the table. Also, even if the data flow between two files in-
volves multiple rounds of read and write, we use only one
edge to denote this data flow.

As it shows, no P-flag edge is found in our case studies.
As mentioned in the description of direct tag propagation
in §3.3, a P-flag edge indicates that a data flow between
two program objects (or between a data source and a data
sink) had possibly happened, but the ET-analyzer is not
100% sure. Having no P-flag edge means in the data flow
paths from each input file (or socket) to each output file (or
socket), there is no conservative propagation of tags. That
is, ET-Analyzer is 100% accurate in the two case studies.

5.3 Logging Overhead
The logging overhead on server programs is measured us-

ing standard benchmark loaders if available, random inputs



Table 4: Number of P-flag Edges.

Program # Nodes # edges
# P-flag

edges

vsftpd 4 3 0
pserv 4 3 0

pro-ftpd 5 4 0Audit on

(a) Audit on with logging exe-
cution trace to disk.

Audit off

(b) Audit off with logging exe-
cution trace to disk.

Figure 6: Logging overhead on server programs.

otherwise. For lighttpd and pserv (i.e., pico server), we use
ApacheBench and curl-loader, respectively. For the FTP
server programs, including vsftpd, proftpd, and pureftpd,
we use concurrent clients to upload files of random sizes,
and measure the time it takes until finishing. For sshd and
dropbear server, we measure the time it takes to accept a
set of randomly sized files from scp, which is a remote file
copy program on Linux.

Figure 6 shows the logging overhead of the PoL-DFA sys-
tem under different conditions. Figure 6a shows the logging
overhead with Auditd running. Figure 6b shows the over-
head measured with Auditd turned off. Figure 6 shows that
in both conditions, the logging overhead is minimal. For sim-
ple programs, such as pure-ftpd, pico server, and lighttpd,
the overhead is less than 5%. For more complicated pro-
grams like sshd and dropbear server, the overhead tends to
be higher than 5%, but still lower than 10%. This indicates
that PoL-DFA is a lightweighted DFA solution.

6. RELATED WORK
Causality Analysis based on System Events. Sys-

tem call logging has been widely used for building or recover-
ing system object level dependence for the purpose of foren-
sic analysis. It can be used to investigate attack provenance
[16, 35], to track attack scope [17], and track information
flows [34]. The granularity can be refined through tracking
page level memory operations [18], file offsets [28], and pro-
cess loops [21]. However, causality analysis is unsuitable for
data flow analysis, since it cannot decisively identify exis-
tence of data flows. For example, even if a program reads
from a file, it does not necessarily indicate the outputs will
contain information from that file.

Dynamic information flow tracking. Dynamic infor-
mation flow tracking, a.k.a. dynamic taint analysis (DTA)
or dynamic data flow tracking (DFT), is being widely used
in many domains including attack prevention [25, 31], infor-

mation flow control [36, 30], data lifetime analysis [9], con-
figuration debugging [6], malware analysis [32], and mobile
security [13]. Existing dynamic information flow tracking
approaches can be categorized into three categories: binary
instrumentation, source code transformation, and hardware-
assisted tracking. There are many optimization techniques
to improve the efficiency of binary instrumentation based
approaches [25, 24, 10, 15, 22, 23], and the best perfor-
mance overhead reported so far [14] is about 2-3 times slow-
down. Second, source code based approaches embed data
flow tracking and policy checking operations into source code
through source code rewriting [31, 19, 8, 33, 26, 12]. They
require source code and depend on particular programming
language due to their compiler-based implementation. In
comparison, since ET-Analyzer is based on LLVM IR, it is
language independent and does not necessarily rely on the
availability of source code as there are some existing tools for
transforming binary into LLVM byte code [1][4]. Hardware-
assisted approaches [29, 11] can achieve very good perfor-
mance, relying on specially designed hardware.

7. DISCUSSIONS AND LIMITATIONS
PoL-DFA potentially has the following limitations. First,

the current implementation of PoL-DFA is vulnerable to ker-
nel level attacks. PoL-DFA relies on Auditd to log some sys-
tem calls, in order to annotate data sinks and sources, and
uses system call write to write basic block logs to files. If
the kernel is compromised, the attacker can either disable
Auditd or tamper with write system call. However, this is
not a fundamental issue. We can implement system call log-
ging and basic block logging inside a hypervisor and get rid
of this concern.

Secondly, our current implementation of logger imposes
up to 10% slow down on some server programs. This over-
head might be significant in efficiency-critical production
systems. This issue can be eased through some optimiza-
tions. For example, we can reduce the amount of log data
through logging the ID of every other IR basic block instead
of logging that of every IR basic block. The IR basic block
that has not been logged can be inferred based on the IR
basic blocks in the context. Also, for each IR basic block,
we can identify, through dynamic profiling, the most fre-
quent successor IR basic block into which it branches. We
can treat the most frequent successor as default and only
need to instrument the infrequent successor IR basic block.
This optimization technique is originally introduced in Shad-
owReplica [14]. With these techniques the runtime overhead
can be further reduced.

Thirdly, it is possible that the PoL-DFG generated by
our tool contains many P-flag edges, which means possible
existence of data flows. Even with P-flag edges, the PoL-
DFG generated by our tool still provides more knowledge to
the security officer than causality analysis based on system
event logging. Furthermore, while theoretically it is possible
for a PoL-DFG to contain many P-flag edges, in our case
studies we did not find any P-flag edge.

Finally, in this paper we don’t handle control-flow-based
data dependencies, a.k.a. implicit flows. In the field of dy-
namic data flow analysis such as DTA, handling implicit
flows is still an open problem [27]. Our work does not aim
to handle implicit flows. It aims to conduct data flow anal-
ysis at a new abstraction level.



8. CONCLUSIONS
In this paper, we present a new type of dynamic data flow

analysis, called PoL-DFA, a system prototype that conducts
Program-object Level DFA for the purposes of data leak-
age and contamination forensics. PoL-DFA is based on a
new concept, straight-line execution trace enabled data flow
analysis, which is a novel combination of “white-box” anal-
ysis inside a program and taint logic decoupling. PoL-DFA
is designed, implemented and systematically evaluated. Ex-
perimental results show that the performance overhead is
4.24% on average for server programs, which means that
PoL-DFA is a lightweight DFA solution. Our case studies
show that for such security needs as data leakage and con-
tamination forensics, PoL-DFA can solve the undecidability
of data flows and help analysts spot malicious data flows.
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