
MetaHunt: Towards Taming Malware Mutation via Studying the
Evolution of Metamorphic Virus

Li Wang

lzw158@ist.psu.edu

The Pennsylvania State University

University Park, PA 16802, USA

Dongpeng Xu

dongpeng.xu@unh.edu

University of New Hampshire

Durham, NH 03824, USA

Jiang Ming

jiang.ming@uta.edu

University of Texas at Arlington

Arlington, TX 76019, USA

Yu Fu

yuf123@ist.psu.edu

The Pennsylvania State University

University Park, PA 16802, USA

Dinghao Wu

dwu@ist.psu.edu

The Pennsylvania State University

University Park, PA 16802, USA

ABSTRACT
As the underground industry of malware prospers, malware de-

velopers consistently attempt to camouflage malicious code and

undermine malware detection with various obfuscation schemes.

Among them, metamorphism is known to have the potential to

defeat the popular signature-based malware detection. A meta-

morphic malware sample mutates its code during propagations so

that each instance of the same family exhibits little resemblance to

another variant. Especially with the development of compiler and

binary rewriting techniques, metamorphic malware will become

much easier to develop and outbreak eventually. To fully under-

stand the metamorphic engine, the core part of the metamorphic

malware, we attempt to systematically study the evolution of me-

tamorphic malware over time. Unlike the previous work, we do

not require any prior knowledge about the metamorphic engine

in use. Instead, we perform trace-based semantic binary diffing

to compare mutation code iteratively and memoize semantically

equivalent basic blocks. We have developed a prototype, called

MetaHunt, and evaluated it with 1, 400 metamorphic malware vari-

ants. Our experimental results show that MetaHunt can accurately

capture the semantics of unknown metamorphic engines, and all

of the comparisons converge in a reasonable time. Besides, Meta-

Hunt identifies several metamorphic engine bugs, which lead to a

semantics-breaking transformation. We summarize our experience

learned from our empirical study, hoping to stimulate designing

mutation-aware solutions to defend this threat proactively.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPRO’19, November 15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6835-3/19/11. . . $15.00

https://doi.org/10.1145/3338503.3357720

KEYWORDS
Malware detection, metamorphic virus, binary diffing, binary code

semantics analysis

ACM Reference Format:
Li Wang, Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu. 2019. Meta-

Hunt: Towards Taming Malware Mutation via Studying the Evolution of

Metamorphic Virus. In 3rd Software Protection Workshop (SPRO’19), Novem-
ber 15, 2019, London, United Kingdom. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3338503.3357720

1 INTRODUCTION
The malicious software (malware) underground market has evolved

into a multi-billion dollar industry [6]. Driven by the rich profit,

there has been consistent growth in the number and diversity of

malware. According to a Panda Security Lab annual report [40], in

2017 alone, the total number of malware samples in circulation is as

high as 75 million, 1.4 times the number of malware found in 2016.

Relentless malware developers typically apply various obfuscation

schemes (e.g., packer, polymorphism, and metamorphism) [37, 45]

to camouflage arresting features, circumvent malware detection,

and impede reverse engineering attempts. Among these obfuscation

techniques, metamorphism is widely believed to be a panacea to

thwart the signature-basedmalware scanning approaches [1, 47, 56],

which are still by far the most widely used anti-malware solution

in practice [8]. The core of metamorphic malware is a metamorphic

engine (i.e., morphing engine). Each time a metamorphic malware

sample executes or propagates, the metamorphic engine mutates

the instructions that are loaded into memory by various methods

such as register swapping, instruction substitution, instruction re-

ordering, and junk code insertion. As a result, the old version is

transformed into a syntactically different but semantically equiva-

lent variant. In this way, a metamorphic malware sample becomes

a moving target for analysis as the archetype1 evolves from genera-

tion to generation. Consequently, the signature-based anti-malware

approaches become insufficient to capture the numerous ostensibly

different variants for a particular instance of malware, as illustrated

in Figure 1. A striking example is from Leder et al.’s study [27] in

1
The term “archetype” means the initial un-mutated version, from which the mutation

starts.

1

https://doi.org/10.1145/3338503.3357720
https://doi.org/10.1145/3338503.3357720

2009. They report that only 12.6% of the files infected by the meta-

morphic malware Lexotan32 are detected by a total of 40 malware

scanners in VirusTotal
2
and no single scanner can identify all the

infected samples.

The prototype of metamorphic malware first emerges in the DOS

days [48] and is constantly evolving on Windows platforms [3, 17].

However, compared with packer and polymorphism, metamor-

phism obfuscation was not widely adopted in the past. The major

reason is that developing a full-fledged metamorphic engine is

highly complicated, especially for self-propagating malware, which

typically attaches the metamorphic engine in its code. For example,

the relatively sophisticated sample, MetaPHOR (a.k.a.W32.Simile

and W32.Etap) has about 14, 000 lines of assembly code and more

than 90% of its code is occupied by the metaphoric engine [19]. In

recent years, with the advent of automated development toolkits,

such as LLVM [26], SecondWrite [2], and Uroboros [51, 52], de-

veloping a powerful metamorphic engine will become relatively

easy. For example, LLVM has been actively employed to facilitate

malware mutation and diversification [24, 42, 49]. Therefore, we

estimate that newmalware variants with an advanced metamorphic

engine will outbreak in the foreseeable future. To keep ahead in

the malware defense arms race, we have to measure the risks of

metamorphic malware and develop effective countermeasures.

A major challenge in metamorphic malware analysis is to design

a general and automatic technique to capture all possible mutati-

ons [44]. Previous research work relies on studying the similarities

before/after metamorphism and can be classified into three cate-

gories. The first category measures the similarity of static features

such as control flow graph [4], opcode statistical signatures [10],

instruction hidden Markov model [55], and characteristic value

set [27]. Chouchane et al. [9] introduce an engine-specific scoring

signature to match metamorphic engines. These approaches gear

toward fast filtering out simple metamorphic malware, but they

are brittle to defeat the sophisticated ones whose code are even

encrypted [43]. Besides, the metamorphic engines can be decou-

pled from the malicious code to mutate non-propagating malware

offline. For example, for the highly metamorphic malware created

by NGVCK (Next Generation Virus Creation Kit) [55], their engines

are separated from the malicious body. In that case, the “engine sig-

nature” approach is futile. The second category is based on the idea

that the malicious behavior is not changed during code mutation.

They detect metamorphic malware by measuring the similarity of

API call sequences or graphs [28, 34, 56]. The main drawback to

these API call approaches is that they regard the code mutation as

a “black box”, lacking an illuminating insight into the metamorphic

engine.

The third category, also themost advanced one, aims at capturing

the metamorphic engine’s semantics [11]. They model the meta-

morphism either by semantic juice [25], algebraic specification [53],

or abstract interpretation [13, 14]. The key design of metamorphic

engine is a set of morphing rules (e.g., equivalent instruction substi-

tution patterns), which guide how to transform instructions to their

equivalent ones but with different syntax. A common assumption

in the third category is that the metamorphic transformation rules

2
https://www.virustotal.com/

are well known. Since several prototypes of metamorphic malware

have been well studied or open sourced [19, 38], it seems that the

prior knowledge about morphing rules can be collected easily. Ho-

wever, such optimistic assumption does not always hold in practice.

It is always possible for an expert malware developer to design

an alternative mutation way [39]. Unfortunately, manually tracing

metamorphic mutations often cost several days or even weeks of

tedious work, and the results are incomplete and error-prone as

well.

In this work, we present MetaHunt, to study the evolution of

metamorphic malware mutation over time. Our purpose is to under-

stand the diversity of the metamorphic transformation comprehen-

sively, and provide the insight of the mutation mechanism behind

the metamorphic malware, which further helps stimulate the de-

velopment of mutation insensitive malware protection solution.

Different from the previous work, we do not assume the knowledge

about the specific metamorphic engine in use. Instead, we study

how a metamorphic engine mutates the code via iteratively com-
paring input-related mutation code and memoizing equivalent basic
blocks. There are two key observations behind our approach. The

first one is the metamorphic mutation is a semantics-preserving

transformation. Therefore, ostensibly different code pairs but with

the same function can be matched by state-of-the-art semantics-

based binary diffing techniques [21, 30, 35]. The second one is,

compared to other metamorphic transformation methods, the effect

of equivalent instruction substitution is harder to reverse (e.g., via

code normalization [5]) because of the cumbersome x86 instruction

set architecture. Meanwhile, the sets of pure equivalent instruction

substitution patterns are also limited [33, 50]. For example, the

code substitution table of MetaPHOR consists of 94 alternative in-

struction sequences [19]. Consequently, after our preprocessing to

remove some mutation methods such as junk code and opaque pre-

dicates, the iteration of comparing metamorphic mutations is not

endless, which will converge when no new semantically equivalent

code is discovered.

More specifically, given two metamorphic mutations, we first

identify the basic blocks that can be affected by inputs via multi-

tag taint analysis. Next, we perform normalization to reverse the

mutation methods that may affect the scope of a basic block. After

that, we represent the semantics of a basic block as a set of logical

formulas by symbolic execution. Then we compare these logical

formulas to find semantically equivalent basic block pairs with

a theorem prover. After that, the semantically equivalent basic

blocks arememoized in a union-find set [12], an efficient tree-based

data structure. During successive comparisons, we continue to

compare metamorphic variants and maintain the corresponding

union-find sets until reaching a fixed point, that is, there is little or

no increase in the size of the union-find sets. At that point, we call

that we have explored the metamorphic malware mutation evolution.
Although theoretically the attempt to find all the metamorphic

mutations is equal to solving the halting problem [25], the collected

information has many interesting implications from the practical

point of view. For example, a mutation insensitive signature can be

generated to capture all possible metamorphic variants; malware

lineage information [23] can even be recovered as well.

2

Figure 1: Metamorphic malware can evade conventional signature-based anti-malware solution.

We have implemented a prototype of MetaHunt on top of the

BitBlaze [46] binary analysis platform. MetaHunt not only impro-

ves the semantics-based binary diffing technique in the resilience

to highly obfuscated binary code, but also in the better perfor-

mance. We perform a solid empirical study with 1, 400 metamor-

phic malware samples, which are generated by nine metamorphic

engines, including two advanced malware mutation tools based on

LLVM [24, 41]. The evaluation shows that the iteration of compa-

ring metamorphic malware variants converges in a reasonable time.

Compared tomanually reverse engineering ofmalware, MetaHunt’s

exploration result provides a comprehensive understanding about

the mechanism of a metamorphic engine. In addition, MetaHunt

identifies several buggy metamorphic engine implementations that

ignore subtle side effects of the x86 instructions. Our MetaHunt

prototype gives a method to record and compare the semantics

of the metamorphic malware, which provides some feasible hints

for the mutation insensitive anti-malware solutions. The result de-

monstrates that MetaHunt is an appealing complement to existing

metamorphic malware defenses.

In summary, the contributions of this paper are as follows.

(1) To the best of our knowledge, we are the first one to study

metamorphic malware evolution systematically.

(2) Instead of being metamorphic engine specific, our approach

is a generalized solution by automatically comparing the

possible mutations and memoizing semantically equivalent

basic blocks. Our exploration results provide a comprehen-

sive understanding of the metamorphic engine semantics.

(3) We present MetaHunt, a novel approach to comparing the si-

milarities before/after metamorphic mutation. MetaHunt in-

tegrates the advanced semantics-based binary diffing techni-

que in metamorphic malware analysis and improves it with

better accuracy and performance.

The rest of the paper is organized as follows. Section 2 pro-

vides background information and related work. Section 3 and

Section 4 present our system design and implementation in detail.

We evaluate MetaHunt in Section 5. Discussions and limitations

are presented in Section 6. We conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORK
2.1 Metamorphic Malware
Metamorphic malware mutates their code during each generation

so that the new generated version reveals different instructions with

the previous one, but the semantics is preserved. This differs from

polymorphic malware (e.g., via binary packing) which do not re-

write their own code [37]. The constantly changing property makes

it difficult for signature-based anti-malware approaches to recog-

nize all the mutations of the same metamorphic malware. The core

of metamorphic malware is a metamorphic engine, which performs

a set of transformations to mutate the code. The commonly used

code morphing methods are register swapping, instruction sub-

stitution, instruction reordering, junk code insertion, and control

flow obfuscation (e.g., opaque predicates and control flow flatte-

ning). We refer the reader to the literature [37, 47] for more detailed

information. As shown in Figure 2, MetaPHOR [19] substitutes

one instruction with a set of semantics-persevering instructions;

Lexotan32 mutates its code by inserting junk code (the instructions

are in italics) and reordering instruction. Note that after mutation,

the original single basic block in Figure 2(b) has been divided into

multiple basic blocks.

Note that among the multiple mutation methods, instruction sub-

stitution is the most sophisticated one. Due to the cumbersome x86

ISA, checking whether two instruction sequences are semantically

equivalent is challenging. The advanced semantics-based binary

diffing has to rely on symbolic execution and theorem proving

techniques to match equivalent instructions. Typically, a metamor-

phic engine performs code substitution by comparing instructions

against a fixed table containing alternative sequences, and then

randomly chooses one. Figure 2(a) presents a part of MetaPHOR

code substitution table. On the other hand, the pure equivalent

instruction substitution rules are not unlimited either [33, 50]; that

is, the length of code substitution table is fixed. All of these obser-

vations form the basis of our approach.

In Section 1, we have introduced the existing metamorphic mal-

ware analysis work. However, a systematical study of metamorphic

malware evolution is still missing. Understanding how a morphing

engine mutates code over time without a priori knowledge is an

3

movsb

Before After

 push eax
 mov al, [esi]
 inc esi
 mov [edi], al
 inc edi
 pop eax

stosb mov edi, [al]
 inc edi

mov [ebx+8], eax

 push ecx
 mov ecx, eax
 mov [ebx+8], ecx
 pop ecx

 jmp eax push eax
 ret

xor eax, -1 not eax

and eax, 0 mov eax, 0

add eax, 1 not eax
 neg eax

(a) MetaPHOR [19]

push ebp
mov ebp, esp

xor exp, 0x21

push 0x0ACAB

pop eax
add eax, 0x1234
pop ebp
ret

start:
 push ebp
 mov ebp, esp
 jmp loc_0003

loc_0003:
 xor exp, 0x21
 lea ecx, [esi+0x06EF]
 mov edx, ebx
 mov ecx, esi
 jmp loc_0034

loc_0034:
 push 0x0ACAB
 sbb ecx, [esi+0x077F]
 adc bh, 0x71
 mov di, 0x0EEC4
 jmp loc_0017

loc_0017:
 pop eax
 mov ecx, esi
 mov edx, ebx
 add eax, 0x1234
 cmp edx, 0xAD463
 pop ebp
 mov di, 0x0A8C
 ret
 mov di, 0x1F24

(b) Lexotan32 [38]

Figure 2: Metamorphism transformation examples.

interesting and challenging research problem. In this paper, we

propose MetaHunt to explore this problem.

2.2 Semantics-based Binary Diffing
Since most malware spread in binary form, the techniques to detect

the difference between two binaries (binary diffing) have been wi-

dely applied to malware reverse engineering. Conventional binary

diffing tools identify syntactical differences such as instruction se-

quences, byte N-grams, and basic block hashing [36]. However, they

can be easily evaded by various obfuscation methods. The core met-

hod of the advanced semantics-based binary diffing [21, 29, 30, 35]

is to first identify semantically equivalent basic block pairs. It uses

symbolic values to represent inputs to a basic block and then simula-

tes the function of each instruction by updating the corresponding

symbolic formula. The output of symbolic execution is a set of

formulas that represent the behavior of the basic block. After that,

we try to find whether there is an equivalent mapping between

two basic block output formulas. If yes, those two basic blocks are

equivalent in semantics. Figure 3 presents two semantically equi-

valent basic blocks. Their output symbolic formulas are verified as

equivalence by a constraint solver (e.g., STP [20]). Note that due

to obfuscation such as register renaming, basic blocks could use

different registers or variables to implement the same functionality.

As a result, current approaches exhaustively try all possible pairs

to find if there exists a bijective mapping between output formulas.

However, due to the slow symbolic execution and the high invoca-

tion of a constraint solver, semantics-based binary diffing suffers

from significant performance slowdown [29].

The most relevant work to MetaHunt is the memoized binary

diffing method [32], another trace-oriented binary diffing tool for

matching basic block pairs. However, MetaHunt is designed for

comparing a large number of obfuscated metamorphic malware

variants; the binary diffing method [32] is used for comparing

different versions of normal programs. Compared to it, MetaHunt

is augmented with better resilience to various code obfuscation

methods (e.g. call/return obfuscation and opaque predicate) and a

set of optimizations. Therefore, MetaHunt has better accuracy and

performance on analyzing metamorphic malware.

3 SYSTEM DESIGN
3.1 Overview
The architecture of MetaHunt is illustrated in Figure 4. It mainly

comprises two parts: online trace logging and offline comparison.

The online part will produce a sequence of executed basic blocks

together with their associated taint tags, and then pass them to

the offline part for comparison. MetaHunt’s offline stage consists

of three components: normalization, basic block comparison with

the semantics-based binary diffing technique, and a union-find set

structure to record semantically equivalent basic blocks. The nor-

malization component performs several transformations to remove

4

Basic block 1

xor eax, -1
add eax, 1

 jmp loc_0022

Output

Symbolic input:
eax = i;

eax = (i ^ -1) + 1;

Basic block 2

not ebx
not ebx
 neg ebx

 jmp loc_0022

Output

Symbolic input:
eax = j;

ebx = ((j ^ -1) ^ -1) × -1;

Figure 3: Example: basic block symbolic execution.

obfuscation effect. After that, the normalized basic blocks are com-

pared by a symbolic execution based method. Finally, the equivalent

basic blocks are inserted into the same union-find set. The detail of

each component are discussed in the following sections.

3.2 Trace Logging
The online trace logger records the basic blocks executed during

runtime. In general, not all of the executed instructions are of

interest, such as the code from packers or standard libraries. We

want to compare the basic blocks that represent the virus behavior.

Our online stage supports recording the execution trace that comes

from real payload instead of various unpacking routines [45]. When

a packed binary starts running, the generic unpacking plug-in will

be invoked to monitor whether the original code is recovered; if

so, the trace logging plug-in will be activated to record execution

trace. Moreover, usually different metamorphic variants still call

standard libraries, but the basic blocks in these libraries should

not be compared. Our trace logger only records the code from the

metamorphic virus ignoring the standard library calls.

In addition to ignoring the unrelated basic blocks during run

time, we also limit our comparison to the input-related code. The
insight is that the basic blocks related to inputs implement the core

function of a virus, so these basic blocks should be recorded and

compared. To this end, we utilize multi-tag taint forward tracking

to record input-related code, which also reduces the number of

possible basic block matches. We not only take multiple system

calls that are used to receive outside input as different taint seeds

but also consider the system calls that are commonly used to fulfill

malicious behavior, such as download and execution, replication

and remote injection. For example, when a MetaPHOR version exe-

cutes, it invokes about 20 Windows Native API calls
3
for replicating

and displaying its messages. Note that for the file-infecting meta-

morphic viruses (e.g., MetaPHOR and W32.Evol), multi-tag taint

tracking can also distinguish the host file code and virus body code.

The input-related basic blocks together with their associated taint

tags will be passed to the MetaHunt’s offline stage for comparison.

3.3 Basic Block Normalization
After logging the execution trace, MetaHunt first lifts x86 instructi-

ons to an intermediate representation (IR), which facilitates the

3
The system calls in Windows are named as Native API.

following analysis. The comparison unit of most semantics-based

binary diffing work is basic block [21, 29, 30]. However, many obfus-

cation methods can split a single basic block to multiple basic blocks.

As a result, direct comparison between the split basic blocks with

the original block lead to false negatives. Moreover, too much extra

basic block comparisons increase the performance cost. Therefore,

a normalization pass is performed to reverse these obfuscation

effects. Currently, we consider three major obfuscation methods: in-

struction reordering, call/return obfuscation, and opaque predicate

obfuscation. The effect of instruction reordering is to split one basic

block into multiple new basic blocks, which are connected through

direct jumps. call/return obfuscation involves non-standard use

of the call and ret instructions [45]. For example, push ADDR;
ret is equivalent to jmp ADDR. Reverting the effect of instruction
reordering or call/return obfuscation is straightforward. We merge

all adjacent basic blocks that have only one predecessor and one

successor into a single basic block.

Our normalization also removes opaque predicate obfuscation.

An opaque predicate means its value is known to the obfuscator at

obfuscation time, but it is difficult for an attacker to figure it out

afterward. For example, predicate (x3 − x ≡ 0 (mod 3)) in Figure 5

is true for all integers x . Opaque predicates have been widely used

to introduce redundant branches for the purpose of control flow

obfuscation [31]. To handle opaque predicates, we submit a branch

condition to a constraint solver to verify whether it is always true

or false. If yes, we conclude that the branch condition is an opaque

predicate. After that, as shown in Figure 5, the unreachable paths

and redundant predicates will be discarded; the basic blocks split

by the opaque predicate will be merged.

In addition, we also normalize basic blocks to ignore offsets

that may change due to code relocation and some nop instructi-

ons. Binary code compiled from the same source code often have

different address value caused by memory relocation during com-

pilation. What’s more, malware authors may intentionally insert

some instruction idioms like nop and xchg eax, eax to mislead

the following hash value calculation (see Section 3.4). The purpose

of normalization is to ignore these effects and make the hash value

more general.

3.4 Basic Block Comparison and Memoization
The basic blocks tainted by the same taint tags are the candidates

to be compared. Our basic block comparison is based on semantics-

based binary diffing with improvements in several ways. First, we

introduce an union-find set structure that records semantically

equivalent basic blocks. Managing the union-find structure during

successive comparisons allows direct reuse of previously computed

results rather than comparing them again. Specifically, after basic

block normalization, we first calculate the MD5 value of the byte

sequence of each basic block. Then, we dynamically maintain a

set of union-find subsets to record semantically equivalent basic

blocks, which are represented by their MD5 value. The basic blocks

within the same subset are all semantically equivalent to each other.

To avoid a highly unbalanced searching tree, we adopt an improved

path compression and weighted union algorithm [12]. In addition

to the union-find set, we also maintain a DiffMap to record two

subsets that have been verified that they are not equivalent. If two

5

Figure 4: The architecture of MetaHunt.

 x2 + x = 0
(mod 2)

true falsetrue

 always
true

A;
B;

A;

B; junk code

Figure 5: Remove opaque predicate (x is an integer).

basic blocks residing in different subsets are not equivalent, we

can safely conclude that the left basic blocks in these two subsets

cannot be matched either. Note that the basic blocks within the

same union-find set are the mutations mainly caused by instruction

substitution transformations, which is confirmed by our evaluation

data.

Algorithm 1 presents the method for fast comparing the basic

block variants. When comparing two basic blocks, we first norma-

lize them and compare their hash value (Line 4). This step quickly

filters out basic blocks with quite similar instructions. If two hash

values are not equal, we will identify whether they belong to the

same union-find subset (Line 7). Basic blocks within the same sub-

set are semantically equivalent to each other. If they are in the two

different subsets, we continue to check DiffMap to find out whether

these two subsets have been ensured not equivalent (Line 10). At

last, we have to resort to comparing them with symbolic execution

and STP, which is accurate but computationally more expensive.

After that we update the union-find set and DiffMap accordingly

(Line 17∼20).

4 IMPLEMENTATION
We have implemented MetaHunt on top of BitBlaze [46], a binary

analysis platform. MetaHunt’s trace logging is built on TEMU, a

whole-system emulator for dynamic analysis in BitBlaze [46]. The

online part involves two plug-ins: generic unpacking and multi-tag
taint tracking. TEMU is also used as a malware execution sandbox in

our evaluation.We extend TEMU to performmulti-tag taint analysis

on system calls. We intercept the system calls if they are input-

related, and then assign taint tags to the return values. Various taint

sources are labeled with different taint tags. The online logging part

contains 2, 200 lines of code added/modified in TEMU. MetaHunt’s

Algorithm 1 A Fast Comparison of Basic Block Variants

v1, v2 : two basic block variants

1: function FastCompare(v1, v2)
2: v ′

1
← Normalize(v1)

3: v ′
2
← Normalize(v2)

4: if MD5(v ′
1
) = MD5(v ′

2
) then

5: return True

6: end if
7: if Find(v ′

1
) = Find(v ′

2
) then // within the same subset

8: return True

9: end if
10: if v ′

1
and v ′

2
in DiffMap set then

11: // semantically different subsets

12: return False

13: else
14: if Sym_Exec(v ′

1
) ∼ Sym_Exec(v ′

2
) then

15: // v ′
1
, v ′

2
are semantically equivalent

16: Union(v ′
1
, v ′

2
)

17: Update DiffMap

18: return True

19: else // v ′
1
, v ′

2
are not semantically equivalent

20: Add DiffMap(Find(v ′
1
), Find(v ′

2
))

21: return False

22: end if
23: end if
24: end function

offline stage is based on Vine, BitBlaze’s static analysis platform,

with 2, 900 OCaml lines of code. Our data flow analysis to get rid

of junk code is an extension to Vine’s chopping module, and the

theorem prover is STP [20]. The RISC-like style and static single

assignment (SSA) format of Vine’s Intermediate Representation fits

the requirement of our analysis. It has a feature to represent many

functionally equivalent instructions (e.g., xor eax, eax and and
eax, 0) in the same way, which is extended for the normalization

component. The saving and loading of union-find set and query

hash map are developed using the OCaml Marshal API, which

encodes arbitrary data structures as sequences of bytes and then

stores them in a disk file. We also write 500 lines of Perl scripts to

glue all components together to automate the comparison process.

6

5 EVALUATION
We evaluate MetaHunt with several objectives in mind. First, we

want to evaluate our iterative comparison of metamorphic variants

will converge in a reasonable time, that is, MetaHunt is capable

of exploring the morphing code evolution. At the same time, we

make sure MetaHunt’s exploration results are comprehensive and

accurate. We provide a case study of the metamorphic engine in

MetaPHOR and W32.Evol to show more details about the engine’s

mechanism and how MetaHunt explores the variants generated

by the engine. We also test the optimization methods for speeding

up the malware comparison. At last, we report some interesting

findings during our evaluation.

5.1 Experiment Setup
Our testbed consists of Intel Core i7-3770 processor (Quad Core

with 3.40GHz) and 8GB memory, running Ubuntu 12.04. The guest

OS running in TEMU is Windows XP SP3. The dataset used for our

experiment consists of a total 1, 400metamorphic variants. They are

generated by nine mutation engines collected from different sour-

ces. Table 1 shows our dataset statistics and the morphing engine

information. The second column indicates whether the morphing

engine is attached by the malicious body or decoupled. The third

column presents the number of metamorphic variants we gene-

rate. Column 4 ∼ 13 represent the major code morphing methods

adopted by these engines. The morphing methods include regis-

ter renaming, dead code insertion, instruction reorder, equivalent

code substitution, opaque constant, call/return obfuscation, indirect

jump, opaque predicate, control flow graph flattening, and function

inlining. In addition, some metamorphic viruses also integrate po-

lymorphic encryption. For example, when the binaries infected

by Lexotan32 or MetaPHOR execute, the main virus body would

be first decrypted [38, 43]. We mark these two cases in the 14th

column (Decryption) of Table 1.

As shown in Table 1, the ninemutation engines in our experiment

are categorized into three groups. The first group contains three

well-known self-propagating viruses, Lexotan32, MetaPHOR, and

W32.Evol. They all embed the metamorphic engine within the virus

body. In our study, we select 100 copies of Cygwin
4
utility bzip2 as

the “goat” binaries, and the metamorphic virus in the first category

are used to infect them. Since these three viruses do not mutate

their host code, choosing the same copies of goat files can help

us identify the morphing code, which is always being modified

while the host code does not change. During our evaluation, the

running goat executables will infect themselves iteratively, and

each infection will yield a new generation variant. The sizes of the

malware samples in this group range from 28 KB to 410 KB. Virus

construction kits are designed to simplify the development of virus

code, and some kits are also used as decoupledmetamorphic engines

to mutate non-propagating malware [47]. The second group in

Table 1 consists of four mutator cases, which are collected from VX

Heaven
5
. For each tool, we create 200 metamorphic virus variants.

Since the output of these virus generators is assembly code, we use

TASM 5.0 Assembler to compile the source code into binary. The

sizes of the viruses in this group vary from 1 KB to 300 KB. The

4
https://www.cygwin.com

5
http://vxheaven.org

Figure 6: Size of union-find set of the variants generated by
MetaPHOR.

third group are two open source metamorphic generators based

on LLVM: MalDiv [41] and Obfuscator-LLVM [24]. They perform

code mutation by manipulating the LLVM IR code. We select the

source code of Linux utility gzip as the base file. We generate

the metamorphic variants of gzip by applying the MalDiv and

Obfuscator-LLVM iteratively on the mutated code. The sizes of the

gzip mutations in this group range from 61 KB to 728 KB.

5.2 Converging Time and Union-Find Set Size
We run MetaHunt to compare the metamorphic variants in Ta-

ble 1 and the result is reported in column 15∼17. Column 15 shows

the converging time of our iteratively comparing metamorphic

mutations. Column 16 and 17 present statistics of the union-find

set, including the number of union-find subsets and the maximum

number of basic blocks in one subset. The result in Figure 6 shows

that MetaHunt reaches a converging point in 7 hours for all the

metamorphic engines. For these variants from simpler engines such

as Lextan32, W32.Evol, G2, and VCL32, MetaHunt takes less than 2

hours to reach the converging point. After reaching the converging

point, the size and number of union-find set in MetaHunt stop

growing, which means MetaHunt has studied the evolution of the

variants from the metamorphic engine. We also record the number

of union-find subsets and the maximum number of basic blocks

in one set. We looked into the basic blocks inside one subset, and

manually verified that they are all semantically equivalent variants

of the same basic block. Our evaluation result shows the mutation

capability of metamorphic malware is not unlimited, and the evalua-

tion of variants will eventually reach to a converge point. Consider

the number of variants is unable to increase continuously, this

may provide a start point for the malware defender and stimulate

designing mutation insensitive anti-malware solutions.

5.3 Case Study
5.3.1 MetaPHOR. We analyze the source code of MetaPHOR vi-

rus(version 1.1), which was first published on a virus and worm

7

Table 1: Metamorphic engine statistics and various code mutation methods adopted.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Engine Type # Mutations R
e
g
.
r
e
n
a
m
i
n
g

D
e
a
d
c
o
d
e

I
n
s
t
r
.
r
e
o
r
d
e
r

I
n
s
t
r
.
s
u
b
s
t
i
t
u
t
.

O
p
a
q
u
e
c
o
n
s
t
a
n
t

c
a
l
l
/
r
e
t
u
r
n
o
b
f
u
s
.

I
n
d
i
r
e
c
t
j
u
m
p

O
p
a
q
u
e
p
r
e
d
.

C
F
G
fl
a
t
t
e
n
i
n
g

F
u
n
c
t
.
i
n
l
i
n
i
n
g

D
e
c
r
y
p
t
i
o
n

C
o
n
v
.
t
i
m
e
(
h
r
s
)

#
U
F
s
u
b
s
e
t
s

M
a
x
.
s
u
b
s
e
t
s
i
z
e

Lexotan32 attached 100 X X X X X X 1.5 90 8

MetaPHOR attached 100 X X X X X X 2.2 132 12

W32.Evol attached 100 X X X X X 1.0 52 6

NGVCK decoupled 200 X X X X X X X X 4.7 346 16

G2 decoupled 200 X X X X 1.4 115 8

VCL32 decoupled 200 X X X X 1.8 130 10

MPCGEN decoupled 200 X X X X 2.2 96 8

MalDiv decoupled 150 X X X X X X X X 6.8 522 34

Obfuscator-LLVM decoupled 150 X X X X X X X X 4.6 304 18

Mutation Engine Virus Body

Disassembler Shrinker Permutator Expander Assembler

Figure 7: Structure of the MetaPHOR virus

group 29A
6
. It has about 14,000 lines of assembly code. As shown

in Figure 7, the structure of MetaPHOR consists of two parts, meta-

mophic enigne and the virus body.

Unlike other metamorphic viruses, MetaPHOR has a complete

metamorphic engine, which provides full support for absolute me-

tamorphism. The metamorphic engine includes five components:

disassembler, shrinker, permutator, expander, and assembler. The

disassembler first decodes the virus body and transforms its in-

structions into pseudo-assembly language, which benefits the follo-

wing mutation steps finished by other components of the engine.

Shrinker is responsible of compressing the disassembled code pre-

processed by the disassembler, in order to avoid explosive growth

of code size in very few generations. The permutator further muta-

tes the code by redefining the “code frame” size and shuffling the

code frame sequence. As the opposite component of the shrinker,

expander does what the shrinker undoes, which recodes a single

instruction to many instructions that perform the same function.

At last, the assembler will reassemble the pseudo-assembly code

back to the machine code.

Based on our analysis, the function layout of the source code is

as follows. The disassembler part is between line 1520 and line 3041.

The shrinker part resides in lines 3049 and 5765. The permutator

part starts from line 5929 and ends at line 6413. The expander part is

on lines between 6453 and 9279. The lines between 9306 and 10485

is for the assembler. Besides, there are some other parts, infector

6
http://virus.wikidot.com/metaphor

(the virus body) and polymorphic engine. The infector is on lines

10541 to 12578. Polymorphic engine code is between lines 12621

and 13887. The rest of the code are some other minor features.

In each propagation, MetaPHOR will first reserve a 0x340000

bytes space for the next-generation variant, and this space is fixed.

This partially ensures that the generations of MetaPHORwill not go

out of control on the code size. Besides, the shrinker and expander

use transformation tables to compress or expand the virus body,

and the transformation tables are fixed. Figure 2(a) shows the trans-

formation examples used by the expander, while transformation

examples used in shrinker is demonstrated in Figure 9. When pro-

ducing a next-generation variant, both shrinker and expander are

able to process the virus instructions for multiple rounds. The virus

body will change in each round literately, and after each round

all the transformation will be accumulated in the next-generation

variant.

Between shrinker and expander is permutator. The algorithms

used in permutator includes redefining “code frames” and shuffling.

The first step is redefining “code frames”. Given an initial and a

final offset, new “code frame” sizes are selected randomly between

F0h and 1E0h until the last “code frame” reach to the end of code.

All the new “code frame” entries will be stored in a table. Then,

the “code frame” sequence in the table will be shuffled. After the

shuffling process, the permutator will start copying the instructions

according to the shuffled sequence of “code frames”. At last, the JMP

instructions will be inserted at the end of new “code frame”, and at

the same time the virus behavior will be unchanged. Figure 8 shows

a permutation example. These basic block transformations are listed

to show the typical mutation methods used in the metamorphic

malware samples. Since the permuted basic blocks are connected

by unconditional jumps, they are normalized to one basic block

in MetaHunt’s analysis. In fact, the permutation transformation is

removed by the normalization component and it does not affect the

binary diffing in MetaHunt. Therefore, MetaHunt is able to reverse

the change made by the permutator.

Based on our analysis, we found MetaPHOR is capable of muta-

ting itself. However, the mutation is not infinite, which properly

8

1

2

3

4

5

6

7

8

9

10

P

Code frame size
randomization

Frame 1
1
2
3

Frame 2
4

Frame 3
5
6
7
8

Frame 4
9

10

Code frame
shuffling

Frame 3
5
6
7
8

jump

jump

Frame 4
9

10

Frame 2
4

Frame 1
1
2
3

P’

jump

jump

P: The original program
P’: The permuted program based on P

Figure 8: An example of one-time permutation

Before After

mov eax, 1
 add eax, ecx lea eax, [ecx+1]

push 3
 pop eax mov eax, 3

mov eax, ebx
 add eax, 8 lea eax, [ebx+8]

mov [eax], 3
 push [eax] push 3

mov [eax], ebx
 add [eax], ecx
mov ebx, [eax]

add ebx, ecx

mov [eax], 2
 add [eax], ecx
mov ebx, [eax]

add ecx, 2

or eax, 0 nop

Figure 9: Code compressing examples in MetaPHOR

explains our experiment results. Since the metamorphic engine

uses fixed transformation tables (in shrinker and expander) and

the reserved space for virus body is fixed, we can conclude that

although MetaPHOR employs full metamorphism engine, it only

has a finite length of evolution, which can be studied by MetaHunt.

5.3.2 W32.Evol. The W32.Evol virus is first discovered in July

2000
7
, which is the first virus to utilize a ‘true’ 32-bit metamor-

phic engine instead of the polymorphic engine which is suscepti-

ble to AV scanners that can trace virus decryption in memory. A

metamorphic engine is used to transform the executable code: it

implements some sort of an internal disassembler to parse input

code, and then transforms the program code and produces new

different code while retaining its functionality.

The instruction transformation supported by the engine can be

divided into two parts: Inter-engine transformations are inlined

inside the engine as a part of the engine’s core. External Transfor-

mations take place outside the main engine function, yet they act

as if they are inside the engine itself and jump back to the engine

when they are finished. The engine’s decision on whether or not to

transform a given instruction is based upon a random factor. The

engine asks for a random number between 0 and 7, and the trans-

formation will be applied only if it is 0. Hence there is a probability

of 12.5% that an instruction would be transformed. Furthermore,

the engine will only disassemble the instructions that the author

had included.

As shown in Figure 10, the disassembly of the virus’ code before

transformation in the left column and the corresponding transfor-

med code in the right column. We can see that for the first row, the

transformation is semantics-preserving unconditionally. However,

for the last two rows, we can see the value of eax is given the value

0x04 and 0x09 respectively. Therefore, the last two transformations

7
https://www.symantec.com/security-center/writeup/2000-122010-0045-99

9

Before After

push eax
mov [edi], 0x03

push eax
push ecx

mov ecx, 0x03
mov [edi], ecx

pop ecx

push 0x03
mov eax, 0x08

mov eax, 0x03
push eax

mov eax, 0x08

mov eax, 0x03
push eax

mov eax, 0x03
push eax

mov eax, 0x08

Figure 10: An example of conditional transformation in
W32.Evol

1

2

3

4

5

6

Average

Obf.-LLVM

Themida

VMProtect

MPCGEN

VCL32

G2NGVCK

W
32.Evol

MetaPHOR

Lexotan32

S
pe

ed
up

 (t
im

es
)

 O1
 O2
 O3
 O4

Figure 11: The impact of basic blocks fastmatchingwhen ap-
plied cumulatively: O1 (preprocessing), O2 (O1 + union-find
set and DiffMap), O3 (O2 + concretizing symbolic formulas),
O4 (O3 + QueryMap).

are semantics-preserving only if the register eax is not live when
they are applied.

Similar to MetaPHOR, the W32.Evol engine adopts a fixed trans-

formation table. Moreover, because the W32.Evol engine only disas-

sembles instructions that the virus author included, and the con-

ditional transformation can only be applied at the point certain

registers are not live, these restrictions further limits the possible

mutations of the W32.Evol virus, which is coherent to our experi-

ments.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

500

600

700

800

900

1000

O4
O3
O2

O1

None

M
et

am
or

ph
ic

 M
ut

at
io

n
C

om
pa

ris
on

 T
im

e
(s

)

Number of Executed Basic Blocks (Normalized)

 None
 O1
 O2
 O3
 O4

Figure 12: The effect of our optimizations over time on NG-
VCK family

mov ecx, imm
rcr [esp], cl Mutation

mov ecx, random
add ecx, imm - random
rcr [esp], cl

Figure 13: Example: buggy metamorphic engine implemen-
tation (add instruction may modify the value of carry flag).

5.4 Optimization
The binary comparison component in MetaHunt is optimized for

quickly checking the equivalence of two basic blocks. Various met-

hods in MetaHunt contribute to improve the performance of com-

parison. First, the preprocessing normalizes the trace and remove

the obfuscations. Second, the union-find set and DiffMap keep the

checked basic block in memory so as to accelerate the future com-

parison. Third, concretizing the formulas in symbolic execution

replaces some unnecessary symbols with concrete values. It redu-

ces the complexity of symbolic formulas so that the comparison

is faster. Last, the querymap in MetaHunt calculate hash value of

the symbolic formulas and use them to quickly match the formulas.

In order to show the speedup effect of each of these methods, we

incrementally add one method in MetaHunt and use it to compare

the variants in all the metamorphic engines. The result of the expe-

riment is shown in Figure 11. We can see that every method has

a significant speed-up and it achieves over 5X speedup with all

optimizations turned on.

We conduct another experiment on the NGVCK metamorphic

virus family and the result is shown in Figure 12. We observe that

the optimizations in MetaHunt are able to speed up the comparison,

especially when there are large number of basic block candidates.

Therefore, MetaHunt’s optimization can improve its performance

on comparing basic block variants from metamorphic engines.

5.5 Finding Metamorphic Engine Bugs
Most metamorphic malware are running on the Intel x86 platform

because of its popularity. However, x86 Instruction Set Architecture

10

Table 2: Conditionally equivalent instructions (reg, imm and

random stand for register, immediate value and random number,

respectively).

Instruction Substitution Condition

inc reg add reg, 1 carry flag is not set

dec reg sub reg, 1 carry flag is not set

pop reg

mov reg, [esp]

no EFLAGS bit is set

add esp, 4

push reg

sub esp, 4

no EFLAGS bit is set

mov [esp], reg

add reg, imm sub reg, -imm overflow and carry

flags are not set

mov reg, imm

mov reg, random

no EFLAGS bit is set

add reg, imm - random

is complicated as well, which make the design of metamorphic

transformation rules very difficult. Especially, certain instructions

have implicit side effects. They reveal different semantics when the

value of EFLAGS register varies. If a metamorphic engine neglects

such subtleties of x86 instructions, it is very likely that semantics-

breaking mutations will happen. Table 2 lists that some instructions

and their substitutions are only conditionally equivalent when cer-

tain EFLAGS register bits are dead. For example, the Intel manual

indicates that “inc/dec” does not affect the carry flag while “add/sub”

does; the instruction “pop reg” (the third row in Table 2) does not

modify any EFLAGS bits while “add” may set as many as six bits.

Unfortunately, the examples shown in Table 2 are misused by many

of our testing metamorphic engines. Figure 13 shows a possible

semantics-breaking mutation we find in NGVCK. The instruction

“rcr” rotates right using the carry flag as the “extra” bit. Therefore,

the modification to the carry flag before the “rcr” instruction may

lead to an incorrect rotation result. However, the “add” instruction

in the new version may modify the value of carry flag. Since Meta-

Hunt also trace the symbolic execution for each EFLAGS register

bit, we can find metamorphic engine bugs in terms of conditionally

equivalent transformations. In our evaluation, we find 62 semantics-

breaking bugs in total. These metamorphic engine bugs lead to fatal

runtime errors in many cases.

6 DISCUSSIONS AND LIMITATIONS
The power of MetaHunt is limited by the non-perfect path coverage.

This is mainly due to the limitation of dynamic malware analysis.

We can leverage automatic input generation techniques [22] to

explore more paths. Since MetaHunt depends on multi-tag taint

analysis to reduce the number of basic block comparisons, Meta-

Hunt exhibits similar limitations of taint analysis in general, e.g.,

implicit information flow evasions [7]. One possible solution is to

leverage statistical binary similarity comparison [15, 16] to reduce

the number of constraint solving on multiple paths. Another threat

to dynamic malware analysis is environment-sensitive malware.

Since we analyze metamorphic malware in TEMU, a malware sam-

ple can detect itself running in an emulator instead of the physical

machine and then quit immediately. To evade such sandbox envi-

ronment check, a possible countermeasure is to analyze malware

in a transparent analysis platform via hardware virtualization (e.g.,

Ether [18]). Currently, MetaHunt’s detection on opaque predica-

tes focuses on invariant opaque predicates, whose value remain

the same for all possible inputs. The most recent work can detect

more advanced cases such as contextual and dynamic opaque pre-

dicates [31]. Although we do not see such complicated opaque

predicates in our evaluation, we will extend our work to handle the

advanced opaque predicates proactively.

Another argument against studying the evolution of metamor-

phic malware is the relatively high cost. In fact, compared to the

number and diversity of the malware samples in circulation, the

metamorphic engine evolves rather slower because of the great

development complexity. A successful metamorphic engine tends

to be reused and shared by malware authors. For example, NG-

VCK [55] is widely applied to generate metamorphic virus and

Obfuscator-LLVM, is also used to mutate both desktop and Android

applications [24, 54]. Therefore, our one-time efforts to approximate

the semantics of nontrivial metamorphic engines are worthwhile.

Furthermore, considering that manually tracing metamorphic mu-

tations usually takes several days to weeks of hard work, the degree

of MetaHunt’s overhead is acceptable.

7 CONCLUSION
The metamorphic malware relies on its morphing engine to mu-

tate the malicious code from generation to generation so that each

variant is different in syntax. Metamorphic malware have been

demonstrated to evade the conventional signature-based malware

detection successfully. The mutation engine itself is also constantly

evolving. In this paper, we attempt to tame the metamorphic muta-

tion by systematically chasing the morphing code evolution. We

apply trace-based semantic binary diffing to compare possible mu-

tation variants iteratively and memoizes equivalent basic blocks.

Without pre-knowledge about a particular metamorphic engine,

our exploration result can approximate its mutationmechanism.We

have implemented our approach called MetaHunt and performed

empirical evaluations on a large set of metamorphic malware. Our

generalized approach can be seen as a first step towards designing

mutation insensitive anti-malware solutions.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback.

This research was supported in part by the National Science Foun-

dation (NSF) grants CNS-1652790, and the Office of Naval Research

(ONR) grants N00014-16-1-2265, N00014-16-1-2912, and N00014-17-

1-2894. Jiang Ming was also supported by the University of Texas

System STARs Program.

REFERENCES
[1] Shahid Alam, Issa Traore, and Ibrahim Sogukpinar. 2014. Current Trends and the

Future of Metamorphic Malware Detection. In Proceedings of the 7th International
Conference on Security of Information and Networks (SIN’14).

[2] Kapil Anand, Matthew Smithson, Khaled Elwazeer, Aparna Kotha, Jim Gruen,

Nathan Giles, and Rajeev Barua. 2013. A Compiler-level Intermediate Represen-

tation Based Binary Analysis and Rewriting System. In Proceedings of the 8th
ACM European Conference on Computer Systems (EuroSys’13).

[3] Philippe Beaucamps. 2007. Advanced Metamorphic Techniques in Computer

Viruses. In Proceedings of the 2007 International Conference on Computer, Electrical,
and Systems Science, and Engineering (CESSE’07).

[4] D. Bruschi, L. Martignoni, and M. Monga. 2006. Detecting Self-mutating Malware

Using Control-Flow Graph Matching. In Proceedings of Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA’06).

11

[5] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. 2007. Code Normaliza-

tion for Self-Mutating Malware. IEEE Security and Privacy 5, 2 (2007).

[6] Lorenzo Cavallaro. 2014. Malicious Software and its Underground Economy.

https://www.coursera.org/course/malsoftware.

[7] L. Cavallaro, P. Saxena, and R. Sekar. 2008. On the Limits of Information Flow

Techniques for Malware Analysis and Containment. In Proceedings of the GI
International Conference on Detection of Intrusions & Malware, and Vulnerability
Assessment (DIMVA’08).

[8] Sang Kil Cha, Iulian Moraru, Jiyong Jang, John Truelove, David Brumley, and

David G. Andersen. 2010. SplitScreen: Enabling Efficient, Distributed Malware

Detection. In Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation (NSDI’10).

[9] Mohamed R. Chouchane and Arun Lakhotia. 2006. Using Engine Signature

to Detect Metamorphic Malware. In Proceedings of the 4th ACM Workshop on
Recurring Malcode (WORM’06).

[10] Mohamed R. Chouchane, AndrewWalenstein, andArun Lakhotia. 2007. Statistical

Signatures for Fast Filtering of Instruction-substituting Metamorphic Malware.

In Proceedings of the 2007 ACM Workshop on Recurring Malcode (WORM’07).
[11] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant. 2005. Semantics-

aware malware detection. In Proc. of the IEEE Symposium on Security and Privacy.
[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2001. Introduction to Algorithms (Second ed.). MIT Press, Chapter 21: Data

structures for Disjoint Sets, 498–524.

[13] Mila Dalla Preda, Roberto Giacobazzi, and Saumya Debray. 2015. Unveiling me-

tamorphism by abstract interpretation of code properties. Theoretical Computer
Science 577 (2015), 74–97.

[14] Mila Dalla Preda, Roberto Giacobazzi, Saumya Debray, Kevin Coogan, and

Gregg M Townsend. 2010. Modelling metamorphism by abstract interpreta-

tion. In International Static Analysis Symposium. 218–235.

[15] Yaniv David, Nimrod Partush, and Eran Yahav. 2016. Statistical Similarity of

Binaries. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

[16] Yaniv David, Nimrod Partush, and Eran Yahav. 2017. Similarity of Binaries

Through Re-optimization. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI).

[17] Priti Desai and Mark Stamp. 2010. A highly metamorphic virus generator. Inter-
national Journal of Multimedia Intelligence and Security 1, 4 (2010).

[18] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. 2008. Ether: Malware Analysis via

Hardware Virtualization Extensions. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS’08).

[19] The Mental Driller. last reviewed, 04/14/2015. Metamorphism in practice or How

I made MetaPHOR and what I’ve learnt. http://vxheaven.org/lib/vmd01.html.

[20] Vijay Ganesh and David L. Dill. 2007. A Decision Procedure for Bit-vectors and

Arrays. In Proceedings of the 2007 International Conference in Computer Aided
Verification (CAV’07).

[21] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically

finding semantic differences in binary programs. In Poceedings of the 10th Inter-
national Conference on Information and Communications Security (ICICS’08).

[22] P. Godefroid, M. Y. Levin, and D. Molnar. 2008. Automated Whitebox Fuzz

Testing. In Proceedings of the 15th Annual Network and Distributed System Security
Symposium (NDSS’08).

[23] Jiyong Jang, Maverick Woo, and David Brumley. 2013. Towards Automatic Soft-

ware Lineage Inference. In Proceedings of the 22nd USENIX Security Symposium.

[24] Pascal Junod, Julien Rinaldini, JohanWehrli, and Julie Michielin. 2015. Obfuscator-

LLVM – Software Protection for the Masses. In Proceedings of the IEEE/ACM 1st
International Workshop on Software Protection (SPRO’15).

[25] Arun Lakhotia, Mila Dalla Preda, and Roberto Giacobazzi. 2013. Fast Location of

Similar Code Fragments Using Semantic ’Juice’. In Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop (PPREW’13).

[26] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for

Lifelong Program Analysis & Transformation. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO’04).

[27] Felix Leder, Bastian Steinbock, and Peter Martini. 2009. Classification and de-

tection of metamorphic malware using value set analysis. In Proceedings of the 4th
International Conference on Malicious and Unwanted Software (MALWARE’09).

[28] Jusuk Lee, Kyoochang Jeong, and Heejo Lee. 2010. Detecting Metamorphic

Malwares using Code Graphs. In Proceedings of the 2010 ACM Symposium on
Applied Computing (SAC’10).

[29] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2014.

Semantics-based Obfuscation-resilient Binary Code Similarity Comparison with

Applications to Software Plagiarism Detection. In Proc. of the 22nd ACM SIGSOFT
Int’l Symposium on Foundations of Software Engineering (FSE’14).

[30] Jiang Ming, Meng Pan, and Debin Gao. 2012. iBinHunt: Binary Hunting with

Inter-Procedural Control Flow. In Proceedings of the 15th Annual International
Conference on Information Security and Cryptology (ICISC’12).

[31] Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu. 2015. LOOP: Logic-

Oriented Opaque Predicates Detection in Obfuscated Binary Code. In Proceedings
of the 22nd ACM Conference on Computer and Communications Security (CCS’15).

[32] Jiang Ming, Dongpeng Xu, and Dinghao Wu. 2015. Memoized Semantics-Based

Binary Diffing with Application to Malware Lineage Inference. In Proc. of the
30th IFIP Int’l Information Security and Privacy Conference (IFIP SEC’15).

[33] Vishwath Mohan and Kevin W Hamlen. 2012. Frankenstein: Stitching Malware

from Benign Binaries. WOOT 12 (2012), 77–84.

[34] Vinod P. Nair, Harshit Jain, Yashwant K. Golecha, Manoj Singh Gaur, and Vijay

Laxmi. 2010. MEDUSA: MEtamorphic Malware Dynamic Analysis Using Signa-

ture from API. In Proceedings of the 3rd International Conference on Security of
Information and Networks (SIN’10).

[35] Beng Heng Ng and Atul Prakash. 2013. Exposé: Discovering Potential Binary

Code Re-use. In Proceedings of the 37th IEEE Annual Computer Software and
Applications Conference (COMPSAC’13).

[36] JeongWookOh. 2009. Fight against 1-day exploits: Diffing Binaries vs Anti-diffing

Binaries. In Proceedings of the 2009 Black Hat USA.
[37] Philip OKane, Sakir Sezer, and KieranMcLaughlin. 2011. Obfuscation: The Hidden

Malware. IEEE Security and Privacy 9, 5 (2011).

[38] Orr. last reviewed, 04/14/2015. The Molecular Virology of Lexotan32: Metamor-

phism Illustrated. http://www.openrce.org/articles/full_view/29.

[39] Rodney Owens and Weichao Wang. 2011. Non-normalizable Functions: a New

Method to Generate Metamorphic Malware. In Proceedings of the 2011 IEEE
Military Communications Conference (MILCOM’11).

[40] Panda Security. 2017. PandaLabs Annual Report 2017. https://www.pandasecurity.

com/mediacenter/src/uploads/2017/11/PandaLabs_Annual_Report_2017.pdf.

[41] Mathias Payer. 2014. Embracing the new threat: towards automatically, self-

diversifying malware. Symposium on Security for Asia Network (SyScan’14).

[42] Mathias Payer, Stephen Crane, Per Larsen, Stefan Brunthaler, Richard Wartell,

and Michael Franz. 2014. Similarity-based matching meets Malware Diversity.

arXiv Technical Report (2014).
[43] Frédéric Perriot, Peter Ferrie, and Péter Ször. 2003. Striking Similarities:

Win32/Simile and Metamorphic Virus Code. Symantec Security Response.

[44] Mila Dalla Preda. 2012. The Grand Challenge in Metamorphic Analysis. In

Proceedings of the 6th International Conference on Information Systems, Technology
and Management (ICISTM’12).

[45] Kevin A. Roundy and Barton P. Miller. 2013. Binary-code Obfuscations in Preva-

lent Packer Tools. Comput. Surveys 46, 1 (2013).
[46] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung

Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, and Prateek Saxena.

2008. BitBlaze: A New Approach to Computer Security via Binary Analysis. In

Proceedings of the 4th International Conference on Information Systems Security
(ICISS’08).

[47] Peter Szor. 2005. The Art of Computer Virus Research and Defense. Addison-Wesley

Professional.

[48] Péter Ször and Peter Ferrie. 2001. Hunting For Metamorphic. Symantec White

Paper.

[49] Teja Tamboli, Thomas H. Austin, and Mark Stamp. 2014. Metamorphic code

generation from LLVM bytecode. Computer Virology and Hacking Techniques 10,
3 (2014), 177–187.

[50] AndrewWalenstein, Rachit Mathur, Mohamed R. Chouchane, and Arun Lakhotia.

2008. Constructingmalware normalizers using term rewriting. Computer Virology
4, 4 (2008), 307–322.

[51] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable Disassembling.

In Proceedings of the 24th USENIX Security Symposium (USENIX Security ’15).
USENIX Association.

[52] ShuaiWang, PeiWang, and DinghaoWu. 2016. Uroboros: Instrumenting Stripped

Binaries with Static Reassembling. In Proceedings of the 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER ’16). USE-
NIX Association.

[53] Matt Webster and Grant Malcolm. 2009. Detection of metamorphic and

virtualization-based malware using algebraic specification. Computer Virology 5,

3 (2009), 221–245.

[54] Ryan Welton. 2015. Obfuscating Android Applications using O-LLVM and the

NDK. http://fuzion24.github.io/.

[55] WingWong and Mark Stamp. 2006. Hunting for metamorphic engines. Computer
Virology 2, 3 (2006), 211–229.

[56] Qinghua Zhang and Douglas S. Reeves. 2007. MetaAware: Identifying Metamor-

phic Malware. In Proceedings of the 23rd Annual Computer Security Applications
Conference (ACSAC’07).

12

https://www.coursera.org/course/malsoftware
http://vxheaven.org/lib/vmd01.html
http://www.openrce.org/articles/full_view/29
https://www.pandasecurity.com/mediacenter/src/uploads/2017/11/PandaLabs_Annual_Report_2017.pdf
https://www.pandasecurity.com/mediacenter/src/uploads/2017/11/PandaLabs_Annual_Report_2017.pdf
http://fuzion24.github.io/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Metamorphic Malware
	2.2 Semantics-based Binary Diffing

	3 System Design
	3.1 Overview
	3.2 Trace Logging
	3.3 Basic Block Normalization
	3.4 Basic Block Comparison and Memoization

	4 Implementation
	5 Evaluation
	5.1 Experiment Setup
	5.2 Converging Time and Union-Find Set Size
	5.3 Case Study
	5.4 Optimization
	5.5 Finding Metamorphic Engine Bugs

	6 Discussions and Limitations
	7 Conclusion
	Acknowledgments
	References

