Hardware Support for Constant-Time Programming

Yuanqing Miao
The Pennsylvania State University
University Park, PA, USA

Mahmut Taylan Kandemir
The Pennsylvania State University
University Park, PA, USA

Danfeng Zhang
The Pennsylvania State University
University Park, PA, USA

ypm5112@psu.edu mtk2@psu.edu Duke University
Durham, NC, USA
dz132@duke.edu

Yingtian Zhang Gang Tan Dinghao Wu

The Pennsylvania State University
University Park, PA, USA
yjz5396@psu.edu

ABSTRACT

Side-channel attacks are one of the rising security concerns in
modern computing platforms. Observing this, researchers have
proposed both hardware-based and software-based strategies to
mitigate side-channel attacks, targeting not only on-chip caches
but also other hardware components like memory controllers and
on-chip networks. While hardware-based solutions to side-channel
attacks are usually costly to implement as they require modifica-
tions to the underlying hardware, software-based solutions are
more practical as they can work on unmodified hardware. One
of the recent software-based solutions is constant-time program-
ming, which tries to transform an input program to be protected
against side-channel attacks such that an operation working on a
data element/block to be protected would execute in an amount
of time that is independent of the input. Unfortunately, while quite
effective from a security angle, constant-time programming can
lead to severe performance penalties.

Motivated by this observation, in this paper, we explore novel
hardware support to make constant-time programming much more
efficient than its current implementations. Specifically, we present
a new hardware component that can greatly improve the perfor-
mance of constant-time programs with large memory footprints.
The key idea in our approach is to add a small structure into the
architecture and two accompanying instructions, which collectively
expose the existence/dirtiness information of multiple cache lines
to the application program, so that the latter can perform more
efficient side-channel mitigation. Our experimental evaluation us-
ing three benchmark programs with secret data clearly show the
effectiveness of the proposed approach over a state-of-the-art im-
plementation of constant-time programming. Specifically, in the
three benchmark programs tested, our approach leads to about
7x reduction in performance overheads over the state-of-the-art
approach.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO °23, October 28-November 1, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0329-4/23/10...$15.00
https://doi.org/10.1145/3613424.3623796

The Pennsylvania State University
University Park, PA, USA
gtan@psu.edu

The Pennsylvania State University
University Park, PA, USA
dinghao@psu.edu

CCS CONCEPTS

« Security and privacy — Hardware security implementation.

KEYWORDS

Side channel leakage, Constant time programming, Cache

ACM Reference Format:

Yuanging Miao, Mahmut Taylan Kandemir, Danfeng Zhang, Yingtian Zhang,
Gang Tan, and Dinghao Wu. 2023. Hardware Support for Constant-Time Pro-
gramming. In 56th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO ’23), October 28-November 1, 2023, Toronto, ON, Canada.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3613424.3623796

1 INTRODUCTION

For a long time, computer architectures have been designed with no
provisions for preventing side-channel attacks. As a result, many
computer systems today have “vulnerabilities” that can be taken
advantage of by adversaries. Exploiting simple properties, such as
timing, heat or electromagnetism, attackers can find ways to steal
secrets from victim programs. Among those properties, “timing”
is probably the most popular one for the reason that attackers do
not need any physical access to a victim computer. Additionally, an
application’s running time normally varies across different execu-
tion environments with different cache hierarchies/capacities and
shared memory controllers, and attackers might be able to infer
the current state of a program by making use of the timing infor-
mation. As a result, there has been a plethora of recent research
[2-5, 12, 15, 16, 24, 27, 28, 30, 31, 41, 51] focusing on both timing
attacks and their potential consequences.

Along with the discovery of various side channel attacks, re-
searchers have also investigated various ideas of mitigation, either
from hardware side [11, 13, 29, 32, 36, 44, 48, 53] or software side
[10, 21, 25, 34, 37, 46, 47]. One of the ideas for hardware-based miti-
gation is “resource partitioning” [18, 22, 29, 35, 36, 42, 43, 45]. It is to
be noted that the root cause of the timing side channels is “resource
sharing”. With shared hardware components, attackers are able to
observe the “footprints” left by the execution of victim programs
to gain information if those footprints are “secret-dependent”. One
particular mitigation strategy that prevents attackers from learn-
ing application footprints is to partition hardware components/re-
sources spatially or temporarily, as discussed by [18, 22, 35, 36] and
[42, 43, 45], respectively. However, partitioning contradicts the goal

https://doi.org/10.1145/3613424.3623796
https://doi.org/10.1145/3613424.3623796

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

of one of the mechanisms through which hardware utilization can
be improved, namely, resource sharing. Simultaneous multithread-
ing (SMT), shared last-level caches (LLCs), and shared memory
controllers are all built upon the general idea of resource sharing
and are essential for improving latency and/or throughput of mod-
ern hardware. While in some scenarios it might be acceptable to
significantly sacrifice performance to guarantee security, in most
cases severe performance degradation is not acceptable.

Another hardware-centric idea for improving security is to em-
ploy “reshaping” [53] [11]. The idea behind this approach is to
reshape a program’s memory accesses into “predefined patterns”
that are independent of the secret. Note however that this approach
requires extensive profiling and may not, at the end, fully guaran-
tee security. Also, a reshaping strategy typically cannot deal with
early termination attacks [14, 17] and is not suitable for compo-
nents with very heavy data traffic like on-chip caches. Another
hardware-based mitigation strategy is “randomization” [23, 32].
However, randomization typically does not provide full security
guarantees [33, 38].

In comparison, a software-based mitigation approach transforms
application code, either manually or through a compiler, so that
the transformed code does not leave secret-dependent footprints in
hardware. Compared to hardware-based mitigation, software-based
mitigation is more flexible, and in particular, it is applicable to com-
puter systems that have been developed with no built-in hardware
mitigation strategy. Also, different programs usually have different
levels of security requirements. Hardware-based mitigation might
be able to meet those requirements precisely [13, 43]; however, it
does not scale well to a system with hundreds of security domains.
Software mitigation, thanks to its flexibility, allows programs with
and without security requirements to run on the same machine. The
cons are that a not-so-clear (or undefined) “security contract” be-
tween software and hardware can make software-based mitigation
less effective than its potential.

Another problem with software-based mitigation is the poten-
tial “performance loss”. It is well acknowledged that efforts for
security almost always hurt performance. Past research [9, 21, 34]
has designed and implemented various techniques and libraries for
software-based mitigation, with little loss in performance. How-
ever, we show in this paper that, their performance appeal gets
diminished when the underlying Dataflow Linearization Set is
large. Dataflow linearization set is the set of “all” possible addresses
for a memory access. It is a set meant for dataflow linearization.
Mitigated programs need to access each and every element in this
set to make their memory footprints entirely “secret-independent”.
In general, a dataflow linearization set with size greater than 1 leads
to a side channel. Generally speaking, while cryptography libraries
have very small dataflow linearization sets for their secret-relevant
memory accesses, this is not always the case with other types of
programs. Some existing proposals might help with this problem.
For example, “scratchpad memories” [21] are programmable “cache-
like” structures. By loading protected programs into a scratchpad
at the beginning, one could prevent attackers from learning the
secrets through the observation of the footprints in the caches or
memory controllers. It is to be emphasized however that, it usually
takes a large memory space to put a whole dataflow linearization
set in. Researchers have also explored the idea of preloading the

Miao et al.

programs to be protected into a cache [47]; however, under this
strategy, an attacker can still evict lines from the cache.

Motivated by these observations, in this work, we focus on the
problem of “large dataflow linearization sets” in mitigating “cache
side-channels”. The key aspect of our solution is to provide a given
application program with information of whether the required
cache lines are “valid” or “dirty” in the cache. With a new structure
added to the hardware, such cache information can be exposed to
the application program and, in this way, the performance of the
mitigated application code can be significantly improved. Further-
more, compared to a scratchpad-based solution, we require far less
memory area, and compared to a preloading-based strategy, we
provide strict security guarantees.

The specific contributions this paper makes can be summarized
as follows:

e We expose the “large dataflow linearization set” problem in
software mitigation.

e We design a small hardware structure that records the “ex-
istence” and “dirtiness” information for the cache lines and
add two new instructions into the mico-operation set of
X86-64 ISA to use the proposed structure. With this new
hardware structure in place, the cache state gets exposed so
as to help the application program to reduce the performance
degradation originating from side channel mitigation.

e We modify a state-of-art software mitigation tool with new
load and store algorithms which make use of our new instruc-
tions. As a result, application programs can automatically get
transformed into their secure versions with minimal impact
on performance.

o We test the effectiveness of our proposed solution using
benchmark programs provided in a state-of-art software mit-
igation paper [9]. Our experimental results clearly show that
the performance of the programs with large dataflow lin-
earization sets can be improved by 7x by our work, compared
to a state-of-the-art side-channel mitigation scheme.

2 BACKGROUND

In this section, we provide background on side channels in caches
and other hardware components, resource partitioning, constant-
time programming, and the threat model adopted in this work.

2.1 Cache Side Channels

Limited cache capacities and access time variances make side chan-
nel attacks on caches possible. Three popular cache side chan-
nel attack models include FLUSH+RELOAD, EVICT+TIME and
PRIME+PROBE, which are briefly explained below.

Figure 1 is an example of how to use Prime+Probe to launch an
attack by Algorithm 1. In the victim program, there needs to be a
“knob”, which is either a branch on secret data or a secret-dependent
memory access. The attacker primes first, then waits for some time,
and finally probes.

2.2 Non-Cache Side Channels

Non-cache hardware components also have vulnerabilities that can
pave the way for various side channel attacks. Contentions may
happen in such components due to inter-process/inter-application

Hardware Support for Constant-Time Programming

Algorithm 1: Attacker: Prime and Probe
1 while (1) do

2 for (each cache set) do // Prime Phase
3 start = time();

4 access all cache ways

5 end = time();

3 access_time = end - start;

7 wait for victim access

8 for (each cache set) do // Probe Phase
9 start = time();

10 access all cache ways

11 end = time();

12 access_time = end - start;

® ® ¥ A |V
® ® ®
® ® v A [v]
TO: Prime Ti: Victim T2: Probe
Access

Figure 1: Illustration of the Prime+Probe attack. A: attacker,
V:victim, square: cache block, triangle: cache miss of attacker

sharing. For example, in a multicore system, memory controllers
are typically shared among multiple cores. An attacker can keep
sending requests to a memory controller and observe the delays of
those requests [42]. An increased delay indicates that there are other
parties sending requests to the same memory controller. Cache
ports, unpipelined algorithmic units, network-on-chip, and other
shared components all have vulnerabilities to potential contention-
based attacks [3, 4, 12, 28].

2.3 Constant-Time Programming

Constant-time programming is a programming principle to direct
programmers writing programs that are safe from side-channel at-
tacks. Constant-time programming have two main rules to mitigate
cache-based side channels: i) no branch on secrets (control-flow secu-
rity) and ii) no secret-dependent memory accesses (data-flow security).
Prior works [34, 37, 46, 47] have proposed various solutions to au-
tomatically transform programs into their so called “constant-time”
versions.

There are multiple ways to implement the first rule mentioned
above, including control flow linearization. The idea is to execute
both sides of a secret-dependent branch regardless of the true branch
outcome. A constant-time programming compiler transforms a
given original (insecure) program into its branchless version by
keeping a “taken” predicate for each branch region. Consequently,
both the “if” path and "else" path are executed, and the “taken”
predicate determines how to merge the results of the “if” and “else”
blocks when exiting the current branch region [9]:

MICRO 23, October 28-November 1, 2023, Toronto, ON, Canada

if (secret) {

A taken = secret;
3 A

} else { . Bt
B; !

) Merge (secret, A, B);

For the second rule, which is the main target of this paper,
dataflow linearization (explained below) is a common technique.
To clarify, we say a memory access is “secret-dependent” if an at-
tacker can infer secrets from the memory address that is accessed.
In the following example, we show how a secret is leaked from a
secret-dependent access:

void histogram(int in[1, int out[]) {

for (i=0;i<SIZE;i++) {
int v=in[il];
if (v>0) t=v%SIZE;
else t=(0-v)%SIZE;
out[tl=out[t]+1;

}

In this example, array in contains secret inputs. A sufficiently pow-
erful attacker (e.g., using prime-and-probe attack) would be able to
learn the value of each element in[i] by observing which address is
accessed by out [t]. Consequently, we say that the memory access
out [t] is “secret-dependent”.

In constant-time programming, all possible addresses of a secret-
dependent memory access (with any input) form what is called
a Dataflow Linearization Set in this paper. For example, the
dataflow linearization set of the memory access out [¢] in the previ-
ous example is all elements in array out. Given a dataflow lineariza-
tion set DS, Dataflow Linearization eliminates cache side channel
by accessing each and every element of DS in every execution in-
stance so that the attacker cannot figure out which of these accesses
was really the intended one. Note that, addresses in dataflow lin-
earization set are often continuous. A software-mitigated version
of the example code fragment above is as follows:

void histogram(int in[], int out[]) {
for(i=0;i<SIZE;i++) {
int v=in[i];
if(v>0) t=v%SIZE;
else t=(0-v)%SIZE;
for (j=0;J<SIZE;j++){
int p = outl[jl;
out[j] = (j==t)?p+1:p;

}

It is to be noted that, in this case, the dataflow linearization set of
memory access out [t] is array out. In the transformed (secure/mit-
igated) program, each load requires accessing all elements in the
dataflow linearization set while each write requires first reading
the data out and then writing it back. Clearly, by accessing each and
every element in a dataflow linearization set, the mitigated program
leaves “secret-independent” footprints. Note also that, the elements
in the dataflow linearization set can be of different strides based on
the threat model assumed (more on this below). For example, if the
attacker cannot tell memory accesses to the same cache line from
one another, the stride in the dataflow linearization set is the size
of a cache line (e.g., 64 bytes) [37]. As a result, the size of dataflow

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

linearization set is reduced. However, even an optimized dataflow
linearization set can still be very large. As a result, accessing an
entire dataflow linearization set may cause significant performance
penalties in many practical scenarios.

2.4 Threat Model

While the published works in the literature employ different threat
models [11, 21, 28], in this work, we assume that the attacker cannot
directly access victim’s data, though the attacker and the victim
are assumed to be executing on the same machine and share the
same (target) cache. The attacker is assumed to have access to the
source/binary of the program and seeks to leak secret-dependent
computations via the potential cache-based side channels. We fur-
ther assume that the victim program does not share any writable
data lines. Note that similar attack models have been used in prior
research [9, 21, 34] as well. By the very definition of “sharing”, the
cache is assumed to be not partitioned between the attacker and
the victim. We do not have a constraint on what level of the cache
hierarchy the attacker and the victim are sharing. More specifically,
the attacker and the victim can be running on the same core, in
which case they share private caches (say, L1 and L2) as well as the
last-level cache (LLC). Alternatively, the attacker and the victim
could be running on different cores, in which case they only share
the LLC. Also, we do not stipulate anything on the “inclusivity” of
the caches in the system: caches can be inclusive, non-inclusive, or
exclusive (and inclusivity does not influence the effectiveness of
our work).

In this work, our focus is on an “access-driven” attacker that
can observe the changes in the target cache, via Prime+Probe (ex-
plained above), with the goal of inferring secrets from the victim’s
program. We do not focus on leakages by operations other than
memory accesses such as computations in unpipelined hardware
structures [40]. The leakage from such structures can be easily
eliminated by constant-time programming. We do not discuss the
leakage from branch prediction units either, which could be handled
by a technique known as branch linearization [9] in constant-time
programming.

Note that, with control flow linearization and dataflow lineariza-
tion, instruction and data memory access traces are identical re-
gardless of the secret value. As a result, no leakage can originate
from memory/storage units such as TLBs, last-level caches (LLCs),
and memory controllers.

Also, we assume that the attacker cannot distinguish accesses
to the same cache line from one another. This assumption is due
the fact that the cache side channel attacks are generally at the
granularity of “cache lines”. Some prior works [26, 51] have demon-
strated that cache side channels could even be formed at smaller
granularities (e.g., in the context of bank conflict-based attacks). But,
such bank conflicts are not reported in newer architectures [26].
As a result, we do not consider bank conflict attacks in our work.
Consequently, the stride of the dataflow linearization set is of the
size of a cache line (64 bytes) in this paper.

Prior research [52] has discussed that there is no clear “security
abstraction” between software and hardware; and, this can make
constant-time programming insecure. In particular, the main con-
cern about secret-dependent memory access is “silent stores” [40].

Miao et al.

However, if or how silent stores are implemented in modern com-
mercial architectures is not publicly available at the time of this
writing. Hence, in this paper, we do not consider the potential effects
of silent stores. Since our work is based on existing constant-time
programming, we leave the silent store issue to a future study.

3 MOTIVATION

In this section, we motivate for our proposed hardware structure
for constant-time programming.

3.1 Performance Problem of Constant-Time
Programming

Previous works [9, 21, 34, 37, 47] provide various constant-time
programming tools with reasonable performance overheads. How-
ever, the focus of such prior works has been on “small” dataflow
linearization sets. This is because most of the benchmark programs
tested in these prior studies come from the cryptography libraries,
which typically have look-up tables of small-to-moderate sizes. It
is noticeable that not only cryptography libraries are secret sen-
sitive, but also common processing tasks, especially in the era of
cloud computing. The processing tasks, such as statistics-related
programs[7] and graph processing[8], can be vulnerable to data
leakage from cache side channel. We target the programs of which
dataflow linearization sets are not as small as those in cryptography
libraries.

— noavx

— avx2
50 A

40

30 4

Exec time overhead

10 4

input size

Figure 2: Overhead in Histogram with various size of dataflow
linearization set.

To better understand how prior works scale with dataflow lin-
earization set size, we have tested two application programs from [9],
but with varying input sizes. The results we have collected with
Histogram are plotted in Figure 2, and show how much the over-
head is, with respect their insecure (original) versions. Note that
the original input sizes used in these benchmark programs is 1,000
for Histogram, which makes the sizes of dataflow linearization sets
to be %(note also that the size of a dataflow linearization set
depends on the data flow as well as the size of the secret input; also
cache line size, 64 bytes, is the stride for dataflow linearization set
in this case). As can be seen from the results presented in Figure 2,
the overhead observed with the default inputs is twice the number
of the cycles of the “original” (“insecure”) programs. However, as
the input size grows, the overheads grow very rapidly, and, with

Hardware Support for Constant-Time Programming

Access 0x1048

] Y

DS = {0x1008, 0x1048,

S| Belny 0x1088, 0x10c8, 0x1108}
1] 0x1080 0x1008 0x1008
1| oxioco 0x1048 0x1048
0 Ox1088| (3) ||Ox1088
0x10c8 e 0x10c8

0 0x1108 | (5) [OXII08 @

Baseline Our
DS touch

Proposal

Figure 3: An example of accessing a dataflow linearization
set. The targeted load address is 0x1048, data linearization
set of that address is DS={0x1008, 0x1048, 0x1088, 0x10c8,
0x1108}. In cache, we have lines of 0x1040, 0x1080 and 0x10c0
valid. If we issue every address in DS to cache, there are 5
requests. However, If we know validness, only 3 requests are
required. See Section 3.2 for more detail.

an input size of 10,000 in Histogram, we see that, even with the
support of avx2 optimization, the performance overheads can be as
high as 50 times of the cycles of the original programs!

As shown in [9], there is no sensitive branch in Histogram. As
a result, we can contribute the overhead mainly to the dataflow
linearization, which is to access the elements in the dataflow lin-
earization set with stride. We test Histogram with cachegrind [1],
a profiling tool that prints out statistics of a cache, including the
number of cache accesses and the number of cache misses. The
statistics reported below give the number of accesses to the L1
data/instruction cache (L1d ref/L1i ref) and the number of misses
in the LLC cache (LL misses) for three versions (original, secure,
and secure with the avx2 support) of Histogram with an input size
of 10,000.

Input size L1d ref L1iref LL misses
origin 142,154 510,720 3793
secure 18,912,170 | 138,380,746 3796

secure with avx | 19,022,174 83,230,746 3807

From the table above, we can eliminate the extra accesses to
main memory (DRAM) as the cause for very high overhead. This
is because the number of LLC misses represents the main mem-
ory accesses. The significant increase in L1i/L1d ref indicates that
the extra accesses to the data cache and the execution of the ex-
tra instructions (for address calculation mainly) have significant
influence on performance.

3.2 Can the Number of Accesses Be Reduced?

Our idea is based the insight illustrated by the following example
where an attacker cannot distinguish accesses to the lines already
in the cache from one another.

Normally, a mitigated program needs to access each and every
element in a dataflow linearization set. Otherwise, it might leak
information via side channel. However, we observe that, accessing

MICRO 23, October 28-November 1, 2023, Toronto, ON, Canada

each and every element in a dataflow linearization set is only neces-
sary in a “worst-case” scenario. For instance, consider the example
shown in Figure 3. In this example, the secret-dependent memory
access is a load from 0x1048, and the dataflow linearization set
of this access is DS={0x1008, 0x1048, 0x1088, 0x10c8, 0x1108}. A
straightforward mitigation strategy such as [9] needs to load all the
elements in DS, which takes a total of 5 accesses. However, if the
program could somehow know the existence of each element in
DS when it is about to issue the memory access to 0x1048, the num-
ber of accesses could be reduced. In this example, since cache lines
for 0x1048, 0x1088 and 0x10c8 all exist in the cache, the mitigated
program only needs to issue one (real) access to the address 0x1048
and then issues accesses to 0x1008 and 0x1108 to ensure that all
elements are in the cache, regardless of which address is accessed.
Note that this results in a total of 3 accesses. We emphasize that
selectively accessing a subset of DS in this way does not leak any
information because i) the cache status before accessing 0x1048
is secret-independent, as previous cache-side channels are all mit-
igated, and ii) the selective access does not bring/evict any lines
to/from the cache, and as a result, the attacker cannot learn which
of the three lines has been accessed. One potential concern is that
the cache replacement side-channels can still tell the accesses apart.
However, this problem can easily be addressed by not updating
replacement bit (LRU bit) if the access is secret-relevant.

The above example demonstrates the case of accesses to the
dataflow linearization set of a read operation. For accesses to the
dataflow linearization set of a write operation on the other hand,
the dirtiness information is required, which indicates whether the
line has its dirty bit set to 1 in the cache. This is because, a write
operation modifies the dirty bit of the corresponding line in the
cache and this modification cannot be handled in the same way
as the replacement bit (i.e., by skipping the update), due to cache
coherency. In this case, only one access is issued to DSy, (a subset
of DS). Note that the lines in DSy, are all in the cache and have
their dirty bits set to 1. This insight can help the mitigated program
to reduce its number of accesses to the cache, as long as DSeyis: /
DS girty is not empty. Since a dataflow linearization set is usually
to be accessed more than once in cryptography libraries (e.g., a
look-up table is checked many times) as well as other programs
with security concerns, DS,yjst/dirry # @ holds in many cases.

While guaranteeing security and providing performance im-
provement for programs of various data linearization set sizes, our
technique is most efficient when the data linearization set of a pro-
gram can wholly fit into cache. When the size of the linearization
set is larger than the cache size, with some naive cache replace-
ment policies (e.g., LRU), frequent capacity misses can happen. A
straightforward way to deal with this problem is to change the
replacement policy. We will discuss an insight that utilizes coarser
attack granularity in the memory controller to handle this problem
(Section 6.5).

4 DESIGN DETAILS

It should be clear from the discussion above that we need to, some-
how, maintain the “information of existence” and the “information
of dirtiness” in the system, and make the information available
to the application program to be protected against side-channel

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Consult
4_| DS ={0,1,2,3,4,5,6,7}
Cache

—{ o[RS ¢ | - |

Evict 4 Bitmap
Cache 4_- y_True Bitmap
o[z[2[3]+[5]e]7

Consult

Cache

Touch
DS ={0,1,2,3,4,5,6,7}

[B[ii2is: + [s]s]]
@0 .4 0

Cache

Figure 4: Illustration of the functionalities of the proposed
instructions.

attacks. Unfortunately, current architectures lack both i) hardware
structures that can help us maintain such information and ii) in-
terface (instructions) to expose them to the application program.
These missing components are what our research explores and
evaluates.

4.1 Proposed Instructions

In this section, we give the details of our proposed interface, i.e.,
the new instructions needed for our proposed scheme to work.
We start by observing that maintaining the existence and dirtiness
information can require a substantial amount of space. For example,
with a 4GB main memory, there are 4GB + 64B = 226 cache lines in
total. New instructions should not provide information of all those
lines as a whole since it is too large.

We propose two new instructions to be added to the micro-
operation set of X86-64 ISA, to capture the existence/dirtiness in-
formation for 64 lines - size of a single page:

page size = 4096 bytes = 64 lines X 64 bytes per line.

If we use one bit to indicate the existence/dirtiness of one line,
our new instructions would return 64 bits for existence information
or 64 bits for dirtiness information.

Intuitively, the granularity of managing dataflow linearization
set (DS) affects the number of lookups into bitmap table. Specifically,
with a coarser granularity, the number of lookups gets decreased.
In this work, we set the granularity of managing DS (denoted by M)
to be the page size (M = 12) for two reasons: first, virtual address
and physical address have same 12 least significant bits (same offset
within a page). As shown in Algorithms 2 and 3 (and discussed
later in the paper), Bitmask needs to be generated for preprocessing
(further details can be found in Section 5). Bitmask generation takes
the least M significant bits of the physical address as input. By
setting the granularity to page size (12 bits), we can use the virtual
address to generate this information. Second, page size is often the
"granularity of attack” at the memory controller level. This offers
us with more choices for accesses in our algorithms, which will be
discussed in detail in Section 6.5.

Our new instructions enable users/programs to access the ex-
istence/dirtiness information. However, these instructions cannot
just implement a simple information load from new hardware struc-
ture; rather, our instructions should i) launch a cache access, i.e.,

Miao et al.

load/store from/into cache and ii) load the existence/dirtiness infor-
mation at same time. To see why this is necessary, let us focus on
the left side of Figure 4. In this example, element 6 is the the data ele-
ment to be loaded by the program, which is “secret-dependent”. The
dataflow linearization set for this access is DS = {0, 1, 2,3,4,5,6,7}.
For simplicity, we assume that the lines in DS are within the same
page. Suppose that lines of 1, 2, 4 and 5 are in the cache at the begin-
ning. If our new instruction simply loads the existence information,
the program would get Existp = {1,2,3,4,5} at first (we use, for
simplicity, set Exist;, rather than 64 bits to denote the information
returned to the program). Let us assume now that an attacker evicts
the line that holds element 4 from the cache right after loading the
existence information. In this case, the existence of the elements
should be changed to Exist; = {1, 2,3, 5}. However, the victim pro-
gram is unaware of the change, meaning that it issues accesses to
elements 0, 6 and 7, and only one access to Exist, — to element 1.
As a result, element 4 does not exist in the cache after the accesses
issued by the victim. Based on this observation, the attacker learns
that element 4 is not the victim’s required access and subsequently
excludes some candidates of the victim’s secret. Note that the above
information leakage is due to the fact that the existence information
obtained by the victim cannot accurately represent the existence of
the lines by the time the victim is accessing the cache.

Motivated by this discussion, we propose two new instructions,
one “load” instruction and one “store” instruction. Each of these
instructions, at the same time, i) performs a cache access and ii)
loads existence/dirtiness information. As shown on the right side of
Figure 4, our new load instruction loads the information of existence
and accesses the cache in one step. It is to be noted that the cache
access of our new instructions is not the same as the cache access
of normal load and store instructions. For example, as shown on
the right side of Figure 4, element 6 is the requested data item
but the new instruction does not load it. Furthermore, the new
instruction does not forward misses to the next level in the cache
hierarchy or to the main memory, for security reasons. So, this new
load instruction may not load the data requested by the original
program. It is the same with the new store instruction, i.e., it may
not write the data into the requested address.

Instead, to ensure security and functionality of the application
program, we design algorithms for loading and storing elements in
the dataflow linearization set, which are discussed in detail in the
next section. However, for now, let us define our new instructions
more formally:

1) Our new load instruction, CTLoad, has one input, address, and
two outputs, data and existence. data may or may not be the actual
data requested by program originally; that depends on whether the
line of the address is in the cache or not. The existence information
on the other hand is of 64 bits (8 bytes), and helps the program
to get the actual data using the algorithm explained in the next
section. The semantics of CTLoad is more precisely shown with
the pseudo-code below:

Input: address
Output: data, existence
IF address hit in cache
data = load(address)
ELSE
data = @

Hardware Support for Constant-Time Programming

Data Entry
0 64 128
| Existence Dirtiness
B IA tag \ Data Entry
—>
ISet 1
Existence /
Dirtiness
Set N
A Assoc
Hit / Inv |
Cache Cache
address > Sel Data
Tag Data

Figure 5: Proposed hardware design. When a request arrives
at cache, the address also goes to BIA which outputs Ex-
istence/Dirtiness information. All cache hit/invalid signal
from cache tag will also goes to BIA for Data Entry updating.

existence = getExistenceByPageldx (address)
return data, existence

2) Our new store instruction, CTStore, has two inputs, address
and data, and one output, dirtiness. data may or may not get stored
into address provided by CTStore. With dirtiness (64 bits = 8 bytes)
and some additional processing (explained shortly) after CTStore,
data is stored into address. The semantics of CTStore can be more
precisely defined as follows:

Input: address, data

OQutput: dirtiness

IF address has dirty bit set to 1 in cache
store(address, data)

ELSE
DO NOTHING

dirtiness = getDirtinessByPageIdx (address)

return dirtiness

4.2 Proposed Hardware Structure

Our proposed hardware structure BIA (BItmAp) is essentially a
table of “bitmap” entries. As shown in Figure 5, each entry of BIA
records the existence and dirtiness information of 64 lines in a page.
The existence information is of 64 bits, with each bit indicating the
existence of one line in the cache. The dirtiness information is also
64 bits, and specifies if the corresponding line has its dirty bit set
to 1 in the cache. The tag of the entry records the index of the page
that it refers to.

BIA is similar to a cache memory; hence, the placement and
replacement policies employed by conventional caches can be ap-
plied here. In our design, we opt to use a set-associative policy for
placement and an LRU policy for replacement. An entry in BIA is
installed when the corresponding address required by CTLoad or

MICRO 23, October 28-November 1, 2023, Toronto, ON, Canada

CTStore is not found in BIA, triggered by a miss after tag compar-
isons in BIA. An entry is allocated and initialized with the existence
and dirtiness bits set to 0, and it fills the tag with the page index.

BIA monitors the cache for any update. When there is a hit in
the cache and there is an entry in BIA for the corresponding page of
that memory address, the corresponding existence bit in the entry is
set to 1. In addition, the dirty bit of that line in the cache is checked;
this bit is used for updating the dirtiness information in the BIA
entry. When there is an invalidation, BIA checks if the page index
of that line hits in the BIA. If it hits, the existence and dirtiness bits
for that line in the entry for that page are set to 0. When there is a
change in the dirty bit of the cache lines, the corresponding entry
is updated with the dirtiness information. One caveat though is
that the BIA may not be consistent with the cache. Specifically, at
the initialization time, some lines of the page may already be in
the cache, but BIA initiates the existence and dirtiness with all 0s.
However, this inconsistency does not hurt security in any way. We
elaborate on this further in Section 5.3.

Note that the BIA can be placed into the L1 cache or the L2
cache. For an L2-resident BIA though, the behavior of CTLoad and
CTStore is slightly different as, in this case, those two instructions
will bypass the L1 cache; they will check the L2 cache and the L2-
resident BIA. Whether to place the BIA into the L1 cache or the
L2 cache depends largely on the tradeoff between cache capacity
and cache latency. To make it clear, L1 cache has a lower accessing
latency than L2 cache but has smaller capacity. As a result, lines
are more likely find themselves hit in L2. However, in a L2-resident
BIA design, CTLoad and CTStore instructions need to bypass the
L1 cache for security, resulting in extra overhead.

5 PROPOSED ALGORITHMS

As discussed in the previous section, the proposed CTLoad and
CTStore instructions themselves cannot complete the whole func-
tionality of loading/storing data from/to the targeted address in
a secure fashion. In this section, we first provide our algorithms
for “secure” loading and storing with the newly-proposed instruc-
tions. We also prove the functionality and security of the proposed
algorithms. Finally, we discuss our algorithms under different con-
straints.

5.1 Details of Our Algorithms

We now present the algorithms we have implemented in software
to finish secure loading and storing via the CTLoad and CTStore
instructions. It is worth mentioning that the previous constant-time
programming methods/tools [9] provide programs with dataflow
linearization sets of their secret-dependent memory accesses at
compile-time. We utilize those methods/tools for generating the
dataflow linearization sets.

In Algorithms 2 and 3, first, a dataflow linearization set is divided
into pages; this is achieved by grouping lines by their page index
bits (i.e., the 13th-64th bits in a 64-bit machine). Within the loop, the
address input for CTLoad/CTStore needs to be regenerated. Note
that the targeted address of the program may not be within current
page;. In such a case, an address that is within the current page is
picked.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Algorithm 2: Use CTLoad to load

Input: address: Id_addr
Output: data: ret_data
1 DS = getDataflowLinearizationSetOfAddr(/d_addr)
2 Get the set of pages PAGES = {pagey, pagey, - - - , pagep } that
covers DS
3 for page; in PAGES do
4 addr_to_read = page; | ld_addr [11 : 0]
5 Get Bitmask of page;
6 data, existence = CTLoad(addr_to_read)
7 tofetch = Bitmask & ~ existence
8 fetchset = generateAddrs(page;, ld_addr, tofetch)
9 for address in fetchset do
10 tmpdata = LOAD(address)
L data = (address==addr_to_read)?tmpdata:data

11

1z | ret_data = (Id_addr in page;)?data:ret_data

13 return ret_data

Algorithm 3: Use CTStore to store

Input: address: st_addr
1 data: st_data

2 DS = getDataflowLinearizationSetOfAddr(st_addr)

3 Get the set of pages PAGES = {pagey, pagey, - - - , pagen } that
covers DS

4 for page; in PAGES do

5 addr_to_write = page; | st_addr [11: 0]

6 Get Bitmask of page;

7 ld_data, existence = CTLoad(addr_to_write)

8 st_data_tmp = (st_addr in page;)?st_data:ld_data
9 dirtiness = CTStore(addr_to_write, st_data_tmp)
10 tofetch = Bitmask & ~ dirtiness

11 fetchset = generateAddrs(page;, st_addr, tofetch)

12 for address in fetchset do

13 tmpdata = LOAD(address)

14 tmpdata = (address==st_addr)?st_data:tmpdata
15 STORE(adddress, tmpdata)

Bitmask is generated based on the dataflow linearization set.
Bitmask has 64 bits with each bit identifying if the corresponding
line of that page is in the dataflow linearization set or not. Bitmask
is required by our algorithm because, in a page, some lines might
not be in the dataflow linearization set. For example, if DS={0x1080,
0x10c0, 0x1100, ..., 0x1f80, 0x1fc0}, Bitmask = 111...1116200 be-
cause the first two lines, 0x1000 and 0x1040, are not in DS. While
Bitmask shows if a line is in DS, existence shows if a line is in cache.

In the load algorithm, addr_to_read is passed to CT Load. As dis-
cussed before, data may or may not be the data from addr_to_read,
because CTLoad does not forward request to the next level of
cache or main memory. The job of generateAddrs is to gener-
ate a set of addresses by checking the bits in tofetch. Specifi-
cally, if bit i is 1, a new address is generated using this formula:
address = page[63 : 12] +i << 6 + st_addr [5 : 0] . The first part
of this formula is to obtain the page index; the second part is to
obtain the line index within the page; and the third part is to obtain

Miao et al.

the offset within the line. After the generation, generateAddrs puts
the new address into fetchset and checks the next bit of tofetch.

The store algorithm is more involved. CTStore cannot be directly
used because address_to_write in the current iteration may not be
the same as the targeted address. If address_to_write # st_addr
and addr_to_write is already dirty in the cache, then CTStore cor-
rupts its content. Our solution is to use first the CTLoad instruction.
Note that, doing so would prevent the data in address_to_write
from being corrupted. First, let us assume that there exist no other
processes that access the cache in the meantime. As shown in Fig-
ure 6(a), if the line that includes address_to_write is dirty in the
cache (i.e., D=1) when CTLoad accesses the cache, the returned data
is correct. In this case, CTStore is issued with address_to_write and
the correct data (shown as the yellow circle). Figure 6(b) shows that,
if the line that includes address_to_write does not exist (i.e., V=0)
or is not dirty in the cache (i.e., D=0) at the time CTLoad accesses
the cache, the returned value is not correct (i.e., it is fake, shown as
the red triangle). Since there are no other processes bringing in the
line, CTStore will find that line absent in cache, so that fake data
will not be written back into the cache.

Page 1 Page 1 Page 1 Page 1
B B [0 | paon
CTLoad(1)| CTStore Write back, CTLoad(8)| Not in cache CTStore Write fail,
O w0 bits: 0100 fake data A (8. A) bits: 0100
V| D |addr|Data V| D [addr|Data V | D |addr|Data V| D [addr|Data
0 0 0 0
1] 1 |O 1[1] 1 |O 1] 1 |O 11 1 [O
1fo] 6 |¥% 1[o] s |S% 1[o] s [FX] 1[o] 6 |
0 0 0 0
Cache Cache Cache Cache
(a) load success (b) load fail
Page 1 Page 1 Page 1 ge 1
(] [m@o] [Gewn]

CTstore Write fail i CTSt
CTLoad(1) v CTLoad(E Not in cache Write fail,
l TO [Xe) Tbns: 0000 take data A G Ay | bits: 0100
V[D|addr|Data] ~~_ | V| D |addr|Data| V | D |addr|Datal V | D |addr|Datal
Other Prefetch
0 0 0 raare |2lo| s |H
Evict
1lload\r/1lrclo 11101110
1fo] 6 [¥¢ 1fo] 6 [¥¢ 1]o] 6 [H¢ 1fo] s [Y%
0 0 0 0
Cache Cache Cache Cache

(c) evict (d) prefetch

Figure 6: Using CTLoad in the store algorithm. Circle: dirty
data in cache; Star: clean data in cache; Triangle: fake data re-
turned by cache; Square: preloaded data(also clean) in cache;
V: valid bit, D: dirty bit; For every subgraph, the left shows
line 7 in Algorithm 3 and the right shows line 9. In between,
there might be other process changes the state of cache,
which is shown by red text.

Let us now consider a more general case where there can be other
applications/processes using the “same cache” at the “same time”. In
cases where the line that contains addr_to_write exists in the cache
when CTLoad is executed but later gets evicted by other processes,
as depicted in Figure 6(c), CTStore will find that line absent in the
cache and DO NOTHING(see Section 4.1(2)). Figure 6(d) illustrates
what will happen if CTLoad encounters a miss and returns the fake

Hardware Support for Constant-Time Programming

data but that line then gets brought into the cache by the prefetcher.
Note however that, in such a case, the line should not be dirty (i.e.,
D=0) in the cache; as a result, CTStore cannot write the fake data
back into the cache.

5.2 Functionality Proof

In this part, we prove the functionality of our algorithms that work
along with CTLoad and CTStore. The main functionality of our
algorithms is to load/store data from/to the requested address while
not altering the contents in other addresses.

In the algorithm for load, there is no concern for data corruption.
Hence, all we need to do is to identify if the requested data gets
loaded and if it is returned by the algorithm. When the loop iterates
to the page of the requested line, if that line exists in cache, CTLoad
returns the data from the requested line. If, on the other hand, it
does not exist, the address will be put into fetchset and will get
loaded later. The correctness for algorithm for store is similar to
that for load. There is also no wrong modification to any other
addresses, which we have discussed earlier when discussing the
algorithms. As pointed out before, the BIA is not fully consistent
with the cache. This is because, when a new entry is allocated, some
lines in the related page of this entry might have already been in the
cache. Note however that, this will not influence the correctness of
the functionality of our algorithms. Since the existence information
recorded in the BIA is a subset of the authentic (ground-truth)
existence information, the missed requested address is still put into
fetchset.

5.3 Security Proof

In this part, we prove that our proposed algorithms guarantee the
constant-time programming principle. For each secret-dependent
memory access, a dataflow linearization set DS is generated. El-
ements in DS stride with the size of a cache line. Let us assume
that DS = {L1, Ly, L3, L4, .. .}, where L; is the physical address of
line i; an existence set Exist = {Cy, Cy, C3,Cy, ...}, where Cj is the
physical address of line j in the cache that is recorded to exist by
the BIA; and a dirtiness set Dirty = {D1, Dy, D3, Dy, . ..}, where Dy
denotes the physical address of line k in the cache that is recorded
dirty in the BIA. We have Exist; and Dirty, for every time point
t. Clearly, Dirty, C Exist; and both Exist; and Dirty, are subsets
of the “actual” existence and dirtiness information in the cache.
Note that, for security purposes, Exist; and Dirty, do not need to
be exactly the same as in the cache status.

We use “induction” to prove that Exist, ;) is “secret-independent”,
where (i) is a timestamp. For example, #(1) is the time when the
mitigated program is about to access DS for the first time. Obvi-
ously, Exist; () is secret-independent. Suppose Exist; () is secret-
independent. In our algorithm, DS is split into groups by page index.
So, DS is split into DSp,, DSp,, DS, Here, DS, stores the lines
in DS that are in page p;. In our algorithm for data load, a CTLoad is
issued for every DSp,. Let us assume that, at time ¢(r), CTLoad for
page p; arrives at the cache and the BIA. Note that CTLoad does not
change the contents in the cache no matter what the secret is. tofetch
is generated by the existence information DSy, — DSp, N Exist, ;)
which has nothing to do with the secret. Therefore, accessing all the

MICRO 23, October 28-November 1, 2023, Toronto, ON, Canada

addresses in tofetch is secret-independent, which leaves “insensi-
tive” footprints in the cache. Additionally, there is no secret-related
accesses between accesses to DS. Consequently, the next time DS is
accessed, Exist;(,11) is secret-independent. A similar proof strategy
can be used for the algorithm for the store instruction as well. The
additional part would be the trick, which we have discussed earlier,
of invoking CTLoad first. Note however that executing CTLoad-
/CTStore does not change the meta-contents of the cache (i.e., they
do not change anything except data).

6 DISCUSSION

In this section, we go over a few important aspects of our proposed
approach.

6.1 Comparison with Cache Pinning

PLcache[44] is a cache design that locks lines in cache (the locked
lines cannot be evicted). PLcache+preload[19], which is based on
PLcache, preloads and locks all sensitive lines in advance, to remove
cache side-channels. While PLcache mitigates the problem of large
data linearization set because only one access to cache will be issued
once data is pinned (although pinning data into cache still requires
accessing the whole data linearization set), it has limitations in
terms of security and fairness. First, PLcache does not achieve the
same level of security as our work since it does not mitigate infor-
mation leakage from dirty bits and LRU bits: those bits can still be
“secret-dependent”. Once those pinned cache lines get “unpinned”,
the memory access patterns to those lines will be leaked from the
replacement and writeback behaviors. Second, PLcache does not
provide the same level of “fairness of service”, compared with our
work. Although cache pinning is beneficial to the protected pro-
gram, it hurts the performance of other processes by exclusively
holding a portion of the cache, i.e., it reduces the effective cache
capacity. Furthermore, this problem can be more severe when the
dataflow linearization set is large as the protected program would
occupy a significant portion of the cache space, and leave few lines
for other processes. Even when the process gets switched out by
the OS, its large pinned area cannot get released. Our proposed
design, in contrast, does not lock lines in the cache, and so, it can
be considered “fair”.

6.2 Bitmap Exposure Discussion

One might also have a concern regarding whether the BIA has any
negative side effect on security, given that the attacker can poten-
tially be able to read the existence and dirtiness information from
the BIA, saving attackers from more costly Prime+Probe-like at-
tacks to reveal the same information. However, we first note that the
existence and dirtiness information from the BIA does not leak any
information for the protected program. For unprotected program,
we propose to prevent direct exposure of the bitmap information
to users by packing the CTLoad / CTStore with the follow-up
LOAD / STORE instructions (i.e., packing the whole algorithms 2
and 3) into macro-operations in X86-64 ISA. By only exposing the
macro-operations to users, the sensitive bitmap reading instruc-
tions CTLoad / CTStore cannot be called directly, and the loaded
existence/dirtiness information remains invisible to users. We leave
the integration of macro-operations to a future study.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

6.3 Cryptography Libraries

As mentioned in Section 3.1, our technique does not target workload
whose dataflow linearization sets are as small as those of cryptogra-
phy libraries. The dataflow linearization set in cryptography library
is usually small. For example, in AES encryption, accesses to T-
table are secret dependent [5]. The size of dataflow linearization
set is |T-table| = 1024 bytes, which equals to 1024/64=16 cache
lines. BIA implementation, on the other hand, groups 64 cache lines
together, which means the dataflow linearization set of AES even
does no exceed the boundary of a single BIA entry. However, BIA
can still benefit cryptography libraries from the security angle and
does not cause much performance penalty. We will show that in
Section 7.3.3.

6.4 Putting BIA into LLC

In Section 4.2, we briefly discussed the options of placing BIA into
L1 or L2 caches. Now, we consider the feasibility of placing BIA into
LLC (last-level cache). In many modern architectures, LLC is sliced
and distributed, and the cache lines of LLC are hashed into slices.
Apart from cache side-channels introduced in Section 2.1, LLC also
suffers from the interconnect side-channels. More specifically, an
attacker could learn which slice/core is sending/receiving informa-
tion from another slice/core by observing the traffic latency [28].
Hence, the LLC interconnect leakage granularity also relates to LLC
slice ID hashing function. Prior works on reverse engineering the
slice hashing function [49, 50] indicate that hashing function takes
some bits of physical address as input.

Let us denote n-bit physical addressas A = (Ap—1, An—2, - - - , Ao),
denote the index of the least significant bit used in slice hashing
function as LS_Hash (e.g., LS_Hash = 12 if A;3 is the least signifi-
cant bit used by the hash function), and denote the granularity of
DS management as M (e.g., M = 12 if the granularity is of page
size). Note that LS_Hash is no less than 6, because cache line is of
size 2.

If LS_Hash > 12 (e.g., as in the case of Intel Skylake-X [49]), it is
feasible to put BIA into the LLC with M = 12. Since the traffic among
slices leaks information at a granularity larger than page size, the
traffic trace among slices/cores is identical with all different offsets
within the same page. Hence, an attacker cannot gain information
by simply observing the traffic. The implementation of this case is
basically similar to the L2 cache BIA design — we bypass the L1 and
L2 caches and fetch the BIA information from the LLC BIA. The
following access in DS (lines 9-11 in Algorithm 2 and lines 12-15 in
Algorithm 3) should also bypass the L1 and L2 caches.

If 6 < LS_Hash < 12, it is still feasible to put BIA into LLC, but
doing so requires M be set to LS_Hash. Note that the leakage from
the interconnect gets eliminated because addresses in the same DS
management set (2M addresses in a set) are resident in the same
LLC slice and the attacker cannot distinguish, by just observing
the traffic among LLC slices/cores, which address in this DS set is
accessed. The implementation of this case is quite similar to that
of the previous case. M is reset to LS_Hash. The BIA management
granularity is no longer the page size; instead, it is 2M = 2L Hash
As a result, there are more CT_Load and CT_Store traffic among
slices and cores, and the traces across the slices and cores do not
leak any information.

10

Miao et al.

Table 1: Gem5 Configuration

Configuration Parameter
CPU DerivO3CPU
L1d cache 64 KB, 2 cycles latency
L2 cache 1MB,15 cycles latency
Last Level cache 16 MB, 41 cycles latency
BIA in L1d/L2 cache, 1 KB, 1 cycle latency

If LS_Hash = 6 (e.g., as in the case of Intel Xeon E5-2430[50]),
it is not feasible to implement BIA in the LLC, as, in this case, the
continuous cache lines are distributed across different slices.

6.5 Granularity-Based Optimization

Information leakage granularity varies across different memory
units. The finest granularity is of a "cache line" size, given that bank
conflicts are not reported in recent architectures any more [26]). In
addition to cache side-channels, LLC interconnects, memory con-
trollers [42] and DRAM row buffers [31] can also leak information.
The granularity of the LLC leakage is 2-5-H2" With a closed-row
policy, the granularity of memory controller leakage is no less than
the page size. In this work, we have opted to set the DS management
granularity to the page size because it opens up an optimization
space. It is to be noted that, if the entire DS cannot fit into cache,
then the access to DS (lines 9-11 in Algorithm 2 and lines 12-15
in Algorithm 3) might cause frequent cache line replacements and
eventually hurt the performance. However, if LS_Hash > 12, we
can wrap those parts with the following code:

if (sizeof(fetchset) < threashold) {
line 9-11 in Algorithm 2
(line 12-15 in Alorithm 3)

} else {
directly load from DRAM
(directly store to DRAM)

}

We set a threshold for the size of fetchset. If the size of fetchset
exceeds the threshold, we can bypass all the caches below and
access the DRAM directly. In this case, we can avoid the frequent
cache replacements.

7 EXPERIMENTAL EVALUATION

In this section, we first provide the details of our implementation
and experimental setup, and then present and discuss the collected
experimental results.

7.1 Implementation and Experimental Setup

We implemented our proposed BIA on top of the Gem5 simulation
toolset [6]. The default values of the major experimental parameters
of our implementation are listed in Table 1.

The BIA is similar, structure-wise, to a conventional cache mem-
ory, with tags and lines (blocks). We add our new instructions
into the x86-64 ISA. Note that there is no direct store/load style
instructions in x86-64; instead, it has instructions for moving data
between the memory and the register file. During execution, such
mov instructions are broken into “micro-operations” (micro-ops),

Hardware Support for Constant-Time Programming

which are technically equivalent to the load and store instructions.
Hence, we add our new instructions in style of micro-ops.

We integrate our instructions into a state-of-art constant-time
programming tool — Constantine [9], which is implemented on top
of LLVM [20]. Constantine identifies all secret-dependent memory
accesses in the program and replaces each of them with accesses to
all of the addresses in the dataflow linearization set. We implement
our algorithms in the Constantine’s dataflow linearization library.

7.2 Benchmark

In this section, we present an experimental evaluation of our pro-
posed approach to side-channel mitigation.

As mentioned in Section 3.1, common processing tasks are also
vulnerable to side channel leakage; their dataflow linearization sets
are of various sizes. For example, the dataflow linearization set
of the histogram program shown in Section 3.1 is array out. The
size of array out depends on the configuration, which gives rise
to different dataflow linearization sizes. In this work, we primarily
target programs whose dataflow linearization sets are much greater
than those of the crypto libraries. This is because the crypto libraries
do not have much performance decrease even with software-based
constant time programming [9].

We provide evaluation results of programs from the Ghostrider
benchmark [21]. We select five programs whose memory access
patterns are either partially predictable or data-dependent (Dijkstra,
Histogram, Permutation, Binary Search and Heappop), shown in
Table 2.

Table 2: Programs with partially predictable or data-
dependent memory access patterns in Ghostrider bench-
marks [21] and their leakage description.

Program Leakage Description
Access to not-yet-selected vertex with
minimum distance to source vertex in
each iteration leaks graph structure;
Size of DS: O (number_of_Vertices?)
Calculating bin number based on data value;
Accesses to bins expose data;
Size of DS: O (number_of_Bin)
Permutation a[b[i]] = i exposes b[i];
Size of DS: O (length_of _array)
Accesses to elements in array
leak comparison trace;
Size of DS: O (length_of _array)
Heap adjusting procedure
brings different access patterns
with different internal data values;
Size of DS: O (length_of _array)

dijkstra

histogram

permutation

binary search

heappop

7.3 Performance Evaluation

Figures 7(a), 7(b), 7(c), 7(d) and 7(e) plot the “execution time over-
heads” of our approach(implement BIA in L1 or L2) and software-
based constant time programming (CT) compared to that of the
insecure baseline. Note that the sizes of dataflow linearization sets

1"

MICRO 23, October 28-November 1, 2023, Toronto, ON, Canada

and the number of visits to the dataflow linearization set are both
very large (when using large inputs) in these three application
programs. It explains why execution time overhead of software
constant time programming increases very fast. With our design
on the other hand, the observed performance overhead reduces
significantly compared to the software constant time programming.

7.3.1 Source of Performance Gain. We gather, from Gemb5, the sta-
tistics on the number of executed instructions, number of accesses
to the L1 instruction caches, number of accesses to the L1 data
caches, and number of accesses to the DRAM. We calculate the
ratio of all those statistics of CT to all those of L1d BIA. We plot
part of the results in Figure 8. We also plot the execution time ratio
in the same figure. As shown in Figure 8, our design greatly reduces
the number of instructions, the number of accesses to the instruc-
tion caches and the number of accesses to the data caches, which all
contribute to the overall performance. In comparison, the number
of accesses to DRAM remains almost the same (y = 1), which means
the performance gain is not related to the DRAM accesses.The other
programs in our benchmarks show similar results: the performance
gain comes from reduced instruction numbers and reduced cache
accesses, not from DRAM accesses.

7.3.2 L1d BIA vs. L2 BIA. We evaluate performance with BIA in the
L1d cache and the L2 cache. As shown in Figure 7, the performance
of the L1d BIA design is better than that of the L2 BIA design in
most of the tests, mainly due to the higher latency of the L2 cache.
The L2 BIA design performs better than the L1 BIA design in dij_128
program (Figure 7(a)). Notice that the size of dataflow linearization
set (DS) is 128*128*sizeof(int) = 64KB, which cannot fit into the L1d
cache (L1d cache is 64 KB but there is some other data, e.g. output
array). With the L1d BIA design, the self-eviction effect in the L1d
cache causes the overall performance to drop, and with the L2 BIA
design, 64KB sensitive data bypasses the L1d cache and can all fit
into the L2 cache.

7.3.3 Cryptography Libraries. Although we mainly target work-
load whose dataflow linearization sets are greater than those of the
cryptography libraries, we also perform evaluation using the cryp-
tography libraries. Since the DS size is small for the crypto libraries,
we provide only the results of L1d BIA and software constant-time
programming. The baseline in these experiments is the insecure
version. The y-axis shows execution time ratio of L1d or CT to the
baseline.

Most of the evaluated programs in Figure 9 show slightly better
results with constant time programming than L1d BIA. Because
the DS size is even smaller than the size of cache lines grouped by
a single BIA entry (Section 6.3), BIA provides little performance
benefits. Also, there are more pre-processing and post-processing
steps in our proposed algorithms (Algorithm 2 and Algorithm 3),
such as grouping DS into page granularity and accessing addresses
based on bitmap entries.

It is also noticeable that L1D BIA shows much better perfor-
mance than the software constant-time programming in program
Blowfish. The DS size in Blowfish is 1024 bytes, which equals to that
of the AES program. The reason why our technique gives better
results on Bliwfish is that, Blowfish has an expensive setup phase,

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

BL1d oL2 aCT

oL1d oL2 s8CT

Miao et al.

olL1d oL2 aCT

12 50 30
45
T 10 ° T 25
3 g 40 3
2 £ 35 5 20
@8 [@
s g 8
gG anZS g15
F o, F 20 F 10
g g 15 8
2 2 & 10 d s
’ 5
0 ﬂ 0 r—r—i:r—r‘{j (,_:x:tjr‘fﬂ

dij_32 dij_64 dij_96

Dijkstra Workload Size
(a) dijkstra

dij_128

oL1d oL2 acCT

hist_1k hist_2k hist_4k hist_6k hist_8k
Histogram Workload Size

(b) histogram

70
- 60
3
£ 50
o
3 40
£ 30
¢ 20

gl

w10
bin_2k bin_4k bin_6k bin_8k bin_10k
Binary Search Workload Size

(d) binary search

perm_1k perm_2k perm_4k perm_6k perm_8k
Perm Workload Size

(c) permutation

olL1d oL2 aCT

heap_2k heap_4k heap_6k heap_8k heap_10k
Heappop Workload Size

(e) heap pop

Figure 7: Execution time overhead compared with insecure baseline. (a) dijkstra program with number_of _Vertices =

{32,64,96,128}; (b) histogram program with number_of_Bin

{1000, 2000, 4000, 6000, 8000}; (c) permutation program with

length_of _array = {1000, 2000, 4000, 6000, 8000}; (d) binary search program with length_of_array = {2000, 4000, 6000, 8000, 10000}; (e)
heap pop program with length_of_array = {2000, 4000, 6000, 8000, 10000}.

—e—insts num —+—icache - ---dcache dram - « -exec. time

CANWARNON®®O®O

e L

Overhead Reduction

—
——
-

dij_32 dij_64 dij_96

Dijkstra Workload Size

dij_128

Figure 8: Overhead Reduction Ratio (in multiples) of soft-
ware constant time programming to L1d BIA design. insts
num: number of instructions; icache: number of accesses to
instruction cache; dcache: number of accesses to data cache;
dram: number of accesses to DRAM; exec.time: execution
time.

in which there are lots of data-dependent memory accesses. Hence,
there are many more accesses to DS in Blowfish than AES, thereby
amortizing pre-processing and post-processing overheads.

7.4 Security Test

As explained earlier, the cache side-channels originate from the
secret-dependent cache access patterns. Consequently, if the cache
access patterns are identical with all possible values of the secret,
the secret will not get leaked from the cache. We modified Gem5 to

12

oL1d oCT
4
g3.5
g
825
8
o 2
£
=15
g 1
Yos
0
AES ARC2 ARC4 Blowfish CAST DES DES3 XOR

Crypto Libraries

Figure 9: Execution time overhead of crypto libraries, with
our L1d BIA implementation and software constant time
programming respectively.

output the number of accesses to each cache set. We provided pro-
grams with different secret values, gathered the number of accesses
to each cache set, and found the statistics to be the same. Figure 10
serves as a representation of our result: we run Histogram_1k pro-
gram with randomly-generated secret inputs and plot 10 samples
of the original insecure baseline (Figure 10(a)) and our approach
(Figure 10(b)). There are 2048 cache sets in our experiment setting.
Due to the space concerns, we only present the number of accesses
to cache sets 320-325. It can be observed from these results that,
with different secret inputs, the cache access pattern varies in the
insecure baseline. With our proposed design on the other hand, the
number of accesses is identical across all 10 samples tested.

Hardware Support for Constant-Time Programming

65
- set 320
601 ---- set 321 .
o | set 322 .
#0551 - set323
]
8 50 set 324 .
@ set .325
%S 45 .
— N
40 A
g \
5 35
c
30 ,
25~
2 4 6 8 10
sample #
(a) Insecure baseline
24
22
(%]
g 20
2 set 320
S 18 set 321
:_U 16 - set 322
o ---- set 323
E 14 set 324
set 325
€
5 12
c
10
.
2 4 6 8 10

sample #
(b) Our work

Figure 10: The number of accesses to cache set 320-325 in
hist_1k program.

8 RELATED WORKS

In this section, we focus on the prior works that are most relevant
to our work, in addition to those mentioned in the introduction and
background sections.

SC-Eliminator [47] transforms a given program by preloading
lines of dataflow linearization sets into the cache; thus, a sensitive
memory access does not miss in the cache. Unfortunately, this
approach cannot guarantee security because an attacker can evict
the preloaded lines from the cache. Raccoon [34], on the other hand,
employs Path ORAM (Oblivious RAM [39]). Oblivious RAM shuffles
data in it so that programs can completely hide its data access
patterns from other security domains. However, ORAM introduces
significant runtime overheads that can have a devastating impact on
application performance. In comparison, GhostRider [21] turns off
caches and uses scratchpads for both instructions and data. It uses
compiler to check whether the relevant data blocks are in cache,
and if not, they are loaded from the memory. Note that GhostRider
requires substantial changes to the underlying architecture.

Our work differs from these prior works in that it provides
hardware support, with a new hardware structure and two accom-
panying instructions, for constant-time programming. Our work
guarantees security with very small memory area overhead, and
substantially improves over state-of-the-art.

13

MICRO 23, October 28-November 1, 2023, Toronto, ON, Canada

9 CONCLUDING REMARKS

In this paper, we first identify the “large dataflow linearization set”
problem in software-based side-channel mitigation. We then solve
this problem by adding a new hardware structure into the architec-
ture, to record the existence and dirtiness information of the cache
lines and providing two new load/store instructions for accessing
this information and exposing it to the application program. We
also design load and store algorithms to safely access the secret-
dependent addresses. Our experimental evaluation indicates that,
with very small memory area overhead, the proposed approach
is able to increase the performance of the side channel-mitigated
programs by about 7x.

ACKNOWLEDGMENTS

We are thankful to the anonymous reviewers and our shepherd for
their constructive feedback. This work was supported in part by
the National Science Foundation under Grant 1956032.

REFERENCES

[1] [n.d.]. Cachegrind: a cache and branch-prediction profiler. https://valgrind.org/
docs/manual/cg-manual. html.

[2] Onur Aciigmez, Cetin Kaya Kog, and Jean-Pierre Seifert. 2007. Predicting Secret
Keys Via Branch Prediction. In Topics in Cryptology - CT-RSA 2007, The Cryptog-
raphers’ Track at the RSA Conference 2007, San Francisco, CA, USA, February 5-9,
2007, Proceedings (Lecture Notes in Computer Science, Vol. 4377), Masayuki Abe
(Ed.). Springer, 225-242. https://doi.org/10.1007/11967668_15

[3] Jaeguk Ahn, Jiho Kim, Hans Kasan, Leila Delshadtehrani, Wonjun Song, Ajay
Joshi, and John Kim. 2021. Network-on-chip microarchitecture-based covert
channel in gpus. In MICRO-54: 54th Annual IEEE/ACM International Symposium
on Microarchitecture. 565-577.

[4] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
Garcia, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In 2019 IEEE
Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May 19-23,
2019. IEEE, 870-887. https://doi.org/10.1109/SP.2019.00066

[5] Daniel J Bernstein. 2005. Cache-timing attacks on AES. (2005).

[6] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. 2011. The gem5 simulator. ACM SIGARCH computer architecture
news 39, 2 (2011), 1-7.

[7] Marina Blanton, Mikhail J Atallah, Keith B Frikken, and Qutaibah Malluhi. 2012.
Secure and efficient outsourcing of sequence comparisons. In European Sympo-
sium on Research in Computer Security. Springer, 505-522.

[8] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. 2013. Data-oblivious graph

algorithms for secure computation and outsourcing. In Proceedings of the 8th

ACM SIGSAC symposium on Information, computer and communications security.

207-218.

Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida.

2021. Constantine: Automatic Side-Channel Resistance Using Efficient Control

and Data Flow Linearization. In CCS °21: 2021 ACM SIGSAC Conference on Com-

puter and Communications Security, Virtual Event, Republic of Korea, November 15

- 19, 2021, Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM,

715-733. https://doi.org/10.1145/3460120.3484583

Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown, Riad S Wahby,

John Renner, Benjamin Grégoire, Gilles Barthe, Ranjit Jhala, and Deian Stefan.

2019. Fact: a DSL for timing-sensitive computation. In Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and Implementation.

174-189.

Peter W. Deutsch, Yuheng Yang, Thomas Bourgeat, Jules Drean, Joel S. Emer,

and Mengjia Yan. 2022. DAGguise: mitigating memory timing side channels. In

ASPLOS °22: 27th ACM International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, Lausanne, Switzerland, 28 February

2022 - 4 March 2022, Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F.

Wenisch (Eds.). ACM, 329-343. https://doi.org/10.1145/3503222.3507747

Sankha Baran Dutta, Hoda Naghibijouybari, Nael Abu-Ghazaleh, Andres Mar-

quez, and Kevin Barker. 2021. Leaky buddies: Cross-component covert channels

on integrated cpu-gpu systems. In 2021 ACM/IEEE 48th Annual International

Symposium on Computer Architecture (ISCA). IEEE, 972-984.

Andrew Ferraiuolo, Yao Wang, Danfeng Zhang, Andrew C Myers, and G Edward

Suh. 2016. Lattice priority scheduling: Low-overhead timing-channel protection

[o

(10]

[11

[12

(13

https://valgrind.org/docs/manual/cg-manual.html
https://valgrind.org/docs/manual/cg-manual.html
https://doi.org/10.1007/11967668_15
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1145/3460120.3484583
https://doi.org/10.1145/3503222.3507747

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

[14

[15

[16

(7

[18

[19

[20

[21

[22

[23

[24

[25

]

]

]

]

]

]

[26]

[27]

[28]

[29

[30

for a shared memory controller. In 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 382-393.

Johann Grofischiadl, Elisabeth Oswald, Dan Page, and Michael Tunstall. 2009.
Side-Channel Analysis of Cryptographic Software via Early-Terminating Multi-
plications. In Information, Security and Cryptology - ICISC 2009, 12th International
Conference, Seoul, Korea, December 2-4, 2009, Revised Selected Papers (Lecture
Notes in Computer Science, Vol. 5984), Dong Hoon Lee and Seokhie Hong (Eds.).
Springer, 176-192. https://doi.org/10.1007/978-3-642-14423-3_13

Daniel Gruss, Clémentine Maurice, and Klaus Wagner. 2015. Flush+Flush: A
Stealthier Last-Level Cache Attack. CoRR abs/1511.04594 (2015). arXiv:1511.04594
http://arxiv.org/abs/1511.04594

Zhen Hang Jiang, Yunsi Fei, and David R. Kaeli. 2016. A complete key recovery
timing attack on a GPU. In 2016 IEEE International Symposium on High Perfor-
mance Computer Architecture, HPCA 2016, Barcelona, Spain, March 12-16, 2016.
IEEE Computer Society, 394-405. https://doi.org/10.1109/HPCA.2016.7446081
Vineeth Kashyap, Ben Wiedermann, and Ben Hardekopf. 2011. Timing-and
termination-sensitive secure information flow: Exploring a new approach. In
2011 IEEE Symposium on Security and Privacy. IEEE, 413-428.

Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012. STEALTHMEM:
System-Level Protection Against Cache-Based Side Channel Attacks in the Cloud.
In Proceedings of the 21th USENIX Security Symposium, Bellevue, WA, USA, August
8-10, 2012, Tadayoshi Kohno (Ed.). USENIX Association, 189-204. https://www.
usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
Jingfei Kong, Onur Aciicmez, Jean-Pierre Seifert, and Huiyang Zhou. 2009.
Hardware-software integrated approaches to defend against software cache-
based side channel attacks. In 15th International Conference on High-Performance
Computer Architecture (HPCA-15 2009), 14-18 February 2009, Raleigh, North Car-
olina, USA. IEEE Computer Society, 393-404. https://doi.org/10.1109/HPCA.2009.
4798277

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75-86.

Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks, Mohit Tiwari, and
Elaine Shi. 2015. GhostRider: A Hardware-Software System for Memory Trace
Oblivious Computation. In Proceedings of the Twentieth International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2015, Istanbul, Turkey, March 14-18, 2015, Ozcan Ozturk, Kemal Ebcioglu,
and Sandhya Dwarkadas (Eds.). ACM, 87-101. https://doi.org/10.1145/2694344.
2694385

Fangfei Liu, Qian Ge, Yuval Yarom, Frank McKeen, Carlos V. Rozas, Gernot Heiser,
and Ruby B. Lee. 2016. CATalyst: Defeating last-level cache side channel attacks
in cloud computing. In 2016 IEEE International Symposium on High Performance
Computer Architecture, HPCA 2016, Barcelona, Spain, March 12-16, 2016. IEEE
Computer Society, 406-418. https://doi.org/10.1109/HPCA.2016.7446082
Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In 47th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2014,
Cambridge, United Kingdom, December 13-17, 2014. IEEE Computer Society, 203~
215. https://doi.org/10.1109/MICRO.2014.28

Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015. Last-
Level Cache Side-Channel Attacks are Practical. In 2015 IEEE Symposium on
Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE Computer
Society, 605-622. https://doi.org/10.1109/SP.2015.43

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. 2013. PHANTOM: practical oblivious com-
putation in a secure processor. In 2013 ACM SIGSAC Conference on Computer
and Communications Security, CCS’13, Berlin, Germany, November 4-8, 2013,
Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM, 311-324.
https://doi.org/10.1145/2508859.2516692

Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. 2018. MemJam: A False
Dependency Attack Against Constant-Time Crypto Implementations in SGX.
In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA
Conference 2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings (Lecture
Notes in Computer Science, Vol. 10808), Nigel P. Smart (Ed.). Springer, 21-44.
https://doi.org/10.1007/978-3-319-76953-0_2

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In Topics in Cryptology - CT-RSA 2006, The Cryp-
tographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17,
2006, Proceedings (Lecture Notes in Computer Science, Vol. 3860), David Pointcheval
(Ed.). Springer, 1-20. https://doi.org/10.1007/11605805_1

Riccardo Paccagnella, Licheng Luo, and Christopher W. Fletcher. 2021. Lord of
the Ring(s): Side Channel Attacks on the CPU On-Chip Ring Interconnect Are
Practical. In 30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, Michael Bailey and Rachel Greenstadt (Eds.). USENIX Association, 645-662.
https://www.usenix.org/conference/usenixsecurity21/presentation/paccagnella
Dan Page. 2005. Partitioned cache architecture as a side-channel defence mecha-
nism. Cryptology ePrint Archive (2005).

Colin Percival. 2005. Cache missing for fun and profit.

14

(31

[32

®
3

[34

[35

[36

[38

[39

S
=

[41

[42

[43]

[44

[45

[46

[47

Miao et al.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks.
In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August
10-12, 2016, Thorsten Holz and Stefan Savage (Eds.). USENIX Association, 565—
581. https://www.usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/pessl

Moinuddin K. Qureshi. 2018. CEASER: Mitigating Conflict-Based Cache Attacks
via Encrypted-Address and Remapping. In 51st Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO 2018, Fukuoka, Japan, October 20-24, 2018.
IEEE Computer Society, 775-787. https://doi.org/10.1109/MICRO.2018.00068
Moinuddin K Qureshi. 2019. New attacks and defense for encrypted-address
cache. In 2019 ACM/IEEE 46th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 360-371.

Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital Side-
Channels through Obfuscated Execution. In 24th USENIX Security Symposium,
USENIX Security 15, Washington, D.C., USA, August 12-14, 2015, Jaeyeon Jung and
Thorsten Holz (Eds.). USENIX Association, 431-446. https://www.usenix.org/
conference/usenixsecurity15/technical-sessions/presentation/rane

Martin Schoeberl, Wolfgang Puffitsch, and Benedikt Huber. 2009. Towards time-
predictable data caches for chip-multiprocessors. In IFIP International Workshop
on Software Technolgies for Embedded and Ubiquitous Systems. Springer, 180-191.
Ali Shafiee, Akhila Gundu, Manjunath Shevgoor, Rajeev Balasubramonian, and
Mohit Tiwari. 2015. Avoiding information leakage in the memory controller
with fixed service policies. In Proceedings of the 48th International Symposium
on Microarchitecture, MICRO 2015, Waikiki, HI, USA, December 5-9, 2015, Milos
Prvulovic (Ed.). ACM, 89-101. https://doi.org/10.1145/2830772.2830795

Luigi Soares and Fernando Magno Quintéo Pereira. 2021. Memory-Safe Elim-
ination of Side Channels. In IEEE/ACM International Symposium on Code Gen-
eration and Optimization, CGO 2021, Seoul, South Korea, February 27 - March
3, 2021, Jae W. Lee, Mary Lou Soffa, and Ayal Zaks (Eds.). IEEE, 200-210.
https://doi.org/10.1109/CG0O51591.2021.9370305

Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and Peng Liu. 2021.
Randomized last-level caches are still vulnerable to cache side-channel attacks!
But we can fix it. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
955-969.

Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: an
extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1-26.

Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak, Caroline
Trippel, Adam Morrison, David Kohlbrenner, and Christopher W Fletcher. 2021.
Opening pandora’s box: A systematic study of new ways microarchitecture can
leak private data. In 2021 ACM/IEEE 48th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 347-360.

Junpeng Wan, Yanxiang Bi, Zhe Zhou, and Zhou Li. 2022. MeshUp: Stateless
cache side-channel attack on CPU mesh. In 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 1506-1524.

Yao Wang, Andrew Ferraiuolo, and G. Edward Suh. 2014. Timing channel protec-
tion for a shared memory controller. In 20th IEEE International Symposium on
High Performance Computer Architecture, HPCA 2014, Orlando, FL, USA, February
15-19, 2014. IEEE Computer Society, 225-236. https://doi.org/10.1109/HPCA.
2014.6835934

Yao Wang and G Edward Suh. 2012. Efficient timing channel protection for
on-chip networks. In 2012 IEEE/ACM Sixth International Symposium on Networks-
on-Chip. IEEE, 142-151.

Zhenghong Wang and Ruby B. Lee. 2007. New cache designs for thwarting
software cache-based side channel attacks. In 34th International Symposium on
Computer Architecture (ISCA 2007), June 9-13, 2007, San Diego, California, USA,
Dean M. Tullsen and Brad Calder (Eds.). ACM, 494-505. https://doi.org/10.1145/
1250662.1250723

Hassan M. G. Wassel, Ying Gao, Jason Oberg, Ted Huffmire, Ryan Kastner,
Frederic T. Chong, and Timothy Sherwood. 2013. SurfNoC: a low latency
and provably non-interfering approach to secure networks-on-chip. In The
40th Annual International Symposium on Computer Architecture, ISCA’13, Tel-
Aviv, Israel, June 23-27, 2013, Avi Mendelson (Ed.). ACM, 583-594. https:
//doi.org/10.1145/2485922.2485972

Samuel Weiser, Andreas Zankl, Raphael Spreitzer, Katja Miller, Stefan Mangard,
and Georg Sigl. 2018. DATA - Differential Address Trace Analysis: Finding
Address-based Side-Channels in Binaries. In 27th USENIX Security Symposium,
USENIX Security 2018, Baltimore, MD, USA, August 15-17, 2018, William Enck and
Adrienne Porter Felt (Eds.). USENIX Association, 603-620. https://www.usenix.
org/conference/usenixsecurity18/presentation/weiser

Meng Wu, Shengjian Guo, Patrick Schaumont, and Chao Wang. 2018. Eliminating
timing side-channel leaks using program repair. In Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2018,
Amsterdam, The Netherlands, July 16-21, 2018, Frank Tip and Eric Bodden (Eds.).
ACM, 15-26. https://doi.org/10.1145/3213846.3213851

https://doi.org/10.1007/978-3-642-14423-3_13
https://arxiv.org/abs/1511.04594
http://arxiv.org/abs/1511.04594
https://doi.org/10.1109/HPCA.2016.7446081
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://doi.org/10.1109/HPCA.2009.4798277
https://doi.org/10.1109/HPCA.2009.4798277
https://doi.org/10.1145/2694344.2694385
https://doi.org/10.1145/2694344.2694385
https://doi.org/10.1109/HPCA.2016.7446082
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/2508859.2516692
https://doi.org/10.1007/978-3-319-76953-0_2
https://doi.org/10.1007/11605805_1
https://www.usenix.org/conference/usenixsecurity21/presentation/paccagnella
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://doi.org/10.1109/MICRO.2018.00068
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/rane
https://doi.org/10.1145/2830772.2830795
https://doi.org/10.1109/CGO51591.2021.9370305
https://doi.org/10.1109/HPCA.2014.6835934
https://doi.org/10.1109/HPCA.2014.6835934
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/1250662.1250723
https://doi.org/10.1145/2485922.2485972
https://doi.org/10.1145/2485922.2485972
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://www.usenix.org/conference/usenixsecurity18/presentation/weiser
https://doi.org/10.1145/3213846.3213851

Hardware Support for Constant-Time Programming

[48]

[49]

Qiumin Xu, Hoda Naghibijouybari, Shibo Wang, Nael B. Abu-Ghazaleh, and
Murali Annavaram. 2019. GPUGuard: mitigating contention based side and covert
channel attacks on GPUs. In Proceedings of the ACM International Conference on
Supercomputing, ICS 2019, Phoenix, AZ, USA, June 26-28, 2019, Rudolf Eigenmann,
Chen Ding, and Sally A. McKee (Eds.). ACM, 497-509. https://doi.org/10.1145/
3330345.3330389

Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack directories, not caches: Side channel
attacks in a non-inclusive world. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 888-904.

Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B Lee, and Gernot Heiser. 2015. Mapping
the Intel last-level cache. Cryptology ePrint Archive (2015).

Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2016. CacheBleed: A Tim-
ing Attack on OpenSSL Constant Time RSA. In Cryptographic Hardware and

15

MICRO 23, October 28-November 1, 2023, Toronto, ON, Canada

Embedded Systems - CHES 2016 - 18th International Conference, Santa Barbara,
CA, USA, August 17-19, 2016, Proceedings (Lecture Notes in Computer Science,
Vol. 9813), Benedikt Gierlichs and Axel Y. Poschmann (Eds.). Springer, 346-367.
https://doi.org/10.1007/978-3-662-53140-2_17

[52] Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, and Christopher W Fletcher. 2018.

Data oblivious ISA extensions for side channel-resistant and high performance
computing. Cryptology ePrint Archive (2018).

[53] Yangi Zhou, Sameer Wagh, Prateek Mittal, and David Wentzlaff. 2017. Cam-

ouflage: Memory Traffic Shaping to Mitigate Timing Attacks. In 2017 IEEE
International Symposium on High Performance Computer Architecture, HPCA
2017, Austin, TX, USA, February 4-8, 2017. IEEE Computer Society, 337-348.
https://doi.org/10.1109/HPCA.2017.36

https://doi.org/10.1145/3330345.3330389
https://doi.org/10.1145/3330345.3330389
https://doi.org/10.1007/978-3-662-53140-2_17
https://doi.org/10.1109/HPCA.2017.36

	Abstract
	1 Introduction
	2 Background
	2.1 Cache Side Channels
	2.2 Non-Cache Side Channels
	2.3 Constant-Time Programming
	2.4 Threat Model

	3 Motivation
	3.1 Performance Problem of Constant-Time Programming
	3.2 Can the Number of Accesses Be Reduced?

	4 Design Details
	4.1 Proposed Instructions
	4.2 Proposed Hardware Structure

	5 Proposed Algorithms
	5.1 Details of Our Algorithms
	5.2 Functionality Proof
	5.3 Security Proof

	6 Discussion
	6.1 Comparison with Cache Pinning
	6.2 Bitmap Exposure Discussion
	6.3 Cryptography Libraries
	6.4 Putting BIA into LLC
	6.5 Granularity-Based Optimization

	7 Experimental Evaluation
	7.1 Implementation and Experimental Setup
	7.2 Benchmark
	7.3 Performance Evaluation
	7.4 Security Test

	8 Related Works
	9 Concluding Remarks
	Acknowledgments
	References

