
1

Deviation-Based Obfuscation-Resilient Program
Equivalence Checking with Application to Software

Plagiarism Detection
Jiang Ming, Fangfang Zhang, Dinghao Wu, Member, IEEE, Peng Liu, Member, IEEE,

and Sencun Zhu, Member, IEEE

Abstract—Software plagiarism, an act of illegally copying oth-
ers’ code, has become a serious concern for honest software com-
panies and the open source community. Considerable research
efforts have been dedicated to searching the evidence of software
plagiarism. In this paper, we continue this line of research and
propose LoPD, a deviation based program equivalence checking
approach, which is an ideal fit for the whole-program plagiarism
detection. Instead of directly comparing the similarity between
two programs, LoPD searches for any dissimilarity between two
programs by finding an input that will cause these two programs
to behave differently, either with different output states or with
semantically different execution paths. As long as we can find one
dissimilarity, the programs are semantically different; but if we
cannot find any dissimilarity, it is more likely a plagiarism case.
We leverage dynamic symbolic execution to capture the semantics
of execution paths and to find path deviations. Compared to the
existing detection approaches, LoPD’s formal program semantics-
based method is more resilient to automatic obfuscation schemes.
Our evaluation results indicate that LoPD is effective in detecting
whole-program plagiarism. Furthermore, we demonstrate that
LoPD can be applied to partial software plagiarism detection as
well. The encouraging experiment results show that LoPD is an
appealing complement to existing software plagiarism detection
approaches.

Index Terms—Software plagiarism, program logic, se-
mantical difference, symbolic execution, path deviation.

ACRONYMS AND ABBREVIATIONS

LoPD Logic Based Software Plagiarism Detection
API Application Programming Interface
PDG Program Dependence Graph
WPP Whole Program Path
SSA Static Single Assignment

NOTATIONS

IP The input space for program P
Op The output state of program P
ep1 The execution paths of P with input x1

FO
p (I) The path formula with the output state Op

wp The weakest precondition

Jiang Ming, Dinghao Wu, and Peng Liu are with the College of Infor-
mation Sciences and Technology, Penn State University, University Park, PA
16802, USA, e-mail: {jum310, dwu, pliu}@ist.psu.edu. Fangfang Zhang and
Sencun Zhu are with the Department of Computer Science and Engineering,
Penn State University, University Park, PA 16802, USA, e-mail: {fuz104,
szhu}@cse.psu.edu.

I. INTRODUCTION

Software plagiarism is an act of stealing others’ software
by illegally copying their code, applying code obfuscation
techniques to make the code look different and then claiming
that it is one’s own program in a way violating the terms
of original license. In recent years, software plagiarism has
become a serious concern for honest software companies and
open source communities. It violates the intellectual property
of software developers and has been a severe problem, ranging
from open source code reuse, software product stealing to
smartphone application repackaging. The stolen code can
be used by plagiarists to reduce the cost of their software
development. The popular smartphone applications may be
repackaged and injected with malicious payload to accelerate
the propagation of malware. According to a recent study [1], it
was found that 1083 (or 86.0%) of 1260 malicious app samples
were repackaged versions of legitimate apps with malicious
payloads. Moreover, the booming of software industry gives
plagiarists more opportunities to steal others’ code. The burst
of open source projects (e.g., SourceForge.net has more than
430, 000 registered open source projects with 3.7 million
developers and more than 4.8 million downloads a day [2])
provides plenty of easy targets for software thieves, since
source code is easier to understand and modify than executable
binaries. The existing automatic code obfuscation tools (e.g.,
Loco [3] and Obfuscator-LLVM [4]) can change the syntax
of a program while preserving its semantics and therefore
will help plagiarists to evade detection. Therefore, automated
software plagiarism detection is greatly desired.

However, automated software plagiarism detection is very
challenging. For one reason, source code of suspicious pro-
grams is usually not available to plaintiff. The analysis of
executables is much harder than source code analysis. Be-
sides, code obfuscation is also a huge obstacle to automatic
software plagiarism detection. Code obfuscation is a technique
to transform a sequence of code into a different sequence
that preserves the semantics but is much more difficult to
understand or analyze. Based on the above two facts, there
are two necessary requirements for a good software plagiarism
detection scheme [5]: (R1) Capability to work on suspicious
executables without the source code; (R2) Resiliency to code
obfuscation techniques.

The existing approaches to software plagiarism detection
can be divided into the following categories: (C1) static source

2

TABLE I
The code obfuscation resilience comparison of different detection

approaches.

C1 C2 C3 C4 C5 LoPD
Noise instruction X X X X
Statement reordering X X X X
Instruction splitting/aggregation X X X X
Value splitting/aggregation X X X
Opaque predicate X X X
Control flow flattening X X X
Loop unwinding X X X
API implementation embedding X X X

This table presents some common obfuscation methods. In Section V, we
will discuss more obfuscation attacks in detail, including binary packing and

virtualization obfuscation.

code comparison methods [6], [7], [8]; (C2) static executable
code comparison methods [9]; (C3) dynamic control flow
based methods [10]; (C4) dynamic API based methods [11],
[12]; (C5) dynamic value based approach [5], [13]. First,
C1 does not meet R1 because it has to access source code.
Second, none of them satisfy requirement R2 because they are
vulnerable to some code obfuscation techniques as shown in
Table I.

In this paper, we propose a new angle for software pla-
giarism detection. Our approach, called LoPD, is a devia-
tion based program semantic equivalence checking method.
Compared to existing approaches, LoPD does not require
the source code of tested programs and is more resilient to
automatic obfuscation techniques. Instead of directly measur-
ing the similarity between two programs, LoPD is based on
an opposite philosophy: search for any dissimilarity between
two programs. As long as we can find one dissimilarity, the
programs are semantically different; but if we cannot find
any dissimilarity, it is likely a plagiarism case. Due to our
design philosophy, LoPD is an ideal fit for the whole-program
plagiarism detection. Furthermore, with a few engineering
efforts, LoPD’s formal program semantics-based method can
be applied to partial software plagiarism detection as well.

More specifically, LoPD tries to rule out dissimilar programs
by finding an input that will cause these two programs to
behave differently, either with different output states or with
different computation paths. The output states can be directly
compared, but the comparison of computation paths is chal-
lenging. Our idea is to find path deviation, i.e., given two
different inputs, one program will follow the same execution
path, whereas the other will execute two different paths with
these two inputs. In this case, at least one of these two inputs
makes the two programs have different computation paths and
behave differently. As long as we find path deviation, we can
claim the two programs in consideration are not semantically
the same. We calculate the weakest precondition [14], [15] for
each path condition and represent the path deviation conditions
as formulas, which will be solved later by a constraint solver.
Also, we perform another round of path equivalence checking
to make sure that a path deviation is really a semantics
deviation, not caused by code obfuscation. Since the symbolic
formulas capture complete semantics and constraint of an
execution path, LoPD can detect the semantics equivalence
or difference of the execution paths.

We have developed the idea of LoPD on top of the
BitBlaze platform [16], [17] performed the empirical study
with a set of widely used applications and their obfuscated
versions, including the advanced virtualization obfuscation.
The experimental results show LoPD is effective in detecting
whole-program plagiarism1. In addition, the library module
reuse detection evaluation demonstrates LoPD’s capability in
identifying partial software plagiarism.

Scope of our paper: Currently, we focus on the detection
of whole plagiarized PC programs that can be generated by
semantics-preserving obfuscation tools. That is, LoPD will
provide a Yes/No answer to the question: are the suspicious
program is semantically equivalent to the plaintiff program?
However, LoPD’s formal program semantics-based method
can be extended to detect partial software plagiarism as well.
We will discuss the solution to partial software plagiarism in
Section VI-C. The detection of smartphone app repackaging
is also discussed in Section VII.

Contributions: (1) We present a novel logic-based soft-
ware plagiarism detection approach—LoPD. LoPD relies on
dynamic symbolic execution and theorem proving techniques
to find dissimilarities between two programs in order to rule
out semantically different programs. (2) LoPD is resilient
to most of the known code obfuscation techniques that im-
pede static analysis. (3) We have extended our preliminary
conference paper [18] in several ways by discussing and
evaluating the possible application to partial plagiarism detec-
tion, adding more testing cases of whole-program plagiarism
detection, testing with the state-of-the-art obfuscators such as
Obfuscator-LLVM [4] and Code Virtualizer [19], providing
the related work with the latest publications, and updated the
other related sections. In total, the new materials constitute
over 30% of the manuscript.

The rest of the paper is organized as follows. We introduce
the background and related work in Section II. Section III
describes the basic idea of LoPD. Section IV presents the de-
tails of the system design. Section V discusses the resilience of
LoPD to possible counterattacks. The implementation and the
evaluation are presented in Section VI, followed by discussion
in Section VII and conclusion in Section VIII.

II. RELATED WORK

A. Software Plagiarism Detection

We roughly group the existing software plagiarism detection
methods into the following two categories.

Static birthmark based software plagiarism detection:
Liu et al. [6] proposed a program dependence graph (PDG)
based approach, which is vulnerable to obfuscation techniques
such as opaque predicates and loop unwinding. Myles et al. [9]
statically analyzed executables and used K-gram techniques
to measure the similarity. This approach is vulnerable to
instruction reordering and junk instruction insertion. There

1According to the Rice’s Theorem, testing any non-trivial computer pro-
gram property is undecidable. We do not aim to solve this undecidable
problem, but rather to develop tools for practical use with some degree of
formal guarantee. All the conclusions, we draw from this research are subject
to the limitations of automated theorem proving or constraint solving and
other undecidable factors.

3

are also several work focusing on detecting code plagiarism
of smartphone applications. DroidMOSS [1] adopted fuzzy
hashing to detect application plagiarism. It can only toler-
ate small local changes in code. Simple obfuscation, such
as noise injection, can evade the detection of DroidMOSS.
DNADroid [20] proposed a data dependence graph based
detection approach. The data dependence of a program is
easy to change by inserting intermediate variable assignment
instruction into the code. Juxtapp [21] proposed a code-reuse
evaluation framework which leverages k-grams of opcode
sequences and feature hashing. It is also vulnerable to noise in-
jection. Huang et al. [22] proposed a framework for evaluating
mobile app repackaging detection algorithms. ViewDroid [23]
applied a user interface based birthmark, which is designed
for user interaction intensive and event dominated programs,
to detect smartphone application plagiarism. Luo et al. [24]
proposed a repackage-proofing method to protect Android
apps.

Most above static analysis methods to detect traditional
software plagiarism either require the source code of the
analyzed programs or cannot work on obfuscated binary code.
This limits their practicability since the source code of a
suspicious program is not always available. Furthermore, to
hide the plagiarism intent, the suspicious program is typically
obfuscated. The detection methods of smartphone application
plagiarism are either easy to be bypassed by applying obfus-
cation techniques or not suitable for normal PC programs.

Dynamic birthmark based software plagiarism detec-
tion: Jhi et al. [5], [25] proposed to use core values as
birthmark to detect software plagiarism. Zhang et al. [13] used
a similar method for algorithm detection. This approach has
no theoretical guarantee, since core value is hard to define.
Lu et al. [26] presented a dynamic opcode n-gram birthmark,
which is vulnerable to instruction reordering and irrelevant
instructions insertion. Myles et al. [10] developed a whole
program path (WPP) birthmark, which is robust to some
control flow obfuscations such as opaque prediction, but is
vulnerable to many semantics-preserving transformations such
as loop unwinding. Tamada et al. [11] used dynamic API
birthmark for windows applications. Their approach relied on
the sequence and the frequency of API invocations, both of
which can be easily changed by reordering APIs or embedding
API implementations into the program. Wang et al. [27], [28]
introduced system call based birthmarks. Their approaches
are not suitable for programs that invoke few system calls.
The latest dynamic birthmark work, DYKIS [29], measures
the similarity of key instructions (e.g., value-updating instruc-
tions and input-correlated instructions in the execution traces,
achieving good resilience to obfuscation schemes.

In contrast, LoPD is based on formal logic that captures
program semantics. This makes LoPD resilient to most obfus-
cation techniques currently known in literature. In addition,
LoPD relies on weakest precondition to capture path seman-
tics, and thus connects to both dynamic and static techniques.
This unique combination for path deviation detection and path
equivalence checking and results in high detection accuracy for
nontrivial programs.

B. Clone Detection

Clone detection is a technique to find duplicate code to de-
crease code size and facilitate maintenance. Existing clone de-
tection techniques include String-based [30], Tree-based [31],
[32], Token-based [33], [7], [34] and PDG-based [35], [36],
[37]. Sæbjørnsen et al. [38] proposed a tree-based clone
detection in binary code. Their approach first extracted a set
of features from so-called “code regions” and represented
them with a feature vector, then applied locality-sensitive
hashing to locate the nearest neighbor vectors. BinClone [39]
improved Sæbjørnsen et al.’s approach by improved inexact
clone detection and flexible normalization procedure. Since
most clone detection techniques do not take code obfuscation
into consideration, when being applied to detect software
plagiarism, they can be easily evaded by attackers.

C. Semantic Differential Detection

There are some researches focusing on find semantic dif-
ferences between two programs. Jackson et al. [40] tried to
find the differences by comparing the input-output mapping.
Symdiff [41] converted source code to intermediate verifica-
tion language and then identified semantic differences. Person
et al. [42] used incomplete symbolic summaries to compare
two programs. UCKLEE [43] synthesized inputs to the two C
functions and used bit-accurate symbolic execution to verify
that these two functions produce semantically equivalent out-
puts. All the above approaches use static analysis on source
code and do not consider code obfuscation. As a result, they
are not suitable for plagiarism detection. Another line of work
detected semantic differences between executables. To match
the basic blocks with the same semantics, BinHunt [44] and its
successor iBinHunt [45] performed symbolic execution in the
scope of basic blocks and verified the equivalence of the input-
output relationship formulas with theorem proving techniques.
BinJuice [46] represented abstraction of semantics of basic
blocks as “semantic juice” and matched malware variants
with such semantic juice. Exposé [47] combined function-level
syntactic heuristics with semantics detection. Luo et al. [48]
detected software plagiarism by matching longest common
subsequence of semantically equivalent basic blocks. However,
these tools suffered from the “block-centric” limitation [46];
that is, they were insufficient to capture similarities or differ-
ences across basic blocks. In contrast, LoPD is trace-oriented
and is therefore able to find similarities and differences beyond
the scope of basic blocks to a great extent.

D. Path Deviation Detection

Brumley et al. [49] first proposed the path deviation idea and
used it to find protocol errors in different implementations of
the same specification. Their approach [49] first built symbolic
formulas from execution traces and then solved the formulas
created from two different implementations. DARWIN [50]
applied similar ideas to compare a stable version and a
modified version to identify program bugs exposed by a
difference in control flow. We adopted their path deviation
idea and applied it to a new context of software plagiarism

4

detection. Brumley et al. [49] only compared the output of
executions. DARWIN [50] compared two paths (trace align-
ment) only after it has identified paths generating different
concrete output. This is not sufficient for software plagiarism
detection, because independent software products may have
the same functionality, i.e. the same input-output pairs. As a
result, in addition to output, we need to compare the execution
paths, which is more challenging. We propose new techniques
such as path equivalence detection to deal with automatic
code obfuscation attacks and eliminate false positives and
false negatives. We have evaluated path deviation and path
equivalence detection in this new context with presence of
automatic obfuscation attacks and obtained promising results.

E. Software Testing and Symbolic Execution

LoPD relies on automatical test input generation to explore
more paths. There have been vast amount of work on test input
generation, and therefore our approach benefits from the active
research in this field. We rely on random input generation
for the initial input seed. We then leverage symbolic execu-
tion [51] and automatic test case generation using systematical
white-box exploration (also called, concolic testing, directed
systematic path exploration, etc.) [52], [53], [54], [55], [56],
[57] for the subsequent path deviation computation. Path con-
straints are collected and manipulated to cover different paths,
and a constraint solver (e.g., STP [58] and Z3 [59]) is usually
used to generate the input that satisfies the corresponding path
constraints. By doing this, each run is guaranteed to hit a
different path.

III. OVERVIEW

A. Problem Statement

The goal of our work is to automatically detect software
plagiarism for nontrivial programs in the presence of automatic
code obfuscation. To be more specific, given a plaintiff pro-
gram P and a suspicious program S, our purpose is to detect
if S is generated by applying automatic semantics-preserving
transformation techniques on P . That is, we provide a Yes/No
answer to the question: are S and P semantically equivalent?
Automatic semantics-preserving transformation changes the
syntax of the source code or binary code of a program but
keeps the function and the semantics of the program by au-
tomated tools (e.g., Loco [3] and Obfuscator-LLVM [4]) with
little human effort. The reason that we only focus on automatic
code transformation is as follows. Although an exceptionally
sedulous and creative plagiarist may manually obfuscate the
plaintiff code to fool any known detection technique, the cost
is probably higher than rewriting his own code, which conflicts
with the intention of software theft. After all, software theft
aims at code reuse with disguises, which requires much less
effort than writing one’s own code.

In this work we have two assumptions: (1) we have pre-
knowledge about the plaintiff program, e.g., the input space;
(2) while we do not require access to the source code of the
suspicious program, we assume its binary code is available.

B. Basic Idea

Our basic idea is to search for any difference between the
plaintiff program and the suspicious program. If differences
are found, these two programs are not semantically equivalent
thus it is not a software plagiarism case; otherwise, it is likely
a software plagiarism case.

At high level, three things characterize program behavior—
input, output, and the computation used to achieve the input-
output mapping. Hence, we aim to find inputs that will
cause these two programs to behave differently, either with
different output states or with different computation paths.
Whenever we find such an input, we can assert that the plaintiff
program and the suspicious program are either functionally or
computationally different and is thus not software plagiarism
via automated code obfuscation.

Given an input, the comparison between output states is
relatively straightforward: since the plaintiff has the pre-
knowledge of his own software, he can specify which output
variables and states are semantics-relevant and how to measure
the similarity between output states (e.g., the mathematic
computation programs require the exactly same result, while
the error messages from Web servers can tolerate some literal
differences).

The challenge is how to compare the semantics of com-
putation paths. Computation path, also known as execution
path, is a sequence of all instructions executed during one
round execution. The semantics of an execution path can be
captured by symbolic execution. To be more specific, symbolic
expressions of output variables in terms of input variables
along with a path constraint represent the semantics of an
execution path. The following is an example. n is the input
variable and a is the output variable. There are two execution
paths. The semantics of path 1 is the path constraint “n > 0
is true” along with the output expression a = n − 1. In path
2, the semantics is the path constraint “n > 0 is false” and
the output expression a = 2n+ 2.

The code

n = read()
if n > 0 then

a = n− 1
else

a = n+ 1
a = a ∗ 2

end if
print a

Path 1

input: n > 0
True
a = n− 1

output: a = n− 1

Path 2

input: n <= 0
False

a = n+ 1
a = (n+ 1) ∗ 2

output: a = 2n+ 2

Instead of directly comparing two execution paths, we
propose a novel approach based on the concept of path-
deviation [49]. It is motivated by the fact that if one program
is an automatic semantics equivalent transformation of another
program, these two programs would have one-to-one (1:1)
path correspondence, as defined in Definition 1. That is,
given the same input, the execution of each program follows
a certain path, respectively, and when given a different input,
the programs should either both follow their original path or
both execute new paths. Note that there is one exception:
when an execution path of one program is split into two
semantically equivalent paths for the obfuscation purpose,

5

TABLE II
THE TABULAR REPRESENTATION OF RELATIONS BETWEEN THE REALITY AND THE DETECTION RESULTS.

Reality
a.Software
Plagiarism

b.Not Software
Plagiarism

Detection
Result

Case I. Same Output I.1. Path Deviation FN TN
I.2. No Path Deviation TP FP

Case II. Diff Output N/A - TN

Input x1

Output Op

Input x1

Output Os

ep1 es1

P S

Input x2

Output Op'

Input x2

Output Os'

ep1 es1

P S

es2×

Fig. 1. Path deviation example.

there would be no one-to-one path correspondence, but it is
still a software plagiarism case. We will therefore also handle
this semantically equivalent path splitting problem in our
detection system.

Definition 1: Given two programs P , S, their input spaces
are IP and IS , respectively. ∀x1, x2 ∈ IP ∪ IS , the execution
paths of P with input x1, x2 are ep1, ep2, respectively and
the execution paths of S with input x1, x2 are es1, es2,
respectively. If ep1 = ep2 ↔ es1 = es2, P and S have one-
to-one (1:1) path correspondence.

If we can find two inputs which may cause one program
to execute the same path, while causing the other program to
execute two different paths with these two inputs, we can rule
out the 1:1 path correspondence case; that is, the suspicious
program will not be considered as a plagiarized one. We
call these two programs having path deviation, whose formal
definition is:

Definition 2: Given two programs P , S, their input spaces
are IP and IS , respectively. If ∃x1, x2 ∈ IP ∪IS , the execution
paths of P with input x1, x2 are ep1, ep2, respectively and the
execution paths of S with input x1, x2 are es1, es2, respective-
ly, such that (ep1 = ep2∧es1 6= es2)∨(ep1 6= ep2∧es1 = es2),
P and S have path deviation.

Fig. 1 illustrates this path deviation idea. Given the same
input x1, programs P and S take the execution path ep1 and
es1, and output Op and Os, respectively. If Op 6= Os, it means
ep1 is different from es1, so it is not a software plagiarism
case. If Op = Os, our next step is to try another input x2,
hoping that (1) P will take the same path ep1 but S will take
a different path es2 given x2 or (2) the output O′p 6= O′s. In
either case, it is not a software plagiarism case. If neither of
the above two cases occurs, we will try another input. If after
many iterations we still cannot find such a deviation-revealing
input, it indicates the two programs are likely to be the same.

However, a path deviation may be caused by the path
splitting obfuscation, that is, es1 and es2 in Fig. 1 are se-
mantically the same. Therefore, when we find a deviation,
we need to check the semantics equivalence of the deviated
paths (e.g. es1 and es2). Only when semantics differences
exist between the two paths, we claim that the two programs
have true path deviation and they are dissimilar. We leverage
the techniques of logic-based execution path characterization
including symbolic execution and constraint solving (e.g.,
STP [60], [58]) to find path deviation and to measure the
semantics equivalence of two execution paths.

To ensure the effectiveness of our approach, we analyze the
possible false detection cases based on the results of output
similarity measurement and path deviation detection. Note
that we ignore the limitations of current symbolic execution
tools and constraint solvers during the analysis. The relations
between the reality and the detection results are shown in
Table II.

• Case I: Given the same input, P and S generate the same
output.

Case I.1: Detection result: P and S have path devia-
tion.

Case I.1.a (False Negative): P and S are indeed
software plagiarism. We check the semantics equivalence
of es1 and es2 when we find a path deviation. Only
when a semantics deviation exists between the two path-
s, we call the two programs dissimilar and conclude
non-plagiarism. Since path equivalence checker applies
weakest precondition (a symbolic formula) that captures
formal semantics of a path, and constraint solver that
checks the equivalence of symbolic formula, we ensure
that there is no false negative caused by the approach.
However, this is subject to the limitations of the constraint
solving or theorem proving, which we will discuss in the
limitation section.

Case I.1.b (True Negative): P and S are indeed
not software plagiarism.

Case I.2: Detection result: P and S do not have path
deviation.

Case I.2.a (True Positive): P and S are indeed
software plagiarism.

Case I.2.b (False Positive): P and S are indeed not
software plagiarism. In practice, it is hard to image that
two independent nontrivial software will have one-to-one
semantically equivalent path correspondence. Therefore,
in practice we do not have false positive. The case due to
the limitations of the constraint solving will be discussed
in the limitation section.

• Case II (True Negative): Given the same input, P and S

6

generate different output. P and S are indeed not software
plagiarism.

As a result, LoPD tries to find a path deviation first and then
checks the path equivalence to make sure that such a deviation
is a real semantics deviation, not caused by obfuscation. This
path deviation based approach is more efficient than directly
comparing two programs’ execution paths, because the former
can find semantically different paths within fewer iterations. In
each iteration, the latter compares only one pair of execution
paths, whereas LoPD not only compares such pair of paths
but also can detect differences in other execution paths that
share some parts with the current tested paths.

IV. DESIGN

A. Architecture

The overview of the system design is shown in Fig. 2. We
tackle the problem by three phases: Input Generation, Path
Deviation Detection and Path Equivalence Checking. In the
first phase, the input generator generates a test input. Then the
path deviation detector checks whether there exists any path
deviation between the plaintiff and suspicious programs. If
there is a path deviation, the path equivalence checker decides
whether the deviated path is a semantically equivalent path
split from the original one, if yes, this is likely generated
by obfuscation and it is a fake path deviation. If no, it
is a true path deviation and thus we conclude it is not a
software plagiarism case. If we cannot find a path deviation
or the path deviation is caused by path-splitting, we repeat
the iteration with a new input. This process is repeated until
a true path deviation is found or the number of iterations
reaches a threshold. If no true path deviation is found, LoPD
concludes that this is a plagiarism case, because we believe it
is impossible that two nontrivial independent programs have
1:1 path correspondence.

The detection procedure is described in Algorithm 1. The
details of each component are described below.

B. Input Generator

There are several ways to generate an input x for each
iteration. The first option is to generate a random input, ideally
independent, for each iteration using methods such as fuzz
testing [61]. However, random input generation may not pro-
vide high path coverage [53]. Therefore, we adopt automatic
test case generation using systematical white-box exploration
(also called, concolic testing and directed systematic path
exploration) [52], [53], [54], [55], [56]. In this way, each
iteration is guaranteed to hit a different path. We first randomly
generate an initial input from the input space. Path constraints
are collected during the program execution with the initial
input and are manipulated to cover different paths. Then a
constraint solver is used to generate the input that satisfies the
corresponding path constraints.

C. Path Deviation Detector

The path deviation detector is used to detect if two tested
programs have path deviation. Generally speaking, given an

Algorithm 1 Path Deviation based Software Plagiarism De-
tection
Input: plaintiff program p, suspicious program s
Output: plagiarism / not plagiarism.

1: for i = 1 to max iteration do
2: Generate an input x by the input generator
3: p, s and x are given to the path deviation detector. The

output states are op and os, respectively. The execution
paths are ep and es

4: if op = os then
5: if the path deviation detector can find another devi-

ation input x′ that produces different paths for p and
s then

6: the execution paths of p and s with input x′ are
e′p and e′s

7: d⇐ p or s, the one executes different paths with
x, x′

8: The path equivalence checker checks the sematic
equivalence of ed and e′d

9: if ed and e′d are semantically equivalent then
10: continue
11: else
12: return ”not plagiarism”
13: end if
14: else
15: continue
16: end if
17: else
18: return “not plagiarism”
19: end if
20: end for
21: return “plagiarism”

input x, we are trying to find another input x′ that causes one
of the programs to execute the same path as taking x as input,
while the other program to follow a different path from the
one taking x as input. We leverage symbolic execution to find
such x′. The design of the path deviation detector is shown in
Fig. 3.

The symbolic executor performs a mixed concrete and
symbolic execution [55], [16] for each tested program with x
as input. In other words, the tested program is first concretely
executed with the input x in the executor, which is a monitored
environment with taint analysis. The input is the taint seed.
The whole execution path is logged, including the executed
instructions, the taint information and the output states.

The output states can be specified by the domain experts
or the owner of the plaintiff program. They may include the
terminal output, the network interface and the modification
in file system, etc. Their output states are represented as Op

and Os, respectively. If Op 6= Os, programs P and S are
semantically different. As a result, we can get the correct
conclusion that they are not software plagiarism.

The symbolic execution is operated on the logged concrete
execution path. We build a symbolic formula in terms of input
variables to express each path constraint. This formula reflects
both the semantics of the execution path and the conditions

7

Plaintiff Program

Executable

Suspicious Program

Test

Input x

Executable

Plagiarism
Path Deviation

Detector
Input Generator

Path

Equivalence

Checker

Find path

deviation?
Y

Next

Iteration?
NEquivalence?

N

Y

N

Not
Plagiarism

Y

Same

Output?
Y

N

Fig. 2. LoPD system design.

Test Input x

Symbolic

Executor

Symbolic

Executor

 Constraint

Solver

Output Op

Formula Fp

Output Os

Formula Fs

Op=Os?

(Fp ¬Fs) (¬Fp Fs)

Not Plagiarism

Path Deviation Detector

Plaintiff Program

Executable

Executable

Suspicious Program N

Y

Find x Satisfy

the formula?

N

Path
Deviaiton

Not Path
Deviation

Y

Fig. 3. Path deviation detector.

which make the program execute this particular path. We
denote the execution paths of plaintiff program and suspicious
program with input x as ep and es, respectively. The two
formulas that we build based on these two paths are FO

p (I) and
FO
s (I) parameterized with the input variables I , based on the

output state O (O = Op = Os). Since weakest precondition
based algorithm can generate more succinct symbolic formulas
than forward symbolic execution [62], these two formulas are
built using the technique of weakest precondition and have
the property that they are true with some truth assignment
i (i ∈ input space) if and only if the program executes the
corresponding path on the input i and ends with output state
O; i.e., the path is feasible on input i and leads to output O:
FO
p (i) is true iff ep is feasible on input i and ends with output O.

Specifically, let’s assume the execution path es we collected
contains a sequence of instructions 〈i1, i2, ..., in〉. Our weakest
precondition (WP) calculation takes (es) as input, and the
output state Os as the postcondition (P). Inductively, we first
calculate wp(in, P) = Pn−1, then wp(in−1, Pn−1) = Pn−2
and until wp(i1, P1) = P0. The weakest precondition, denoted
as wp(es, P) = FO

s (I) = P0, is a boolean formula over the
inputs that follow the same execution path es and force the
execution to reach the given point satisfying P . The calculation
of FO

p (I) is similar.
Given any input that satisfies the formula, the execution of

the program will follow the original path, while given any
input that does not satisfy the formula, the execution will
follow a different path. As a result, to find a path deviation
of plaintiff program and suspicious program, we need to find
an input x′, which makes the execution path of one program

remain the same as its execution path with input x, and the
execution path of the other program be different from its
path with input x. As a result, we check the satisfiability of
Formula (1), as used by Brumley et. al. [49], via a constraint
solver STP [60], [58].

(FO
p (I) ∧ ¬FO

s (I)) ∨ (¬FO
p (I) ∧ FO

s (I)) (1)

If Formula (1) is satisfiable, STP will return an assignment
that satisfies the formula.2 Without loss of generality, assume
the assignment x′ satisfies the first part of the disjunction,
FO
p (I) ∧ ¬FO

s (I). This means that the input x′ will cause
the first program to follow path ep1, while the path es1 is
infeasible in the second program, as shown in Fig. 1. That
is, two programs behave differently on input x and x′, unless
paths es1 and e′s2 are semantically equivalent. If Formula (1)
is not satisfiable, it means that there exists no input that can
deviate the programs from these two paths.

Example. Consider the following two programs: one checks
for condition n > 0 and the other checks for condition n > 1:

f(n) = if (n > 0) then 2 else 1

g(n) = if (n > 1) then 2 else 1

Given an input 0 or any negative number, the path constraint
formula of f is ¬(n > 0) and the formula of g is ¬(n > 1).
The check formula is:

(¬(n > 0) ∧ (n > 1)) ∨ ((n > 0) ∧ ¬(n > 1))

2When STP cannot solve the formula to give a definite yes or no answer,
we simply ignore the case and try next one. We apply the same strategy for
the path equivalence checker presented in the next subsection.

8

A constraint solver can solve it with a satisfiable assignment
n = 1, which causes f to execute a different path but not g. If
given an initial input 1, the two programs have different output
and we can directly conclude they are different programs. In
case the constraint solver could not find a path deviation, we
continue with white-box symbolic exploration [53], [56] to
generate a new input for the next round. This process repeats
until the new generated input hits 0 or a negative number. With
symbolic exploration we can reach this desired input in one
step, since one of the path constraints is flipped to follow a
different path.

D. Path Equivalence Checker

As discussed above, when we find a path deviation, we need
to check whether these two deviated paths are semantically
equivalent path splitting to avoid false negative. The following
is a simple example of semantically equivalent path splitting.
The left is the original code. The right is the code after path
splitting, where the value of n decides the path to go but both
paths are semantically equivalent.

a = n if n > 0 then
a = n

else
a = n+ 1
a = a− 1

end if

The detection of path equivalent is done by path equivalence
checker, which is shown in Fig. 4. The new test input x′ is
a satisfiable assignment of Formula (1) returned by constraint
solver in the path deviation detection step, and d represents the
program that has different execution paths with input x and x′.
That is, d is either P or S. Taking Fig. 1 as an example, d = S.
In other words, in the path deviation detection step, if the first
part of the disjunction of Formula (1), FO

p (I) ∧ ¬FO
s (I), is

satisfiable, d = S, while if the second part, ¬FO
p (I)∧FO

s (I),
is satisfiable, d = P . We compare the semantics equivalence
of d’s two execution paths, which take x and x′ as input,
respectively. If these two paths are semantically equivalent,
the path deviation is caused by path splitting. We take the
next iteration, as shown in Fig. 2. Otherwise, we can conclude
that P and S are not software plagiarism and call such path
deviation as a true path deviation.

We still apply symbolic execution and weakest precondition
to detect path equivalence. Program d is executed with input
x′ in the symbolic executor, which is the same one as in the
path deviation detector. A path constraint formula F ′d and a
symbolic formula of output states f ′O are generated. Both of
them are in terms of input variables. F ′d captures the conditions
that make d follow the same execution path as input x′. f ′O
captures the semantics of such execution path. The formulas
(Fd, fO) for the execution path of input x have already been
generated in the path deviation detection step.

In an execution path, the truthness and the target of a
conditional branch are fixed. By ignoring such conditional
branches, we can force a program to follow a particular
execution path with any input, although some inputs may cause
the program to crash or to get a wrong output. In such way,

we can pick any input that satisfies either of the above path
constraints (Fd or F ′d), and give it to both execution paths.
If these two paths are equivalent, they should get the same
results with such input. In other words, if an input assignment
satisfies at least one of the path constraint formulas: Fd or F ′d,
fO and f ′O should be equal with this input assignment:

Path Equivalent ⇔ (Fd ∨ F ′
d)→ (fO = f ′

O)

⇔ (fO = f ′
O) ∨ ¬(Fd ∨ F ′

d)

Not Path Equivalent ⇔ ¬((fO = f ′
O) ∨ ¬(Fd ∨ F ′

d))

⇔ (fO 6= f ′
O) ∧ (Fd ∨ F ′

d) (2)

We check the satisfiability of Formula (2) via a constraint
solver STP [60], [58]. If it is satisfiable, these two execution
paths are not equivalent.

Example. Consider the same path splitting example in this
section. Assume n is the input variable, initial input x is n =
10 and x′ is n = −1:

fO(n) = n Fd = (n > 0)

f ′
O(n) = n+ 1− 1 = n F ′

d = ¬(n > 0)

Formula (2) is (n 6= n)∧ (n > 0∨¬(n > 0)), which is not
satisfiable. As a result, the two paths are equivalent.

V. COUNTERATTACK ANALYSIS

A benefit of LoPD logic based detection method is that
it is resilient to most of the known attacks that obfuscate
binary static analysis. We will discuss LoPD’s resilience to
the following obfuscation schemes in detail. Note that in the
practical implementation, we have to take into consideration
the limitations of symbolic execution on binary code and the
capability of the constraint solving (see Section VII).

Noise instruction/data injection: Suppose an irrelevant
statement S1 is inserted right after statement S0. Given a
postcondition R, the weakest precondition for the original
program is wp(S0, R), while the weakest precondition for the
new program is wp(S0;S1, R). Because S1 is an irrelevant
statement we have wp(S0;S1, R) = wp(S0;wp(S1, R)) =
wp(S0, R). Similarly the equation also holds in the cases of
inserting multiple instructions. As a result, LoPD is resilient
to noise injection.

Statement reordering: Two instructions S1 and S2 can be
reordered only when there is no data or control flow between
them: wp(S1;S2, R) = wp(S2;S1, R). Similarly, the weakest
precondition also remains the same when reordering multiple
instructions. So LoPD is resilient to instruction reordering.

Instruction splitting and aggregation: Two instructions S1

and S2 could be merged into one instruction S0; in the other
direction, instruction S0 could be split into two instructions
S1 and S2. Since they are semantically equivalent, there is
wp(S0, R) = wp(S1;S2, R). Hence, LoPD is resilient to
instruction splitting and aggregation obfuscation.

Value splitting and aggregation: In a program, a value v
is either initialized from some constant values or other vari-
ables. Without loss of generality, assume v = f(u1, ..., uk),
where ui is a variable on which v depends. When v is
split into two values v1 and v2, where v1 = f1(u1, ..., uk)
and v2 = f2(u1, ..., uk). Assume v = g(v1, v2), we have

9

Plaintiff / Suspicious
Program

Executable d
Symbolic

Executor

Path Equivalence Checker

Formula Fd

Formula fO

Formula Fd

Formula fO

(fO fO) (Fd Fd)

Satisfiable?

Not
equivalent

Equivalent

Y

Test

Input x

 Constraint

Solver
N

Fig. 4. Path equivalence checker.

f = g(f1, f2). For simple value splitting obfuscation, usually
constraint solvers are able to prove this relationship and thus
the resulted formulas will be considered equivalently.

Opaque predicate: One opaque predicate E is inserted
right before statement S0. If E is an always true predicate,
wp(if E then S0 end,R) = E ⇒ wp(S0;R) = wp(S0, R).
Similarly, the weakest precondition also remains the same
when S0 represents multiple instructions or E is an always
false predicate.

Control flow flattening: It has little effect on LoPD due
to two reasons: (1) LoPD identifies paths dynamically by
emulating program execution with concrete inputs, so the paths
inspected are valid feasible paths. (2) Since we obtained output
formulas by symbolic execution, the semantics from flattened
paths are captured faithfully.

Loop unwinding: Paths being considered by LoPD are
dynamic execution traces, so loop unwinding has little effect
since execution paths with loops are unwound anyway.

API implementation embedding: Assume extracting s-
tatements S1, ..., SN as API function F , during dynamic
execution, these instructions will be executed exactly as the
original order. Therefore, wp(S1, ...SN , R) = wp(F,R).

Path splitting and merging: By applying symbolic execu-
tion and constraint solving, we can effectively detect seman-
tically equivalent path splitting/merging.

Binary packing: Binary packing is a widely used method
to obfuscate binary code and hinder static analysis [63].
The effect is the original code is stored as the compressed
or encrypted data. When a packed binary starts running,
the unpacking routine will first restore the original code.
To address this issue, we rely on Temu’s generic runtime
unpacking tool, Renovo [64]. We activate our trace logging
tool when the newly generated code is identified. Currently,
Renovo can extract hidden code from most common binary
packers, such as UPX, ASPack, ASProtect, FSG, WinUPack,
and YodaProtector.

Virtualization obfuscation: The virtualization-based ob-
fuscation is currently the state of the art in binary obfus-
cation [65]. The obfuscators such as Code Virtualizer [19]
translates the binary code to a new kind of bytecode. At
run time, an attached interpreter will simulate each bytecode
through a decode-dispatch loop [66]. As a result, the collected
path conditions will contain a large number of redundant con-

ditions related to the decode-dispatch loop. The path formula
explosion will impede the constraint solving. To remove these
unnecessary conditions, we need extra efforts and fine-grained
taint analysis. In Section VI-A, we will evaluate LoPD’s
resilience to virtualization obfuscation and discuss possible
countermeasures.

VI. IMPLEMENTATION AND EVALUATION

We have implemented the idea of LoPD on top of Bit-
Blaze [16], [17], a binary analysis platform. We concretely
execute the tested programs in BitBlaze’s whole-system em-
ulator, Temu. Also, we leverage Temu’s generic unpacking
plug-in, Renovo [64], to start the trace logging after the
binary unpacking. Our trace logging tool instruments each
instructions executed to record the types of x86 opcode, values
of operands and each instruction’s address. All the information
is formatted as raw data to limit the trace size. In general, not
all of the instructions are of interest (e.g., the code generated
by program start up and binary unpacking routine code), so
LoPD can optionally record instructions which need to be
further analyzed. We use Vine, the static analysis component,
to lift x86 instructions to Vine IL, a RISC-like intermediate
language with static single assignment (SSA) format. The
symbolic execution is performed by interpreting each Vine IL
instructions. LoPD’s path equivalence checker is an extension
of Vine’s symbolic execution module. To solve the path
deviation formula 1 and the path equivalence formula 2, we
apply STP [60], [58] as the constraint solver. We integrate all
the above components and implement an automatic software
plagiarism detection system in C and Python.

Our evaluations consist of three case studies: software
plagiarism case, different program case and partial plagiarism
case. The evaluation is performed on a Linux machine with
Intel Centrino duo 1.83GHz CPU and 2 GB RAM.

A. Case Study I: Same Programs

In this experiment, we evaluate the effectiveness of LoPD
in the software plagiarism case, where one program is a
semantics-preserving transformation of the other program. We
have 10 tested programs: thttpd, mini httpd, 7-Zip, gzip, exiv2,
faad2, tar, scp, Ford-Fulkerson maximum flow implementation
and tcc. The input variables of thttpd and mini httpd are the

10

TABLE III
The tested programs and their running time per iteration for the same program case.

Name Type
Execution Time (seconds)

IG
1 PDD 2 PEC 3

Total
DR 4 FE 5 SS 6 DR 4 FE 7 SS 6

thttpd HTTP server 1.08 6.21 10.32 1.17 6.34 12.32 2.13 22.78
mini httpd HTTP server 0.92 6.98 8.04 1.08 6.59 11.52 3.42 21.55

7-Zip File compression 12.68 48.53 28.39 12.96 43.73 30.46 18.72 107.47
gzip File compression 4.89 13.87 2.53 5.07 14.83 3.69 7.02 30.36
exiv2 Image metadata manipulation 6.04 12.16 3.34 5.67 13.54 4.18 5.84 31.30
faad2 MPEG-4 Decoder 8.32 23.10 7.89 6.64 23.58 8.45 7.02 58.42

tar File archive 1.89 6.86 4.36 2.24 6.78 4.28 2.52 22.83
scp Secure copy 2.57 10.16 5.35 3.82 11.12 5.32 3.80 31.12

Ford-Fulkerson Maximum flow 1.62 6.11 7.18 1.52 5.78 9.27 3.71 18.43
tcc C compiler 2.89 58.91 27.25 3.30 62.91 32.83 5.36 112.57

1 Input Generator 2 Path deviation detector 3 Path equivalence checker 4 Dynamic Running on TEMU
5 Formula (1) extraction 6 STP slover 7 Formula (2) extraction

TABLE IV
Different optimization or obfuscation options.

Compiler/Obfuscator Options
gcc/g++ -O0, -O1, -O2, -O3 and -Os
Loco -freorder-blocks (reorder basic blocks)

-funroll-loops (unroll loops)
-finline-small-functions (inline small function)

Obfuscator-LLVM -mllvm -sub (instructions substitution)
-mllvm -bcf (opaque predicate)
-mllvm -fla (control flow flattening)

HTTP requests and the output states are the HTTP response
according to a particular request. The input variables of the
Ford-Fulkerson maximum flow implementation are a flow
network and the output state is the calculated maximum flow.
For 7-Zip and gzip, the input is a text file and the output is
the compressed file. Exiv2’s input is a jpg image and output
is the image’s metadata information. Faad2 is an open source
MPEG-4 decoder; tar creates an archive for multiple files and
scp transfers the tar archive file to a remote machine. These
programs are chosen for two reasons. The first reason is that
they are representative and widely used. Most of them have
been in production for decades. Therefore, they are more likely
to be the target of software plagiarism. Second, the input to
these programs can be represented as a byte stream, which is
well suited for symbolic execution. Also, the choice of two
HTTP servers and file compression tools is for the evaluation
in Section VI-B: different programs with the same purpose.
The tested programs and their average processing time per
iteration are shown in Table III.

For each program, we first generate different semantics-
preserving executable files by compiling the source code using
gcc/g++ (with different optimization options: -O0, -O1, -O2,
-O3 and -Os). Also, we obfuscate the tested programs by
applying two obfuscators: Loco [3] and Obfuscator-LLVM [4].
Loco [3] is an obfuscation tool based on Diablo [67], a link-
time optimizer. Diablo rewrites the binaries during link-time.
Loco can obfuscate binaries by control flow flattening and
opaque predicate. Obfuscator-LLVM is a fork of the LLVM
compilation suite [68] to provide code obfuscation options,
which are implemented as an LLVM pass. The detailed
optimization or obfuscation options are shown in Table IV.
Different compilers and different levels of optimization can
change the syntax of executables, e.g., “-freorder-blocks”

reorders basic blocks, “-funroll-loops” unwinds loops and “-
finline-small-functions” inserts small functions’ definitions in
their caller [69].

By switching different optimization or obfuscation options,
we generate 11 different executables for each program in total.
To help readers understand the binary differences, we present
three examples under different optimization options and con-
trol flow obfuscation methods, respectively. Fig. 5 shows the
disassembly code of traversing link list function under gcc
optimization option O0 and O2. Basic block loc 8000005 and
loc 8000008 are corresponding to the loop body of function
traverse. However, they contain completely different in-
structions in syntax. Under the optimization of O2, eax stores
the value of head before entering the loop body. The gcc O2
optimization does a dataflow analysis to cache the iteration
variable (head) in eax, so that the generated code does not
need to load and store head at each iteration. An opaque
predicate is a predicate that always evaluate the same value.
Fig. 6 illustrates an example of opaque predicate, in which
predicate (x3 − x = 0 (mod 3)) holds true for all integers x
and the false condition leads to junk code.

x3-x = 0

(mod 3)
true falsetrue

 always true

I1;

I2;

I1;

I2; junk code

Fig. 6. Example: opaque predicate.

We use LoPD to perform pairwise comparison of the gener-
ated 11 executables for each program in Table III. Starting with
an initial input seed, we automatically generate new inputs by
negating the path formula and solve it with STP. We set the
threshold of the maximum number of iterations to be 100. For
all 550 tested pairs (55 comparison pairs for each of the 10
tested programs), LoPD does not find any true path deviation.
That is, LoPD draws the right conclusion that they are software
plagiarism cases. There is no false negative.

11

struct node

{

 int val;

 struct node *next;

};

void traverse (struct node *head)

{

 while (head)

 {

 head->val *= 2;

 head = head->next;

 }

}

source code:

traversing a link list

// function traverse

push ebp

mov ebp, esp

jmp loc_800001B

loc_800001B:

cmp [ebp+8], 0

jnz loc_8000005

pop ebp

retn
loc_8000005:

mov eax, [ebp+8]

mov eax, [eax]

lea edx, [eax+eax]

mov eax, [ebp+8]

mov [eax], edx

mov eax, [ebp+8]

mov eax, [eax+4]

mov [ebp+8], eax

gcc optimization option: -O0

// function traverse

mov eax, [esp+4]

test eax, eax

jz loc_8000011

loc_8000011:

rep retn
loc_8000008:

shl dword ptr [eax], 1

mov eax, [eax+4]

test eax, eax

jnz loc_8000008

gcc optimization option: -O2

Fig. 5. Example: different compiler optimization options.

Virtualization obfuscation. The effect of virtualization
obfuscation is that the original code path conditions mix
with decode-dispatch loop logic conditions, which will greatly
increase the size of path formulas. In this experiment, we
evaluate LoPD with Code Virtualizer [19], a commercial
software virtualization obfuscation tool. We test three different
obfuscation levels, 10%, 20%, and 30%. Table V shows the
experiment results. The “# PC” column shows the normalized
path condition number. Our baseline is the clean version
without virtualization obfuscation. The “SS ” column displays
the STP solving time (seconds) when performing path devi-
ation detection. We set the limit of STP solving time as 600
seconds. As the performance of LoPD is linearly dependent
on the size of trace formulas, it is evident that virtualization
obfuscation can significantly delay and complicate LoPD’s
detection. In our test, when the obfuscation level exceeds
certain degree, the STP solver will run out of time. On
the other side, since one x86 instruction will be translated
into several virtual bytecode that are emulated at run time,
applying virtualization obfuscation on the whole program will
introduce unacceptable time and space overheads. Typically,
virtualization obfuscation is used to selectively protect the key
component [70]. As shown in Table V, two cases fail at 10%
obfuscation level and three test cases do not work when 30%
code is obfuscated. Although the virtualization obfuscation
may lead to the excessive resource usage of LoPD, we do
not view it as a hard limit. The latest work on symbolic
execution of obfuscated code has proposed using fine-grained
bit-level taint analysis to mitigate this problem [71]. We plan to
integrate the bit-level taint analysis to improve LoPD’s robust
against the virtualization obfuscation.

Path splitting resilience check. In order to test the re-
silience of LoPD to semantically-equivalent-path splitting/
merging attacks, we manually add 2 to 3 such split paths
in the source code of each program in Table III. Briefly, we
find a code segment s1, s2, ... sn, (si could be any type of

TABLE V
Normalized path condition number (times) and STP solving time (s) when
comparing virtualization obfuscated program and the original clean version.

Program 10% obfuscated 20% obfuscated 30% obfuscated
PC SS # PC SS # PC SS

thttpd 8.7 28.1 22.6 240.5 52.2 ∞
mini httpd 7.5 18.3 16.3 108.3 35.6 326.6
7-Zip 11.3 55.2 32.0 ∞ × ×
gzip 10.1 51.8 31.2 ∞ × ×
exiv2 12.2 43.4 33.5 445.2 × ×
tar 7.1 31.5 21.2 201.5 47.9 ∞
scp 9.0 36.6 23.4 324.6 × ×
Ford-Fulkerson 4.2 9.7 13.2 68.3 24.3 257.7

PC is short of path conditions and SS stands for STP solving time.
× indicates that the tested program failed due to program crash. Both faad2

and tcc failed even at 10% obfuscation level. ∞ denotes that the STP
solving time is beyond the time limit of 600 seconds.

statement, e.g., assignment, declaration, conditional branch,
etc). We obfuscate this segment by independent statement
reordering, variable splitting/merging, opaque predicate, etc.
Then we add the if...else statement, where if c is true, the
original segment will be executed; otherwise, the obfuscated
segment will be executed. As demonstrated in the following
example, the left part is the original code and the right part
is the code after path splitting. We compile the new code into
executable and compare it with one of the original executables
by LoPD. LoPD finds no dissimilarity between the obfuscated
and original executables within 100 iterations. It indicates the
two programs are software plagiarism, as expected.

...
s1;
s2;
...
sn;
...

...
if c then

s1; s2; ... sn;
else

obf(s1; s2; ... sn;)
end if
...

The execution time per iteration is also shown in Table III.

12

15

20

25

30

T
h
e
 #
 o
f
T
r
u
e
 P
a
th
 D
e
v
ia
ti
o
n

1-5 5-10 11-20 21-30 Iteration # of first path deviation

Iterations:

0

5

10

1 2 3 4 5 6 7

T
h
e
 #
 o
f
T
r
u
e
 P
a
th
 D
e
v
ia
ti
o
n

The Pair ID

Fig. 7. The number of path deviations discovered within the first N iterations.

The listed time is the average running time of 28 executable
pairs for each program and the path splitting experiment. The
execution time per iteration is within two minutes for test
cases. Note that, the average total time for each iteration is
not the sum of the other running times in this line, because
path equivalence checker is only needed when there is a path
deviation. The total execution time of 100 iterations is within
three hours, which is reasonable for offline detectors.

B. Case Study II: Different Programs

In this section, we evaluate the effectiveness of LoPD in
determining non-plagiarism cases. In the first part of this
evaluation, we evaluate different programs that have the same
purpose and are supposed to generate the same output when
given the same input, but there may exist some inputs that
cause two programs to generate different outputs, due to either
implementation errors or functional extension. The first three
lines in Table VI are such program pairs.

Instead of terminating the detection process as long as we
find a true path deviation, we repeat 30 iterations and count
the number of path deviations we discover for each program
pair. The results are shown in Fig. 7. The x-axis are different
program pairs, whose IDs are the same as in Table VI. The
bars indicate the count of true path deviations LoPD finds
within N (N = 5, 10, 20, 30) iterations. The red line shows
the number of iterations when LoPD find the first true path
deviation.

Thttpd and mini httpd are two tiny HTTP servers developed
by ACME Labs3. Both of them implement all the basic
features of an HTTP server. If their settings are the same,
thttpd and mini httpd should give the same response when
receiving the same request. The first path deviation happens
in the 3rd iteration. We find total 21 true path deviations within
30 iterations. The deviations are caused because one of the pro-
grams does not follow the HTTP protocol specifications and
has bugs in its implementation. A path deviation example is

3http://acme.com/software

shown in Fig. 8. When given request x, both of them normally
response “200 Ok”. Based on x, LoPD finds another input
x′ that causes path deviation, where mini httpd still returns
“200 Ok”, but thttpd returns “400 Bad Request”. Fig. 9
presents another deviation example for thttpd and mini httpd.
The main difference comes from HOST field, which points
to an executable file (/bin). In this case, thttpd rejects this
dangerous request while mini httpd accepts it.

The second program pair, 7-Zip and gzip, are two file
compression tools. If given the particular parameters (e.g., no
parameter for gzip and a -tgzip for the 7-Zip), they can
generate the same output file when operating on the same
input file. The first path deviation is found in the second
generation. There are 13 path deviations out of 30 iterations.
More specifically, when using them for file compression, there
is no path deviation for these two programs, but when using
them for file decompression, we can find a path deviation
in most iterations. One example of the path deviation is: the
original input x is a normal .gz file, which both programs
decompress correctly; LoPD generates a new input file x′

based on x; both 7-Zip and gzip report a CRC-Failed upon
x′. After that, gzip terminates without decompression, whereas
7-Zip continues and generates a decompressed file anyway.

Ford-Fulkerson and Push-relabel are two maximum flow
implementations, using different algorithms. Given the same
flow network, they should always calculate the same maximum
flow. This is an example of the case that even if two programs
always have the same input-output pairs, they can still be non-
plagiarized different programs. Their computation steps are
different, using different algorithms in this case. On one hand,
Formula (1) guarantees that if two programs’ execution paths
have different path constraints, LoPD can detect the difference.
On the other hand, it is very rare that different algorithms have
the same path constraints for all execution paths. Therefore,
LoPD can correctly detect them as non-plagiarism case. LoPD
can find true path deviations in all 30 iterations, although they
can always get the same output. For all examples in this part,
within 3 iterations, LoPD draws the right conclusion that they
are two different programs.

The second part of the evaluation is on different programs
that may or may not have the same purpose, but generate
different outputs by given the same input. Because LoPD
relies on two programs taking the same input, but for some
program pairs, the intersection of two programs’ input spaces
is empty, e.g., thttpd vs. tcc, we can easily rule out software
plagiarism case when one program crashes or returns an error
message and the other program executes normally. Hence we
only choose certain pairs that have common inputs. The last 4
lines in Table VI are such program pairs. Since in most cases,
two programs of such pairs cannot generate the same output
regarding the same input, we can simply draw the conclusion
that they are different programs by comparing the outputs.
However, in order to evaluate how different the paths are in this
case, we use LoPD to find path deviation regardless of their
outputs. Similar to previous evaluation, we do not terminate
the detection when we find a path deviation, although we
have already gotten the right conclusion that they are different
programs. LoPD continues until finishing 30 iterations. The

13

TABLE VI
The tested programs and their running time per iteration for the different programs case.

ID Program P Program S
Execution Time (seconds)

IG
1 PDD 2 PEC 3

Total
DR P 4 DR S 5 FE 6 SS 7 DR d 8 FE 9 SS 7

1 thttpd mini httpd 1.08 6.21 6.98 10.23 1.38 6.83 12.71 2.35 32.87
2 7-Zip gzip 12.68 48.53 13.78 18.65 10.19 22.80 20.81 12.39 124.83
3 Ford-Fulkerson Push-relabel 1.62 6.11 6.95 10.41 1.45 6.94 11.83 3.21 48.52
4 Ford-Fulkerson Dijkstra shortest path 1.62 6.11 5.26 7.86 2.12 - - - 22.97
5 thttpd gzip 1.08 6.21 13.87 7.27 1.32 - - - 29.75
6 tcc gzip 2.89 58.91 13.87 17.49 5.12 - - - 98.28
7 Ford-Fulkerson 7-Zip 1.62 6.11 48.53 20.90 13.21 - - - 90.37

1 Input Generator 2 Path deviation detector 3 Path equivalence checker 4 Dynamic Running of P on TEMU 5 Dynamic Running of
S on TEMU 6 Formula (1) extraction 7 STP slover 8 Dynamic Running of d (d = S OR P) on TEMU 9 Formula (2) extraction

0x0000: 48 45 41 44 20 2F 69 6E 64 65 78 2E 68 74 6D 6C HEAD /index.html

0x0010: 20 48 54 54 50 2F 31 2E 30 0A 0A 0A HTTP/1.0...

Input x:

Input x':

0x0000: 48 45 41 44 20 2F 69 6E 64 65 78 2E 68 74 6D 6C HEAD /index.html

0x0010: 20 48 01 01 10 FF FF 02 01 0A 0A 0A H........

Fig. 8. Path deviation example of thttpd vs. mini httpd.

0x0000: 47 45 54 20 2F 69 6E 64 65 78 2E 68 74 6D 6C 20 GET /index.html

0x0010: 48 54 54 50 2F 31 2E 31 0D 0A 48 4F 53 54 3A 2F HTTP/1.1..HOST:/

0x0020: 62 69 6E 0D 0A bin..

Candidate deviation input:

HTTP/1.1 200 OKHTTP/1.1 400 Bad Request

Thttpd output: Mini_httpd output:

Fig. 9. Another deviation example for thttpd and mini httpd.

results are shown in Fig. 7 with pair ID 4− 7. For each pair,
LoPD can find true path deviation in all 30 iterations. The
results are as expected, since two programs in each pair have
different functionalities and it is not hard to image that both
their path constraints and output states are different.

The execution time is shown in Table VI. The total running
time per iteration is longer than the software plagiarism case,
because in most iterations path equivalent checker is invoked.
In real case, we do not need to run all 30 iterations as in this
experiment. As long as we find a true path deviation, LoPD
will terminate. For all 7 tested pairs, the first path deviation
is discovered within 5 minutes.

C. Case Study III: Partial Plagiarism

In this experiment, we study the efficacy of LoPD against
partial plagiarism, which steals code partially. Since it is quite
challenging to identify the boundary of stolen code [28], in
this paper, we focus on detecting the partial plagiarism case
with a well-defined interface. To this end, we simulate the
effect of partial software plagiarism by library function reuse.
There are three major reasons behind our choice: 1) software
plagiarism can be viewed as code reuse in disguise [6]; 2)
in spite of multiple functionalities supplied by certain library,
applications typically only reuse part of the library code; 3)

the library code usually encapsulates each functionality as a
module and offers a well-defined interface through standard
function calls and returns. For example, to convert a gif im-
age to a png image, we only need to call png write operation
interface offered by libpng. We view our partial code reuse
detection as the first step towards partial software plagiarism
detection. As shown in Fig. 10, only part of plaintiff program
code (labeled as “F1”) are reused by suspicious program. Note
that unlike Fig. 1, the input passed to the “F1” part has been
processed (x → x’), such as encoding or decoding, so that
simply feeding the initial input (x) to the plaintiff program
does not work. To this end, we leverage Temu to instrument
the interface to the library code in the suspicious program and
record the necessary parameters (e.g., context and environment
variables) when the execution reaches the boundary of the
library function code. Note that in practice, we do not need
to enumerate all possible library functions. Many heuristics
can help us quickly identify possible suspicious modules. For
example, decryption, decompression, and hash functions reveal
an excessive use of arithmetic and bitwise instructions [72];
the input and output formats to image transformation function
may be different. Then we feed the same parameters to the
plaintiff library code to force the execution to have the same
starting point as the plaintiff program. We also capture the

14

TABLE VII
The tested programs and their running time per iteration for the same program case.

Program P Program S
Execution Time (seconds)

IG
1 PDD 2 PEC 3

Total
DR 4 FE 5 SS 6 DR 4 FE 7 SS 6

Libpng png2html 5.37 13.42 3.26 3.49 13.85 3.06 3.15 34.46
Libpng gif2png 4.55 12.30 3.24 2.16 11.69 2.98 2.82 30.37
Libpng FishEye 5.09 14.84 3.59 3.68 15.74 4.21 3.98 38.34
Libtiff tif2pdf 3.12 11.67 2.81 2.11 10.90 2.50 2.17 25.62
Libtiff gif2tiff 2.51 12.58 2.85 2.50 12.59 2.66 2.43 25.28
Libtiff thumbnail 2.86 12.35 2.52 2.46 14.04 2.59 2.28 29.32

Crypto++ TEA 5.77 23.64 10.31 9.13 24.17 11.64 8.59 45.60
Crypto++ XTEA 5.20 23.15 11.02 9.15 21.57 10.50 8.46 47.92
Crypto++ Blowfish 6.37 40.63 24.16 25.85 40.75 24.77 23.96 105.08
Crypto++ DES 7.20 30.42 23.70 26.28 31.79 25.56 27.84 97.24

1 Input Generator 2 Path deviation detector 3 Path equivalence checker 4 Dynamic Running on
TEMU 5 Formula (1) extraction 6 STP slover 7 Formula (2) extraction

Preprocess

Input x

F1

x'

Suspicious Program S

Plaintiff Program P

x'

F1 F2 F4F3

Forced execution

Path deviation and

equivalence detection

Fig. 10. Example: partial plagiarism.

output when the execution leaves the module (Os and Op in
Fig. 10). After that, we follow the similar style with Fig. 1 to
detect deviation.

We evaluate three widely used libraries: libpng (official
png reference library), libtiff (tiff manipulation library and
utilities), and Crypto++ (library of cryptographic schemes).
For libpng and libtiff, we compare 3 different applications
with each of them. Most of the applications are related to
image format transformation (e.g., png2html, gif2png and
gif2tiff), which only invokes part of the library code, such as
png_read_image or png_write_image. For Crypto++,
we test 4 block cipher encryption examples: TEA, XTEA,
Blowfish and DES. The threshold of the maximum number of
iterations are set to 100 and the reported evaluation data are
similar to the previous experiments as well. The performance
data are presented in Table VII and the total detection time
ranges from 25.28 to 105.08 seconds. In summary, for all 10
library code partial reuse tests, LoPD is able to find no true
path deviation within 100 iterations, which indicates a highly
possible partial reuse case.

D. Summary

We evaluate the effectiveness and efficiency of LoPD with
the same program, different program and library code reuse
cases respectively in this section. The evaluation result demon-
strates that LoPD can effectively and efficiently detect the
whole program plagiarism and partial plagiarism. LoPD can
quickly find the dissimilarity between two different programs.
It sheds some light on the selection of the maximum iteration
threshold. Since in the evaluation of different program cases
LoPD can find the first true path deviation within 3 iterations
and more than 10 true path deviations within 30 iterations,
we believe normally 100 iterations is a reasonable tradeoff
between the accuracy and efficiency.

VII. DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations and future work of
LoPD.

First, LoPD focuses on the detection of whole-program
plagiarism, where a plagiarist copies the whole plaintiff pro-
gram and uses it as a finished software product. Whole-
program plagiarism detection is very useful in real world.
For example, recent research [1], [73] found that on Android
application market, many software plagiarism cases are just

15

repackaging, which are the whole-program plagiarism cases.
We view our proposed whole program plagiarism detection
approach, based on formal program semantics foundation, as
a major milestone towards solving the partial software pla-
giarism problem. Without a deep understanding of the whole
program plagiarism problem, the partial software plagiarism
problem probably won’t be solved with rigorous soundness
and completeness. Our current partial plagiarism detection
relies on the assumption of location of suspicious modules
and well-defined interface (e.g., standard function calls and
returns). Malicious authors could impede such assumptions
by applying the obfuscation methods which violate calling-
convention [63]. As a result, function boundary cannot be
easily identified. In the future, we will continue to study the
detection of partial plagiarism in the obfuscated binary code.

Second, LoPD is limited by the capability of the constraint
solving and the limitation of current symbolic execution tools.
In the path deviation detector, when the constraint solver finds
a satisfying assignment to the formula, it is surely correct.
However, when it says no, it could really mean the formula is
not satisfiable, or the solver cannot find a satisfying assignment
due to its limited capability. In this case, it can potentially lead
to false positives. Our solution is to iterate many rounds on
path deviation detection. It would be practically not possible
that for a large number of rounds, with a large number of
different paths, the constraint solver will consistently report
no on satisfying assignments. In the path equivalence checker,
the similar can happen and our tool can theoretically report
false negative. In our experiments, we have not seen such false
positives or false negatives. Besides, LoPD suffers from the
common limitations of current symbolic execution tools, e.g.
they cannot perform non-linear arithmetic operation or floating
point calculation.

Third, LoPD needs to repeat the iteration until a true path
deviation is found or the maximum number of iterations is
reached. Therefore, the threshold of such number is a tradeoff
between the accuracy and the efficiency. A low threshold takes
less time but may cause false positive, while a high threshold
decreases the possibility of false positive but takes more
time. The evaluation results in Section VI give us some hints
about threshold selection: LoPD can quickly find the true path
deviation for two different programs (within 3 iterations in all
evaluated cases). Therefore, we believe setting the threshold at
100 is reasonable. We can also leverage the preknowledge of
the plaintiff program to make the decision, e.g., for programs
with less input dependent conditional branches, we choose a
lower threshold and otherwise we set a higher threshold.

Fourth, LoPD may find path deviations for two versions
of the same software, if one fixed some bugs in the other
one or added new functions. LoPD reports that they are
not semantically equivalent. This is true. A similar situation
happens when an attacker steals a program and improves it.
In fact, LoPD comes to the right conclusion that the two
programs are not semantically equivalent, even if the they
may be quite similar. Note that in this case the transformation
is not achieved automatically but involves human efforts. In
the future, in order to be resilient to manual modification
on plaintiff programs, LoPD will provide a user interface

that presents the dissimilarity it finds (e.g., differences in the
outputs, the input that causes path deviation) to users and let
users make a decision about whether to continue the detection
to find another difference or to terminate the process and
draw the conclusion. A possible alterative solution is to find
all different outputs and path deviations within the maximum
count of iterations and calculate a dissimilarity score, which
can help users to make a final judgment.

In addition, LoPD is not suitable for small programs,
because when the program logic and semantics are too simple,
it is possible that two programs have the one-to-one path
correspondence (e.g., bubble sort and quick sort). However,
for nontrivial software products, it is unlikely that two inde-
pendent programs have such path correspondence. Therefore,
in practice, we do not need to concern about these potential
false positive cases.

Besides, we will extend our approach to detect smartphone
app repackaging. Most current app repackaging detection
methods focus on the detection scalability and cannot tolerate
code obfuscation. Our approach will be a complementary
solution that provides obfuscation-resilient detection. All the
user interactions will be considered as input. The interactive
information provided by the app, such as the display view and
the message sent out through text message or the Internet,
will be regarded as output. We are going to further investigate
how to effectively generate test input and how to compare the
output. We will also implement a new framework to perform
symbolic execution of smartphone applications with dalvik vir-
tual machine. Lastly, the complicated thread interleaving may
have a negative effect on software dynamic birthmarks [74].
We leave the thread-aware software plagiarism detection as
our future work.

VIII. CONCLUSION

In this paper, we propose LoPD, a deviation-based
obfuscation-resilient program equivalence checking method,
which is well suited for whole-program plagiarism detec-
tion. By leveraging dynamic symbolic execution to capture
the semantics of execution paths, LoPD automatically builds
symbolic formulas generated from two programs under inves-
tigation and solves the formulas to find deviations. A benefit
of LoPD’s formal program semantics-based method is that
it is resilient to most of the known obfuscation attacks to
static analysis. Our empirical study shows LoPD’s efficacy
in detecting whole-program plagiarism in obfuscated binaries.
Furthermore, we demonstrate that LoPD can be extended
to detect partial software plagiarism as well, with a few
engineering efforts.

IX. ACKNOWLEDGMENTS

We thank the anonymous reviewers for their informative
feedback. This work was supported in part by the NSF Grants
CCF-1320605 and CNS-1223710, and ONR Grants N00014-
13-1-0175 and N00014-16-1-2265. P. Liu was also supported
by ARO W911NF-09-1-0525, ARO W911NF-13-1-0421, NSF
CNS-1422594, and NSF CNS-1505664.

16

REFERENCES

[1] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in Proceedings
of the 2nd ACM conference on Data and Application Security and
Privacy, ser. CODASPY ’12, 2012.

[2] [online]. Available: http://sourceforge.net/about March 2014.
[3] M. Madou, L. Van Put, and K. De Bosschere, “Loco: An interactive code

(de)obfuscation tool,” in Proceedings of ACM SIGPLAN 2006 Workshop
on Partial Evaluation and Program Manipulation (PEPM ’06), 2006.

[4] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM -
software protection for the masses,” in Proceedings of the 1st Interna-
tional Workshop on Software Protection (SPRO’15), 2015.

[5] Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu, and D. Wu, “Value-based
program characterization and its application to software plagiarism
detection,” in 33rd International Conference on Software Engineering
(ICSE 2011), Software Engineering In Prictice (SEIP) track, 2011.

[6] C. Liu, C. Chen, J. Han, and P. S. Yu, “GPLAG: detection of software
plagiarism by program dependence graph analysis,” in Proceedings
of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD’06), 2006.

[7] S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing: local
algorithms for document fingerprinting,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data, 2003.

[8] W. Yang, “Identifying syntactic differences between two programs,”
Softw. Pract. Exper., vol. 21, no. 7, pp. 739–755, Jun. 1991.

[9] G. Myles and C. Collberg, “K-gram based software birthmarks,” in
Proceedings of the 2005 ACM symposium on Applied computing, 2005.

[10] G. Myles and C. Collberg, “Detecting software theft via whole program
path birthmarks,” Information Security, vol. 3225/2004, 2004.

[11] H. Tamada, K. Okamoto, M. Nakamura, A. Monden, and K. ichi Mat-
sumoto, “Dynamic software birthmarks to detect the theft of windows
applications,” in Int. Symp. on Future Software Technology, 2004.

[12] D. Schuler, V. Dallmeier, and C. Lindig, “A dynamic birthmark for java,”
in Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, ser. ASE ’07, 2007, pp. 274–283.

[13] F. Zhang, Y. Jhi, D. Wu, P. Liu, and S. Zhu, “A first step towards al-
gorithm plagiarism detection,” in Proceedings of the 2012 International
Symposium on Software Testing and Analysis, 2012.

[14] E. W. Dijkstra, A Discipline of Programming. Prentice Hall, Inc., 1976.
[15] C. A. R. Hoare, “An axiomatic basis for computer programming,”

Commun. ACM, vol. 12, no. 10, Oct. 1969.
[16] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,

Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in Proceedings of
the 4th International Conference on Information Systems Security, 2008.

[17] “BitBlaze: Binary analysis for computer security,” [online]. Available:
http://bitblaze.cs.berkeley.edu/.

[18] F. Zhang, D. Wu, P. Liu, and S. Zhu, “Program logic based software
plagiarism detection,” in Proceedings of the 25th IEEE International
Symposium on Software Reliability Engineering (ISSRE’14), 2014.

[19] Oreans Technologies, “Code Virtualizer: Total obfuscation against re-
verse engineering,” http://www.oreans.com/codevirtualizer.php.

[20] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on android markets,” Computer Security–ESORICS
2012, 2012.

[21] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among android applications,”
in Proceedings of the 9th Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, 2012.

[22] H. Huang, S. Zhu, P. Liu, and D. Wu, “A framework for evaluat-
ing mobile app repackaging detection algorithms,” in Proceedings of
the 6th International Conference on Trust & Trustworthy Computing
(TRUST’13), 2013.

[23] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid: Towards
obfuscation-resilient mobile application repackaging detection,” in Pro-
ceedings of the 7th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec’14), 2014.

[24] L. Luo, Y. Fu, D. Wu, S. Zhu, and P. Liu, “Repackage-proofing Android
Apps,” in Proceedings of the 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’16), 2016.

[25] Y.-C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu, and D. Wu, “Program
characterization using runtime values and its application to software
plagiarism detection,” IEEE Transactions on Software Engineering,
vol. 41, no. 9, pp. 925–943, 2015.

[26] B. Lu, F. Liu, X. Ge, B. Liu, and X. Luo, “A software birthmark based
on dynamic opcode n-gram,” International Conference on Semantic
Computing, 2007.

[27] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Detecting software theft
via system call based birthmarks,” in Computer Security Applications
Conference, 2009. ACSAC’09., 2009.

[28] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Behavior based software theft
detection,” in Proceedings of the 16th ACM conference on Computer
and communications security, 2009.

[29] Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang, “Software
plagiarism detection with birthmarks based on dynamic key instruction
sequences,” IEEE Transactions on Software Engineering, vol. 41, no. 12,
pp. 1217–1235, Dec 2015.

[30] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in Proceedings of the Second Working Conference
on Reverse Engineering, 1995.

[31] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in Proceedings of the International
Conference on Software Maintenance, ser. ICSM ’98, 1998.

[32] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and
accurate tree-based detection of code clones,” in Proceedings of the 29th
international conference on Software Engineering, ser. ICSE ’07, 2007.

[33] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, July 2002.

[34] L. Prechelt, G. Malpohl, and M. Philippsen, “Finding plagiarisms among
a set of programs with jplag,” Journal of Universal Computer Science,
vol. 8, no. 11, pp. 1016–1038, 2002.

[35] R. Komondoor and S. Horwitz, “Using slicing to identify duplication
in source code,” in Proceedings of the 8th International Symposium on
Static Analysis, ser. SAS ’01, 2001.

[36] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic clones,”
in Proceedings of the 30th international conference on Software engi-
neering, ser. ICSE ’08, 2008.

[37] J. Krinke, “Identifying similar code with program dependence graphs,”
in Proceedings of the Eighth Working Conference on Reverse Engineer-
ing (WCRE’01), ser. WCRE ’01, 2001.

[38] A. Sæbjφrnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su, “Detecting
code clones in binary executables,” in Proceedings of the eighteenth
international symposium on Software testing and analysis, 2009.

[39] M. Farhadi, B. Fung, P. Charland, and M. Debbabi, “BinClone: De-
tecting code clones in malware,” in Proceedings of the 8th IEEE In-
ternational Conference on Software Security and Reliability (SERE’14),
2014.

[40] D. Jackson and D. A. Ladd, “Semantic diff: A tool for summarizing the
effects of modifications,” in Software Maintenance, 1994. Proceedings.,
International Conference on, 1994.

[41] S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebêlo, “Symdiff:
A language-agnostic semantic diff tool for imperative programs,” in
Computer Aided Verification, 2012, pp. 712–717.

[42] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Psreanu, “Differential
symbolic execution,” in Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of software engineering, 2008.

[43] D. A. Ramos and D. R. Engler, “Practical, low-effort equivalence
verification of real code,” in Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11), 2011.

[44] D. Gao, M. Reiter, and D. Song, “BinHunt: Automatically finding
semantic differences in binary programs,” in Poceedings of the 10th
International Conference on Information and Communications Security
(ICICS’08), 2008.

[45] J. Ming, M. Pan, and D. Gao, “iBinHunt: Binary hunting with inter-
procedural control flow,” in Proceedings of the 15th Annual International
Conference on Information Security and Cryptology (ICISC’12), 2012.

[46] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of similar
code fragments using semantic ‘juice’,” in Proceedings of the 2nd
ACM SIGPLAN Program Protection and Reverse Engineering Workshop
(PPREW’13), 2013.

[47] B. H. Ng and A. Prakash, “Exposé: Discovering potential binary code
re-use,” in Proceedings of the 37th IEEE Annual Computer Software
and Applications Conference (COMPSAC’13), 2013.

[48] L. Luo, J. Ming, D. Wu, P. Liu, and S. Zhu, “Semantics-based
obfuscation-resilient binary code similarity comparison with applications
to software plagiarism detection,” in Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software Engineering
(FSE’14), 2014.

[49] D. Brumley, J. Caballero, Z. Liang, N. James, and D. Song, “Towards
automatic discovery of deviations in binary implementations with appli-
cations to error detection and fingerprint generation,” in Proceedings of
16th USENIX Security Symposium, 2007.

http://sourceforge.net/about
http://bitblaze.cs.berkeley.edu/
http://www.oreans.com/codevirtualizer.php

17

[50] D. Qi, A. Roychoudhury, Z. Liang, and K. Vaswani, “Darwin: An ap-
proach to debugging evolving programs,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 21, no. 3, p. 19, 2012.

[51] J. C. King, “Symbolic execution and program testing,” Commun. ACM,
vol. 19, July 1976.

[52] B. Korel, “Automated software test data generation,” IEEE Transactions
on Software Engineering, vol. 16, 1990.

[53] P. Godefroid, M. Levin, and D. Molnar, “Automated whitebox fuzz
testing,” in Proceedings of the Network and Distributed System Security
Symposium (NDSS), 2008.

[54] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in Proceedings of the 10th European software engineering con-
ference held jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, ser. ESEC/FSE-13, 2005.

[55] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, ser. PLDI ’05,
2005.

[56] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler,
“EXE: Automatically generating inputs of death,” in Proceedings of the
13th ACM conference on Computer and communications security (CCS
’06), 2006.

[57] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs,”
in OSDI, vol. 8, 2008, pp. 209–224.

[58] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and
arrays,” in Computer Aided Verification (CAV ’07), 2007.

[59] L. D. Moura and N. Bjørner, “Z3: an efficient smt solver,” in Proceedings
of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, 2008.

[60] “STP Constraint Solver,” [online]. Available: http://sites.google.com/
site/stpfastprover/STP-Fast-Prover.

[61] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of unix utilities,” Commun. ACM, vol. 33, December 1990.

[62] D. Brumley, H. Wang, S. Jha, and D. Song, “Creating vulnerability
signatures using weakest preconditions,” in Proceedings of the 20th
IEEE Computer Security Foundations Symposium (CSF’07), 2007.

[63] K. A. Roundy and B. P. Miller, “Binary-code obfuscations in prevalent
packer tools,” ACM Computing Surveys, vol. 46, no. 1, 2013.

[64] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A hidden code
extractor for packed executables,” in Proceedings of the 2007 ACM
Workshop on Recurring Malcode (WORM’07), 2007.

[65] F. Guo, P. Ferrie, and T. Chiueh, “A study of the packer problem and its
solutions,” in Proceedings of 11th International Symposium on Recent
Advances in Intrusion Detection (RAID’08), 2008.

[66] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineer-
ing of malware emulators,” in Proceedings of the 2009 IEEE Symposium
on Security and Privacy, 2009.

[67] “Diablo Is A Better Link-time Optimizer,” [online]. Available: http://
diablo.elis.ugent.be/.

[68] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO’04), 2004.

[69] “Optimize options - using the gun compiler collection (GCC),” [online].
Available: http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html.

[70] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Proceedings
of the 36th IEEE Symposium on Security and Privacy, 2015.

[71] B. Yadegari and S. Debray, “Symbolic execution of obfuscated code,”
in Proceedings of the 22nd ACM Conference on Computer and Com-
munications Security (CCS’15).

[72] F. Gröbert, C. Willems, and T. Holz, “Automated identification of
cryptographic primitives in binary programs,” in Proceedings of the 14th

International Conference on Recent Advances in Intrusion Detection
(RAID’11), 2011.

[73] R. Potharaju, A. Newell, C. Nita-Rotaru, and X. Zhang, “Plagiarizing
smartphone applications: Attack strategies and defense techniques,” in
Proceedings of the 4th International Conference on Engineering Secure
Software and Systems (ESSoS’12), 2012.

[74] Z. Tian, Q. Zheng, T. Liu, M. Fan, X. Zhang, and Z. Yang, “Plagiarism
detection for multithreaded software based on thread-aware software
birthmarks,” in Proceedings of the 22nd International Conference on
Program Comprehension (ICPC’14).

Jiang Ming is currently a Ph.D. candidate in the College of Information
Sciences and Technology at the Pennsylvania State University. His research
interests include program analysis and verification for security issues, intrusion
detection, malware analysis and detection.

Fangfang Zhang received the M.S. degrees from Peking University in
2008, and the Ph.D. degree in computer science from the Pennsylvania
State University in 2013. She is currently a data scientist at FireEye, Inc.
Her research mainly focuses on software plagiarism detection, algorithm
plagiarism detection and malicious JavaScript code obfuscation detection.

Dinghao Wu is an assistant professor in the College of Information Sciences
and Technology at the Pennsylvania State University. He received his Ph.D.
in Computer Science from Princeton University in 2005. He does research
on software systems, including software security, software protection, soft-
ware analysis and verification, information and software assurance, software
engineering, and programming languages. His research has been funded by
National Science Foundation (NSF), Office of Naval Research (ONR), and
U.S. Department of Energy (DOE).

Peng Liu is a professor of information sciences and technology in the College
of Information Sciences and Technology, Pennsylvania State University. He
is the research director of the Penn State Center for Information Assurance
and the director of the Cyber Security Laboratory. His research interests are
in all areas of computer and network security. He has published a book and
more than 200 refereed technical papers. His research has been sponsored
by DARPA, US NSF, AFOSR, US DOE, US DHS, ARO, NSA, CISCO, HP,
Japan JSPS, and Penn State.

Sencun Zhu is an associate professor in Penn State University. He received
the B.S. degree in precision instruments from Tsinghua University, Beijing,
China, the M.S. degree in signal processing from the University of Science
and Technology of China, Graduate School at Beijing, Hefei, China, and
the Ph.D. degree in information technology from George Mason University,
Fairfax, VA, USA, in 1996, 1999, and 2004, respectively. His research interests
include network and systems security and software security. His research has
been funded by National Science Foundation, National Security Agency, and
Army Research Office/Lab.

http://sites.google.com/site/stpfastprover/STP-Fast-Prover
http://sites.google.com/site/stpfastprover/STP-Fast-Prover
http://diablo.elis.ugent.be/
http://diablo.elis.ugent.be/
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

