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Abstract
Fuzzing has been widely adopted as an effective testing tech-
nique for detecting software bugs. Researchers have explored
many parallel fuzzing approaches to speed up bug detection.
However, existing approaches are built on top of serial fuzzers
and rely on periodic fuzzing state synchronization. Such a de-
sign has two limitations. First, the synchronous serial design
of the fuzzer might waste CPU power due to blocking I/O
operations. Second, state synchronization is either too late so
that we fuzz with a suboptimal strategy or too frequent so that
it causes enormous overhead.

In this paper, we redesign parallel fuzzing with microser-
vice architecture and propose the prototype µFUZZ. To bet-
ter utilize CPU power in the existence of I/O, µFUZZ breaks
down the synchronous fuzzing loops into concurrent microser-
vices, each with multiple workers. To avoid state synchroniza-
tion, µFUZZ partitions the state into different services and
their workers so that they can work independently but still
achieve a great aggregated result. Our experiments show that
µFUZZ outperforms the second-best existing fuzzers with
24% improvements in code coverage and 33% improvements
in bug detection on average in 24 hours. Besides, µFUZZ finds
11 new bugs in well-tested real-world programs.

1 Introduction

In recent years, fuzzing has been widely adopted to detect
security bugs [17, 36, 76, 79]. Compared with other pro-
gram analysis techniques, fuzzing ensures higher throughput
while requiring less manual effort and pre-knowledge of the
target software. In addition, fuzzing is demonstrated to be
practical for detecting security issues in complex, real-world
programs [8, 79]. Thus, considerable computing resources
are used for fuzzing in industry. For example, Google imple-
mented clusterfuzz [4] in 2016, and over 36,000 bugs have
been found through this project.

To improve the fuzzing efficiency, researchers propose
various optimizations to enhance fuzzers’ internal compo-
nents [43, 50]. For instance, several projects implement

grammar-based, adaptive or unified mutators to generate more
valid, effective and diverse test cases [28, 46, 73, 83]. Hy-
brid fuzzing utilizes heavy program analysis techniques to
extract useful information to help explore program state
space [16, 59, 61, 67, 78]. Various algorithms are developed
to adjust the input priority to make a balance between input
space exploration and exploitation [19, 70, 80]. Researchers
also design and implement different feedback mechanisms
to promote the fuzzing speed and effectiveness [29, 51, 69].
These internal improvements have dramatically increased the
performance of a single fuzzing instance.

In addition to improving internal procedures, researchers
also set sights on parallel fuzzing. The goal of parallel fuzzing
is to make full use of resources and detect more bugs within
a shorter time than single-instance fuzzing. For example, as
fuzzing shows its ability in bug detection, many companies
such as Google and MicroSoft decide to invest numerous
resources (e.g., CPU and memory) in fuzzing [4, 5, 8, 10].
State-of-the-art parallel fuzzing approaches share a similar
architecture [2, 58, 72, 79]. They launch multiple fuzzing in-
stances in separate processes and periodically perform corpus
synchronization. Each instance follows the original logic of
the underlying single-instance fuzzer, which is designed to
run as a single instance. For example, it adopts a serial fuzzing
loop which first takes one test case from the input queue, then
mutates the input to generate new ones, and finally runs the
program with the new input while collecting feedback. Each
instance maintains its own fuzzing states such as the code
coverage bitmap and a corpus of interesting test cases. The
advantage of this parallel-fuzzing architecture comes from
state synchronization, which allows one instance to catch up
on the latest progress from other instances. In this way, all
instances contribute to the program state exploration and bug
detection.

However, we identify two limitations in the current parallel
fuzzing architecture. First, the existing architecture is built on
top of single-instance fuzzers, whose fuzzing logic may not be
suitable for parallel fuzzing purposes. These single-instance
fuzzers adopt a serial synchronous loop, where the input gen-
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eration and consumption must follow the order. Once a proce-
dure (e.g., test case execution) in this loop gets blocked (e.g.,
by file or network I/O), the whole instance gets stuck. The
CPU bound to the fuzzing instance will be idle or spinning
(e.g., keep looping for a lock access) until the blocking opera-
tion completes. As parallel fuzzing runs multiple instances at
the same time and introduces more I/O by synchronization,
the instances are more likely to get stuck, wasting more CPU
cycles. We should reuse the wasted CPU cycles to fully utilize
the computation power.

Second, existing approaches periodically synchronize the
corpus from each other to allow instances with slow progress
to catch up. The synchronization will update the local fuzzing
states for all instances so that they can use the latest infor-
mation to make globally beneficial fuzzing decisions. How-
ever, these state updates are not timely enough. In the time
window between two consecutive synchronizations, each in-
stance has to use the local information to make decisions.
Since local information could be out-of-date, such decisions
are not necessarily beneficial from the global perspective.
After running fuzzing instances for a long time, the accumu-
lated non-optimal decisions could significantly reduce the
fuzzing efficacy. Increasing the frequency of synchronization
could mitigate this problem. However, as demonstrated in the
previous work [75], frequent synchronization brings heavy
overhead, which will reduce the fuzzing efficiency.

To overcome the limitations caused by the current architec-
ture, we need to redesign fuzzing tools to reduce the burdens
of serialization and synchronization. Fortunately, we find our
opportunity in microservice architecture [7]. Microservice
architecture organizes tasks in a set of loosely coupled, self-
contained services that can run concurrently with others. If
no service is blocked, all services collaborate with each other
according to the loose dependency. Once a running service
is blocked, other services can take over the computing re-
sources to make individual progress. Moreover, each service
will maintain its own state and only needs to share minimal
information with others in rare cases. Most of the time, each
service can make globally optimal decisions.

In this paper, we propose µFUZZ, a parallel fuzzing frame-
work using the microservice architecture. To adopt this new
architecture, we break the current serial fuzzing loop into four
microservices, i.e., corpus management, test case generation,
test case execution, and feedback collection. Each microser-
vice is self-contained and can schedule parallel workers by
itself. We further design an output cache mechanism to re-
duce the coupling between different services (i.e., decouple
input generation and consumption). In this case, if one con-
sumer service gets stuck, the producer service can still make
progress and save results into the cache. Similarly, the con-
sumer services can retrieve results from the caches even if
the producer service gets stuck. This effectively addresses the
CPU cycle wasting issue since each microservice is loosely
coupled and can replace the blocked service for execution.

To address the challenges caused by synchronization delay,
we design two levels of state partition in µFUZZ. First, µFUZZ
splits the global state into different service states so that each
service can use its state locally. For example, the coverage
bitmap will be put into the feedback collection service as it
will evaluate the code coverage and update the bitmap accord-
ing to the execution status. Second, different workers in each
service handle unique parts of the service states. Accumu-
lating all worker states will obtain the service states. These
partitions avoid the state synchronization among the workers
and enable each service worker to use up-to-date information
to make overall good decisions.

We implement µFUZZ in 9534 lines of Rust code, consist-
ing of the concurrent infrastructure (i.e., the asynchronous run-
time) and the fuzzer. The concurrent infrastructure is built on
top of Tokio [3], a well-tested asynchronous runtime library.
For the fuzzer, we adopt the fork-server execution, havoc mu-
tation, and edge coverage feedback from AFLplusplus, and
use a simple round-robin algorithm that favors test cases find-
ing more new code for seed selection.

To understand the effectiveness of our new design, we
evaluate µFUZZ on two popular benchmarks: Magma [38]
and FuzzBench [48]. We compare µFUZZ with the state-of-
the-art parallel fuzzers, including AFLplusplus, AFLEdge and
AFLTeam, and find µFUZZ can explore 24% more program
states and 33% more bugs than the second-best fuzzer in 24
hours. Besides, our experiments show that different aspects
of the microservice architecture contribute to the improve-
ment of µFUZZ. Moreover, µFUZZ found 11 new bugs in
well-tested real-world programs.

In summary, this paper makes the following contributions:
• We propose a parallel fuzzing framework with microser-

vice architecture that well utilizes CPU power even with
blocking I/O and avoids state synchronization.

• We implement the prototype, µFUZZ, of our system to
effectively perform parallel fuzzing.

• We compared µFUZZ with state-of-the-art fuzzers, and
the results show that µFUZZ can find 24% more new cov-
erage and 33% more bugs in 24 hours than the second-
best fuzzer.

We will release the code of µFUZZ upon publication.

2 Problem

In this section, we first briefly describe how state-of-the-art
parallel fuzzing approaches work and then discuss their lim-
itations. Next, we show the potential of using microservice
architecture to mitigate the limitations of parallel fuzzing. Fi-
nally, we present our novel approach to solving the problem.

2.1 How Existing Parallel Fuzzing Works
To better test complex programs with time constraints [5, 42],
many fuzzers [2, 6, 22, 35, 79] support parallel fuzzing mode
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Fig.1: The state-of-the-art parallel fuzzing approach. The fuzzer spawns multiple instances and runs them in parallel. Each instance is
self-contained and functionality-complete. They maintain their own local fuzzing states, such as the corpus and coverage bitmap. Most of the
time, the instances work independently as if there were no other instances. Occasionally, the instances perform corpus synchronization with
each other to share their fuzzing progress.

to boost the fuzzing performance. The state-of-the-art ap-
proach is to run multiple fuzzing instances of the same fuzzer
independently on multiple CPU cores. The instances perform
periodic corpus synchronization with each other because the
corpus represents the fuzzing progress of an instance. Syn-
chronizing the corpus allows the latest progress made by
one instance to be caught up by the others and guide their
work [79]. As shown in Fig.1, each instance maintains a local
seed corpus. Most of the time, these instances run indepen-
dently, as if there are no other instances. Occasionally, they
check others’ seeds and copy those that trigger new code
to their own corpus. Advanced parallel fuzzing approaches
either run instances of different fuzzers to combine their capa-
bility [25, 37, 55] or further optimize the corpus distribution
strategy by partitioning the synchronized corpus among in-
stances to avoid duplicated fuzzing efforts [44, 58, 72].
Fuzzing State. Corpus synchronization improves fuzzing
because the corpus is part of the fuzzing state. We define the
fuzzing state of a fuzzing instance to be the minimum informa-
tion to represent its full fuzzing progress. They might include
the corpus, average running time of the test case executing,
seeds of the random number generator, etc.

2.2 Limitation of Existing Approaches

Existing parallel fuzzers maintain a local fuzzing state in each
instance and perform state synchronization periodically. Such
approaches mainly have two problems: First, it aggravates the
problem of wasting CPU cycles due to the serial design of the
underlying fuzzer. Second, the global fuzzing state cannot be
synchronized to each instance timely or efficiently, resulting
in suboptimal performance.
CPU Cycles Wasted due to Blocking I/O. Existing fuzzers
run their instances in a serial synchronous loop [2, 35, 79]. For
example, the fuzzing pipeline of AFLplusplus is as follows:

Table 1: The percentage of wasted CPU cycles by blocking I/O
in single instance fuzzing.

Target lua PHP tcpdump MySQL
Wasted Cycles (%) 1.2% 0.5% 28.7% 60.3%

Table 2: The percentage of wasted CPU cycles by blocking I/O
in parallel fuzzing. We measure the blocking cycles in the main
fuzzing instance with AFLplusplus during corpus synchronization
with 1-second, 1-minute and 30-minute synchronization intervals
and different number of instances.

Target lua PHP

Interval\Instance 20 40 60 20 40 60
1 sec 3.18% 7.29% 8.74% 13.54% 25.79% 29.70%
1 min 0.13% 0.30% 0.31% 1.34% 2.47% 3.34%

30 min 0.07% 0.08% 0.15% 0.58% 0.76% 1.01%

Select a test case, mutate it, execute it, check the execution
feedback, and loop. If any of the steps are blocked by I/O, the
other steps can do nothing but wait. Therefore, such a design
might suffer from performance degradation in the existence of
blocking I/O. I/O can come from two sources. First, the tested
program can involve heavy blocking I/O (e.g., a compression
application might do heavy file I/O.). During the execution
phase, the fuzzing loop can get stuck, waiting for the I/O to
complete. Since the fuzzing loop is synchronous, the CPU
cannot perform other fuzzing tasks but wait, wasting CPU
cycles. Second, when fuzzing with multiple instances, state
synchronization might also bring in lots of I/O [12]. Take
AFLplusplus as an example. When running in parallel mode,
each instance periodically checks and synchronizes the corpus
with other instances in a shared folder. This has been shown
to bring lots of I/O, such as shared folder locking and file
copying, which hurts the fuzzing performance [75].

We performed quick experiments on four popular programs
to investigate these two sources of I/O. We measure the per-
centage of CPU cycles wasted by blocking I/O, where the
CPU is either idle or spinning waiting for gaining locks or
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I/O completion. Table 1 shows the result in single instance
fuzzing. As we can see, if the tested target involves lots of
blocking I/O (e.g., tcpdump calls the system call poll and
waits), the wasted percentage can be significant. For targets
without much I/O (e.g., lua and PHP), we futher evaluated
them for the main fuzzing instance (i.e., the instance that
performs synchronization with all other instances) in parallel
fuzzing with respect to different synchronization intervals
and number of instances. As shown in Table 2, even for tar-
gets with little inherent I/O operations, if we perform heavy
state synchronization (with more cores or higher frequency),
the introduced I/O significantly degrades the CPU utiliza-
tion. Simply spawning more instances on the same CPU (i.e.,
oversubscription) cannot solve the problem because it might
introduce more resource contention such as context-switching
and again hurt the performance.
Fuzzing State Not Timely Synchronized. The instances
maintain their local fuzzing states and perform periodic syn-
chronization. Before the next synchronization, they use the
possibly outdated states and fuzz with strategies which are
locally optimal but can be globally suboptimal. On the other
hand, it is not feasible to perform synchronizations too fre-
quently as it incurs a significant overhead [75].

We did a quick experiment to verify our hypothesis. We
used AFLplusplus to fuzz QuickJS [9], a popular JavaScript
engine. As a comparison, we fuzzed with one instance of
AFLplusplus for ten hours and ten instances in parallel for
one hour, respectively. The measured metrics include the
code coverage and the number of interesting test cases that
are further selected for fuzzing. The result shows that if we
fuzz with a single instance for 10 hours, about 13,700 new
program paths are found, and about 80% of the interesting
test cases are further used for fuzzing. However, when fuzzing
with ten instances in parallel for an hour, we only find about
6,700 new program paths, which is only 49% of that of a
single instance. About only 40% of the test cases are further
selected for fuzzing. We assume the fuzzing strategy of the
single-instance fuzzer is optimal. That means the ten instances
use suboptimal strategies and duplicate their works on similar
test cases, while the globally optimal strategy is to explore
test cases diversely. Similar results are also found in [72].

To further verify that the performance gap is caused by syn-
chronization delay, we change the synchronization frequency
of AFLplusplus and measure the change in the fuzzing per-
formance in terms of code coverage. More specifically, we
fuzz QuickJS with ten AFLplusplus instances for one hour
by setting their synchronization frequency per hour from 2
(AFLplusplus’s default setting) to 40,000 (which performs
synchronization after every test case execution). The result is
shown in Fig.2. As we can see, if the frequency is too low, the
code coverage is also low because the instances are using sub-
optimal fuzzing strategies. If the synchronization frequency
is high, the code coverage also drops dramatically because
the overhead of synchronization is too high. However, even
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Fig. 2: Code coverage of 10 AFLplusplus instances testing
QuickJS with different synchronization frequency in an hour.

the best result in the curve is still much worse than that of the
single instance fuzzing. This means that simply changing the
synchronization frequency does not solve the problem.

From the above discussion, we want a parallel fuzzing
framework that supports concurrency to better utilize CPU
cycles even in the existence of I/O and can synchronize in-
stances’ states timely with little overhead so that we fuzz with
up-to-date states and make good decisions. However, it is
difficult to do so on top of existing fuzzers with monolithic
serial architecture. We need a different architecture.

2.3 Microservice Architecture
We find microservice architecture [7] fits parallel fuzzing well
and can potentially mitigate its current limitations. First, mi-
croservice architecture structures the application as a set of
small, loosely coupled, collaborating services. These services
run concurrently with others. For parallel fuzzing, we can
break the different phases in the serial fuzzing loop into con-
current services, where we might run other services if one
gets stuck. Second, the services are self-contained (i.e., it does
not rely on others to finish its job), which means it does not
need to synchronize with others. For parallel fuzzing, the ser-
vices can be self-contained if each of them focuses on a single
functionality of fuzzing (e.g., test case generation). And we
do not need state synchronization among the services. Third,
inside a service, we can easily scale the capability by creating
multiple instances and partitioning the service data among
the instances. For parallel fuzzing, we can create multiple
workers inside a service to achieve parallelism and partition
the service state maintains among the workers. And these
workers do not need to synchronize with each other because
their states have no overlap. We only need to ensure that the
workers can work independently using their local states and
still achieve a good aggregated result.

2.4 Our Approach
This paper aims to design a parallel fuzzing framework that
embraces concurrency to better utilize CPU power even with
blocking I/O and avoids synchronization but still gets overall
great performance. We achieve our goal in two steps: redesign-
ing the fuzzing framework with microservice architecture
and partitioning the fuzzing state. Microservice architecture
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Fig. 3: Overview of µFUZZ. Instead of running multiple fuzzing instances and performing periodic synchronization, µFUZZ breaks the
traditional monolithic architecture into microservices. The new architecture consists of four self-contained services, each maintaining a partition
of the fuzzing state. The services are loosely dependent on each other using output caching. Inside each service, we run multiple workers to
exploit parallelism.

adds concurrency to the framework and enables the fuzzer
to effectively utilize the CPU power in the existence of I/O.
Fuzzing state partition allows the instances to fuzz with lo-
cally optimal strategy and still achieve an overall globally
great performance without synchronization.

Redesign with Microservice Architecture. We break the
traditional serial fuzzing loop into four services based on
functionality: Corpus management, test case generation, test
case execution, feedback collection. The whole fuzzing state
is also partitioned among the services in a way that each
service only needs its partition to function and is thus self-
contained. However, these services are still tightly coupled:
every service produces output for other services to consume
and vice versa. Instead of running the services synchronously,
we utilize output caching to decouple production and con-
sumption so that they can run concurrently. When one service
gets stuck, other services can still make progress and cache
the outputs. After the stuck service is ready to run again, it can
directly consume the cached outputs without waiting for the
producer to generate them. In this way, we can better utilize
the CPU power even with blocking I/O.

Partition the Fuzzing State. We have performed the first
level of fuzzing state partition by breaking down the mono-
lithic structure. Now each service maintains its own service
state. However, if the state is shared by the workers, we still
need state synchronization among the workers. We further
partition the service state among the workers to avoid syn-
chronization. We use two rules to guide the partition. First,
each partition of the state should be functionality-complete,
which means a worker can finish its job without using others’
states. Second, if each worker adopts its locally optimal strat-
egy, we expect to get a globally great (i.e., close to optimal)
aggregated result. In this way, the workers can run indepen-
dently and do not need synchronization with others. Since we
only have one global and distributive fuzzing state, the state
changes are directly applied to the states inside the workers.
Therefore, the workers always fuzz with the update-to-date
global state and make good fuzzing decisions. This avoids
the problem of periodic synchronization, which suffers from
either high overhead or large synchronization lagging.

Input Dispatcher 

Output Caching 
Queue

worker worker worker worker

Fuzzing State

Fig. 4: The internal structure of a service in µFUZZ. Each service
has a fuzzing state, an input queue dispatcher, an output caching
queue, and some workers. The fuzzing state is partitioned among
the workers. The input queue dispatcher accepts requests from other
services and dispatches them to the workers. The workers handle the
inputs in parallel and send the results to the output caching queue.
The consumer services consume these results when they are ready.

3 Design

Fig.3 shows the overview of µFUZZ. We first break the tradi-
tional serial fuzzing loop into four services (§3.1). This step
partitions the responsibility and the state of the fuzzer among
different services so that they do not need state synchroniza-
tion with each other. These self-contained services are the
candidates for concurrency. Next, we utilize output caching
to allow the services to run concurrently (§3.2) and achieve
maximum parallelism with load balancing (§3.3). Then we
further perform state partitioning among workers so that each
worker maintains a self-contained partition of the fuzzing
state (§3.4). This allows the workers to avoid synchronization
with each other but still get an overall great aggregated re-
sult. Finally, we connect the services together with zero-copy
communication (§3.5) to achieve efficient parallel fuzzing.

3.1 From Monolith to Microservice
As the first step to support concurrency, we break the mono-
lithic serial fuzzing loop into multiple services, whose struc-
tures are shown in Fig.4. We use the following guidelines
from the microservice architecture to conduct the breakdown.
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First, each service should focus only on one core functionality
of the fuzzing (i.e., be micro). Second, the services should
be self-contained, which means they should not rely on the
states of other services to function. If any part of the fuzzing
state is used by a service, then it should be maintained by the
service. As a result, we classify four core functionalities from
the fuzzing loop and break them into four services, which are
listed below:
Corpus Management Service. It is responsible for perform-
ing test case scheduling and maintaining a corpus of interest-
ing test cases and their associated metadata (e.g., performance
scores). The corpus can include test cases finding new code
coverage or triggering new bugs, etc. Based on the metadata
of the test cases, the scheduling algorithm prioritizes those
can better explore the program for test case generation.
Test Case Generation Service. It generates new test cases
to fuzz the tested program either from scratch or by mutating
existing ones. For example, it can utilize the BNF grammar
to generate structured inputs or bit-flip existing test cases to
generate new variants.
Execution Service. It executes the tested target with the
generated test cases and generates necessary feedback such as
the code coverage information and whether the tested program
crashes or timeouts during the execution.
Feedback Collection Service. It collects the feedback from
the execution service and classifies whether the feedback is
interesting or not. This information can be used to decide
whether a test case should be added to the corpus. It can also
generate fuzzing statistics in different metrics for other ser-
vices to improve their strategies. For example, it can calculate
how many interesting test cases are generated from a specific
seed and report that to the corpus management service. The
corpus management service can then utilize the statistics to
update the performance scores of the corresponding test cases
and fine-tune its scheduling algorithm.

We see these services are dependent on each other and
form a loop: each service consumes some outputs from other
services and also produces some for them. Without further
changes, these services still need to run in a serial way that
one getting stuck blocks the overall progress. We need to
loosen the coupling between the services so that they can run
concurrently and mitigate CPU cycle wasting, as described in
the next section.

3.2 Concurrency by Output Caching

Each service is both a producer (produces inputs for other
services) and a consumer (consumes outputs from other ser-
vices). We decouple the production and consumption of each
service by output caching so that the services can run con-
currently. More specifically, we connect the services with an
output caching queue, as shown in Fig. 4. When a service
produces some results, it first sends them to the output queue

instead of to the consumer service directly. If the consumer
service is busy temporarily, the results just stay in the queue,
and the producer service is free to produce more results. Once
the consumer service is ready to process new inputs, it can
directly fetch the cached ones from the output queue. In this
way, services can run concurrently. When one gets blocked,
others can still run and make progress.
Congestion Control. If we allow unlimited output caching,
one potential problem is that one service might keep gener-
ating outputs and fully occupy all the CPU cores. Under this
situation, other services have no chance to run and consume
these cached outputs. And the fuzzing cannot make overall
progress. For example, the corpus management service can
keep selecting test cases for mutation and send them to the
queue. And the test case generation service can not consume
them as all the CPU cores are busy running the corpus man-
agement service. Therefore, we adopt congestion control by
limiting the maximum number of cached results in the queue.
When the producer service finds that the output queue is full,
it knows that the consumer service needs more time to process
the cached outputs. Then it will yield to the scheduler so that
other services can run. In this way, the rate of production and
consumption can reach a dynamic balance, and the fuzzing
can make smooth progress continuously.

3.3 Parallelism by Load Balancing
To fully utilize the computation power of multiple cores, each
service of µFUZZ can run multiple workers in parallel. To
achieve maximum parallelism, we set the number of workers
to be the number of cores, and we perform load balancing
with an input dispatcher to keep all workers busy.

The input dispatcher maintains a first-in-first-out queue
of idle workers and adopts two strategies of load balancing:
"first come, first served" and dynamic input resizing. We de-
fine a worker as idle if it is ready to process but not currently
processing inputs. Such workers notify the input dispatcher,
which puts them into the back of the queue in order. When-
ever an input arrives, the input dispatcher tries to pop an idle
worker from the front of the queue and dispatch the input to
it, which is "first come, first served." If the queue is empty,
which means all workers are busy, the input dispatcher will
wait for a worker to become idle. This strategy works well
for most cases. However, the sizes of the incoming inputs
are not fixed, and sometimes they can be very large. If we
simply dispatch an input to one worker, it might result in one
worker processing a large input while other workers are idle.
To avoid this situation, we further perform dynamic input
resizing before dispatching. If the size of the arrived input is
larger than a threshold value and there are more than one idle
worker, we partition the input evenly based on the number
of idle workers and dispatch one partition to one idle worker.
With the two strategies, we can achieve maximum parallelism
by keeping the workers’ workload balanced dynamically.
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Algorithm 1: State Partition & Update
1 Procedure StatePartition(state)
2 numWorkers← The number of workers in the service;
3 if state is fixed-sized then // Static parittion
4 partitions← Evenly partition the state based on numWorkers ;
5 else // Dynamic partition
6 state← RandomlyShuffle(state) ;
7 partitions← Evenly partition the state based on numWorkers ;
8 Distribute one partition to one worker ;
9 The worker tags the partitioned state with its ID and store it

10 Procedure StateUpdate(stateUpdateRequest)
11 id2WorkerMap←Map(ID, worker);
12 id← ExtractID(stateUpdateRequest) ;
13 worker← id2WorkerMap.Get(id) ;
14 worker.ProcessRequest(stateUpdateRequest)

3.4 Avoid Synchronization by State Partition

As discussed, if the fuzzing instances maintain their local
states and rely on periodic synchronization, they suffer from
either synchronization lagging or high overhead. Therefore,
we adopt state partition to maintain only one global state
without synchronization.

µFUZZ performs two level of state partition: In the first
level µFUZZ partitions the fuzzing states among its services
so that the services can work independently. In the second
level µFUZZ further partitions each service state among the
workers so that each worker can work independently. We
already perform the first level by breaking the fuzzing loop
into services. µFUZZ partitions its two fuzzing states in two
of its services: The corpus management service maintains the
interesting testcases with their metadata (e.g., the execution
time) and the feedback collection service maintains the code
coverage bitmap. The test case generation service and the
execution service are stateless. We further perform the second
level state partition inside each service. The goal is that each
worker maintains a unique partition of the service state and
can run independently without synchronizating with others.
Meanwhile, accumulating the results from all workers still
gives a good overall result.

State Partition. We perform two types of partition based on
the size of the fuzzing states: static partition for fixed-sized
states and dynamic partition for variable-sized states, as de-
scribed in algorithm 1. For fixed-sized states, we partition
them evenly based on the number of workers. Each worker
gets a partition of the same size to achieve workload balance.
Since we know the size of the state, we can do it statically. For
example, suppose that we have a 1000-byte bitmap and 10
workers in the feedback collection service. By static partition,
each worker should maintain 100 bytes (e.g., the first worker
maintains byte 0 to byte 99, and the second maintains byte
100 to 199). For variable-sized states, we partition them dy-
namically whenever new states are found, and distribute them
evenly and uniformly at random to the workers. The intuition
is that each partition maintained by the workers follows the
same or similar data distribution as the whole service state.
In this way, each worker can work independently but still get

a good accumulated overall result with high probability. For
example, if we find 100 new interesting test cases and dis-
tribute them randomly to 10 workers. Suppose that the global
optimal strategy is to pick 10 test cases with the best perfor-
mance scores for fuzzing, such strategy can be approximated
by asking each worker to pick its best test case and combining
them. µFUZZ performs static partition on the coverage bitmap
in the feedback collection service and dynamic partition on
the corpus in the corpus management service.
Result Accumulation. We need to accumulate outputs for
some services to generate an overall result. For the feedback
collection service, we simply aggregate the count for the "in-
steretingness" for the test cases: All the workers will check its
partition of bitmap and output whether a test case triggers new
bits. If all the workers say no, then the test case will be dis-
carded. Otherwise, it will be sent to the corpus management
service and added to the corpus. For the corpus management
service, we forward the outputs without any changes since
they already approximate a good result by simple aggrega-
tion as discussed above. In µFUZZ, the output caching queue
performs result accumulation since all outputs go through it.
State Updates. In µFUZZ, the fuzzing state is updated by
its maintaining serivce worker, and the state update requests
come from other services. For example, a worker in the cor-
pus management service will update a test case’s performance
score upon receiving feedbacks from the feedback collection
service. However, the service state has been partitioned across
the workers. When a service receives state update requests, we
need to tell the input dispatcher which worker should process
them. For statically partitioned states like the coverage bitmap,
we use the partition boundary as the workers’ unique identi-
fier (ID). We then check the range of the bit offsets and figure
out the corresponding worker. For dynamically partitioned
states, we assign each worker with a unique number as the
identifier, and all the states within the worker are tagged with
the ID. Such IDs will be carried along the fuzzing loop and
guide the input dispatcher. For example, every test case in the
corpus management service will be tagged with its maintain-
ing worker’s ID. Therefore, the test cases sent to the mutation
service will carry the ID and pass through to the feedback
collection service. In this way, when the feedback collection
service sends the performance score update requests to the
corpus management service, the input dispatcher can check
the IDs and dispatch the requests to the maintaining worker.
The overall workflow in shown in algorithm 1.

3.5 Zero-Copy Communication
As mentioned before, we break the fuzzing loop into different
services, and each service consumes the outputs from other
services and produces some for them. Considering the fast
speed of fuzzing, the amount of passing data can be huge
and thus potentially introduce high communication overhead.
Therefore, we design a safe zero-copy mechanism to reduce
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communication overhead. Specifically, we utilize pointer pass-
ing with shared memory to pass only a constant size of data
(i.e., a pointer and a data size) regardless of the amount of
generated outputs and unique ownership to enable safe access
to data across services. For example, suppose the average size
of the generated test cases is 1,000 bytes long, and the test
case generation service generates 1,000 new test cases per
second. Assuming we always copy the data from one service
to another, the required data copying from the test case gener-
ation service to the execution service will be 1,000,000 bytes
per second. The number will keep going up if we fuzz with
more cores. However, if we can pass a pointer to the data, we
pass only eight bytes on a 64-bit system.
Pointer Passing with Shared Memory. To avoid unneces-
sary memory allocation and data copying between the pro-
ducer and consumer services, we create shared memory be-
tween the services and pass the pointers to the shared memory
instead. After the shared memory is set up (e.g., using mmap),
the producer service writes its outputs directly to the shared
memory. To "pass" the data to the consumer, the producer
simply passes a pointer to the data and the size of the data
to the output queue. Afterward, the consumer can fetch the
pointer and the size to perform accurate data access. In this
way, regardless of the output size, we only need to pass the
small constant-size pointers and integers.
Unique Ownership for Safe Access. Using shared memory
poses a safety risk. Since the shared memory is accessible
from multiple services, if we allow the services to access the
memory at the same time, race conditions could happen. To
address this, we wrap the pointers in unique ownership to en-
sure safe memory access. This unique ownership ensures that
only one service can access the shared memory at any given
moment. This makes sense because the consumer should only
access the output after the producer finishes generating it, and
the producer does not need to access it afterward.

4 Implementation

We implement µFUZZ in 9534 lines of code. Table 5 shows
the breakdown.
Concurrent Runtime. We use Tokio [3] as the concurrent
runtime of µFUZZ. The runtime is responsible for efficient
task scheduling. Each worker in the services of µFUZZ is
run as a task in the runtime. The number of workers per
service is empirically set to be the number of cores to achieve
maximum parallelism. Users can adjust the number accroding
to their use cases (e.g., perform a short time dry run to try
different values and pick the best one). We maintain a queue
of unfinished tasks to execute. If the runtime is looking for
a task to run, it pops one from the front of the queue. When
a service receives inputs, its workers will get notified, and
µFUZZ will try to put the workers in front of the queue, which
allows them to be picked up for execution sooner. After a

worker finishes its work, we put it at the back of the queue so
that workers from other services have a chance to run. If all
the inputs are processed or the service gets stuck, µFUZZ will
move to the next service with inputs to be processed.

Corpus Management. The corpus management service
maintains a corpus of test cases and their performance scores
used in the test case selection algorithm. The performance
score of a test case reflects how many interesting variants it
has generated. When a test case is added to the corpus, we as-
sign it an initial score and adjust it according to the feedback.
For example, if a mutated variant of a test case triggers a new
code path, the score of the test case is increased. For test case
selection, we sort the test cases by scores and select them in
descending order with random skipping.

Test Case Generation. µFUZZ uses AFLplusplus’s havoc
mutation as its test case generation, which performs unstruc-
tured bit flip and byte modification on existing test cases.
Since test case generation and execution are in separate ser-
vices, sending the mutated test cases one by one to the execu-
tion service will result in too much service switching. Instead,
we send the new variants in bulk to the execution service to
reduce the overhead.

Execution. The execution service adopts the popular fork-
server executor in its worker [2, 79]. Each worker maintains
a fork-server. When a worker receives an input to execute, it
feeds the input into the fork server and requests a process fork.
The forked process executes the target binary with the test
case as input and generates the code coverage and execution
status (e.g., crash, timeout).

Zero-Copy Communication. We run all services of µFUZZ
in the same process to share the memory address space.
To support multiprocess run, we can use mmap to create
shared memory. In this way, zero-copy communication can
be achieved by simple pointer passing. We use Rust’s
std::sync::Arc, a thread-safe reference-counting pointer, to
wrap our data. We achieve unique ownership by ensuring that
the reference counter of the pointer is always one so that there
is at most only one owner for the underlying memory at any
moment.

5 Evaluation

Our evaluation aims to answer the following questions.

• Can µFUZZ outperform state-of-the-art parallel fuzzers?
(§5.2)

• What is the contributions of µFUZZ’s components in the
fuzzing performance improvement? (§5.3)

• Can µFUZZ find new bugs in real-world programs?
(§5.4)
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Table 3: Bug Detection Results in 24 Hours. We measure the bug detection capability in the number of identified bugs and their average
survival time, which indicates the time a fuzzer needs to trigger the bugs. If the fuzzer cannot find the bug in 24 hours, we mark the survival
time as ∞. The bug IDs are the unique identifiers for the inserted bugs in Magma. The time highlighted in green means the corresponding fuzzer
is the fastest to find the corresponding bug. We sum up the number of the bugs found during any of the five runs in "Total Bugs Found". We
exclude results for openssl and PHP because no fuzzers find any bugs in these targets in 24 hours.

Targets Bug ID µFUZZ AFLplusplus AFLEdge AFLTeam AFLpp-FS µFUZZ-S µFUZZ-P µFUZZ-C
PDF010 12h56m 19h18m 22h13m 05h31m 13h13m ∞ 15h02m 17h40m
PDF016 01m40s 16m40s 01m40s 16m40s 01m40s 03h21m 01m40s 09m10sPoppler
PDF021 05h22m ∞ ∞ ∞ ∞ ∞ ∞ 13h51m
SND017 01h24m 03h34m 02h51m 02h46m 16m45s 02h46m 03h54m 03h40m

sndfile SND020 01h24m 04h15m 02h51m 02h46m 02h50m 02h46m 04h10m 02h54m
XML002 12h57m ∞ ∞ ∞ ∞ ∞ 14h31m 15h58m
XML003 02h46m ∞ ∞ ∞ ∞ ∞ 13h53m 06h10m
XML009 16m40s 02h46m 02h46m 02h46m 02h46m 03h06m 02h46m 23m53s
XML012 15h13m ∞ ∞ ∞ 20h45m 20h07m 17h02m 19h49m

libxml2

XML017 01m40s 16m40s 01m40s 01m40s 01m40s 02h48m 06m40s 01h53m
SQL002 02h46m 10h34m 07h28m ∞ 03h16m 06h19m 17h23m 03h12m

SQLite SQL018 02h46m 02h52m 05h14m ∞ 03h40m 03h33m 05h16m 05h27m
lua LUA004 02h47m 09h47m 19h11m 06h20m 16h40m 19h48m 02h48m 02h55m

PNG001 19h37m ∞ ∞ ∞ ∞ ∞ ∞ ∞

PNG003 01m40s 03m25s 01m40s 02m20s 01m55s 17m20s 17m30s 01m40slibpng
PNG007 02h28m 02h50m 21h32m 23h05m 18h36m 06h03m 02h46m 03h03m
TIF002 05h56m ∞ 18h17m ∞ ∞ ∞ 12h32m ∞

TIF007 01m40s 16m40s 05h55m 01m40s 02h47m 05h34m 02h46m 02h51m
TIF012 02h35m 09h26m 06h23m 02h46m 10h35m 14h29m 06h39m 02h55mlibtiff

TIF014 05h47m 03h11m 06h06m 04h22m 02h50m 12h06m 04h44m 03h01m
Total Bugs Found 20 14 15 12 15 14 18 18

5.1 Evaluation Setup

Benchmark. We use the state-of-the-art benchmark
Magma [38] to evaluate µFUZZ in bug detection capability
and code coverage. We use the corpus from Magma for all the
targets and run them through AFLplusplus’s test case mini-
mizers to remove redundant ones beforehand. We compare
µFUZZ with three state-of-the-art fuzzers: AFLplusplus [2],
AFLTeam [58], and AFLEdge [72]. AFLplusplus is the most
popular fork of AFL with various improvements and is actively
maintained. AFLTeam and AFLEdge are the most recent and
the open-source advanced parallel fuzzers, which focus on
partitioning fuzzing tasks to different instances and are thus
good comparison for µFUZZ’s state partition. AFLEdge and
AFLTeam work by integrating with existing single-instance
fuzzers. Therefore, we run AFLTeam and AFLEdge on top of
AFLplusplus for a fair comparison. For new bug detection,
we evaluate µFUZZ with programs from FuzzBench [48].

Environment Setup. We perform our evaluation on five
machines, each with an Ubuntu 18.04 operating system, an
Intel Xeon CPU E5-2680 v3 processor (48 virtual cores) and
256 GB RAM. We instrument the tested programs to test edge
coverage. For the code coverage and bug detection experi-
ments, we run the fuzzers with 40 fuzzing instances on 40
cores for 24 hours. For µFUZZ, we run 40 workers for each
of the four services but still use only totally 40 cores, the
same number as the other fuzzers. We apply Magma’s survival
analysis to convert the recorded bug triggering time to bug
survival time, which is the expected time a bug remains undis-

covered [38]. A smaller survival time indicates a fuzzer can
find the bug in shorter time. We run each set of experiment in
a new docker container to reduce environment interference,
repeat the process five times and report the average results to
reduce the random noise.

5.2 Comparison against existing fuzzers
We compare µFUZZ against three state-of-the-art fuzzers, in-
cluding the de facto AFLplusplus and the two most recent
parallel fuzzers, AFLEdge and AFLTeam. To understand whether
increasing the synchronization frequency of existing fuzzers
can be a solution, we compare with AFLpp-FS, which is
AFLplusplus performing synchronization every 30 seconds
instead of 30 minutes. We use 30 seconds because it works
as well as shorter intervals in code coverage, but with less
overhead according to our experiments. The evaluated met-
rics include bug detection capability (the number of triggered
bugs and their survival time) and edge coverage.
Bug Detection. As shown in Table 3, µFUZZ finds 20
bugs in 24 hours, while AFLplusplus, AFLEdge, AFLTeam, and
AFLpp-FS find only 14, 15, 12, and 15 bugs, respectively.
All the 17 bugs found by other fuzzers are also covered by
µFUZZ, and µFUZZ found 12 of them using the shortest time.
Three of the bugs (PDF021, XML002, XML003) are only found by
µFUZZ. Additionally, AFLpp-FS finds all the 14 bugs found
by AFLplusplus and one more, but it still finds five less than
µFUZZ. This shows that more frequent synchronization can
help improve the bug detection capability of AFLplusplus
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Fig.5: Edge coverage found by evaluated fuzzers with 40 cores in 24h. AFLpp-FS is AFLplusplus with 30-second synchronization interval.
µFUZZ-S is µFUZZ without state partitioning. µFUZZ-P is µFUZZ without zero copy communication. µFUZZ-C is µFUZZ without concurrency.

because the fuzzing instances can catch up with the latest
progress earlier, but the improvement is limited.

Code Coverage. As shown in Fig. 5, on average µFUZZ
identifies 24%, 41%, 80%, and 31% more new edges than
AFLplusplus, AFLEdge, AFLTeam, and AFLpp-FS respectively.
If the programs have a larger program state space to ex-
plore, µFUZZ can achieve higher code coverage improve-
ment (e.g., 40% more in Poppler and 37% more in PHP
than AFLplusplus). Otherwise, the improvement of µFUZZ
is smaller (8% more in sndfile than AFLplusplus and 2%
less than AFLpp-FS). µFUZZ uses almost the same fuzzing
strategies as AFLplusplus but has a higher code coverage.
This is because AFLplusplus does not perform state partition
and relies on corpus synchronization at long intervals (i.e.,
30 min). Between two synchronization, the fuzzing instances
are not aware of the progress made by others. Interestingly,
the coverage of AFLpp-FS is higher than AFLplusplus at the
beginning (i.e., in the first few hours) but lower in the end. We
investigate the results and find the following reasons. When
the fuzzing starts, the corpus is small and the program space
is not well explored. An instance quickly finds a bunch of
interesting test cases, but cannot explore all of them timely.
Under this situation, more frequent synchronization allows
other instances to catch up with the progress and help explore
the interesting test cases. And a small corpus can be synchro-
nized with low overhead. However, as the fuzzing goes, new
code becomes harder to trigger and there are not as frequent
progress updates as in the beginning, but AFLpp-FS still syn-

chronizes the corpus frequently. Since the corpus has grown
bigger, synchronization becomes more expensive, resulting
in a slower increase in code coverage.

On the other hand, AFLEdge and AFLTeam perform state par-
tition but still have worse performance than µFUZZ. We inves-
tigate their algorithms and execution status and find that they
both follow a period "gather and partition" approach: Once
per hour, they aggregate the corpus of all their instances and
then perform partitioning based on heavy analysis. However,
since we are running the experiment with 40 instances and
the size of the aggregated corpus is large, the analysis takes a
long time to finish. For example, we find that it takes AFLEdge
more than three hours to finish one round of partitioning on
PHP. By the time it finishes, the fuzzing has made three more
hours’ progress. The partition results might be obsolete and
not necessarily beneficial to the latest fuzzing state. In com-
parison, µFUZZ updates its state continously and timely, and
thus avoids using obsolete states. Although µFUZZ’s partition
is not as comphrehensive as that of AFLTeam and AFLEdge, the
timely state updates allow µFUZZ to make fuzzing decisions
that fit the current state.

Overall, µFUZZ outperforms the four compared fuzzers in
both bug detection and code coverage under parallel fuzzing.
The fuzzing effectiveness of µFUZZ comes from both its ar-
chitecture and state partition.
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5.3 Contribution of Components

To better understand the contributions of µFUZZ’s compo-
nents, we compare µFUZZ with µFUZZ-S (µFUZZ without
state partition), µFUZZ-C (µFUZZ without concurrency), and
µFUZZ-P (µFUZZ without zero copy communication). More
specifically, every worker of the corpus management service
and the feedback collection service in µFUZZ-S maintains a
copy of the global service state. Whenever there are state up-
dates, µFUZZ-S will propagate the updates to all its workers.
µFUZZ-C handles all the requests and generates output syn-
chronously. µFUZZ-P passes full copies of data for all service
communication instead of pointers.
Bug Detection. As shown in Table 3, µFUZZ successfully
identifies 20 bugs in the targets, while µFUZZ-S, µFUZZ-C
and µFUZZ-P finds only 14, 18 and 18 respectively. µFUZZ
finds all the bugs that are found by the other three fuzzers with
shorter time, and both µFUZZ-C and µFUZZ-P cover the bugs
found by µFUZZ-S. Therefore, all the three different aspects
of µFUZZ help improve the bug detection capability, and the
state partition contributes the most.
Code Coverage. As shown in Fig.5, µFUZZ finds 23%, 7%,
6% more edge than µFUZZ-S, µFUZZ-C and µFUZZ-P re-
spectively on average. We check µFUZZ-S’s execution status
and find that workers in the corpus management service of
µFUZZ-S tend to select duplicated test cases for mutation.
This is because without state partition the workers have the
exact same state as each other and use the same scheduling
algorithm. Such duplication can slow down fuzzers’ explo-
ration. Both µFUZZ-C and µFUZZ-P have a smaller fuzzing
speed than µFUZZ (on different targets, 4% to 8% less), but
for different reasons. For µFUZZ-C, it happens occasionally
that some workers in a service have finished processing the
requests and others have not. Even though we have available
cores to run workers in other services, µFUZZ-C cannot do
so without concurrency. For µFUZZ-P, it has to spend more
computation power on copying data than µFUZZ.

Overall, µFUZZ outperforms µFUZZ-S, µFUZZ-C and
µFUZZ-P in bug detection and code coverage, meaning that
state partition, concurrency and fast communication all con-
tribute to µFUZZ’s improvement. State partition allows all
the workers to work independently and still achieves a great
aggregated result. The concurrent design allows µFUZZ to
run differnet services concurrently without blocking. And the
fast communication allows µFUZZ to reduce the overhead of
data copying.

5.4 Identified New Bugs

µFUZZ find 11 new bugs in four well-tested programs from
FuzzBench, showing that µFUZZ is applicable in real-world
fuzzing. We do not use Magma for new bug detection because
Magma uses the fixed old version of the programs to insert
bugs stably. The details for the bugs are shown in Table 4.

Table 4: New bugs detecte by µFUZZ. The targets are from
FuzzBench. We omitted the bug report references for anonymity.

Target Type Status Ref
Use-After-Free Fixed ***
Use-After-Free Acknowledged ***
Use-After-Free Acknowledged ***

PHP (8.3.0-dev) Use-After-Free Acknowledged ***
Null Pointer Deref Fixed ***
Memory Leak Acknowledged ***
Assertion Failure Fixed ***
Assertion Failure Acknowledged ***

lua(5.4.4) Assertion Failure Fixed ***
freetype(2.12.1) Segmentation Fault Fixed ***
FFmpeg (9903ba) Assertion Failure Fixed ***

The identified bugs include four logical errors (i.e., assertion
failure), six memory corruption errors(e.g., heap use-after-
free), and a memory leak error, of which six have been fixed
and the remainning five acknowledged by the developers at
the time of writing. We currently omit the references to the
bug reports for anonymity.

6 Discussion

In this section, we present some limitations of the current im-
plementation of µFUZZ and discuss their possible solutions.

6.1 Distributed Fuzzing
Currently, µFUZZ is implemented as a multithreaded program
running in a single machine. µFUZZ can be extended to sup-
port distributed fuzzing in two ways. One way is to run one
µFUZZ on each machine and perform state synchronization
by connecting services with remote procedure calls (RPC).
For example, we can run µFUZZ on different machines and
connect their corpus management services to synchronize
the corpus, which is the state-of-the-art approach. This will
transfer the same amount of data across machines as existing
approaches. However, existing serial fuzzers will pause to
perform the slow network I/O, while µFUZZ allows other ser-
vices to progress concurrently. If one service pauses, the other
services can still run and make individual progress. Another
way is to run different services on different machines and
communicate over the network. This will greatly increase the
amount of network data because the zero copy communica-
tion is not applicable. Although the data copy is inevitable,
we can mitigate the waiting for network I/O. We can warm up
the service by input caching: before a service starts, it fetches
enough inputs from other services into its cache. Afterward,
each service keeps fetching more inputs from other services
into the cache and running the workers to consume the inputs
concurrently. In this way, the service can keep running with-
out waiting for inputs. Since each service will fetch inputs at
demand, one straightforward way to achieve dynanmic load
balancing is always picking the producer serivice with the
most cached outputs. Suppose we have two test case gener-
ation services and two execution services and each of them
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runs on a different server with the same computation power.
Each of the execution service should connect to both test case
generation services. When the execution service needs to
fetch more test cases, it picks the test case generation service
with the more cached test cases to fetch from. We should
make sure the amount of each fetch is not too large, which
depends on the network capability, to avoid that one service
fetches all the data and the other service is starved. Therefore,
to support distributed fuzzing, µFUZZ might suffer from the
same overahead as or more overhead than existing fuzzers due
to data copying, but it can mitigate the blocking of network
I/O by its concurrency.

6.2 Support More Mutation Strategy

Currently, µFUZZ implements some basic state-of-the-art
fuzzing strategies such as AFLplusplus’s havoc mutation and
edge coverage guidance. We can integrate advanced strategies
into µFUZZ to futher improve µFUZZ’s applicability. Stateless
fuzzing strategies can be easily integrated thanks to µFUZZ’s
modularized design. For example, we can use advanced muta-
tion strategies such as AST mutation [13, 83] as the workers
in the mutation service. We can also use persistent executors
[2, 6] or binary-only executors [11] in the execution service.
For stateful ones, we should apply dynamtic or static partition-
ing to avoid as much synchronization as possible. To support
CmpLog [14], µFUZZ can log the compared values in the
execution service and pass the log to the feedback collec-
tion service. Then it categorizes the log and passes it to the
corpus management service, which maintains the log as meta-
data of the test cases and passes them to guide the mutation
service. Since the test cases are partitioned in the corpus man-
agement service, the compared values log is also partitioned
and maintained independently. To support MOPT [46] muta-
tors in µFUZZ, we partition different mutators into different
workers in the mutation service. The feedback service can
send back the information about the mutators’ performance
(e.g., the number of interesting inputs found by each mutator).
Then mutation worker can adjust its local distribution and
perform period synchronization with other workers to update
the global optimal distribution. We see that some synchroniza-
tion might be necessary. In this situation, the service might
be blocked by locking, but the concurrency still allows other
services to make progress. Therefore, one best-effort strategy
is to adopt µFUZZ’s architecture as much as possible, and fall
back to state synchronization when necessary. We plan to inte-
grate µFUZZ with LibAFL [30], an open-sourced fuzzing devel-
opment kit that implements many advanced fuzzing strategies,
including all the discussed ones, as self-contained reusable
modules. For the stateless strategies, we can directly reuse
modules in the workers as both µFUZZ and LibAFL are written
in Rust. For the stateful ones, we need to first separate the
data (i.e., the fuzzing state) and operations in the module and
then design the partitioning strategy, which requires nonnegli-

gible engineering efforts. Luckily, µFUZZ takes care of data
interaction and communication between the services, so the
users can treat the data as local and focus on the partitioning
strategy.

6.3 Support Collaborative Fuzzing

Currently µFUZZ has not implemented collaborative
fuzzing [25, 55], which combines all kinds of different fuzzers
to get a higher overall fuzzing performance. We can support
collaborative fuzzing with µFUZZ by increasing the vairety of
the workers (i.e., using workers with different fuzzing strate-
gies). For example, we can use both grammar-based mutation
workers and bitflip mutation workers in the mutation ser-
vice, and we can use execution workers with different type
of instrumentation in the execution service. However, differ-
ent fuzzing strategies might have different fuzzing states for
the same functionality, which means that we should distin-
guish workers of different types of fuzzing states and dispatch
the inputs accordingly. For example, grammar fuzzers might
maintain a corpus in the form of abstract syntax trees (AST)
instead of a binary stream. Suppose we use both grammar-
based mutators and bit-level mutators in the mutation service.
In that case, the input dispatcher of the test case generation
service should dispatch inputs of AST test cases to a worker
of grammar-based mutation instead of a worker of bitflip mu-
tation. µFUZZ can support this by tagging both workers and
data. Each worker has a tag to indicate the type of the inputs
it can consume. Every result generated by a worker will be
tagged to show which workers can consume it. With that,
the input dispatcher can dispatch inputs to matching the in-
puts and workers. In this way, µFUZZ can combine fuzzing
strategies with different types of fuzzing states.

7 Related Work

7.1 Fuzzing Strategy Improvement

Improving the fuzzing strategy focuses on enhancing the
internal components of a fuzzer, including test case genera-
tion, feedback, and seed scheduling. There are mainly two
types to test case generation in fuzzing: generation-based
fuzzing [34, 49, 76, 77] and mutation-based fuzzing [47, 74,
79]. Generation-based fuzzing focuses on testing software that
consumes structural inputs [1, 40, 49, 57, 68]. They typically
utilize the grammar model of the inputs to generate structural
inputs that can pass the format checks. SQLSmith [1] uses the
SQL grammar and database schemes to generate valid queries.
MoWF [57] leverages the file format information to fuzz
the deeper program code beyond the parser. Mutation-based
fuzzing performs mutation on existing test cases to generate
new ones. In this way, the fuzzer can utilize feedback informa-
tion from the execution phase to guide its mutation. AFL [79]
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uses edge coverage to model program states to guide its mu-
tation, which is shown to be highly effective. Adopting the
methodology from generation-based fuzzers, some language
processor fuzzers [13, 24, 83] utilize language grammar to
perform constrained mutation. Other fuzzers [20, 67, 78] use
symbolic execution or concolic execution to get through com-
plex program conditions. T-Fuzz [56] further proposes a way
to dynamically transform the program in order to remove cer-
tain checks that are hard for the fuzzer to bypass successfully.
To improve feedback quality, researchers try to find better
models for the program states. CollAFL [32] provides more
accurate coverage information by mitigating path collisions in
AFL. Some fuzzers [14, 15, 22, 31, 33, 61] use taint analysis
to incorporate data flow information into their coverage met-
rics. PATA [45] further proposes a path-aware taint analysis
by distinguishing between multiple occurrences of the same
constraint. The learning-enabled fuzzer NEUZZ [64] lever-
ages a surrogate neural network to smoothly approximate the
branching behavior of the program in order to generate useful
test cases. Another way is to improve the seed scheduling
algorithm [65, 81]. AFLFast [19], MOPT [18], DigFuzz [82]
collect information about the test cases and prioritize those
with higher potential to reach new code regions. µFUZZ does
not improve existing fuzzing strategies but focuses on better
parallelizing these strategies.

7.2 Fuzzing Speed Improvements

Improving fuzzing speed allows fuzzers to run more execu-
tions in the same amount of time with the same fuzzing strat-
egy [21, 27, 39, 41, 52, 53, 62, 71], which is usually orthogo-
nal to the fuzzing strategy. Various techniques [26, 52, 54, 71]
have been proposed to improve the instrumentation of the
target program to reduce its overhead. Nagy et al. [52, 54]
proposes coverage-guided tracing to trace code coverage
only when new ones are discovered. Odin [71] adopts dy-
namic recompilation to prune necessary instrumentation on
the fly. RetroWrite [26] uses static binary rewriting to sup-
port high-speed coverage-guided binary-only fuzzing with
an efficient binary-only Address Sanitizer. Researchers have
also explored hardware-assisted feedback-collecting mech-
anisms. kAFL [63], Honggfuzz [35], and PTrix [23] utilize
Intel’s Processor Trace technology, which enables them to
efficiently collect coverage feedback with minimum overhead.
Another well-explored topic is to improve the symbolic execu-
tion speed for hybrid fuzzing. Qsym [78] implements a sym-
bolic execution engine tailored for fuzzing. Instead of trans-
lating the instructions to the intermediate representation and
then executing them symbolically, Qsym tightly integrates the
symbolic emulation with the native execution. SymCC [59]
generalizes the idea of Qsym and presents a compiler that
builds concolic execution right into the binary. In this way, the
symbolic execution engine can run natively without any in-
terpretation. Furthermore, utilizing QEMU, SymQEMU [60]

modifies the IR of the target program before it gets translated
into the host architecture, which enables compiling symbolic
execution capabilities into the binary without access to its
source code. Efforts to improve the fuzzing speed can also
be combined with µFUZZ to facilitate the parallel fuzzing
performance.

7.3 Parallel Fuzzing
Existing works improve the performance of parallel fuzzing
also by either improving the fuzzing strategy [25, 44, 58,
66, 72, 84] or improving the fuzzing speed [75]. One pop-
ular way to improve the fuzzing strategy is task partition-
ing. PAFL [44] proposes an efficient guiding information
synchronization method and statically divides fuzzing tasks
based on branching information to reduce the overlap be-
tween instances. AFLEdge [72] further utilizes static analysis
to dynamically create mutually exclusive and evenly weighted
fuzzing tasks. Another way to improve the fuzzing strategy is
to combine the capabilities of different fuzzers, which is also
called ensemble fuzzing [25] or collaborative fuzzing [37].
The main idea is that different fuzzers might have different
strengths on different targets. We can fuzz the same target with
different fuzzers and share their fuzzing progress to let them
help each other and achieve an overall better performance.
EnFuzz [25] designs three heuristics for evaluating the diver-
sity of existing fuzzers and choosing the most diverse subset
to perform ensemble fuzzing through efficient seed synchro-
nization. Cupid [37] further proposes a collaborative fuzzing
framework that can automatically discover the best combi-
nation of fuzzers for a target. One well-known problem of
parallel fuzzing is the bottleneck of the underlying operating
system. Xu et al. [75] found that the fuzzing performance can
significantly degrade when running with multiple cores due
to the file system contention and the scalability of the fork
system call. Thus, they proposed three new operating primi-
tives that allow much higher scalability and performance for
parallel fuzzing. The current state-of-the-art fuzzers [2, 6, 35]
support persistent fuzzing mode, which reuses the same pro-
cess for multiple test cases to reduce the overhead of forking.
Moreover, in-memory test cases [2] are also adopted to reduce
the I/O overhead and file system contention.

8 Conclusion

We present µFUZZ, a parallel fuzzing framework with mi-
croservice architecture that supports concurrency to better
utilize CPU power in the existence of blocking I/O and avoids
state synchronization with state partition. Our evaluation
shows µFUZZ is more effective in parallel fuzzing than exist-
ing fuzzers with 24% improvement in code coverage and 33%
improvement in bug detection than the second-best fuzzer in
24 hours. Besides, µFUZZ finds 11 new bugs in well-tested
real-world programs.
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Table 5: Line of codes of different components of µFUZZ, which
sum up to 9534 lines.

Module Language LOC
Concurrent Runtime Rust 1,980
Corpus Management Rust 759
Testcase Mutation Rust 1,604
Fork-Server Execution Rust 1,453
Feedback Collection Rust 1,169
Others Rust/Protobuf 2,569

Total Rust/Protobuf 9,534
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