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Abstract—Modern software engineering practice increasingly
brings redundant code into software products, which has caused a
phenomenon called bloatware, leading to software system main-
tenance, performance and reliability issues as well as security
problems. With the rapid advances of smart devices and a more
connected world, it is never more important to trim bloatware to
improve the leanness, agility, reliability, performance, and secu-
rity of the interconnected software and network systems. Previous
methods have limited scopes and are usually not fully automated.
In this paper, we propose a new static-analysis-enabled approach
to trimming unused code from both Java applications and Java
Runtime Environment (JRE) automatically. We have built a tool
called JRed on top of the Soot framework. We have conducted
a fairly comprehensive evaluation of JRed based on a set of
criteria: code size, code complexity, memory footprint, execution
and garbage collection time, and security. Our experimental
results show that, Java application size can be reduced by 44.5%
on average and the JRE code can be reduced by more than
82.5% on average. The code complexity is significantly reduced
according to a set of well-known metrics. Furthermore, we report
that by trimming redundant code, 48.6% of the known security
vulnerabilities in the Java Runtime Environment JRE 6 update
45 has been removed.

I. INTRODUCTION

With the rapid development of modern software engi-
neering, the size of the software products keep expanding,
leading to the problem of “bloatware” [1]. The bloatware
has become an emerging urgent issue, especially in object-
oriented programming languages such as Java. Encapsulation,
polymorphism, inheritance, big libraries, frameworks, and
other abstraction and modularization mechanisms improve
programmer productivity and software reliability, but on the
other hand bring a large amount of unnecessary bloat code
into the software product.

Code size has a profound impact on many aspects of a
system, including software or especially smartphone apps
download and installation time, program loading time, disk
and memory storage, software testing and maintenance cost,
battery or in general energy consumption, code complexity,
software and system reliability, and security attack surface, to
name a few.

For example, there is a Java 7 exploitable bug residing
in the Java Runtime JRE library classes. In particular, an
attacker can abuse some other methods and classes after he
or she disables the SecurityManager of Java Applet by taking
advantage of that exploitable bug [2]. More Specifically, by
exploiting the method findClass in Class java.lang.ClassLoader
and the method methodFinder in Class com.beans.Finder,
attackers can call method getField, which can get any private
field in class sun.awt.SunToolkit. Thus, attackers can access
and modify some sensitive private fields in sun.awt.SunToolkit
such as AccessControlContext. The Java security policies
have already banned the use of sun.awt.SunToolkit in the
Java Applet scenario to prevent privilege escalation. However,

knowing that sun.awt.SunToolkit is dangerous but still leaving
it there finally gives attackers chances to take advantage of an
exploitable bug to walk around security policies and abuse
it [2]. If we cut sun.awt.SunToolkit Class and other unused
classes from the JRE libraries for the Applet usage scenario,
many similar security problems will go away.

Previous research on bloatware has different scopes with our
research or incurs a number of limitations. Some works focus
on the local optimization of used code [3], [4], [5]. Xu [5]
proposes a method to mitigate the bloatware issue by finding
reusable data structures. Coco [6] adaptively replaces inef-
fective Java collections with effective ones in large software
systems. These approaches are mostly for dynamic code reuse
and optimization. Pugh [7] and Bradley et al. [8] propose some
packing and encoding methods to reduce the size of jar files,
but they do not reduce the actual code size. Morgenthaler et
al. [9] try to lower the difficulty of dependency management
and target building caused by huge monolithic code base.
They remove the build files associated with dead code, identify
“unbuildable targets”, and unnecessary command line flags.

In this paper, we propose a fully automated static approach
to trimming unused redundant bytecode from both Java ap-
plications and Runtime JRE library code. We first construct
a call graph for the target Java application or library code,
using static program analysis. Based on the call graph, we
perform a conservative reachability analysis for used methods
and classes to identify unused ones. Those unused methods
and classes are marked for trimming.

Our approach is not intended to be a general approach
that can be applied anywhere in any scenario. Instead, our
approach could be very useful and effective in certain appli-
cations and scenarios. For example, part of our contribution
is JRE customization. There are some situations where we
can perform JRE customization. We might not customize the
JRE in our personal laptops where we frequently install and
remove applications. However, for those computing environ-
ments that run certain fixed Java applications, such as servers,
cloud instances, sensors, GPS navigators, and computers in
classrooms, labs, test centers, and offices, a customized JRE
could be a desired feature. In these scenarios, we can trim JRE
library based on these applications. We only trim the intersec-
tion of the computed JRE “bloat” for each Java application.
Regarding the application customization, a good example is
about mobile apps. The disk sizes of mobile devices actually
are very limited. Most smartphones are equipped with 16GB
disks. After excluding the size occupied by the OS, photos,
and other documents, only a few GB are left for installing new
apps. Considering the fact that many apps on smartphones are
pre-installed by the vendors which cannot be removed, the left
space is even tighter. It is very easy to find mobile apps whose
sizes exceed 1GB on today’s App stores. Potentially, we can



TABLE I: Case study on library and application class and
methods actually used by Catalina

Methods Lines
java.lang.String

All Methods of Class 78 1,099
Methods Ever Called by Catalina 62 890
Called Methods/All Methods 79.5% 81.0%

java.lang.Integer
All Methods of Class 36 473
Methods Ever Called by Catalina 14 156
Called Methods/All Methods 38.9% 33.0%

catalina.connector.Request
All Methods of Class 143 2,872
Methods Ever Called by Catalina 102 1,961
Called Methods/All Methods 71.3% 68.3%

catalina.core.ApplicationContextFacade
All Methods of Class 25 402
Methods Ever Called by Catalina 2 29
Called Methods/All Methods 8.0% 7.2%

gain benefit by applying our technologies to those apps.
We have implemented our approach in a prototype tool

called JRed on top of Soot [10]. We have evaluated JRed

on the DaCapo benchmark on code size, code complexity,
memory footprint, execution and garbage collection time, and
security attack surface. Our experimental results show that
JRed is quite effective for practical use.
JRed reduces the size of the Java application code on

average by 44.5%. JRed reduces the size of the Java Runtime
JRE core library rt.jar by as much as 94.9%. From the
end user point of view, the device disk footprint is reduced
by roughly 50% with use of JRed. Based on the 8 code
complexity metrics including CK Java Metrics, JRed reduces
the code complexity of both Java application and Java Runtime
JRE core library rt.jar significantly. JRed trims nearly half
of the known security vulnerabilities in the specialized Java
Runtime JREs for each benchmark programs. Since unknown
vulnerabilities are trimmed as well, this roughly leads to
reduced attack surface by 50%. By specializing Java Runtime
JRE for different applications, we can achieve more diversity,
resulting enhanced moving target defense [11]. Besides these
direct impacts on the transformed program, our tool also can
provide useful information and guidelines to assist software
architects and developers for software customization, config-
uration, optimization, and refactoring.

In summary, we make the following contributions:

• We propose an automated static approach to trimming
unused code.

• We have implemented this method in a tool called JRed.
Our experimental results show that JRed can significantly
reduce code size, code complexity, and attack surfaces.

• Our results also quantitatively unveil the proportion of
bloat existing in Java applications and JRE.

• We build specialized Java Runtime JREs for different
Java applications, enabling more software diversity and
enhanced moving target defense.

II. EXAMPLE

To investigate how many methods of a class are actually
invoked by a large real-world Java application, we conduct a
small case study1 on Catalina, a Servlet container, which is a

1We initially built a tool based on Joeq [12] to conduct this case study.
Our current prototype implementation JRed is based on Soot [10]. We utilize
the type parsing capability of Joeq to run our conservative analysis. The case
study is run on a machine with Intel Core2 Duo 3.16 GHz CPU and 4G RAM.
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Fig. 1: JRed Architecture

core sub-project of the Tomcat web server. We select two JRE
core library classes, java.lang.String and java.lang.Integer, and
two application classes, org.apache.catalina.connector.Request
and org.apache.catalina.core.ApplicationContextFacade. The
String class is frequently used by almost every Java program.
In addition, its class hierarchy is quite simple, which only
has one super class, java.lang.Object. Developers cannot ex-
tend the String class because it is final. The data of String
class represents a rough upper bound of JRE class methods
usage. The class java.lang.Integer is also widely used by
many projects. However, most projects usually only use a
few methods of Integer (e.g., Integer.parseInt). We expect
that even a big project may only call a small portion of
Integer methods, which represents roughly normal cases of
most library classes. Based on the same principles, a frequently
used application class (Request) and a less frequently used
class (ApplicationContextFacade) are chosen.

The results of the String class are shown in the first row
of Table I. There are about 79.5% of String methods are
actually called in Catalina. The results of the Integer class
are shown in the second row of Table I. Among all 36
methods of class Integer, 14 methods are actually called by
Catalina, which means only 38.9% of Integer methods are
used. Class Integer is a representative of most typical library
classes that are instantiated in Catalina project. Therefore,
we can roughly conclude that typically there are only about
40–80% of methods of library classes that are actually used,
which points to large rooms for software customization and
specialization.

We repeat the same experiment on the two application
classes, Request and ApplicationContextFacade. The class
Request is frequently and comprehensively used in Catalina.
Thus it may represent a rough upper bound of method usage
in application classes. The analysis result is shown in the third
row of Table I. There are 143 methods in total, among which
102, or 71.3%, are actually used in the project. For the less
frequently used class AppliationContextFacade, there are 25
methods in total, among which only 2 methods are called.
More than 90% methods of this class could be deleted.

The data on lines of source code show similar experimental
results, on both library and application classes. The prelimi-
nary study results confirm that, for both library and application
classes, there are the opportunities of software customization
and specialization through trimming redundant unused code.

III. APPROACH

We first present the overall architecture of JRed, and then
describe the details of the individual components.

A. Overview

Fig. 1 shows the architecture of JRed. JRed transforms a
Java application and the entire JRE into a redundant-code-free
version. The input of JRed is a runnable Java program in byte-
code. The first component, the parser, reads the bytecode of
the Java program. It transforms the Java bytecode into the Soot
intermediate representation (IR), Jimple [13]. The analyzer
then conducts the analysis based on the Jimple IR. Taking the
Java main method as the root node, the analyzer builds a call



graph statically through the interprocedural points-to analysis.
Call graph contains the information of the used methods and
the classes that include those methods. As the output of the
analyzer, the call graph is passed to next component Reducer.
By iterating all the classes, the reducer checks if the methods
of each class are nodes of the call graph. If a method is not
presented in the call graph, the reducer rewrites the IR of the
class to delete this method. If a class has no methods being
used and no static fields being accessed, then the entire class
is removed. In the next step, the code generator transforms the
customized IR back into the Java bytecode.

B. Analyzer

Methods in object-oriented (OO) languages usually are en-
capsulated by classes. To build call graph for an OO language,
we need to additionally collect class hierarchy and class
instance reference information to determine methods override.

Due to the class hierarchy, there are cases where we cannot
determine that the callee information hierarchy statically. A
straightforward solution is to add the methods of all classes in
the same class hierarchy into the used method worklist. But
even with this conservative approach, we still need basic class
hierarchy information.

We use SPARK, a flexible points-to analysis framework
for Java [14], to facilitate call graph construction. Points-
to analysis builds the call graph on the fly [15]. Compared
with some other popular call graph construction techniques,
such as Class Hierarchy Analysis (CHA) [16] and Rapid Type
Analysis (RTA) [17], points-to analysis builds a more precise
call graph. Points-to analysis for Java is different than for
C [14]. SPARK points-to analysis takes advantages of the
Java language features such as type-safety to collect more
information for building call graph. Then we take a conser-
vative approach to code trimming based on the call graph.
Our analysis is not context or path sensitive. In the evaluation
section, we will show that even with this conservative analysis,
we can achieve considerable rate of code trimming.

To remove unused classes, it is unnecessary to conduct a
complete class usage analysis since the basic loading unit of
Java is a class and the methods reside in classes. If a method
of a class is determined to be actually used, then the class that
encapsulates this method must be retained as well. When an
object is initiated, the constructor of the corresponding class
must be called. In addition to methods, static class fields may
prevent a class from being trimmed as well. Static class fields
of a class can be accessed through the class name directly
without object instances initialization.

C. Reducer

The Reducer deletes unused methods and classes from
IR based on the analysis results. It takes two steps. First,
the reducer deletes unused methods. We iterate through each
loaded class and the methods in those classes. If a method
is used, as a node of the call graph, it is kept untouched.
If a method is not in our used method set, we mark it as
a potential candidate for trimming. To ensure the correctness
of trimming, we cannot delete the method right away since
some method invocations cannot be determined statically (e.g.
the method invocations before the main method is called).
Although precisely determining all method invocations in a
sound and complete approach is undecidable, it is possible
to over-approximate the problem and trim the code conserva-
tively (soundly). In other words, we do not delete all unused

methods. We delete a large proportion of them. The deleted
ones are guaranteed not to be used. We thus ensure the
correctness of the resulted lean Java code.

To this end, we adopt a set of over-approximate rules. The
first rule is not to delete native methods. Native methods
offer an interface to call those functions written in C via
Java Native Interface (JNI). Setting the analysis boundary at
native methods avoids making our tool analyze native code
and reduces the complexity of the analysis. This is a tradeoff
for our prototype implementation. In the future, it would be
interesting to investigate the whole system including native
code.

The second rule is not to delete any methods of classes that
are loaded before the start of the Java main method. JVM
executes a routine program to bootstrap necessary running
environment before executing the main method of the program.
The entry of our static analysis is the main method of the
program. The number of classes that are loaded before the
main method are only 315. Compared with more than 18,000
classes in the Java runtime rt.jar, keeping these 315 classes
does not affect the overall results much.

If a method is neither a node of the call graph nor qualified
for any of these over-approximate rules, it is then trimmed. The
next step is to trim unused classes. If a class has no method or
static field being actually used, then the entire class is trimmed.

D. Code Generator

At last, the code generator transforms the customized Soot
IR to Java byte code and writes it into corresponding Java
class files. In practice, this step may need additional work due
to some software engineering issues in real world programs.
Good software engineering practice should separate resource
files and programs (e.g., in the “bin” and “resource” folder,
respectively). However, some programs in real world mix them
together in the “bin” folder. The existence of these resource
files raise a challenge for our analysis. In these cases, JRed has
to extract the resources files first before analysis, and merge
those resource files with the transformed class files at the code
generation step.

IV. EVALUATION

In this section, we evaluate JRed by applying it to 9 Java
programs selected from DaCapo 9.12-bach benchmark [18].
Our experiments were conducted on HP SL390S G7 servers
high performance computing cluster with 12 Intel X5670 2.93
GHz processors and 48G Memory. The operating system is
Red Hat Enterprise Linux Server release 5.10 (Tikanga). The
Linux kernel version is 2.6.18. We use JRE 6 Update 45 as
our Java running environment.

First we clarify the scope of our evaluation. A mobile
device, desktop, or server that runs Java program is composed
by three software entities: the OS, the Java Runtime JRE, and
the Java application. Our goal is to evaluate the impact of our
redundant code trimming technology on the Java application
and JRE core libraries, and Java app+JRE. We define the
Java app+JRE as the combination of Java applications and
the whole JRE which consists of JRE core libraries, Java
executable, and other supported files. The OS is out of the
scope.

To evaluate JRed, we would like to answer the following
research questions.

Q1: What is the impact of our redundant code trimming
technique on the size of Java applications, JRE core
libraries, and Java-app+JRE together?
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Q2: What is the impact of our redundant code trimming
technique on the code complexity of Java applica-
tions and JRE core libraries?

Q3: What is the impact of our redundant code trimming
technique on memory footprint?

Q4: What is the impact of our redundant code trimming
technique on Java application execution and garbage
collection time?

Q5: What is the impact of our redundant code trimming
technique on software reliability and security?

A. Code Size

In this subsection, we present the experiments to answer the
research question Q1, the impact on the size of Java applica-
tions, Java Runtime JRE. and all together Java App+JRE.

1) Java Application Code Size: The experimental results
are shown in Table II and Fig. 3. A Java program, consisting
of a group of class files that contain Java bytecode, could be
stored in two different forms. The first form is that all class
files are packed into a jar file. The second form is that all class
files are unpacked. For each benchmark program, Table II and
Fig. 3 shows the reduced-original size ratio in three different
metrics. The first metric, reduced-original jar file size ratio,
measures the impact of code reduction on the program as a jar
file. The second and third metrics measure the unpacked cases.
The second metric is the sum of the sizes of all class files. The
third metric is the size of all class files that actually occupy
on the disk. The jar file size metric is the most important
metric among all the three metrics, since the jar file is the
most common form of a Java program. The second metric
and the third metric have subtle difference. The total size that
all class files actually occupy on the disk is usually larger than
the sum of the sizes of these files; the latter is equal to adding
up every file’s bytes number. The reason is that the basic unit
of hard disk is a “sector” rather than a byte. If the size of
a file is 1 byte, then it actually occupies the size of a disk
sector on the hard disk. In Table II, the column “original”
presents the data of original size of each benchmark program
in these three different metrics. The column “reduced” shows
the size of reduced version benchmark or say the left size
after trimming. The column “Reduced/Original” displays the
number of reduced version size divided by original size.

In Table II and Fig. 3, among the 9 benchmark programs,
the lowest reduced-original jar size ratio is 30.08% (lusearch)
and the highest one is 80.14% (sunflow). The median number
is 54.53%. On average, the reduced-original jar size ratio is
55.52%. 4 out of 9 benchmark programs’ jar files could be
trimmed more than half off, and 6 out of 9 could be trimmed
more than 40% size off. The lowest reduced-original sum of
all class files size ratio is 21.78% (luindex) and the highest
is 77.11% (h2). The median number is 51.46%. The average
number is 63.12%. The lowest reduced-original all class files
on-disk size ratio is 46.40% (xalan) and the highest is 87.53%
(avrora). The median number is 65.00%. The average number
is 67.13%. The results show that typically we can trim more

than 40% size on average for the Java applications when they
are in packed forms. These results have a significant impact
on, for example, smartphone app download and installation
time.

2) Java Runtime JRE Code Size: The Java Runtime JRE
usually contains four folders: bin, javaws, lib, and plugin. The
folder plugin stores plugin files. The folder javaws contains
files related to Java Web Start (JavaWS). The two most im-
portant folders are bin and lib. Bin includes the Java executable
(the console command java). Lib contains the JRE core
libraries, extension libraries, and other supported files. Fig. 2
shows the structure of a JRE. The lib folder solely occupies
nearly 99% of JRE in size. In this sector, a single jar file,
rt.jar, occupies 53.30% in size. Excluding rt.jar, other jar files,
shared object files (.so), and supported files (e.g., property
files) comprise the rest 45.64% in size. In addition, rt.jar
contains the most frequently used packages such as java.lang,
java.util, java.io, and java.math. So in the evaluation of JRE
core libraries trimming, we select rt.jar as a representative of
the whole JRE core libraries. Considering that other libraries
in the JRE usually are Java extensions which are designed for
specified case rather than general usage like rt.jar, the ratio of
the size that we can trim from those libraries should be higher
than that of rt.jar.

The experimental results are presented in Table III and
Fig. 4. The metrics we used in Table III and Fig. 4 are
the same as the metrics we have used in Java application
size measurement. Although all customized rt.jar files are
different, the original rt.jar that we trimmed from is the same.
So compared with II, we do not have a column “original” in
Table III, but we list the data of original rt.jar under the main
table.

On rt.jar, the lowest reduced-original jar file size ratio is
5.11% (avrora) and the highest one is 26.15% (fop). The
median number is 17.52%. On average, the reduced-original
rt.jar file size ratio is 17.45%. No one is higher than 30%.
The lowest reduced-original sum of all extracted class files
from rt.jar size ratio is 30.72% (xalan) and the highest one
48.52% (fop). The median number is 34.32%. On average,
it is 32.73%. The lowest reduced-original all extracted class
files of rt.jar on disk size ratio is 11.71% (avrora) and the
highest one is 58.24% (fop). The median number is 38.18%.
The average number is 38.24%.

The proportion of the size we can trim from both applica-
tions and rt.jar is significant. Meanwhile, it is not surprising
to see that we can trim more on rt.jar as it is a general
runtime library. The cohesion of each component inside an
application is relatively higher than the cohesion between an
application and the JRE core library, and the cohesion of
different packages in JRE core libraries. This result meets our
assumption that a more general design and a higher abstract
level lead to the code with more bloat.

3) Java App+JRE All Together: We define the application
and JRE (not only the core libraries in JRE) together as “Java-
App+JRE”. Fig. 5 shows the experimental results on Java-
App+JRE for the 9 benchmark programs. The Y axis is the size
(MB) of Java-App+JRE for each benchmark program. For each
benchmark, there is a higher bar and a shorter bar representing
the size of original Java-App+JRE and the reduced lean
version, respectively. In each bar, the dark gray part represents
the size of the application and the light gray part represents the
size of JRE. We can see that the left side light gray bar on each
benchmark program has the same height, which means each
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Fig. 3: Reduced-Original Size Ratios of DaCapo

Avrora Batik Fop H2 Luindex Lusearch Pmd Sunflow Xalan

0

20

40

60

80

100

P
er

ce
n

ta
g

e(
%

)

Jar File Size Sum of All Extracted Class Files Size All Extracted Class Files Size on Disk

Fig. 4: Reduced-Original rt.jar Ratios of DaCapo

application originally invoke the same JRE. The percentage
number above each right-side shorter bar on each benchmark
program is the reduced-original Java-App+JRE ratio. The light
gray part of each right side shorter bar consists of two parts: a
reduced rt.jar and other files in lib folder that are not touched
in this experiment. From Fig. 5, we can see that a big JRE
core library (93.9MB) causes the sizes of all Java-App+JREs
to be around 100MB.

By comparing two bars of each benchmark program, we
can see that after trimming, all Java-App+JREs roughly have
half size of their original versions. If we additionally analyze
and delete other Java bytecode in the lib folder, the percentage
could be lower. The results show that JRed can significantly
reduce the whole Java package Java-App+JRE by half on code
size.

B. Code Complexity

In this subsection, we present the experimental results to
answer research question Q2: the impact of JRed on the
code complexity of Java applications and runtime JRE. The
results on Java applications are shown in Table IV, Fig. 6, and
Fig. 7. We measure the code complexity by the Chidamber
and Kemerer (CK) object-oriented metrics and two other
metrics. The CK object-oriented metrics suite is proposed
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Fig. 8: Reduced-Original rt.jar CK Java Metrics Ratios

by Chidamber and Kemerer [19], [20] for measuring the
complexity of object-oriented software. It contains 6 metrics,
including Weighted Methods Per Class (WMC), Depth of
Inheritance Tree (DIT), Number of Children (NOC), Coupling
Between Objects (CBO), Response For a Class (RFC), and
Lack of Cohesion in Methods (LCOM). These metrics are
measured at the class level. In our experiment, we add the data
of each class in an application or a JRE together to calculate
the complexity of that application or JRE, because we aim to
do complexity comparison on the whole program level.

On WMC, we assign all methods the same weights, which
means WMC simply indicates the total number of the methods
of the classes. According to the study conducted by Misra and
Bhavsar [21], the number of bugs are positively proportional
to the average number of WMC. DIT indicates the number of
parents a class has. A deeper inheritance tree may ease the OO
design and software reuse. However, a deeper inheritance tree
also involves more design complexity. NOC is the number
of the immediate subclasses that a class has. Usually a big
NOC is worse than a big DIT since the depth of class
hierarchies promotes more reuse than the width. If a class has
a larger number of immediate subclasses, then more classes
will be affected when this class is changed and more testing
is necessary.

CBO measures how intensively an object invokes or ac-
cesses the methods, fields or objects outside its own class in-
heritance hierarchy. Good software engineering design practice
requires high degree of cohesion but low degree of coupling.
Frequent inter-object reference usually breaks the modularity,
decreases the chance of reuse, makes code less understandable,
and requires more testing endeavor in general. RFC indicates
the number of the methods of a class invoked from outside
of this class. This metric could be understood as a passive
version CBO. Similarly, a high RFC hints less understandable
codes and demands higher testing effort in general. LCOM
measures the cohesion of a class. Each method of a class
M operates on a set of class fields F , LCOM equals to the
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TABLE II: DaCapo benchmark applications code size before and after unused code trimming comparison

Benchmark
Size of Jar Files (MB) Size of All Files (MB) Size of All Files on Disk (MB)

Original Reduced Reduced/Original Original Reduced Reduced/Original Original Reduced Reduced/Original
(MB) (MB) (%) (MB) (MB) (%) (MB) (MB) (%)

avrora 1.98 1.32 66.67 3.15 2.21 70.16 7.46 6.53 87.53
batik 6.86 2.97 43.29 13.70 5.64 41.17 25.90 13.20 50.97
fop 6.20 4.69 75.65 12.30 9.37 76.18 24.40 20.70 84.83
h2 7.39 4.03 54.53 33.20 25.6 77.11 40.60 29.80 73.40
luindex 0.86 0.36 42.24 1.56 0.63 21.78 2.87 1.57 54.70
lusearch 1.26 0.38 30.08 1.83 0.63 34.43 3.31 1.69 51.06
pmd 2.86 1.68 58.74 5.46 2.81 51.46 11.80 7.67 65.00
sunflow 1.41 1.13 80.14 2.31 1.55 67.10 4.10 3.16 77.07
xalan 4.61 1.98 42.95 9.48 3.95 41.67 16.70 7.75 46.40
average 3.71 2.06 55.52 9.22 5.82 63.12 15.24 10.23 67.13

TABLE III: Customized rt.jar of DaCapo benchmark applications code size before and after unused code trimming comparison

Original Size of rt.jar Original Size of all files of rt.jar Original Size of all files of rt.jar on disk
50.1 47.2 92.2

Benchmark
Size of Jar Files Size of All Files Size of All Files on Disk

Reduced (MB) Reduced/Original(%) Reduced (MB) Reduced/Original(%) Reduced (MB) Reduced/Original(%)
avrora 2.56 5.11 4.25 47.20 10.80 11.71
batik 10.90 21.75 19.90 40.04 44.40 48.16
fop 13.10 26.15 22.90 48.52 53.70 58.24
h2 9.17 18.33 16.40 34.75 36.81 39.91
luindex 8.00 15.97 15.10 31.99 31.29 33.95
lusearch 8.78 17.52 15.10 31.99 35.20 38.18
pmd 8.31 16.57 14.70 31.14 34.28 37.20
sunflow 9.67 19.30 16.21 34.32 37.21 40.35
xalan 8.17 16.31 14.50 30.72 33.62 36.44
average 8.74 17.45 15.45 32.73 35.26 38.24

maximum number of the F sets that are completely disjoint. A
high LCOM indicates that the methods in a class operate on
several separate data sets and share few common properties
or functions. High LCOM usually is caused by incorrect
methods, unnecessary methods or unused methods that are
inappropriately encapsulated in a class. Low cohesion often
makes a class unnecessarily complicated.

The first 6 rows of each sub-table in Table IV show the
experimental results of each benchmark application before and
after JRed trimming on the CK Java metrics. Fig. 6 visualizes
the reduced-original ratio on all six CK metrics. For the CK
Java metrics, the results vary on different applications due
to their own design nature. On benchmark H2, no reduced-
original ratio among all 6 CK metrics is more than 41%. The
reduction ratios on avrora are around 20%. In summary, all 6
metrics on all 9 applications are reduced significantly, resulting
a reduced code complexity after JRed trimming.

Besides the CK Java metrics, we also measure two other
metrics on code complexity. The first one is Afferent Cou-
plings (Ca) [22]. It is the number of the methods of the classes
in a specific package invoked by the classes in other packages.
Ca is similar to RFC, but the granularity is coarser since it
measures the inter-package couplings. The other one is the
number of the classes. We have measured the total number
of methods in the CK Java metrics. So we are also curious
about how the number of classes changes before and after
trimming. Fig. 7 and the last two rows of each sub-table in
Table IV show the reduced-original ratio of these two more
measurements. Overall, there are significant reduction on the
metrics Ca and NC for all the 9 benchmark programs.

By comparing Fig. 6 and Fig. 7, we can see that all 8
metrics are roughly positive proportional to each other. They
together indicate we can reduce the code complexity from the
original application. Overall, if the original program’s design is
compact and the project scale is limited, it usually contains less

code bloat and low degree of code complexity. The complexity
we can reduce is also related to the nature of the application
functions.

The impact on the code complexity of JRE core libraries
is presented in Table V, Fig. 8, and Fig. 9. We use the
same metrics on JRE by comparing the data before and after
unused code trimming. Again, compared with original JRE,
customized JRE reduced the code complexity significantly.
Compared with applications, the reduction proportion of code
complexity in JRE is bigger.

C. Memory Footprint and Execution Time

In this subsection, we answer the research questions Q3
and Q4. We did experiments to compare the performance
and the memory usage between each original Java application
and its lean version. We select benchmark program avrora’s
memory footprint and execution time data here which is shown
in Table VI and Table VII. The lean version benchmark
has slightly smaller memory footprint, but mostly remains
the same size as the original version. Since the JVM loads
class files on demand, class trimming does not contribute to
the reduction of memory usage. All memory usage savings
are from unused method trimming: given the same number
class files, lean version class files have fewer methods, which
leads to less memory usage. In most Java application memory
footprints, byte code only occupies a small portion, where
the heap and stack occupy the most memory. In addition, to
avoid frequently requesting memory allocation from system,
rather than allocating memory on demand, JVM usually uses a
more-than-enough memory (allocated all pools) to run the Java
program to give flexibility to garbage collection. Due to these
factors, JRed does not reduce memory footprint significantly.
In our future work, we would like to consider trimming unused
fields as well after unused method and class trimming, which



TABLE IV: Java Application Code Complexity Measurements

Benchmark
Avrora Batik Fop

Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%)
WMC 8377 7300 87.14 35272 14667 41.58 50324 25212 50.10%
DIT 702 614 87.46 3748 1642 43.81 4722 2298 48.67
NOC 1010 971 90.79 1695 1015 59.88 2884 1812 62.83
CBO 10065 9211 91.51 18239 9439 51.75 31281 17296 55.29
RFC 19797 17514 88.46 82546 36022 43.64 133805 66587 49.76
LCOM 83590 61597 73.69 282950 65357 23.10 355659 134006 37.68
Ca 10065 9211 91.51 18089 9439 52.18 29586 17296 58.56
NC 1644 1528 92.94 4622 2455 53.12 6559 3856 58.48

Benchmark
H2 Luindex Lusearch

Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%)
WMC 22454 6885 36 5124 2241 43.74 5136 2249 43.79
DIT 1433 333 23.24 438 245 55.93 441 274 62.13
NOC 1051 215 20.46 284 139 48.94 286 171 59.79
CBO 10431 4196 40.23 2705 1339 49.50 2718 1406 51.73
RFC 66258 19734 29.78 12958 5502 42.46 12986 5481 42.21
LCOM 607960 79493 13.08 28280 9411 33.28 28280 7385 26.11
Ca 9593 4196 43.74 2684 1339 49.89 2697 1406 52.13
NC 2118 498 23.51 638 343 53.76 17518 7441 42.48

Benchmark
Pmd Sunflow Xalan

Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%) Original Reduced Reduced/Original (%)
WMC 19525 10856 55.60 4828 2520 52.20 25574 13937 54.50
DIT 1788 1212 67.79 562 470 83.63 2960 1144 38.65
NOC 913 698 76.45 219 182 83.11 1158 497 42.92
CBO 10434 6737 64.57 4203 2412 57.39 15037 6387 42.48
RFC 44041 26060 59.17 12617 7440 58.97 60528 31433 51.93
LCOM 307277 193909 63.11 121318 7267 5.99 316124 152573 48.26
Ca 10372 6737 63.95 4200 2404 57.25 15033 6387 42.49
NC 2369 1702 71.84 657 551 83.87 2806 1396 49.75

TABLE V: The Java Runtime rt.jar Code Complexity Measurements

Original rt.jar
WMC 157,448 RFC 377,100
DIT 34,059 LCOM 2,564,567
NOC 17,505 Ca 46,346
CBO 46,385 NC 17,518

Benchmark
Avrora Batik Fop

Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%)
WMC 17897 11.37 72806 46.24 82876 52.64
DIT 4472 13.12 14924 43.77 17983 52.74
NOC 2411 13.77 9392 53.65 11325 64.70
CBO 2721 5.87 21059 45.40 29311 63.19
RFC 42822 11.36 181002 48.00 210779 55.89
LCOM 122205 4.77 660102 25.74 713399 27.82
Ca 2721 5.87 21059 45.44 29154 62.91
NC 2411 13.76 9392 53.61 11325 64.65

Benchmark
H2 Luindex Lusearch

Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%)
WMC 64590 41.02 58735 37.30 58573 37.20
DIT 13895 40.75 13732 40.28 13693 40.16
NOC 7619 43.52 7432 42.46 7441 42.51
CBO 15313 33.01 12529 27.01 12552 27.06
RFC 162775 43.16 147044 38.99 146614 38.88
LCOM 669830 26.12 576999 22.50 573980 22.38
Ca 15313 33.04 12529 27.03 12552 27.08
NC 42378 38.87 7619 43.49 7432 42.42

Benchmark
Pmd Sunflow Xalan

Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%) Reduced (MB) Reduced/Original (%)
WMC 57272 36.38 60422 38.38 56668 35.99
DIT 13547 39.73 14517 42.58 13426 39.38
NOC 7225 41.27 7744 44.24 7048 40.26
CBO 11792 25.42 13757 29.66 11099 23.93
RFC 143398 38.03 152322 40.39 141428 37.50
LCOM 571330 22.28 582335 22.70 570646 22.25
Ca 11791 25.44 13756 29.68 11099 23.95
NC 7225 41.24 38841 35.63 36465 33.45

WMC weighted methods/class RFC Response for a Class
DIT Depth Inheritance Tree LCOM Lack of method cohesion
NOC Number of Children Ca Afferent couplings
CBO Object class coupling NC Number of Classes



TABLE VI: Avrora Memory Footprint
Original (MB) Reduced (MB)

Heap allocated all pools 15.0 15.0
used survivor space 0.3 0.3
used tenured space 9.3 9.2

Non Heap allocated all pools 35.0 35.0
used perGen[shared rw] 7.3 7.3
used perGen[shared ro] 7.4 7.4
used perGen 3.5 3.4
code cache 1.6 1.6

TABLE VII: Avrora Execution and Garbage Collection Time
Original Reduced

full execution time(s) 129.4 128.5
GC time(s) 1.8 1.9

might have more impact on the memory footprint as it affects
the object sizes.

On performance, our measurement does not show significant
improvement. This is mainly due to that JRed does not per-
form optimizations on the reduced code. However, JRed might
potentially create more opportunity for the whole program
optimizations. Also, due to the reduction of code size, the
program loading and starting time can be significantly reduced
and thus from end user point of view, JRed does improve the
performance for certain Java applications. This might have a
bigger impact in a smart device environment.

D. Security

In this subsection, we address the research question Q5.
We surveyed all the known security vulnerabilities in the
CVE database that affects Oracle JRE 6 update 45. In total,
we found 14 security vulnerabilities reported, excluding the
vulnerabilities that only involve native code or do not offer
enough Java code patch information. We then checked the
number of those vulnerabilities that still exist in the cus-
tomized Java Runtime JREs for each of the 9 benchmark
programs. The results are shown in Table VIII. For avrora,
the specialized JRE only contains 1 vulnerability; the other
13 are trimmed. For others, JRed trimmed 6 out of 14. On
average, JRed trimmed nearly half of the security vulnera-
bilities. The results show that our tool is effective in reducing
software attack surfaces. By specializing Java Runtime JRE for
different applications, we can achieve more diversity, resulting
enhanced moving target defense [11].

E. Performance

In addition to the effectiveness evaluation, we also measured
the running time performance for our tool JRed. We investigate
how much time JRed takes to finish the transformation. The
transformation time is sum of the time taken by the parser,
analyzer, reducer, and code generator.

The results are shown in Table IX. The data is averaged
over 10 runs. The transformation time on the 9 benchmark
programs ranges from 1 to 7 minutes. The transformation
time is related to two factors. The first one is the original
size of the application. The transformation time is roughly
proportional to application code size. For example, the original
size of Fop (6.20MB) is 3.13 times to Avrora (1.98MB);
the transformation time of Fop is 4.93 times to Avrora. The
second factor is the cohesion of the application. For instance,
if we only consider application size, then H2 would be an
exception: the H2 original application size is 7.39MB but its
transformation time is only 116s. By checking Fig. 6 and
Fig. 7, we found that H2 is the one of the applications that are

trimmed off most in terms of code complexity, which indicates
H2 has relatively low cohesion. Overall, no transformation
time is over 10 minutes on 9 non-trivial benchmark programs.

F. Experimental Result Summary

In summary, JRed is quite effective in trimming code size,
reducing code complexity, and minimizing attack surfaces.

1) JRed reduces the size of the Java application code on
average by 44.5%.

2) JRed reduces the size of the Java Runtime JRE core
library rt.jar by as much as 94.9%.

3) JRed, from the end user point of view, reduces the device
disk footprint by roughly 50%.

4) Based on the 8 code complexity metrics including CK
Java Metrics, JRed reduces the code complexity of both
Java application and Java Runtime JRE core library rt.jar
significantly.

5) JRed trims nearly half of the known security vulnera-
bilities in the specialized Java Runtime JREs for each
benchmark program. Since unknown vulnerabilities are
trimmed as well, this roughly leads to reduced attack
surface by 50%. By specializing Java Runtime JRE for
different applications, we can achieve more diversity,
resulting enhanced moving target defense [11].

V. DISCUSSION AND FUTURE WORK

A. Impact on Reliability and Security

“Complexity is the enemy of security” [23]. However,
in real world, the pace of software complexity increasing
does not slow down. According to an estimate made by
McConnell [24], there are about 10–20 defects every thousand
lines of code (KLOC) during the in-house testing stage. In
the final release version, there is about 1 defect per KLOC.2

Assuming the bugs are distributed randomly, the number
of bugs we can trim is proportional to the percentage of
the code size we can reduce. In the evaluation section, we
have confirmed that, on average, nearly half of the known
vulnerabilities in JRE can be trimmed. It is notable that our
method also trims unknown vulnerabilities, which reduces
attack surface.

In addition, redundant code trimming gives opportunities to
those expensive security analysis and optimization. Although
our prototype implementation is for Java, this methodology
can be applied to other programming languages. For example,
most research on JavaScript code size reduction focuses on
code compression, which may give attackers chances to ob-
fuscate their malicious JavaScript [26]. Trimming redundant
code can help reduce JavaScript code size without security
concerns.

B. Usage and Application Scenarios

1) Code Trimming on Java Core Library: A consequence
of trimming code from the JRE is that the customized JRE may
not be capable of running other Java programs but only the
applications for which the JRE is customized. Some computing
environments just run certain fixed Java applications. For
example, ATMs, computers in offices or computer labs, reg-
istration kiosks, cloud instances, and in-vehicle entertainment
systems are such cases. For those computing environments,
a customized JRE would be a desired feature. First, JRE

2Note this is a rather conservative estimate. For example, Mockus, Fielding,
and Herbsleb [25] found that the Apache Server has about 2.64 defects per
KLOC.



TABLE VIII: Vulnerabilities Removed from the Customized JREs

Benchmark
CVE-2013-

Trimmed
Trimmed/Original

2473 2472 2471 2465 2463 2461 2457 2454 2453 2452 2450 2448 2446 2444 (%)
avrora ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 13 92.9
batik ✗ ✗ ✗ ✗ ✗ ✗ 6 42.9
fop ✗ ✗ ✗ ✗ ✗ ✗ 6 42.9
h2 ✗ ✗ ✗ ✗ ✗ ✗ 6 42.9
luindex ✗ ✗ ✗ ✗ ✗ ✗ 6 42.9
lusearch ✗ ✗ ✗ ✗ ✗ ✗ 6 42.9
pmd ✗ ✗ ✗ ✗ ✗ ✗ 6 42.9
sunflow ✗ ✗ ✗ ✗ ✗ ✗ 6 42.9
xalan ✗ ✗ ✗ ✗ ✗ ✗ 6 42.9
average 6.8 48.6

TABLE IX: JRed Performance
Benchmarks avrora batik fop h2 luindex lusearch pmd sunflow xalan
Transformation Time (s) 92 303 454 116 59 107 103 148 106

customization reduces the program size additionally. It is
important to some scenarios where the resources is very
limited. For example, the micro-sensor for the military usage
and the endoscope for the medical care could save valuable
resource from JRE customization. It is also a promising way to
save resources on servers or clouds for both service providers
and clients. Additionally, because Java programs are running
with a specialized JRE, this can potentially increase the cost of
cyber attacks as the same attack script work for one JRE will
unlikely work on another specialized different JRE. We do not
expect the JRE customization to be applied anywhere in any
scenario. However, this feature could be useful and effective
in certain applications and scenarios.

2) Code Trimming on Applications: JRed can analyze,
customize, and transform the applications running on JVM.
JRed is equally applicable to Dalvik by just replacing the
parser of current implementation [27].

C. Limitations

First, regarding the customized JRE, our approach restricts
applications to dynamically extend their functions without
going through another round of customization process. A
application that runs on a customized JRE cannot load plug-ins
that needs some methods that have been deleted.

Second, our approach causes that whenever a new software
update is released, we need to perform a new round of appli-
cations or JRE customization. If the code trimming happens
at the developer side, this iterative updating and trimming
process could be combined with Continuous Integration and
Continuous Deployment (CI/CD) process or nightly building
process. Nevertheless, from the client perspective, this is a
limitation of our method.

Finally, JRed does not analyze native code. So JRed does
not delete any native code. This policy may cause some
false negatives. However, these false negative are not severe
problems, since the number of the methods written in native
code that are invoked via JNI interface is very small.

D. Future Work

We have not try our approach to a system with more
than one application running. Applying our approach to a
system with more than one application running does not cause
additional challenges. The union of each single-application-
customized JRE should contain all necessary classes and
methods for running those applications. It is interesting to see
how the customized JRE size and the number of vulnerabilities

increase with the number of running applications in the
system. We will conduct an experiment and present the result
in the future.

VI. RELATED WORK

There has been a substantial amount of research on program
optimization. Here we discussed the most relevant work related
to bloatware.

a) Code Size: On Java program size reduction, Pugh [7]
proposes a method to efficiently pack class files into smaller jar
files. Bradley et al. [8] introduce a new Java archive file format
called Jazz, which has better compression ratio than the jar file
format. Wagner et al. [28] present a method to mitigate the
bloatware problem in “always connected” embedded devices.
Specifically, they store the library code in a remote server.
The classes that are needed will be downloaded on demand.
In addition, by applying some more sophisticated analysis,
some library code can be downloaded in advance before they
are actually executed to improve the performance.

There is also research on program optimization and size
reduction for other programming languages such as C++ and
JavaScript. In practice, JavaScript code is usually optimized,
compressed, and minified using compression [29] and minifi-
cation [30] tools. Souders [31] suggests websites simply gzip
all JavaScript components to save the loading time. However,
transmitting compressed JavaScript may have some security
problems because malicious JavaScript can be obfuscated by
being compressed. Likarish et al. [32] raise a methodology to
detect obfuscated malicious JavaScript by using classification
techniques. Oberlander [33] discusses a method to analyze
C++ source code to collapse class hierarchies. Sweeney and
Tip [34] developed an approach to remove unused data mem-
bers in C++ applications. De Sutter et al. [35] apply aggressive
whole-program optimization and extensive code reuse on C++
binary to avoid bloat brought by templates and inheritance.

b) Performance: On the performance side, Bu et al. [3]
have pointed out that the negative impact on performance
caused by bloatware is being amplified by today’s big-data
software usage nature. Xu [5] proposes a method to reuse
those redundant objects. Xu [6] also presents a tool called
CoCo to soundly and adaptively replace Java collections to
remove bloat from Java software. Hosking et al. [36] mitigate
the problem of bloatware by eliminating partial redundancy
for access path expressions. Whitlock and Hosking [37] pro-
poses a framework for persistence-enabled optimization of
Java objects stores based on Bytecode-Level Optimizer and
Analysis Tool (BLOAT). Xu et al. [38] presents a method
to detect runtime bloat by applying abstract dynamic slicing
technique. Nguyen and Xu [4] introduce Cachetor, a tool to
detect cacheable data to remove bloat.



c) Call Graph Construction: Call graph construction
has a profound impact on the precision and effectiveness
of program analysis and optimization. Lhoták [14] proposes
a flexible points-to analysis framework for Java. Grove et
al. [39], [40] find that context-sensitive call graph construction
method does not gain much improvement on the results com-
pared with context-insensitive methods. Agrawal et al. [41]
develop a demand-driven technique for call graph construc-
tion. Tip and Palsberg [42] discuss several propagation-based
call graph construction algorithms, and conclude that RTA
costs less but yields similar results compared to other more
expensive algorithms. The call graph construction method
used by the analyzer of JRed is customizable. In our current
implementation, we use points-to analysis, but it can be easily
replaced by others.

d) Others: In addition, Jiang et al. [43], [44] studies
feature-based software customization for Java program. In
their approach, a feature, such as networking and data base
access, is defined through API or methods and all related code
is trimmed to get rid of the feature.

VII. CONCLUSION

In this paper, we present a fully automated tool called JRed

for trimming unused methods and classes from both Java appli-
cation code and the Java Runtime JRE core libraries. We have
implemented a prototype on top of Soot. Our experimental
results show that JRed can reduce Java code size by 44.5% and
82.5% on average for Java application code and runtime JRE
library code respectively. We also evaluated the effectiveness
of JRed on trimming security related vulnerabilities in the
Java Runtime JRE, and the results show that nearly half of the
known security vulnerabilities can be trimmed away with the
specialized JREs for each benchmark program. Overall, our
evaluation results show that our tool could be very effective
on reducing the code size, code complexity, and attack surfaces
for both Java applications and runtime JRE libraries in certain
scenarios.
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