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Abstract The key challenge of software reverse engi-

neering is that the source code of the program under in-

vestigation is typically not available. Identifying differ-

ences between two executable binaries (binary diffing)

can reveal valuable information in the absence of source

code, such as vulnerability patches, software plagiarism

evidence, and malware variant relations. Recently, a

new binary diffing method based on symbolic execution

and constraint solving has been proposed to look for the

code pairs with the same semantics, even though they

are ostensibly different in syntactics. Such semantics-

based method captures intrinsic differences/similarities

of binary code, making it a compelling choice to analyze

highly-obfuscated malicious programs. However, due to

the nature of symbolic execution, semantics-based bi-

nary diffing suffers from significant performance slow-

down, hindering it from analyzing large numbers of

malware samples. In this paper, we attempt to miti-

gate the high overhead of semantics-based binary diff-

ing with application to malware lineage inference. We

first study the key obstacles that contribute to the per-
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formance bottleneck. Then we propose normalized basic

block memoization to speed up semantics-based binary

diffing. We introduce an union-find set structure that

records semantically equivalent basic blocks. Manag-

ing the union-find structure during successive compar-

isons allows direct reuse of previously computed results.

Moreover, we utilize a set of enhanced optimization

methods to further cut down the invocation numbers

of constraint solver. We have implemented our tech-

nique, called MalwareHunt, on top of a trace-oriented

binary diffing tool and evaluated it on 15 polymorphic

and metamorphic malware families. We perform intra-

family comparisons for the purpose of malware lineage

inference. Our experimental results show that Malware-

Huntcan accelerate symbolic execution from 2.8X to

5.3X (with an average 4.1X), and reduce constraint

solver invocation by a factor of 3.0X to 6.0X (with an

average 4.5X).

Keywords: binary diffing, semantics, symbolic ex-

ecution, malware lineage inference, normalized basic

block memoization

1 Introduction

In many tasks of software security, the source code of

the program under examination is typically absent. In-

stead, the executable binary itself is the only available

resource to analyze. Therefore, determining the real dif-

ferences between two executable binaries has a wide va-

riety of applications, such as latent vulnerabilities ex-

ploration [26], automatic “1-day” exploit generation [2]

and software plagiarism detection [22]. Conventional

approaches can quickly locate syntactical differences by

measuring instruction sequences [34], byte N-grams [18]

or fingerprint hashing [28]. However, such syntax-based
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comparison can be easily evaded by various obfusca-

tion techniques, such as instruction substitution [15],

binary packing [33], and self-modifying code [3]. The

latest binary diffing approaches [14,23,22,27] simulate

semantics of a snippet of binary code (e.g., basic block)

by symbolic execution and represent the input-output

relations as a set of symbolic formulas. Because of var-

ious code obfuscation methods, the generated formu-

las could be quite complicated to analyze. However, by

submitting the two formulas to a state-of-the-art con-

straint solver, we can verify whether they are equiv-

alent. Such obfuscation-resilient comparison captures

the intrinsic semantics differences/similarities with low

false-positive and false-negative rates.

As the underground industry of malware prospers,

malware authors frequently update their malicious code

to circumvent security countermeasures. According to

the latest annual report of Panda Security labs [30], in

2013 alone, there are about 30 million malware samples

in circulation and only 20% of them are newly created.

Obviously, most of such malware samples are simple

update (e.g., apply a new packer) to their previous ver-

sions. Therefore, hunting malware similarities is of great

necessity. The nature of being resilient to instruction

obfuscation makes semantics-based binary diffing an

appealing choice to analyze highly obfuscated malware

as well. Unfortunately, the significant overhead imposed

by the state-of-the-art approach has restricted its appli-

cation in large scale analysis, such as malware lineage

inference [16], which typically requires pairwise compar-

ison to identify relationships among malware variants.

Therefore, an efficient semantics-based malware diffing

approach is of great necessity.

In this paper, we first diagnose the two key obsta-

cles leading to the performance bottleneck, namely high

invocations of constraint solver and slow symbolic ex-

ecution. To address these issues, we propose normal-

ized basic block memoization to accelerate equivalent

basic block matching by reusing previously compared

results. When performing malware lineage inference, we

observe that malware variants are likely to share com-

mon code [20]. A new version may only adopt a different

packer or incremental updates. As a result, we exploit

code similarity by applying union-find set [8], an effi-

cient tree-based data structure, to record semantically

equivalent basic blocks which have already been identi-

fied. When comparing two basic blocks, we first perform

code normalization to reverse some obfuscation effects

that could split a single basic block into multiple ones,

such as instruction reordering and opaque predicate.

Then the matched basic blocks are stored in a union-

find set. Maintaining the union-find structure during

successive comparisons allows direct reuse of previous

results, without the need for re-comparing them. In ad-

dition, to further cut down the high invocation num-

bers of constraint solver, we also utilize concretizing

symbolic formulas and caching equivalence queries.

We have implemented our approach, named Mal-

wareHunt, on top of iBinHunt [23], a trace-oriented bi-

nary diffing tool. We evaluate MalwareHunt in the task

of malware lineage inference on 15 malware families, in-

cluding both polymorphic and metamorphic malware.

Our experimental results show that our methods can

speed up malware lineage inference, symbolic execu-

tion and constraint solver by a factor of 4.4X, 4.1X and

4.5X, respectively. Our proposed solution focuses on ac-

celerating basic blocks matching and can be seamlessly

woven into other binary diffing approaches based on

equivalent basic blocks. Furthermore, the semantically

equivalent basic blocks collected by MalwareHunt can

facilitate designing a mutation insensitive anti-malware

solution. In summary, the contributions of this paper

are as follows.

1. We look into the high overhead problem of semantics-

based binary diffing and identify cruxes leading to

the performance bottleneck.

2. We propose normalized basic block memoization to

enable more efficient binary comparison, including

maintaining a union-find set structure, concretizing

symbolic formulas and caching equivalence queries.

3. We extends the advanced semantics-based binary

diffing techniques to analyze obfuscated malware in-

stances and ameliorate the performance bottleneck

The rest of the paper is organized as follows. Sec-

tion 2 provides the background information. Section 3

studies the performance bottleneck of semantics-based

binary diffing. Section 4 describes our optimization meth-

ods in detail. MalwareHunt’s implementation and eval-

uation details are presented in Section 5. Related work

are introduced in Section 6. At last, we conclude the

paper in Section 7.

2 Background

In this section, we introduce the background informa-

tion of semantics-based binary diffing. Previous binary

diffing tools can quickly identify syntactical differences

such as instruction sequences [34], byte N-grams [18]

and fingerprint hashing [28]. However, they can be eas-

ily defeated by various obfuscation methods. For ex-

ample, Fig. 1 shows two counterexamples of metamor-

phism transformations. Metamorphic malware mutates

its code during infection so that each variant reveals

different instructions in syntax. As shown in Fig. 1,

Lexotan32 [29] mutates its code by inserting junk code
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push ebp

mov ebp, esp

xor exp, 0x21

push 0x0ACAB

pop eax

add eax, 0x1234

pop ebp

ret

start:

       push ebp

       mov ebp, esp

       jmp loc_0000

loc_0000:

       xor exp, 0x21

       lea ecx, [esi+0x06EF]

       mov edx, ebx

       mov ecx, esi

       jmp loc_0031

loc_0031:

       push 0x0ACAB

       sbb ecx, [esi+0x077F]

       adc bh, 0x71

       mov di, 0x0EEC4

       jmp loc_0017

loc_0017:

       pop eax

       mov ecx, esi

       mov edx, ebx

       add eax, 0x1234

       cmp edx, 0xAD463

       pop ebp

       mov di, 0x0A8C

       ret

       mov di, 0x1F24

(a) Lexotan32 [29]

movsb

Before After

  push eax

  mov al, [esi]  

  inc esi

  mov [edi], al  

  inc edi

  pop eax

stosb 
  mov edi, [al]  

  inc edi

mov [ebx+8], eax

  push ecx

  mov ecx, eax

  mov [ebx+8], ecx

  pop ecx

 jmp eax
  push eax

  ret 

xor eax, -1   not eax

and eax, 0   mov eax, 0

add eax, 1
  not eax

  neg eax

(b) MetaPHOR [10]

Fig. 1 Example: metamorphism transformation.

(the instructions are in italics) and reordering instruc-

tion (Fig. 1(a)); MetaPHOR [10] substitutes one in-

struction with a set of semantics-persevering instruc-

tions (Fig. 1(b)). Note that after mutation, the original

single basic block in Fig. 1(a) has been divided into mul-

tiple basic blocks. The core method of semantics-based

binary diffing [14,23,22,27] is to identify semantically

equivalent basic block pairs. A Basic block is a straight-

line code with only one entry point and only one exit

point, which makes the basic block an ideal fit for sym-

bolic execution (e.g., without conjunction of path con-

ditions). Fig. 2 presents a motivating example to illus-

trate how the semantics of a basic block is simulated by

symbolic execution. The two basic blocks in Fig. 2 are

semantically equivalent, even though they have differ-

ent x86 instructions (labeled as bold). In practice, sym-

bolic execution is performed on an RISC-like interme-

diate language (IL), which represents complicated x86

instructions as simple single static assignment (SSA)

style statements. In Fig. 2, the registers have been rep-

resented as SSA style (e.g., ecx 0, edx 1).

We take the inputs to the basic block as symbols and

simulate the effect of each instruction by updated the

corresponding symbolic formula. The output of sym-

bolic execution is a set of formulas that represent input-

output relations of the basic block. Now determining

whether two basic blocks are equivalent in semantics

boils down to find an equivalent mapping between out-

put formulas. Note that due to obfuscation such as reg-

ister renaming, basic blocks could use different registers

or variables to provide the same functionality. As a re-

sult, current approaches exhaustively try all possible

pairs to find if there exists a bijective mapping between

output formulas. Fig. 3 shows such formulas mapping

attempt for the output formulas shown in Fig. 2. The

variables shown in the leftmost column are from ba-

sic block 1 in Fig. 2; while the variables in the upmost

row are from basic block 2. The “true” or “false” indi-

cates the result of equivalence checking, such as whether

edx 1 = eax 3. After 10 times comparisons, we identify

a perfect matched permutation and therefore conclude

that these two basic blocks are truly equivalent.

Based on the matched basic blocks, BinHunt [14]

computes the similarity of control flow graphs of two bi-

naries by graph isomorphism. The follow-up work, iBin-

Hunt [23], finds semantic differences between execution

traces and utilizes multi-tag taint analysis to reduce the

number of basic block matches. Luo et al. [22] detect

software plagiarism by matching the longest common

subsequence of semantically equivalent basic blocks.



4 Jiang Ming et al.

Basic block 1

/*mov edx, ecx*/     

edx_0 = ecx_0;

Outputs

Symbolic inputs to basic block 1:

ecx_0 = i1; eax_0 = i2

eax_2 = i1 - i2 - 1;

ebx_1 = i1;

ecx_2 = 0x0;

edx_1 = i1 + 0xA;

/*mov ebx, 0x000A*/     

ebx_0 = 0xA;
/*add edx, ebx*/     

edx_1 = edx_0 + 0xA;
/*mov ebx, ecx*/     

ebx_1 =ecx_0;
/*sub ecx, eax*/     

ecx_1 = ecx_0 – eax_0;
/*mov eax, ecx*/     

eax_1 = ecx_1;
/*dec eax*/     

eax_2 = eax_1 - 1;
/*and ecx, 0*/     

ecx_2 = 0x0;

/*jmp 0x401922*/     

Basic block 2 (obfuscated)

/*lea eax, [ebx]*/     

eax_0 = ebx_0;

Outputs

Symbolic inputs to basic block 2:

ebx_0 = j1; ecx_0 = j2

ecx_2 = j1 - j2 - 1;

edx_1 = j1;

ebx_1 = 0x0;

eax_3 = j1 + 0xA;

/*mov edx, 0x000A*/     

r_edx_2 = 0xA;

/*add eax, edx*/     

eax_1 = eax_0 + 0xA;

/*mov edx, 0x000A*/     

edx_0 = 0xA;
/*nop*/     

/*nop*/    

/*xchg eax, eax*/     

/*not ecx*/     

ecx_1 = - ecx_0 - 0x1;
/*add ecx, ebx*/     

ecx_2 = ecx_1 +  ebx_0 ;
/*lea edx, [ebx]*/     

edx_1 = ebx_0 ;
/*xor ebx, ebx*/     

ebx_1 = 0x0;

/*jmp 0x401A22*/     

Semantically

 equivalent

Fig. 2 Example: basic block symbolic execution. The symbolic execution is performed based on IL (for brevity, we do not
show the modification to the EFLAGS bits).

eax_2

ebx_1

ecx_2

edx_1

Query result

false

false

true

eax_3

constant (0) 

ebx_1

true

false

false

ecx_2

false

true

false

edx_1

Fig. 3 Output formulas equivalence query results.

3 Performance Bottleneck

We look into the overhead imposed by semantics-based

binary diffing and find that there are two factors dom-

inating the cost. The first is the high number of in-

vocations of constraint solver. Recall that current ap-

proaches check all possible permutations of output for-

mulas mapping. The constraint solver will be invoked

every time when verifying the equivalence of formulas.

For example, two basic blocks in Fig. 2 have three sym-

bolic formulas and one constant value respectively. As

shown in Fig. 3, We have to employ constraint solver at

most nine times to find an equivalent mapping between

the three output formulas. Too frequently calling con-

straint solver incurs a significant performance penalty.

The second is the slow processing speed of symbolic

execution. Typically symbolic execution is much slower

than native execution, because it simulates each x86 in-

struction by interpreting a sequence of IL statements.

To quantitatively study such performance bottle-

neck, we select 5 malware families from our evaluation

dataset (see Section 5.2): four families have a large num-

ber of samples (StartPage, Delf, Mimail and NGVCK),

and one family (Ping) has the maximal code size. We

apply iBinHunt [23] to perform pairwise comparison

within each family. The constraint solver we used is

STP [13]. As shown in Fig. 4, we divide the overall

processing time into three parts: constraint solver solv-

ing time (“STP” bar), symbolic execution time (“SE”

bar), and other operations (“Others” bar). Apparently,
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Fig. 4 Ratio of processing time of iBinHunt.

STP’s processing time accounts for most of running

time of iBinHunt (more than 50%). Note that the exper-

iments on EXE [6] and KLEE [5] report similar results,

in which running time is dominated by the constraint

solving. Besides, the symbolic execution also takes up

to about 23% running time. Thus, an immediate opti-

mization goal is to mitigate too frequent invocations of

constraint solver and slow symbolic execution.

4 MalwareHunt Design

When we compare malware variants to identify their

relationships (a.k.a, lineage inference [16]), our key ob-

servation is that similar malware variants are likely to

share common code [20]. For example, all of the Email-

Worm.Win32.NetSky samples in our dataset search for

email addresses on the infected computer and use SMTP

to send themselves as attachments to these addresses.

The net result is we have to re-compare a large num-

ber of basic blocks that have been previously analyzed.

Therefore, our key method is to utilize memoization op-

timization to reuse previous computed results. To this

end, we first normalize basic blocks to reverse some

obfuscation effects. Then, MD5 value of the byte se-

quence of each basic block is calculated. After that,

we dynamically maintain a set of union-find subsets

to record semantically equivalent basic blocks, which

are represented by their MD5 value. The basic blocks

within the same subset are all semantically equivalent

to each other. Besides, we also concretize symbolic for-

mulas and cache equivalence queries to further cut down

the invocation numbers of constraint solver. Next we

will discuss each step in detail.

4.1 Normalization

The comparison unit of most semantics-based binary

diffing work is basic block [14,23,22]. However, sev-

eral obfuscation methods can split a single basic block

into multiple ones. As a result, too much extra basic

block comparisons will take up computing resources.

We first perform normalization to reverse such obfusca-

tion effects. Currently, we consider two major obfusca-

tion methods: instruction reordering and opaque predi-

cate obfuscation. The example of instruction reordering

is shown in Fig. 1(a), in which the new basic blocks are

connected through direct jump (e.g., jump loc 0031).

Reversing instruction reordering is straightforward. We

merge all the basic blocks that have only one predeces-

sor and one successor. For example, the new generated

basic blocks in Fig. 1(a) will be merged into a single

basic block again.

An opaque predicate means its value is known to

the obfuscator at obfuscation time, but it is difficult for

an attacker to figure it out afterwards. For example,

predicate (x3 − x ≡ 0 (mod 3)) in Fig. 6 is true for all

integers x. Opaque predicates have been widely used to

introduce redundant branches for the purpose of con-

trol flow obfuscation [24]. To handle opaque predicates,

we rely on recent work on logic-oriented opaque predi-

cate detection [24]. We submit a branch condition to a

constraint solver to verify whether it is always true or

false. If yes, we conclude that the branch condition is

an opaque predicate. After that, as shown in Fig. 6, the

unreachable paths and redundant predicates will be dis-

carded; the basic blocks split by the opaque predicate

will be merged together.

In addition, we also normalize basic blocks to ig-

nore offsets that may change due to code relocation and

some nop instructions. Binary compiled from the same

source code often have different address value caused by

memory relocation during compilation. What’s more,

malware authors may intentionally insert some instruc-

tion idioms like nop and xchg eax, eax to mislead

calculation of hash value. The purpose of normaliza-

tion is to ignore such effects and make the hash value

more general. We preform the normalization on the

intermediate language (IL). The RISC-like intermedi-

ate language and static single assignment (SSA) format

of IL are convenient for our processing, and also rep-

resent many functionally equivalent instructions (e.g.,

xor eax, eax and and eax, 0) in the same way. Taken

the basic block 2 in Fig. 2 as an example, Fig. 5 shows

that we normalize the basic block by replacing address

values with zeros and remove all nop statements. Then

we calculate the MD5 value of the basic block’s byte
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Basic block 2 (obfuscated)

 lea eax, [ebx] 

 mov edx, 0x000A   

 nop

 nop

 add eax, edx     

 xchg eax, eax

 not ecx         

 add ecx, ebx    

 lea edx, [ebx]  

 xor ebx, ebx     

 jmp 0x401A22

 lea eax, [ebx] 

 mov edx, 0x000A   

 add eax, edx     

 not ecx         

 add ecx, ebx    

 lea edx, [ebx]  

 xor ebx, ebx     

 jmp 0x000000

Normalization MD5 value

Fig. 5 Basic block normalization. The normalization is performed on the intermediate language. Here we only show assembly
code for the sake of brevity.

x
3
-x = 0 

(mod 3)
true falsetrue

 always true

I1;

I2;

I1;

I2; junk code

Fig. 6 Deobfuscate opaque predicate.

sequence, which will be used in the union-find set op-

erations.

4.2 Union-Find Set of Equivalent Basic Blocks

Our first optimization is to utilize union-find set [8],

an efficient tree-based data structure, to reuse previous

matched equivalent basic blocks. We define the three

major operations of union-find set as follows.

1. MakeSet: Create an initial subset structure contain-

ing one element, which is represented by a basic

block’s MD5 value. Each element’s parent points to

itself and has 0 depth.

2. Find: Determine which subset a basic block belongs

to. Find operation is used to find two basic blocks

are equivalent if both of them are within the same

subset.

3. Union: Unite two subsets into a new single subset.

The depth of new set will be updated accordingly.

The elements within a subset build up a tree struc-

ture. Find operation will always recursively traverse the

tree structure. However, the tree structure might de-

grade to a long list of nodes, which incurs O(n) time in

Algorithm 1 MakeSet, Find and Union

1: function MakeSet(a) // a represents a basic block
2: a.parent ← a

3: a.depth ← 0
4: end function

5: function Find(a) // path compression
6: if a.parent 6= a then
7: a.parent ← Find(a.parent)
8: end if
9: return a.parent

10: end function

11: function Union(a,b) // weighted union
12: aRoot ← Find(a)
13: bRoot ← Find(b)
14: if aRoot = bRoot then
15: return

16: end if

17: if aRoot .depth < bRoot .depth then
18: aRoot .parent ← bRoot

19: else

20: if aRoot .depth > bRoot .depth then
21: bRoot .parent ← aRoot

22: else

23: bRoot .parent ← aRoot
24: aRoot .depth ← aRoot .depth + 1
25: end if
26: end if

27: end function

the worst case for Find operation. To avoid highly un-

balanced searching tree, an improved path compression

and weighted union algorithm are applied to speed up

Find operation. Algorithm 1 shows the pseudo-code of

MakeSet, Find and Union. MakeSet creates an initial

set containing only one basic block. Path compression

is a way to flatten the structure of the tree when Find

recursively explores on it. As a result, each node’s par-

ent points to the root Find returns (Line 7). Weighted

Union algorithm attaches the tree with smaller depth

to the root of taller tree (Line 17, Line 20), which only

increases depth when depths are equal (Line 24).

Fig. 7 shows an example of maintaining an union-

find set. Given previously matched basic block pairs
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Matched  

basic block 

pairs:

 a vs. b

 c vs. d

e vs. f

 e vs. g

a

b

Subset 1

c

d

Subset 2

e

f

Subset 3

g

MakeSet &

Union
if (b=c)

a

b c d

e

f

Subset 3

g

Subset 4

Yes

New query: 

b=d?
if (a≠e)

DiffMap(4, 3) =1

Fig. 7 Example of MakeSet-Union-Find operations.

(as shown in left most block), after initial MakeSet and

Union operations, we get three subsets, that is, {a, b},
{c, d} and {e, f, g}. Then assuming b and c, two ba-

sic blocks coming from different subsets (subset 1 and

2), have the same semantics, that means all of the ba-

sic blocks in these two subsets are in fact equivalent.

Therefore, we perform weighed union and path com-

pression to join the two subsets to a new subset (subset

4). The resulting tree is much flatter with a depth 1.

After the union, we can immediately determine that

b and d are equivalent, even if these two basic blocks

were not compared before. In addition to the union-find

set, we also maintain a DiffMap to record two subsets

that have been verified that they are not equivalent. As

shown in the lower right side of Fig. 7, if we find out

a and e are different, we can safely conclude that basic

blocks in subset 4 are not equivalent to the ones in sub-

set 3, without the need for comparing them pair-by-pair

anymore.

4.3 Concretize Symbolic Formulas and Cache

Equivalence Queries

Fig. 3 shows a drawback of semantics-based binary diff-

ing: without knowing the mapping of output formulas

for equivalence checking, current approaches have to ex-

haustively try all possible permutations. To ameliorate

this issue, we introduce a sound heuristic that if two

basic block output formulas are equivalent, they should

generate equal values when substituting symbols with the

same concrete value. Therefore, we give preference to

the symbolic formulas producing the same value after

concretization. Taken the output formulas in Fig. 2 as

an example, we substitute all the input symbols with

a single concrete value 1. In this way, we can quickly

identify the possible mapping pairs, and then we verify

them again with STP. As a result, we only invoke STP

3 times, instead of 9 times as is previously done. Note

that using STP for double-checking is necessary, as two

symbolic formulas may happen to generate the same

value. For example, i << 1 is equal to i ∗ i when i = 2.

Besides, in order to further reduce the invocations

of STP when possible, we manage a QueryMap to cache

the result of equivalence queries, which is quite sim-

ilar to constraints caching adopted by EXE [6] and

KLEE [5]. The key of QueryMap is MD5 value of an

equivalence query, such as whether edx 1 = eax 3 in

Fig. 2; the value of QueryMap stores STP query result

(true or false). Before calling STP on a query, we first

check QueryMap to see whether it gets a hit. If not, we’ll

create a new (key, value) entry into QueryMap after

we verify this query with STP.

4.4 Basic Blocks Fast Matching

We merge all three optimization methods discussed above

together to comprise our basic blocks fast matching al-

gorithm (as listed in Algorithm 2). Our basic blocks

fast matching exploits syntactical information and pre-

vious result for early pruning. When comparing two

basic blocks, we first normalize the basic blocks and

compare their hash value (Line 4). This step quickly fil-

ters out basic blocks with quite similar instructions. If

two hash values are not equal, we will identify whether

they belong to the same union-find subset (Line 7).

Basic blocks within the same subset are semantically

equivalent to each other. If they are in the two differ-

ent subsets, we continue to check DiffMap to find out

whether these two subsets have been ensured not equiv-

alent (Line 10). At last, we have to resort to comparing

them with symbolic execution and STP, which is accu-

rate but computationally more expensive. At the same

time, we leverage heuristic of concretizing symbolic for-

mulas and QueryMap cache to reduce the invocations of
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Algorithm 2 Basic Block Fast Matching
a, b : two basic blocks to be compared

1: function FastMatching(a, b)
2: a′ ← Normalize(a)
3: b′ ← Normalize(b)
4: if Hash(a′) = Hash(b′) then

5: return True
6: end if

7: if Find(a′) = Find(b′) then // within the same subset
8: return True
9: end if

10: if DiffMap(Find(a′), Find(b′))=1 then // semanti-
cally different subsets

11: return False
12: else
13: Perform symbolic execution on a′ and b′

14: Check semantical equivalence of a′ and b′

15: if a′ ∼ b′ then // a′, b′ are semantically equivalent
16: Union(a′, b′)
17: Update DiffMap
18: return True
19: else // a′, b′ are not semantically equivalent
20: Set DiffMap(Find(a′), Find(b′))
21: return False
22: end if

23: end if

24: end function

STP. After that we update union-find set and DiffMap

accordingly (Line 15∼22).

Although the attempt to find all the matched basic

blocks is equal to solving the halting problem [19], the

resulting union-find sets have interesting application on

the practical point of view. For example, a mutation

insensitive signature [32] can be generated to capture

possible metamorphic variants and malware finegrained

relationship information can even be recovered.

5 Experimental Evaluation

We perform our experiments with several objectives

in mind. First, we want to evaluate the effectiveness

of MalwareHunt in the task of malware lineage infer-

ence. Also, we are interested in the effect of our ba-

sic blocks fast matching over time. Second, we want

to study the effect of our approach to alleviating the

semantics-based binary diffing performance bottleneck.

At last, we present the detailed optimization break-

down.

5.1 Implementation

We have implemented the idea of MalwareHunt on top

of iBinHunt [23], a binary diffing tool to find semantic

differences between execution traces, with 1, 820 OCaml

lines of code. Fig. 8 shows the architecture of Malware-

Hunt and the newly added components. We preform

the basic block normalization on the Vine IL [35], and

the theorem prover we used is STP [13]. The saving and

loading of union-find set and query hash map are de-

veloped using the Ocaml Marshal API, which encodes

arbitrary data structures as sequences of bytes and then

stores them in a disk file. Also, we write 500 lines of Perl

scripts to glue all components together to automate the

comparison process.

5.2 Experiment Setup

We collected malware samples from VX Heavens1 and

leveraged an online malware scan service, VirusTotal2,

to classify the samples into an initial 15 families. These

malware samples range from metamorphic virus to con-

siderably large Trojan horse. The dataset statistics is

shown in Table 1. The experimental data are collected

during malware lineage inference within each family,

that is, we perform a pairwise comparison to deter-

mine relationships among malware variants. The forth

column of Table 1 lists the number of pairwise com-

parison of each family and the total number is 1, 664.

Our testbed consists of Intel Core i7-3770 processor

(Quad Core with 3.40GHz) and 8GB memory. The mal-

ware execution traces are collected when running in

Temu [39], a whole-system emulator. Since most of mal-

ware samples are packed, we employ a generic unpack-

ing plug-in [17] to monitor malware sample’s unpack-

ing and start to record trace only when the execution

reaches the original entry point (OEP) [21].

There are three kinds of metamorphic virus families:

Lexotan32, MetaPHOR, and NGVCK. Lexotan32 and

MetaPHOR are self-mutating malware; that is, they

embed the metamorphic engine within the virus body [36].

We select 20 copies of Cygwin3 utility bzip2 as the

“goat” binaries to be infected by both Lexotan32 and

MetaPHOR. Since these self-mutating viruses do not

mutate their host code, choosing the same copies of

goat files can help us identify the morphing code. Dur-

ing our evaluation, the running goat executables will in-

fect themselves iteratively, and each infection will yield

a new generation variant. For NGVCK (next generation

virus creation kit) [37], its engine is separated from the

malicious body. We generate 24 NGVCK virus variants

in terms of assembly source code. Then, we use TASM

5.0 Assembler to compile the source code into binary.

1 http://vxheaven.org/src.php
2 https://www.virustotal.com/
3 https://www.cygwin.com
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Fig. 8 The architecture of MalwareHunt. The grey components are newly added on top of iBinHunt [23].

Table 1 Dataset statistics

Malware Family Category #Samples #Comparison Size(kb)/Std.Dev.
Dler Trojan 10 45 28/6

StartPage Trojan 21 210 10/1
Delf Trojan 24 276 17/4
Ping Backdoor 8 28 247/41

SpyBoter Backdoor 16 120 34/16
Progenic Backdoor 6 15 88/27

Bube Virus 10 45 12/7
Lexotan32 Virus 20 190 64/15

MetaPHOR Virus 20 190 65/20
NGVCK Virus 24 276 150/35
MyPics Worm 12 66 31/4
Bagle Worm 9 36 40/17

Mimail Worm 17 136 17/6
NetSky Worm 7 21 41/12
Sasser Worm 5 10 60/28

5.3 Malware Lineage Inference Performance

We first quantify the effects of the set of optimizations

we presented in our basic blocks fast matching algo-

rithm (Algorithm 2). Fig. 9 shows the speedup of mal-

ware lineage inference for each family when applying

the optimizations cumulatively on MalwareHunt. Our

baseline for this experiment is a conventional Malware-

Hunt without using any optimization we proposed. The

“O1” bar indicates the effect of normalization, which

can quickly identify basic block pairs with the same

byte sequences after our normalization. The effect of

normalization is remarkable on several families such as

Ping and Bube, in which instructions are quite sim-

ilar in syntax. Recall that our normalization reverses

the effect of instruction reordering and opaque predi-

cate, which are commonly used code mutation methods.

As a result, we also achieve a notable improvement on

comparing metamorphic malware variants (Lexotan32,

MetaPHOR, and NGVCK).

The “O2” bar captures the effect of the union-find

set and DiffMap, which record previously compared

results. The optimization O2 results in a significant

speedup from 1.4X to 2.9X on average. Especially for

some highly obfuscated malware families, such as Delf

and Bagle, O2 outperforms O1 by a factor of up to

3.1. The “O3” bar, denoting concretizing symbolic for-

mulas, introduces an improvement by 17% on average.

The optimization of QueryMap (O4) offers an enhanced

performance improvement by average 30% and with a

peak value 46% for NetSky. Particularly, since Start-

Page samples adopt different implementation ways to

tamper with the startup page of IE browsers, we ob-

serve large similarity distances among StartPage vari-

ants. In spite of this, our approach still accelerates the

malware lineage inference greatly.

In addition, we study the effect of our basic blocks

fast matching over time as well. We choose Sasser to

test because the impact of the optimizations on Sasser

is close to the average value. As shown in Fig. 10, as
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the union-find set and QueryMap are enlarged, our ap-

proach becomes more effective over time. The number

of executed basic blocks is normalized so that data can

be collected across intra-family comparisons.

5.4 Alleviate Performance Bottleneck

In Section 3, we have identified two factors that domi-

nate the cost of semantics-based binary diffing: namely

symbolic execution and constraint solver. In this ex-

periment, we study the effect of our optimizations on

these two performance bottlenecks. The column 2∼4 of

Table 2 lists the average symbolic execution time and

speedup before/after optimization when comparing two

malware variants in each family using MalwareHunt.

Similarly, the column 5∼7 shows the effect to reduce the

number of STP invocations. In summary, our approach

outperforms conventional MalwareHunt in terms of less

symbolic execution time by a factor of 4.1x on average,

and fewer STP invocations by 4.5x on average.

5.5 Optimization Breakdown

Table 3 presents our optimization breakdown when per-

forming lineage inference for the five large malware fam-

ilies shown in Fig. 4. The first row shows the ratio

of matched basic block pairs with the same byte se-

quences after normalization (line 4 in Algorithm 2).

The relatively small ratio also indicates the necessity of

semantics-based binary diffing approach. The next two

rows list statistics of the union-find set, including the

number of union-find subsets and the maximum num-

ber of items in one subset. As the key property of meta-

morphic mutation is semantics-preserving, NGVCK has

the maximum number (16) of equivalent basic blocks.

The row 4 and 5 present the hit rate of union-find set

(line 7 in Algorithm 2) and DiffMap (line 10 in Al-

gorithm 2). The row 6 shows the time cost incurred by
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Table 2 Improvement to symbolic execution and STP invocations.

Malware Family
SE Times (s) # STP Invocations

None Optimization Speedup None Optimization Speedup
Dler 10.1 2.5 4.0 1,123 346 3.2

StartPage 13.5 3.3 4.1 1,350 314 4.3
Delf 8.8 2.0 4.4 1,685 324 5.2
Ping 32.2 10.7 3.0 6,740 1,926 3.5

SpyBoter 16.6 4.4 3.8 2,020 493 4.1
Progenic 20.2 6.3 3.2 2,566 856 3.0

Bube 5.1 1.8 2.8 8,47 250 3.4
Lexotan32 12.7 2.9 4.3 1,278 228 5.6

MetaPHOR 16.2 3.6 4.5 1,394 278 5.0
NGVCK 25.6 4.8 5.3 5,458 1,186 4.6
MyPics 11.4 2.5 4.6 1,235 257 4.8
Bagle 24.4 5.1 4.8 5,570 1,092 5.1

Mimail 9.0 1.7 5.3 2,901 484 6.0
NetSky 20.6 4.6 4.5 4,958 972 5.1
Sasser 24.2 6.2 3.9 5,616 1,338 4.2

Average 4.1 4.5

Table 3 Optimization breakdown.

Optimization breakdown StartPage Delf Mimail Ping NGVCK
1 Normalization ratio 9% 12% 12% 51% 34%
2 # union-find subsets 125 130 304 546 346
3 Max. # basic blocks in one subset 5 6 8 10 16
4 union-find hit rate 36% 44% 37% 41% 52%
5 DiffMap hit rate 47% 53% 44% 54% 38%
6 Union-find set and DiffMap cost (s) 9.5 14.3 12.0 13.7 12.2
7 QueryMap hit rate 62% 70% 65% 75% 56%
8 QueryMap cost (s) 8.6 8.8 6.4 7.6 6.8
9 Concretizing saving 60% 65% 55% 52% 46%

10 Memory cost (MB) 10 12 28 45 36

building and managing the union-find set structure and

DiffMap. The following two rows lists hit rate and time

cost for QueryMap. The saving of concretizing sym-

bolic formulas is shown in row 9, in which we avoid

at least 46% output variables comparisons. At last, we

present the overall memory cost to maintain union-find

set, DiffMap and QueryMap. Reassuringly, compared

to the performance improvement, the overhead intro-

duced by our optimization is small.

6 Related Work

In this section, we first present previous work on bi-

nary diffing, which is the most related to MalwareHunt

in spirit. Then we introduce literature on symbolic ex-

ecution optimization, which inspires our approach to

basic block memoization.

6.1 Binary Diffing

Hunting differences between two binaries (a.k.a, binary

diffing) has a wide variety of applications in software

security area, such as exploits or bugs exploration [12,

1,31], reverse engineering [14,23,11] and code reuse de-

tection [27,22]. The recent work [9] defines a formal se-

mantic model for binary diffing. The previous work that

relies on control flow graph or instruction fingerprint

hashing to compare binaries [12,1,28] can be evaded by

sophisticated obfuscation methods. Our efforts attempt

to speed up semantics-based binary diffing, which can

find equivalent binary pairs that reveal syntactic dif-

ferences [14,22,23,27]. We have introduced the latest

work in this direction in Section 2. The most relevant

binary diffing method to MalwareHunt is iBinhunt [23].

We are all trace-oriented binary diffing tools to match

basic block pairs and also utilize multi-tag taint analy-

sis to reduce the number of possible matches. However,

MalwareHunt is designed to compare a large number of

obfuscated malware variants. Compared to iBinhunt,

MalwareHunt is augmented with better resilience to

various code obfuscation methods (e.g. opaque predi-

cate) and a set of memoization optimization methods.

As a result, MalwareHunt has a better accuracy and

performance.
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6.2 Symbolic Execution Optimization

A set of our memoization optimization methods to speed

up semantics-based binary diffing are inspired by sym-

bolic execution optimization work. Yang et al. [38] pro-

posed Memoise, a trie-based data structure to cache the

key elements of symbolic execution, so that successive

forward symbolic execution can reuse previously com-

puted results. Our union-find structure is like Memoise

in that we both maintain an efficient tree-based data

structure to avoid re-computation. However, our ap-

proach aims to accelerate basic blocks matching, and

our symbolic execution is limited in a basic block, which

is a straight-line code without path conditions. Our op-

timization of caching equivalence queries is inspired by

both EXE [6] and KLEE [5], which cache the result

of path constraint solutions to avoid redundant con-

straint solver calling. Different from the complicated

path conditions cached by EXE and KLEE, our equiv-

alence queries are simple and compact. As a result, our

QueryMap has a higher cache hit rate. Malware normal-

ization relies on ad-hoc rules to undo the obfuscations

applied by malware developers [4,7]. Our normalization

mainly focuses on the obfuscation methods that may

change the structure of a basic block, namely instruc-

tion reordering and opaque predicate. Besides, we also

eliminate the effect of memory relocation and instruc-

tion idioms.

7 Conclusion

The best way to reconcile the scalability issue of sym-

bolic execution and its applications is an active re-

search topic. The high-performance penalty introduced

by the state-of-the-art semantics-based binary diffing

approaches restricts their application from large scale

application such as analyzing a large number of mal-

ware samples. In this paper, we first study the cruxes

leading to the performance bottleneck and then pro-

posed normalized basic block memoization optimiza-

tion to speed up semantics-based binary diffing. Our

approach consists of basic block normalization, main-

taining a union-find set structure, concretizing symbolic

formulas and caching equivalence queries. The experi-

ment on malware lineage inference demonstrated the ef-

ficacy of our optimizations with only minimal overhead.

Although we evaluated our approach with the applica-

tion to malware analysis, our basic blocks fast match-

ing solution can be seamlessly weaved into other binary

diffing approaches based on equivalent basic blocks.
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