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Abstract

As people rely more and more on computers, building a secure computing environment
becomes an important research topic. However, many computer programs exist security
bugs, and advanced attacking techniques have been discovered to break into a computer.
Therefore, to protect computer systems, a large number of security-relevant software
analysis approaches have been developed to detect the intrusions and analyze the
vulnerabilities and malware. One class of security analysis, taint analysis, is to trace
information flow along program execution path. The basic idea of taint analysis is to
insert some kind of tags or labels for user input and propagate the tags along a program
execution path, and then check the taint status at certain critical locations. Taint analysis
can be seen as a form of information flow analysis since we can observe how the data
information is being copied and modified.

The multifaceted benefits of taint analysis have led to its wide adoption in security
applications, such as software attack detection, attack provenance investigation, and
data lifetime analysis. Static taint analysis propagates taint values following all possible
paths with no need for concrete execution, but is generally less accurate than dynamic
analysis. Unfortunately, the high runtime overhead imposed by dynamic taint analysis
makes it impractical in many scenarios. The key obstacle is the strict coupling of program
execution and taint tracking logic code. To alleviate this performance bottleneck, recent
work seeks to offload taint analysis from program execution and run it on a different
CPU offline or a spare core in parallel. However, since the taint analysis has heavy data
and control dependencies on the program execution, the massive data in recording or
transformation overshadows the benefit of decoupling. In this thesis, we continue this
line of research to take advantage of ubiquitous multi-core platforms.

First, we propose StraightTaint, a hybrid taint analysis tool that completely decouples
the program execution and taint analysis. StraightTaint allows very lightweight
logging, resulting in much lower execution slowdown, while still permitting us to
perform full-featured offline taint analysis, including bit-level and multi-tag taint
analysis. StraightTaint relies on very lightweight logging of the execution information
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to reconstruct a straight-line code, enabling an offline symbolic taint analysis without
frequent data communication with the application. While StraightTaint does not log
complete runtime or input values, it is able to precisely identify the causal relationships
between sources and sinks, for example. Our experimental results show that on average
StraightTaint can speed up application execution performance 3.32 times on a set of
utility programs and 3.25 times on SPEC2006.

The collected data during online logging for some long running program could be
still too large to be saved up for offline analysis. To address this limitation, we propose
TaintPipe, a novel technique for parallelizing and pipelining taint analysis. TaintPipe
produces compact control flow profiles and spawns multiple threads as different stages
of a pipeline to carry out symbolic taint analysis in parallel. Our experiments show that
TaintPipe imposes low overhead on application runtime performance and accelerates
taint analysis significantly. Compared to a state-of-the-art inlined dynamic data flow
tracking tool, TaintPipe achieves 2.38 times speedup for taint analysis on SPEC2006 and
2.43 times for a set of common utilities, respectively. In addition, we demonstrate the
strength of TaintPipe with a set of security applications.

Last but not least, due to the design, both StraightTaint and TaintPipe are an ideal fit
for ex post facto security applications, such as computer forensic analysis and reverse
engineering. To make the techniques described in this thesis applicable to a broader range
of such applications, we have integrated the techniques proposed in this thesis into the
tasks of binary code control flow profiling, encoding function detection, and speeding up
semantics-based binary diffing.
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Chapter 1 |

Introduction

As people rely more and more on computers, building a secure computing environment

becomes an important research topic. However, many computer programs exist security

vulnerabilities, and advanced attacking techniques have been discovered to break into a

computer. For example, Ubuntu Linux has over 99,000 known bugs [1], and many of them

are really serious security vulnerabilities. Software vulnerabilities may allow an attacker

to inject attack code and cause the compromised machine to run the malicious code.

Another fact is the number of malicious software is rising significantly in recent years. By

the end of 2015, nearly half a billion malicious software are in circulation [2]. Therefore,

to protect computer systems, a large number of security-relevant software analysis

approaches have been developed to detect the intrusions and analyze the vulnerabilities

and malware.

Many security-relevant software analysis tools work on binary code instead of source

code. Binary code analysis is very attractive from the security viewpoint. First, In many

cases, we do not have access to the source code of the program we care about, such as

commercial off-the-shelf software and malicious software. The binary code becomes

the only available resource to be analyzed. Second, Binary analysis provides the ground

truth about program behavior because computers execute binaries, not source code. One
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class of security analysis is to monitor an application execution and perform runtime

security analysis. Compared to the pre-execution tools, runtime security analysis is

more accurate since it only considers the real path taken at the run time. It has the

advantage of observing the actual dynamic state (such as program inputs and memory

values). With these concrete execution state information, runtime security analysis has

the better resilience to obfuscation methods as well. Unfortunately, many of the most

useful runtime security analysis tools are expensive. They may cause an application to

execute too slowly.

As a result, security researchers who wish to detect the intrusions and analyze

the vulnerabilities are faced with a dilemma: powerful runtime security analysis may

introduce very high runtime overhead, but other weaker security analysis may not

detect the intrusions or vulnerabilities. Therefore, building both efficient and accurate

runtime security analysis becomes extremely important. This thesis aims to address the

performance issue of dynamic taint analysis, which is a very useful runtime security

analysis to trace the information flow along program execution path. Dynamic taint

analysis has been widely applied in software attack detection, information flow control ,

data leak detection and malware analysis. However, dynamic taint analysis also suffers

from high performance penalty. The slowdown introduced by conventional dynamic taint

analysis tools can easily go up to 30X times. The high overhead has limited its adoption

in production systems.

In this thesis, I will present my work to improve the performance of dynamic taint

analysis by utilizing the pervasive multi-core architectures. Our techniques decouple

the expensive taint analysis from application to either offline execution or multiple

pipeline stages running in parallel. With the developed technique, we can enable broader

adoptions of information flow tracking technology in practice. Next, I will first introduce
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the background of taint analysis, the performance bottleneck of dynamic taint analysis,

and the challenges of dynamic taint analysis decoupling.

1.1 Taint Analysis

The idea of taint analysis is very similar to biology cell dyeing [3]. Cell dyeing is

frequently used in biology to color some materials, and then trace their movement or

highlight some structures. For example, We can color a parent cell to observe how

the parent cell divides into two daughter cells. The basic idea of taint analysis is to

insert some kind of tags or labels for user input and propagate the tags along a program

execution path, and then check the taint status at certain critical locations. Taint analysis

can be seen as a form of information flow analysis. We can observe how the data

information is being copied and modified. Taint Analysis has three main parts: taint seed,

taint propagation policy, and taint sink. Taint seed defines which data to tag, and how to

tag it. Typically, we label the input from untrusted sources as tainted, such as different

types of documents, network protocols, keyboard inputs, and system call return values.

We can label a single tag to the whole input or assign different taint tags to represent the

different structures of the input. A taint propagation policy decides how to propagate

taint tags. A policy can consider both data and control flow dependencies or only data

flow dependencies. A taint sink indicates where and how tags should be checked. Taint

analysis has been shown to be effective in dealing with a wide range of security problems,

including software attack prevention [4, 5], information flow control [6, 7], data leak

detection [8], and malware analysis [9, 10], to name a few.

We can perform taint analysis on C, Java, Python, and other programming languages.

However, taint analysis on binary code is very attractive from a security viewpoint

because we do not require the source code of the application. We can even trace The
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information flow in the malicious binary code. On the other side, due to the lack of higher-

level semantics, such as data types or data structures, it is also very challenging to develop

taint analysis on binary code. We have to track taint tags for assembly instructions. And

additional shadow memory is required to store the taint tags being tracked. The minimum

amount of memory required is one bit for every tagged piece of data.

Generally, taint analysis on binary code comes two flavors. Static taint analysis

(STA) [11–13] is performed prior to execution and therefore it has no impact on runtime

performance. STA has the advantage of considering multiple execution paths, but at the

cost of potential imprecision. For example, STA may result in either under-tainting or

over-tainting [14] when merging results at control flow confluence points. Dynamic taint

analysis (DTA) [4, 15, 16], in contrast, propagates taint as a program executes, which

is more accurate than static taint analysis since it only considers the actual path taken

at run time. To directly work with program binaries, dynamic taint analysis is typically

developed based on Pin [17], Qemu [18] or other dynamic binary instrumentation (DBI)

platforms to insert taint tracking code just in time. Typically, we insert taint tracking code

into binary code right before it runs (as shown in Figure 1.1). In this way, we can detect

the violation of the security policy before it really happens. Following this style, the taint

tracking code runs as part of the normal instruction stream after being injected. However,

the high runtime overhead imposed by dynamic taint propagation has severely limited its

adoption in production systems. The slowdown incurred by conventional dynamic taint

analysis tools [4,15] can easily go beyond 30X times. Even with the state-of-the-art DTA

tool based on Pin [19], typically it still introduces more than 6X slowdown.

The key obstacle to further improving the performance of dynamic taint analysis is

the tight coupling of program execution and taint tracking logic code [20]. Taint analysis

has to maintain a shadow memory to map instruction operands to their corresponding
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Instrumented application

 1: Backup register state

 2: MemA        Shadow (A)

 3: Tag        GetTaint (MemA)

 4: MemEax         Shadow (eax)

 5: SetTaint (MemEax)         Tag

 6: Restore register state

taint(eax) = taint(A)
mov  eax        A  

taint(eax) |= taint(B)
add eax        B

taint(C) = taint (eax)
mov C         eax

cmp ecx, eax 

Taint tracking code

Figure 1.1. Dynamic taint analysis inserts taint tracking code just in time.

taint tags. To propagate one taint tag between different residences, it typically takes 6–8

additional instructions [21]. Especially when dynamic taint analysis runs on the same

CPU core, application execution and taint analysis have to compete for CPU cycles,

registers and cache space. For example, if the taint tracking code modifies a general

purpose register, this register must be saved before the execution of the taint tracking

code and then restore the saved value later. As a result, dynamic taint analysis may slow

down performance by 10X ∼ 30X! The high performance penalty comes from the strict

coupling of program execution and taint tracking code; that is, the runtime execution has

to frequently switch between normal application execution and taint tracking code.

1.2 Challenges

A nature idea to reduce the overhead is to decouple the expensive taint analysis from

application execution. The proliferation of multi-core systems has inspired researchers

to decouple taint tracking logic onto spare cores in order to improve performance. One

direction is hardware-assisted approaches. For example, Speck [22] needs OS level

support for speculative execution and rollback. Ruwase et al. [23] employ a customized

hardware for logging a program trace and delivering it to other idle cores for inspection.

Nagarajan et al. [24] utilize a hardware first-in first-out buffer to speed up communication

5



between cores. Although they can achieve an appealing performance, the requirement of

special hardware prevents them from being adopted using commodity hardware. Another

direction is software-only methods that work with binary executables on commodity

multi-core hardware. These software-only solutions typically rely on dynamic binary

instrumentation (DBI) to decouple dynamic taint analysis from program execution. The

existing software-only work can be roughly classified into two categories. The first

category relies on the pervasive multi-core systems to parallelize dynamic taint analysis

by logging runtime values that are needed for taint analysis in another core [25, 26].

However, since taint analysis has strong serial data and control dependencies on the

program execution, the parallelized taint analysis need to be frequently synchronized for

data communication (e.g., control flow directions and memory addresses). The second

category first records the application execution and then replay the taint analysis on a

different CPU [27–29]. Similar to the limitation of the first category, the large online

logging data is a barrier to achieving the expected performance gains. Furthermore, the

taint tracking execution is typically slower than the application execution. Since we need

extra instructions to access shadow memory and propagate taint tags, the delay for each

taint operation could be accumulated, leading to a very large delay to the application

execution. On the other side, application execution has to wait for more and more time

when doing synchronization with the decoupled taint analysis.

Recent work ShadowReplica [26] creates a secondary shadow thread from primary

application thread to run DTA in parallel. ShadowReplica conducts an offline

optimization to generate optimized DTA logic code, which reduces the amount of

information that needs to be communicated, and thus dramatically improves the

performance. However, as we will show later, the performance improvement achieved

by this “primary & secondary” thread model is fixed and cannot be improved further
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when more cores are available. Furthermore, in many security related tasks (e.g., binary

de-obfuscation and malware analysis), precise static analysis for the offline optimization

needed by ShadowReplica may not be feasible.

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 presents an overview about our

proposed research work. Chapter 3 provides the extensive related work on taint analysis.

Chapter 4 presents the design and evaluation of our decoupled offline symbolic taint

analysis. Chapter 5 discusses our pipelined symbolic taint analysis in detail. Chapter 6

demonstrates three appealing applications of our proposed techniques. Limitations and

future work are introduced in Chapter 7. We conclude the thesis in Chapter 8.
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Chapter 2 |

Overview

This thesis presents techniques that can decouple and parallelize an important security

analysis approach to reduce the high runtime overhead. The topic of my research work

is pipelined symbolic taint analysis. In Chapter 1, I have introduced the taint analysis

background, the advantage of dynamic taint analysis and its performance bottleneck,

and the challenges of taint parallelization. To address these issues, we have developed

techniques to completely decouple the expensive taint analysis to to the offline analysis

and parallelize taint analysis in pipeline style. We have applied our techniques to speed

up multiple tedious reverse engineering tasks. Next I will start with a general overview

about our proposed research work.

2.1 Decoupled Offline Symbolic Taint Analysis

To lower the high performance overhead, multiple methods have been proposed to offload

taint tracking code to a separate core or a different CPU. The existing work can be

roughly classified into two categories. The first category relies on the pervasive multi-

core systems to parallelize dynamic taint analysis by logging runtime values that are

needed for taint analysis in another core [22,23,26,30]. However, since taint analysis has
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strong serial data and control dependencies on the program execution, the parallelized

taint analysis need to be frequently synchronized for data communication (e.g., control

flow directions and memory addresses), either through customized hardware [22, 23] or

shared memory [26, 30]. The second category first records the application execution and

then replay the taint analysis on a different CPU [27–29, 31]. Similar to the limitation of

the first category, the large online logging data is also a barrier to achieving the expected

performance gains.

In this thesis, we first propose StraightTaint, a hybrid static and dynamic method that

achieves very lightweight logging, resulting in much lower execution slowdown, while

still permitting us to perform complete offline taint analysis with incomplete inputs. In

principle, StraightTaint belongs to the aforementioned second category of decoupling

DTA approaches. Therefore, StraightTaint is an ideal fit for ex post facto security

applications. In StraightTaint, we do not log all runtime values. Instead, we record control

flow profiling and execution state when taint seeds are first introduced, which can be very

lightweight. Based on the logged branching information, we construct a straight-line

code trace for the offline taint analysis. The taint seeds are marked as symbolic variables,

and the taint propagation is like symbolic execution on the constructed straight-line code.

With the initial execution state and the straight-line code, most addresses of memory

load and store operations are computable. Symbolic memory indices can be restricted

to a small range by solving the path conditions. Compared to a pure static approach,

StraightTaint can still deliver a similar level of precision as dynamic taint analysis. For

example, we are able to correctly identify the complicated causal relationships among

multiple sources and sinks (see Section 4.6), while static taint analysis fails in such cases.

Restricted by the computing resources, conventional DTA exhibits several drawbacks

in terms of incomplete taint propagation strategies. First, since multi-tag taint propagation
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consumes more shadow memory and introduces much higher runtime overhead, most

DTA tools choose single-tag propagation as default [4, 8, 16, 19, 21, 23]. However, multi-

tag taint analysis is indispensable to many reverse engineering tasks, such as recovering

the structure of an unknown protocol format [32] and detecting encoding functions

in malware by counting different tainted input bytes [9]. Second, when handling the

complicated x86 arithmetic and logic operation instructions (e.g., add and xor), previous

DTA tools typically adopt some simple but conservative propagation strategies for better

performance. One example is the prevalent “short circuiting” method: the destination

operand is tainted if any of the source operands is tainted. As we will show, these

conservative solutions will result in precision loss in many scenarios. As StraightTaint

has completely offloaded the taint logic code to the offline analysis, another benefit

becomes visible: StraightTaint’s offline taint analysis is flexible to support full-featured

taint propagation strategies. For example, supporting bit-level [31] or multi-tag taint

analysis is straightforward in our approach. Each symbolic bit or variable can naturally

represent a taint tag with negligible additional overhead. Also, our symbolic execution

style taint propagation can faithfully simulate the specific semantics of an instruction.

Furthermore, based on symbolic taint analysis on the straight-line code, we introduce a

new concept, Conditional Tainting; that is, StraightTaint is able to identify precisely the

causal data flow relations between sources and sinks, under what conditions. In this way,

new inputs and runtime values can be mapped to the existing analysis results in certain

scenarios so that the new analysis can be more proactive.

We have developed a prototype of StraightTaint, a hybrid taint analysis approach that

completely decouples the program execution and taint analysis. Our implementation is

based on Pin [17], for the effective parallelization of runtime logging, and BAP [33],

for precise offline symbolic taint analysis with incomplete inputs. We have performed
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comparative studies on a number of applications such as common utility programs,

SPEC2006, and real-life software vulnerabilities. The results show that StraightTaint

can achieve a similar level of precision as dynamic taint analysis, but with much lower

online execution slowdown. The performance experiments show that StraightTaint

imposes a small overhead on application execution performance, with up to 3.25 times

improvements to SPEC2006 on average. Offline taint analysis takes approximately the

same amount of time as an advanced DTA tool. We also demonstrate StraightTaint’s

value in supporting multi-tag taint propagation and conditional tainting in an attack

provenance investigation task. Such experimental evidence shows that StraightTaint can

be applied to various large-scale ex post facto security applications.

2.2 Pipelined Symbolic Taint Analysis

The collected data generated by StraightTaint’s online logging for some long running

program could be still too large to be saved up for offline analysis. A possible solution

is to decouple taint analysis via parallelization, which performs taint analysis on the fly

without the log storage. Recent work ShadowReplica [26] creates a secondary shadow

thread from primary application thread to run DTA in parallel. ShadowReplica conducts

an offline optimization to generate optimized DTA logic code, which reduces the amount

of information that needs to be communicated, and thus dramatically improves the

performance. However, as we will show later, the performance improvement achieved

by this “primary & secondary” thread model is fixed and cannot be improved further

when more cores are available. Furthermore, in many security related tasks (e.g., binary

de-obfuscation and malware analysis), precise static analysis for the offline optimization

needed by ShadowReplica may not be feasible.

In the thesis, we exploit another style of parallelism, namely pipelining, to perform
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taint analysis on-the-fly without the log storage. We propose a novel technique, called

TaintPipe, for parallel data flow tracking using pipelined symbolic taint analysis. In

principle, TaintPipe falls within the second category of taint decoupling work classified

above. Essentially, in TaintPipe, threads form multiple pipeline stages, working in

parallel. The execution thread of an instrumented application acts as the source of

pipeline, which records information needed for taint pipelining, including the control

flow data and the concrete execution states when the taint seeds are first introduced. To

further reduce the online logging overhead, we adopt a compact profile format and an

N-way buffering thread pool. The application thread continues executing and filling in

free buffers, while multiple worker threads consume full buffers asynchronously. When

each logged data buffer becomes full, an inlined call-back function will be invoked to

initialize a taint analysis engine, which conducts taint analysis on a segment of straight-

line code concurrently with other worker threads. Symbolic memory access addresses are

determined by resolving indirect control transfer targets and approximating the ranges of

the symbolic memory indices.

To overcome the challenge of propagating taint tags in a segment without knowing the

incoming taint state, TaintPipe performs segmented symbolic taint analysis. That is, the

taint analysis engine assigned to each segment calculates taint states symbolically. When

a concrete taint state arrives, TaintPipe then updates the related taint states by replacing

the relevant symbolic taint tags with their correct values. We call this symbolic taint

state resolution. According to the segment order, TaintPipe sequentially computes the

final taint state for every segment, communicates to the next segment, and performs the

actual taint checks. Optimizations such as function summary and taint basic block cache

offer enhanced performance improvements. Moreover, different from previous DTA

tools, supporting bit-level and multi-tag taint analysis are straightforward for TaintPipe.
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TaintPipe does not require redesign of the structure of shadow memory; instead, each taint

tag can be naturally represented as a symbolic variable and propagated with negligible

additional overhead.

We have developed a prototype of TaintPipe, a pipelined taint analysis tool that

decouples program execution and taint logic, and parallelizes taint analysis on straight-

line code segments. Our implementation is built on top of Pin [17], for the pipelining

framework, and BAP [33], for symbolic taint analysis. We have evaluated TaintPipe with

a variety of applications such as the SPEC CINT2006 benchmarks, a set of common

utilities, a list of recent real-life software vulnerabilities, malware, and cryptography

functions. The experiments show that TaintPipe imposes low overhead on application

runtime performance. Compared with a state-of-the-art inlined dynamic taint analysis

tool, TaintPipe achieves overall 2.38 times speedup on SPEC CINT2006, and 2.43 times

on a set of common utility programs, respectively. The efficacy experiments indicate

that TaintPipe is effective in detecting a wide range of real-life software vulnerabilities,

analyzing malicious programs, and speeding up cryptography function detection with

multi-tag propagation. Such experimental evidence demonstrates that TaintPipe has

potential to be employed by various applications in production systems.

2.3 Applications to Reverse Engineering

A byproduct of the StraightTaint and TaintPipe projects is that we design a novel binary

code control flow profiling tool, BinCFP, which allows efficient and complete binary

code control flow profiling on ubiquitous multi-core platforms. In many tasks of reverse

engineering and binary code analysis (e.g., hybrid disassembly, resolving indirect jump,

and decoupled taint analysis), the knowledge of detailed dynamic control flow can be of

great value. However, the high runtime overhead beset the complete collection of dynamic
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control flow. The previous efforts on efficient path profiling cannot be directly applied to

the obfuscated binary code in which an accurate control flow graph is typically absent.

To address these challenges, we present BinCFP, an efficient multi-threaded binary code

control flow profiling tool by taking advantage of pervasive multi-core platforms. BinCFP

relies on dynamic binary instrumentation to work with the unmodified binary code. The

key of BinCFP is a multi-threaded fast buffering scheme that supports processing trace

buffers asynchronously. To achieve better performance gains, we also apply a set of

optimizations to reduce control flow profile size and instrumentation overhead. Our

design enables the complete dynamic control flow collection for an obfuscated binary

execution. We have implemented BinCFP on top of Pin. The comparative experiments

on SPEC2006 and obfuscated common utility programs show BinCFP outperforms the

previous work in several ways. In addition, BinCFP’s control flow profile sizes are only

about 49.2% that of the conventional design.

In addition to runtime policy enforcement [4, 16], taint analysis on binary code

is also broadly used in ex post facto security applications, such as attack provenance

investigation [34, 35], computer forensic analysis [36], malware analysis [9, 10], and

reverse engineering [32, 37, 38]. Due to the decoupled analysis style, both StraightTaint

and TaintPipe are an ideal fit for such post fact security analysis tasks. To make the

techniques described in this thesis applicable to a broader range of such applications, we

have integrated the decoupled symbolic multi-tag taint analysis into the following two

tasks.

1. Identify possible cryptography functions in the binary code by observing the

input-output dependencies with multi-tag taint analysis. Our proposed decoupled

symbolic taint analysis is naturally a multi-tag taint analysis method. We

demonstrate this capability by detecting cryptography functions in binary with
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little additional overhead.

2. Utilize multi-tag taint analysis to speed up semantics-based binary difference

analysis. Semantics-based binary diffing suffers from significant overhead,

hindering it from analyzing large numbers of malware samples. Our efficient

decoupled symbolic taint analysis can greatly reduce the number of possible basic

block matches.

2.4 Contributions

The contributions of this thesis are summarized as follows.

1. We propose StraightTaint, with a very lightweight logging method to construct

straight-line code and thus completely decouple dynamic taint analysis for offline

symbolic taint analysis. StraightTaint greatly reduces the program execution

slowdown yet can compete with dynamic taint analysis with a similar level of

precision.

2. The limitation of previous decoupling taint work is inefficiently collecting and

transferring data from the executing application to the analysis module. We

demonstrate that StraightTaint offline analysis does not require complete runtime

data but can still achieve most tasks.

3. The completely decoupled offline taint analysis allows StraightTaint to perform

full-featured taint propagation strategies. The symbolic execution style taint

propagation can accurately describe the intricate semantics of the x86 instructions,

and also naturally support multi-tag and bit-level taint analysis.

4. We introduce a new concept, Conditional Tainting, based on the symbolic taint
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analysis of straight-line code. Conditional tainting not only reports more precise

and useful taint results but also opens many new important applications.

5. We propose a novel approach, TaintPipe, to efficiently decouple conventional

inlined dynamic taint analysis by pipelining symbolic taint analysis on segments

of straight-line code.

6. Unlike previous taint decoupling work, which suffers from frequent communication

and synchronization, we demonstrate that with very lightweight runtime value

logging, TaintPipe rivals conventional inlined dynamic taint analysis in precision.

7. Our approach does not require any specific hardware support or offline preprocess-

ing, so both StraightTaint and TaintPipe are able to work on commodity hardware

instantly and naturally multi-tag taint analysis methods.

8. We present BinCFP, an efficient multi-threaded binary code control flow profiling

tool. We take advantage of pervasive multi-core platforms to greatly reduce the

program execution slowdown. BinCFP’s control flow profile does not require

fine-grained static analysis so that BinCFP is fit for analyzing obfuscated binary

code.

We also summarize the main benefits associated with our proposed decoupled taint

analysis method.

1. Once a log is captured, it can be analyzed by StraightTaint multiple times. This

feature is particularly useful when the exact analysis task is hard to anticipate. In

our multi-tag taint propagation evaluation, we vary the number of taint tags in each

round. StraightTaint only needs to log the required online data once and performs

the multiple propagation rounds offline.
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2. StraightTaint makes it possible to conduct ex post facto logging-based taint analysis

in the cloud [39]. Service providers can deploy lightweight online logging in their

services, and cloud hosts provide storage space for the logged data. Users can

require a service to audit their sensitive data flow offline.
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Chapter 3 |

Related Work

Taint analysis has been widely studied in various scenarios. Here we discuss the more

related work along several axes. We first present the previous work on static and dynamic

taint analysis. Our work is a hybrid of these two analyses. Then we introduce the efforts

on taint logic code optimization, which are orthogonal to our approach and can benefit

our symbolic taint analysis. Next, we describe the recent work on decoupling taint

tracking logic from original program execution, which is the closest to our decoupled

symbolic taint analysis. We also introduce related work on program replay and secure

information flow. At last, since we perform symbolic execution style taint propagation

on the straight-line code, we introduce the related work on dynamic symbolic execution

as well.

3.1 Static Taint Analysis

Taint analysis comes in two major flavors: static and dynamic. Static taint analysis

(STA) [11, 12, 40] has shown the capability of detecting data flows by considering

all possible execution paths. Since static taint analysis (STA) is performed prior to

execution by considering all possible execution paths, it does not affect application
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runtime performance. STA has been applied to data lifetime analysis for Android appli-

cations [11, 41, 42], exploit code detection [12], and binary vulnerability exploration [40].

FlowDroid [11] can model the lifecycle of Android applications and conduct static data

flow analysis. It uses on-demand alias analysis to achieve both precision and efficiency.

Bodden et al. [41] proposed a generic IFDS/IDE solver. Static data flow analysis can

be modeled as a graph reachability problem and be solved using the IFDS/IDE solver.

Klieber et al. [42] proposed a static taint analysis technique which can identify data flows

in individual Android applications, and discover dangerous data flows among different

applications. However, STA may lead to either under-tainting or over-tainting [14]

when merging two control flow paths. Furthermore, STA on obfuscated binary is quite

challenging because even static disassembly of stripped binaries is still an unsolved

problem [43].

3.2 Dynamic Taint Analysis

Dynamic taint analysis (DTA) is more precise than static taint analysis as it only

propagates taint following the real path taken at run time. DTA has been widely used in

various security applications, including data flow policy enforcement [4, 5, 16], reversing

protocol data structures [44–46], malware analysis [47], and Android security [48].

In addition, DTA has also been used in binary difference analysis [37] and software

plagiarism detection [49–54]. However, an intrinsic limitation of DTA is its significant

performance slowdown. For example, TaintCheck [4] performs DTA based on dynamic

binary instrumentation and imposes runtime slowdown as high as 40x. Various modern

DTA techniques have been proposed. Source-level instrumentation techniques essentially

compile the taint analysis code together with the program source code through source

code rewriting [5, 6, 55, 56]. While they can achieve decent runtime performance, they
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require the availability of source code, which is not applicable to legacy/proprietary

applications and malware analysis. Hardware-assisted approaches [57, 58] associate

every memory byte/register with a hardware tag to keep track of the taint information.

Although they can achieve very good performance, their requirement of special hardware

prevents them from being adopted in commodity hardware.

StraightTaint is a hybrid approach and therefore can potentially achieve higher

precision than STA and better performance than DTA. Schwartz et al. [14] formally

defined the operational semantics for DTA and forward symbolic execution (FSE). Our

TaintPipe approach is in fact a combination of these techniques. For TaintPipe, the worker

thread conducts concrete taint analysis (like DTA) whenever explicit taint information is

available; otherwise symbolic taint analysis (like STA and FSE) is performed.

3.3 Taint Logic Optimization

Taint logic code, deciding whether and how to propagate taint, require additional

instructions and “context switches”. Frequently executing taint logic code incurs

substantial overhead. Minemu [59] achieved a decent runtime performance at the cost

of sacrificing memory space to speed up shadow memory access. Moreover, Minemu

utilized spare SSE registers to alleviate the pressure of general register spilling. As a

result, Minemu only worked on 32-bit program. TaintEraser [8] developed function

summaries for Windows programs to propagate taint at function level. Libdft [19]

introduced two guidelines to facilitate DBI’s code inlining: 1) tag propagation code

should have no branch; 2) shadow memory updates should be accomplished with a single

assignment. Ruwase et al. [20] applied compiler optimization techniques to eliminate

redundant taint logic code in hot paths. Jee et al. [60] proposed Taint Flow Algebra to

summarize the semantics of taint logic for basic blocks.
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3.4 Dynamic Taint Analysis Decoupling

A number of researchers have considered the high performance penalty imposed by

inlined dynamic taint analysis. They proposed various solutions to decouple taint

tracking logic from application under examination [22–26, 61], which are close in spirit

to our proposed approach. Speck [22] forked multiple taint analysis processes from

application execution to spare cores by means of speculative execution, and utilized

record/replay to synchronize taint analysis processes. Speck required OS level support

for speculative execution and rollback. Speck’s approach sacrifices processing power to

achieve acceleration. Similar to TaintPipe’s segmented symbolic taint analysis, Ruwase

et al. [23] proposed symbolic inheritance tracking to parallelize dynamic taint analysis.

TaintPipe differs from Ruwase et al.’s approach in three ways: 1) Their approach was

built on top of a log-based architecture [62] for efficient communication with idle cores,

while TaintPipe works on commodity multi-core hardware directly. 2) To achieve better

parallelization, they adopted a relaxed taint propagation policy to set a binary operation

as untainted, while TaintPipe performs full-fledged taint propagation so that we provide

stronger security guarantees. 3) They used a separate “master” processor to update each

segment’s taint status sequentially, while TaintPipe resolves symbolic taint states between

two consecutive segments. Our TaintPipe could achieve better performance when there

are more than a few “worker” processors.

Software-only approaches are the most related to StraightTaint and TaintPipe. They

decouple dynamic taint analysis to a shadow thread by logging the runtime values that

are needed for taint analysis. Two major categories have been proposed to decouple taint

analysis from program execution. The first category, like TaintPipe, parallelizes dynamic

taint analysis by delivering the needed runtime values to another core [22,23,25,26,30,63].
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DECAF [30] extends Temu [64] to support asynchronous heavyweight taint propagation.

However, DECAF does not show the performance gains introduced by its asynchronous

tainting. Because of the strict synchronization requirement, most tools in the first category

adopt incomplete taint propagation strategies to catch up the application execution.

The second direction, like StraightTaint, first records the application execution and

then replay the taint analysis on a different CPU [27–29, 31, 65]. PIRATE [28] performs

offline taint analysis on LLVM IR. It also first records an execution trace and then

translates it to an intermediate language for offline taint analysis. However, PIRATE

collects complete runtime information while StraightTaint only logs control flow profile.

The most related work to StraightTaint is FlowWalker [27], which also uses Pin to record

CPU context, and then performs a multi-tag assembly level taint propagation offline.

However, StraightTaint reveals two distinct advantages. First, we design a more compact

profile structure and multithreaded fast buffering scheme to parallelize the runtime data

logging. Second, our offline taint analysis is performed on a side-effect free intermediate

language instead of cumbersome x86 instructions. As demonstrated in our evaluation,

StraightTaint outperforms FlowWalker with better performance and accuracy.

Recent work ShadowReplica [26] ameliorates this drawback by adopting fine-grained

offline optimizations to remove redundant taint logic code. In principle, it is possible

to remove redundant taint logic by means of static offline optimizations. Unfortunately,

even static disassembly of stripped binaries is still a challenge [66, 67]. Therefore, the

assumption by ShadowReplica that an accurate control flow graph can be constructed

may not be feasible in certain scenarios, such as analyzing control flow obfuscated

software. We take a different angle to address this issue with lightweight runtime

information logging and segmented symbolic taint analysis. We demonstrate the

capability of StraightTaint and TaintPipe in speeding up obfuscated binary analysis,
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which ShadowReplica may not be able to handle. Furthermore, ShadowReplica does not

support bit-level and multi-tag taint analysis, while StraightTaint and TaintPipe handle

them naturally.

3.5 System and Program Replay

System replay and program replay techniques can precisely repeat an execution and allow

analysts to conduct post analysis using dynamic taint analysis tools. Aftersight [68] and

ReEmu [69] record nondeterministic virtual machine inputs and can replay the execution

or dynamic analysis. Analogously, PinPlay [70] supports user-level deterministic replay.

Our approach does not rely on complete execution reply. We only log executed control

flow information to recover the straight-line trace later.

3.6 Secure Information Flow

There have been much research interests in securing information flow through enforcing

information flow policies based on specifications about information flow. Merlin [71]

is a tool that can statically infer and generate specifications about information flow

of web applications. Based on the information flow specifications, information flow

policies can be enforced and vulnerabilities can be detected. JFlow [72] is an extension

to Java language, which support statically-checked information flow annotations. King

et al. [73] proposed a model to discover the source of information flow errors in source

code. However, these approaches without exception requires source code. In contrast,

our techniques work with binary.
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3.7 Dynamic Symbolic Execution

Another related area to our symbolic taint analysis is dynamic symbolic execution, namely

concolic testing [74–77], a method of combining concrete execution with symbolic

execution. Our method is similar to the concolic testing in that we map symbols to taint

seeds and then perform the symbolic taint analysis along a recorded execution trace. Also,

our method can benefit from symbolic execution optimization work to speed up taint

analysis, such as memoized symbolic execution [78]. However, we have different goals.

Dynamic symbolic execution is mainly for automatic input generation to explore more

paths while our primary interest lies in accurate taint analysis on the straight-line code. In

addition, concolic testing relies on complete runtime information while our symbolic taint

analysis only depends on limited runtime information. The recent work, Hercules [79],

also mentions the idea of using symbolic execution for precise taint tracking. However,

our approach has a strikingly different purpose with Hercules. Hercules is for reproducing

crashes in benign application binaries; while StraightTaint and TaintPipe are designed to

speed up reverse engineering tasks on binary code.
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Chapter 4 |

StraightTaint: Decoupled Off-

line Symbolic Taint Analysis

The previous work on dynamic taint analysis decoupling seeks to offload taint analysis

from program execution and run it on a spare core or a different CPU. However,

since the taint analysis has heavy data and control dependencies on the program

execution, the massive data in recording and transformation overshadow the benefit

of decoupling. In this chapter, we propose a novel technique to allow very lightweight

logging, resulting in much lower execution slowdown, while still permitting us to perform

full-featured offline taint analysis, including bit-level and multi-tag taint analysis. We

develop StraightTaint [65], a hybrid taint analysis tool that completely decouples the

program execution and taint analysis. StraightTaint relies on very lightweight logging

of the execution information to reconstruct a straight-line code, enabling an offline

symbolic taint analysis without frequent data communication with the application. While

StraightTaint does not log complete runtime or input values, it is able to precisely identify

the causal relationships between sources and sinks. Compared with traditional dynamic

taint analysis tools, StraightTaint has much lower application runtime overhead.
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Figure 4.1. Conventional DTA vs. StraightTaint.

4.1 Background and Overview

In this section, we first discuss the drawbacks of current dynamic taint analysis techniques.

This also inspires us to propose our method. We describe the limitations of the previous

work with a motivating example. We show C code for ease of understanding even

though StraightTaint works on the binary code. At last, we introduce the architecture of

StraightTaint and its components.

4.1.1 Dynamic Taint Analysis Optimization

Typically in dynamic taint analysis (DTA), the data derived from untrusted sources are

labeled as tainted (i.e., taint seeds). The propagation of the tainted data will be tracked as

the program executes according to the taint propagation policy. Then the taint status will

be checked at certain critical locations (i.e., taint sinks). DTA has been broadly employed

in security applications. However, an inherent limitation of conventional DTA is that taint

logic is strictly coupled with program execution. Figure 4.1 illustrates a conventional DTA

tool built on dynamic binary instrumentation (DBI). The taint tracking code is interleaved

with program execution, leading to frequent context switches and resource competitions
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between the application and analysis code. As a result, the application under examination

is significantly slowed down. Various advanced DTA techniques have been proposed to

achieve decent runtime performance [59,80]. Unfortunately, they either rely on an ad hoc

emulator [59] or cannot work on commodity hardware [80]. Decoupling taint analysis

from program execution has been demonstrated as an effective approach. However, due

to the heavy data and control-flow dependencies on the application execution, decoupled

taint analysis cannot run independently. Intuitively, each memory address and control

transfer target have to be delivered to the decoupled taint analysis. Therefore, the large

logged data is a barrier to further improving the performance.

As shown in Figure 4.1, our key insight is that taint analysis can be completely

decoupled from program execution, without frequent online communication and

synchronization. Offline taint analysis can be performed based on control flow

information and very little runtime data (e.g., the initial execution state at a taint source).

We notice that memory reference operations in x86 architecture are addressed through

registers and constant offset calculations. For example, mov ebx [4*eax+4] loads

the content stored at the address 4*eax+4 to ebx. With the initial execution state and

the straight-line code, most memory reference addresses can be recovered. The proposed

StraightTaint explores this idea.

Note that the deterministic replay work [47, 70, 81], which records non-deterministic

inputs and replays them on an offline analysis, can be applied to decouple taint analysis as

well. Compared to StraightTaint, the logs are smaller, and the online performance could

be better. However, the logged data contains little information about execution, making it

impossible for direct taint analysis. Furthermore, the offline replay overhead is quite high.

For example, Aftersight [81] replays a single-tag taint analysis on a QEMU-based CPU

simulator, but the performance is as high as 100X slowdown. Our solution represents a
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int a, b, c, d, w;

int low_bits = 0x0000ffff;

int high_bits = 0xffff0000;

1: a = read ();

2: b = read ();

3: w = ( a   low_bits )

             (b   high_bits);

4: c = ~ a;

5: d = a & c;

(a) (b) 

1: Taint (a) = 1;

2: Taint (b) = 1;

3: Taint (w) = 1;

4: Taint (c) = 1;

5: Taint (d) = 1;

1: Taint (a) = tag1;

2: Taint (b) = tag2;

3: Taint (w) = ( tag1   low_bits )

                        (tag2   high_bits);

4: Taint (c) = ~ tag1;

5: Taint (d) = 0;

(c) 

Figure 4.2. Conventional single-tag taint propagation vs. StraightTaint multi-tag symbolic taint
propagation: (a) a sequence arithmetic operations; (b) conventional single-tag taint propagation
results; (c) StraightTaint multi-tag symbolic taint propagation results.

middle ground that balances the performance between online logging and offline taint

analysis.

4.1.2 Incomplete Taint Propagation Strategies

As conventional DTA tools are subject to limited computing resources, typically they have

to adopt incomplete taint propagation strategies to achieve an acceptable performance. In

many cases, such conservative strategies lead to the precision loss. The first drawback

comes from the single-tag propagation. Most DTA tools associate each variable with

one shadow memory bit or byte to represent the taint status: 1 means tainted and 0

means untainted. Although single-tag can work in some simple scenarios, multi-tag

taint analysis has much broader security applications. For example, BitFuzz [9] assigns

different taint tags to input bytes and then detects encoding functions in malware by

identifying high taint degree; iBinHunt [37] utilize multi-tag taint analysis to reduce the

number of possible basic blocks to compare. Furthermore, many arithmetic and logic

operation results overlap the operands so that a taint tag may come from multiple sources.

Therefore, the multi-tag attribute is essential for accuracy as well. The second limitation
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is due to the conservative propagation strategies when dealing with the complicated

x86 instructions. These simple strategies are fast but neglect the particular instruction

semantics that may affect the taint propagation results. In addition to the frequently

used “short circuiting” solution, some previous work tracks the taint flow only through

unary operations (the output of a binary operation is set as untainted) to achieve better

parallelization [23].

Figure 4.2 presents a snippet of an encoding function, which is frequently used

in malware [9]. Figure 4.2 (a) lists a straight-line code with complicated arithmetic

operations. Conventional DTA performs the taint analysis on this code snippet with

single-tag and “short circuiting” strategies. Figure 4.2 (b) shows the propagation results:

all variables are tainted. Look carefully at line 3 in Figure 4.2 (a), the taint tag of

variable w derives from two taint seeds but conventional DTA just labels it as a single

tag. Besides, the variable d will always be zero because c is the bitwise NOT of

a. However, the “short circuiting” propagation mistakenly label d as tainted, resulting

in over-tainting [14]. A nature benefit of StraightTaint’s offline taint analysis is that

supporting full-featured taint propagation strategies is straightforward, such as multi-tag

and bit-level taint analysis. Also, our symbolic taint analysis on the straight-line code

can capture intricate details of the x86 instructions. Figure 4.2 (c) shows the results of

StraightTaint multi-tag symbolic taint propagation: w and c are correctly tainted; the taint

tags of d are cleaned as expected. StraightTaint avoids the imprecision and over-tainting

problems introduced by previous incomplete taint propagation strategies.

4.1.3 Architecture

Figure 4.3 illustrates the architecture of StraightTaint, which consists of two stages:

online logging and offline analysis. The first stage, as shown in the left part of Figure 4.3,
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Figure 4.3. The architecture of StraightTaint.

involves very lightweight online logging to mainly record control flow information. We

built a logging tool using dynamic binary instrumentation (DBI), enabling StraightTaint

to work with unmodified program binaries directly. Application thread(s) are executing

over the DBI and our logging tool. Our logging tool dynamically instruments each

executed basic block to record the execution using tags that are unique for each basic

block. The basic block tags are written to a trace buffer and then stored to a disk storage

when the buffer is filled up. Careful design of the online logging tool is crucial for

achieving better efficiency. Therefore, we propose three guidelines and the details will

be discussed in Section 4.2.

The generated log data is passed to the offline taint analysis (the right component of

Figure 4.3). This stage first reconstructs the straight-line code trace from the log data,

and then lifts the x86 instructions to BIL [33], an RISC-like intermediate language. The

core of our symbolic taint analyzer is an abstract taint analysis processor. Similar to the

shadow memory in DTA, StraightTaint maintains a context structure to store symbolic

taint variables and concrete values. Our offline taint analyzer is able to carry out both

forward taint tracking to detect the effect of an intrusion, and backward tracing to identify

attack provenance. Even without complete runtime data information, StraightTaint can

achieve comparable precision as dynamic taint analysis, which will be discussed in detail

in Section 4.3.
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4.2 Efficient Online Logging

StraightTaint applies a lightweight logging to lower the impact on application perfor-

mance. Since not all the instructions executed are of interest, we invoke online trace

logging when pre-defined taint seeds are first introduced. In StraightTaint, a user can

set the input data from keyboard, file, network or function return value as taint seeds.

To avoid symbolic taint variables explosion in the offline analysis, we leverage the

concrete execution state when the taint seeds are introduced to constrain fresh symbolic

taint variables. We collect an execution state by a process dump of our logging tool.

Besides the initial execution state, only the executed control flow information is logged

to reconstruct the straight-line code later.

The logged data are first stored in a memory buffer and then dumped to disk storage

when the buffer is filled up. Three design goals guide us to achieving low online

logging overhead: 1) the logged data representation should be compact so that trace

buffer holds as much data as possible before it becomes full; 2) application thread(s)

(i.e. producer) should not be blocked when the full buffers are being consumed, that is,

processing the buffers asynchronously; 3) application instrumentation overhead should

be minimized. We meet the first requirement by extending an advanced trace profiling

format [82]. To address the second challenge, we propose an n-way fast buffering scheme

by exploiting multi-cores to parallelize profile consumption. At last, we carefully design

our instrumentation code to favor code inlining and avoid frequent context switches.

Figure 4.4 illustrates the overview of StraightTaint’s online logging part, which consists

of three parts: online logging, multi-threaded fast buffering, and straight-line code

reconstruction.
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Figure 4.4. Online logging overview.

4.2.1 Control Flow Profile

Since dynamic control flow information can be represented as a sequence of basic blocks

executed, a naive approach is to record each basic block’s entry address. On a 32-bit

machine, a 4-byte tag is needed to label a basic block. However, a full 4-byte tag is an

excessive use and would take up too much space. Zhao et al. [82] proposed the Detailed

Execution Profile (DEP), an efficient method that only uses 2-byte tags to record most

of the basic blocks and handles special cases with extra escape bytes. DEP splits a

4-byte address into 2 high bytes for H-tag and 2 low bytes for L-tag. During control flow

profiling, if two sequential basic blocks share the same H-tag, only L-tag of each basic

block is logged into the profile buffer. If the two H-tags are different, a special escape tag

0x0000 followed by the new H-tag will be entered into the buffer. Furthermore, DEP’s

scheme does not require control flow graph or any fine-grained static analysis, making it

suitable for binary code analysis. Our approach improves DEP’s scheme in several ways.
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0x0026

0xffff

0xffff

0x0400

4-byte Tag Profile

0x8040038

rep movsd 

…… 

2-byte Tag Profile

Total Basic 

Blocks: 1024

0x8040026

rep movsd 

0x8040201E

rep movsd 

Figure 4.5. Optimization to the single basic blocks caused by REP-prefixed instructions.

4.2.2 Optimizations

Certain x86 instructions are related to string operations, such as MOVS, LODS, STOS,

CMPS and SCAS. These instructions with REP-prefix are typically executed repeatedly.

Dynamic binary instrumentation tools [17, 83] usually treat REP-prefixed instructions as

implicit loops. If a REP-prefixed instruction iterates more than once, each new iteration

will cause a single instruction basic block to be generated. In such cases we’ll see

much more basic blocks than we expect. In SPEC CPU2006, we find several cases that

REP-prefixed string instructions are heavily used. For example, as high as 13.4% of

total executed instructions of the h264ref benchmark program are REP instruction

repetitions. StraightTaint extends DEP’s profile to handle implicit loops introduced by

the REP-prefixed instructions, which could otherwise become a performance overkill.

Particularly, we inspect the first loop of REP-prefixed instructions. And then two

consecutive escape value 0xffff, followed by a repeat count (stored in the ecx register)

are entered into the trace buffer to represent the entire implicit loops of REP-prefixed

instructions. The maximum REP-prefixed loop count we see in our evaluation comes

from gcc benchmark, which is 1, 770, far less than two-byte number limit. Figure 5.4

presents such an example. The left part shows a total 1, 024 single instruction basic
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blocks due to the implicit loop unrolling. StraightTaint only encodes the first repetition

and appends two consecutive 0xffff to indicate such REP loops. After that, the number

of repetitions (0x0400 in our example) is put into the profile buffer. Consequently,

StraightTaint only consumes 8 bytes to represent the total 1024 basic blocks. In contrast,

the raw 4-byte profile takes up 1024 × 4 bytes space and DEP needs 1024 × 2 bytes.

Furthermore, we also configure Pin to disable unrolling REP-prefixed instructions as

Pin otherwise inserts analysis code into each implicit iteration, introducing additional

overhead. In our evaluation, our optimization can reduce DEP profile space at most

55.2% and with up to 63.5% runtime overhead reduction. Noth that it is also possible

to use a single bit to log a basic block by recording the binary decision of conditional

jump [84], which leads to a much denser log data. However, Pin’s notion of basic blocks

is not strictly the same as compiler-level basic blocks. Pin also breaks basic blocks

on some specific instructions, for instance (on IA-32 and IA-64 architectures) CPUID,

POPF and REP-prefixed instructions. Single bit logging may miss such special cases.

Also, unlike StraightTaint,recovering the whole execution trace from single bit profile

has to walk through the control flow graph. Although our example is 2-byte tag profile on

IA-32, it is straightforward to extend to 4-byte tag profile for 64-bit machines. Current

StraightTaint accommodates both 32-bit and 64-bit binaries. It is worth mentioning

that frequently checking of H-tags during online logging can introduce large additional

overhead. We will further discuss this issue in Section 4.2.4.

4.2.3 Multithreaded Fast Buffering Scheme

In this section, we focus on the design of a general scheme that supports concurrently

buffering data of multi-threads on the multi-cores platform. The goal is to exploit

underutilized computing resources to alleviate the disk I/O bottleneck. At the center of
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Figure 4.6. Multi-threaded fast buffering scheme.

our design is a buffering thread pool, in which multiple buffers enable the application

instrumented to continue executing and filling up free buffers, while multiple Pin-tool

internal spawned threads process full buffers asynchronously. Figure 4.6 illustrates

how fast buffering thread pool works. Let us assume the application under examination

contains two threads (i.e., producer threads). The processing steps of our fast buffering

scheme are as follows.

1. When a program starts running, each application thread allocates a number of

thread-private buffers (5 buffers in our example), which means the instrumented

code of each thread can only write data into its private buffers. Available free

buffers are formed as a free-buffer queue. Also, each free buffer contains a thread

ID, indicating the associated application thread of the free buffer.

2. Simultaneously, several of Pin-tool internal threads are spawned as well. We call

them worker threads (10 worker threads in our example). Note that different from

application threads, worker threads are not JITed and can execute natively. A
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worker thread takes a buffer from the full buffer queue and then dumps the buffer

data to disk storage. After that, the worker thread put the buffer into the free buffer

queue of the associated application thread. Multiple worker threads access a full

buffer exclusively by acquiring the buffer’s lock.

3. Worker threads communicate with application threads via counting semaphores.

After being created, worker threads are waiting for the arrival of full buffers. The

application thread first fills one free buffer. When this buffer becomes full, a

callback function, BufferFull will be called to perform two tasks: 1) enqueues

the full buffer to the global full-buffer queue and wakes up one worker thread to

process it; 2) returns the next available thread-private free buffer to the application

thread. If the free-buffer queue is empty, the application thread has to be blocked

until a free buffer is available.

It is apparent that the less time application threads spend on waiting for free buffers,

the better performance it would achieve. Therefore, we bias the implementation of

our fast buffering scheme to favor application runtime performance. Specifically, we

create enough worker threads to ensure a full buffer can be processed immediately. We

can also dynamically adjust the number of buffers and worker threads to optimize the

synchronization and load balancing. In Figure 4.6, the number of worker threads is 10,

equal to the total number of buffers allocated by application threads. It is evident that

the availability of unused cores and the size of profile buffer have a great impact on the

runtime overhead. In Section 4.5.1, we will discuss how to tune these two factors.

4.2.4 Instrumentation Optimization

StraightTaint’s online logging tool is built on Pin. The way a Pin tool is implemented

can have great impact on the performance of the instrumented application. Besides the
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optimization to the REP-prefixed instructions, this section introduces other methods we

applied to reduce StraightTaint’s instrumentation overhead.

Conceptually, Pin’s instrumentation contains two major components, namely

instrumentation code and analysis code. Instrumentation code inspects program to

decide where the analysis code should be injected. In our tool, the instrumentation

granularity is on the basic block level. The instrumentation code is executed only once

for every sequence of basic blocks, and the translated code, including original code and

analysis code, is saved in Pin’s code cache for efficiency. Analysis code will be invoked at

beginning of each basic block. In our case, the analysis routines record dynamic control

flow and manage fast buffering scheme. As analysis routines are executed very frequently,

carefully tuning the analysis code is paramount for better performance. Pin tends to inline

the compact, branch-less analysis routines into translated code cache; while the analysis

code with conditional branches will force Pin to emit a function call to the respective

analysis routines instead. In our case, we have to frequently check whether the H-tag

has changed upon the execution of each basic block and write the tag to the trace buffer

accordingly. To favor Pin’s inlining, we shift the check of H-tag to the instrumentation

phrase, which is performed only once when each basic block is translated. In this way, In

this way, the branch instructions in the analysis routines are removed while profile tags

are updated as well. As a result, the overhead introduced by frequently checking H-tags

is reduced. In Section 4.4, we will introduce other Pin-specific optimizations we adopted.
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4.3 Offline Symbolic Taint Analysis

4.3.1 Reconstruction of Straight-line Code

Given the trace collected from the online logging, reconstructing a complete sequence of

4-byte starting addresses of basic blocks is quite straightforward. The beginning of the

trace profile should be a special value 0x0000, followed by an H-tag. Each basic block

4-byte entry address is the concatenation of its corresponding H-tag and L-tag. Then the

x86 instructions of each basic block are extracted from the application’s disassembly

code. An elaborate knowledge of the x86 ISA is required to accurately track taint

propagation that operates at the binary level. However, the cumbersome x86 ISA makes

it an extremely tedious engineering work. For example, previous work such as libdft [19]

contains more than 5, 000 lines of code to handle the x86 ISA complexity. Figure 4.2(a)

shows an example involving complicated arithmetic operations. Furthermore, some

x86 instructions contains implicit side effects, which only propagate taint conditionally

according to the contents of EFLAGS. For example, CMOVcc instructions propagate a

taint tag only if the EFLAGS register flags are in a specified state.

To reduce engineering workload and simplify taint tracking, we lift up x86 instructions

to BIL [33], an RISC-like intermediate language (IL). IL models each x86 instruction

semantics with one or several IL statements, which is able to get rid of the intricate details

of the x86 ISA, leaving us only 25 IL statements that we need to analyze carefully for

accurate taint tracking. In our evaluation, we have demonstrated that our IL-style taint

analysis is more accurate than the previous work with with incomplete taint propagation

strategies. Note that with control flow information, we have resolved each indirect jump

target and direction of conditional jump in the straight-line IL code.
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4.3.2 Symbolic Taint Analysis

By labeling the stream bytes of taint seeds as symbolic variables, StraightTaint offline

taint propagation is a kind of symbolic execution on the straight-line code. Since each

taint seed byte can be associated with a fresh symbol, multi-tag taint propagation is

natural for StraightTaint. The core of our symbolic taint analysis engine (as shown in

Figure 4.7) is an abstract processor, which maintains a context structure as the execution

state. The context structure consists of a program counter pc, a variable context V and a

memory context M . For conciseness, we represent the state of the abstract processor with

the tuple s = (pc, V,M). The variable context V contains all symbolic register values

(e.g., general purpose registers and bits of EFLAGS) and temporaries. The temporaries

are the expressions used in the static single assignment form of BIL. We also explicitly

represent the return value of a function as a special variable to facilitate detecting buffer

overflow vulnerabilities. The memory context M , with a structure analogous to the

two-level architecture of x86 virtual addressing, is a mapping from memory addresses

to their symbolic variables. By interpreting the current IL at pc, a state of the abstract

processor s = (pc, V,M) is translated into a new state s′ = (pc′, V ′,M ′) and V ′ and M ′

are updated according to the semantic of the IL. At the same time, StraightTaint checks

whether a location of interest (i.e., taint sink) is tainted by checking whether its value is a

symbolic expression. After the last IL is simulated, pc is set to halt and V and M are

not updated anymore.

We start offline taint analysis when the pre-defined taint seeds are first introduced

to the application. Besides the taint seeds, there could be other uninitialized variables

such as the stack pointer and memory contents. In principle, we can assign a fresh

symbolic variable to each uninitialized variable. However, symbolic taint analysis

with an unconstrained initial state can quickly reach the memory capacity and lead
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Figure 4.7. Symbolic taint analysis engine.

to the problem of “over-tainting” [14] as well. Our solution is to leverage a process

dump to assign other uninitialized variables with concrete values, only leaving the taint

seeds as symbolic variables. Here we use another tricky example to show the value of

symbolic execution style taint propagation. To reduce the number of conditional jumps,

some compiler optimization options translate conditional instructions into a sequence of

arithmetic operations. Figure 4.8 (a) shows such an example we find in our test cases.

Figure 4.8 (b) lists the semantics for each instruction. The net result of the sequence of

arithmetic operations is presented in Figure 4.8 (c), which is a branch condition. The

taint tag of reg is either from val1 or val2. StraightTaint successfully propagate taint

tags for this tricky case, while the other DTA tools such as Temu [64], Dytan [15], and

libdft [19] all fail.

4.3.3 Memory Reference Address Resolution

Another issue for StraightTaint’s offline taint analysis is that we do not record memory

reference addresses, which are typically calculated through general registers and constant

offsets. Our observation is that, with the initial execution state and the straight-line

code, most memory reference addresses are computable along the symbolic taint analysis.

40



1: neg     reg 

2: sbb     reg, reg 

3: and     reg, (val1 - val2) 

4: add     reg, val2

(a) (b) 

1:  if (reg)  cf = 1;

     else      cf = 0;

2: reg = reg - reg - cf;

3: reg = reg | (val1 - val2);

4: reg = reg + val2;

if (reg)  reg = val1;

else      reg = val2;

(c) 

Figure 4.8. Example: branchless logic code (reg stands for register; va1 and val2 are two
tainted variables).

i = read ();

j = read ();

j < 8

true false

j > 4

true false

A[j] = i

BB1

……

jmp eax

BB2

mov ebx [4*eax+4]

……

(a)  Indirect memory 

access

(b) Symbolic memory 

index

Figure 4.9. Example: memory reference address resolution.

Figure 4.9 (a) shows how we resolve an indirect memory access. Since we have resolved

each indirect jump target in the straight-line code (See Section 4.3.1), the memory

indirect access through eax in BB2 can be determined. To solve a memory address

address_a that is cannot be computed accurately (e.g., heap memory allocation), we

allocate memory on-the-fly. Inspired by micro execution [85], we use return value of

malloc(1) as address_a, which guarantees that address_a would not conflict

with an existing address. A symbolic index happens when a symbolic variable is used

as the index of a memory lookup. Intuitively a symbolic memory index could point to
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any memory slot. We deal with this problem by solving path conditions. As shown

in Figure 4.9 (b), the path conditions along the straight-line code restrict the range of

symbolic memory index j within 4 < j < 8. Then we conservatively label all the

possible memory values as tainted. For the example in Figure 4.9 (b), A[5], A[6], and

A[7] will be tainted.

4.3.4 Conditional Tainting

As x86 conditional control transfer instructions typically depend on the value of the

EFLAGS register (e.g., jz and jo) our virtual registers also keep track of bit-level

symbolic variables for EFLAGS. When a symbolic expression is used in a conditional

jump instruction, we collect it as a branch condition. After a complete symbolic taint

propagation run, the conjunction of all branch conditions is the Taint Logic Constraints.

Thus, the values that satisfy the taint logic constraints are the concrete taint seeds

that would lead the program to execute the same taint tracking operations as the one

symbolically tainted. With taint logic constraints, which are solved by a theorem prover

(e.g., Z3 [86]), previously taint analysis results can be mapped to new inputs and runtime

values without DTA again!

4.3.5 Optimization

Like Pin’s block cache to save the overhead of frequently executed basic block

retranslation, we take a similar approach to speed up our offline symbolic taint analysis.

We call it “sub-trace cache” (see “sub-trace cache” component in Figure 4.7). We merge

sequential basic blocks that have one predecessor and one successor as a sub-trace, which

can be viewed as an enlarged basic block. We represent the input-output relations of

a sub-trace as a set of symbolic formulas and maintain a lookup table in the sub-trace
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unit. Therefore, the successive runs can directly reuse previous results, without the need

for recomputing them. Another primary optimization we adopt is function summary.

Most well-known library functions have explicit semantics (e.g., C strings manipulation

functions defined in string.h), and many of them even do not affect taint propagation

(e.g., strcmp). Therefore, we turn off symbolic taint analysis at the boundary of these

functions and update context according to their semantics summaries. For a sequence of

adjacent memory access introduced by REP-prefixed instructions, we recover the number

of repetitions from trace profile and perform batch processing instead of byte by byte

operation.

4.4 Implementation

To demonstrate the idea of StraightTaint, we implemented a prototype including online

logging based on the Pin DBI framework [17] (version 2.12) with 2, 660 lines of code in

C/C++, and offline symbolic taint analysis engine on top of BAP [33] (version 0.8) with

4,540 lines of OCaml code. We rely on BAP to convert assembly instructions to IL and

convert IL expressions to CVC formulas. We use Z3 [86] as our constraint solver. The

saving and loading of sub-trace cache lookup table are implemented using the OCaml

Marshal API, which encodes arbitrary data structures as sequences of bytes and then

store them in a disk file.

When implementing the Pin-tool, we create thread local storage (TLS) slot to store

and retrieve per-thread buffer structure. Note that Pin-tools are unable work with either

pthreads library or Win32 threading API. We utilize the Pin thread API to spawn worker

threads and implement a counting semaphore using Pin’s own binary semaphore. To make

the best of Pin’s code cache effect, we enlarge the maximum number of basic blocks per

Pin trace from 3 to 8. We also use GCC’s built-in macro “__builtin_expect()” to
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provide the compiler with the branch prediction. Furthermore, we perform low-overhead

buffering of data through Pin’s fast buffering APIs, which support inlining a callback

function when a buffer becomes full. We also force Pin to use fastcall calling convention

to pass arguments via registers to avoid emitting stack access instructions (i.e., push and

pop).

4.5 Evaluation

Our testbed contains two machines. One is a server machine, which is equipped with two

Intel Xeon E5-2690 processors (16-core with 2.9GHz ) and 128GB of RAM. Another is a

desktop, consisting of Intel Core i7-3770 processor (Quad Core with 3.40GHz) and 8GB

memory. Both are running Ubuntu 12.04. The data presented throughout this section are

all mean values. We calculate them by running five repetitions of each experiment case.

4.5.1 Configuration of Buffer Size and Worker Threads

We studied two factors that may affect StraightTaint online logging performance: 1)

the buffer size of control flow profile; 2) the number of available worker threads. We

first survey the impact of various buffer size. In order to achieve enough parallelism,

the number of worker threads is set to 16 and 4, respectively. The total buffer sizes are

therefore the number of worker threads × single buffer size. We choose SPEC CPU2006

with test workload as the training set. As shown in Figure 4.10, roughly the overhead

decreases as the buffer size is increased. This is mainly due to the reduction of free/full

buffer switches, and worker threads spend less time on synchronization. As the buffer

size is beyond a certain point (64MB for the 16-core system and 128MB for the 4-core

system), the slowdown is increased a little. We attribute this to the large total buffer
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Figure 4.10. Normalized slowdown on 16-core and 4-core systems when profile buffer size
varies.

sizes (e.g., 16 × 256MB) interfering with application’s working set. Then we fix the

buffer size to 64MB for the 16-core system and 128MB for the 4-core system and alter

the number of worker threads. In general, the performance is better as more worker

threads are added. Due to the maximum parallelism and the tuned buffer size, 16 worker

threads with 64MB buffer size achieve the optimum result. We set these two parameters

as default configuration and conduct the following experiments on the 16-core system.

4.5.2 StraightTaint vs. libdft

We first compare StraightTaint with libdft [19], a state-of-the-art inlined DTA tool

built on Pin (“libdft” bar). In aid of evaluating the application performance slowdown

imposed exclusively by StraightTaint, we develop a simple tool (nullpin) to measure

Pin’s environment runtime overhead, which runs a program under Pin without any form

of analysis (“nullpin” bar). We also measure the logging overhead without buffering the

profile data to disk (“online-no I/O” bar). Under this configuration, the application never

stalls to wait for free profile buffers, which can represent the upper bound of performance
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Figure 4.11. StraightTaint slowdown on SPEC CPU2006 (Y axes shows the normalized execution
time).

improvement attainable by StraightTaint. Viewed from a different angle, “online-no I/O”

bar also indicates the overhead introduced by Pin’s instrumentation. All runtime data1

presented in this section are normalized to application native execution time (without

running Pin).

Figure 4.11 shows the normalized execution time of running SPEC CPU2006 int

benchmark suite with reference workload. Since the reference workload is CPU-

intensive, we expect that these results can estimate the worst case scenarios. On average,

StraightTaint’s online logging exhibits a 3.06X slowdown to native execution, while

libdft lags behind as much as 9.96X, indicating that StraightTaint speeds up application

execution by a factor of 3.25. It is noteworthy that if taking nullpin as the baseline,

the slowdown exclusively introduced by StraightTaint is only 1.97X while for libdft is

6.43X. This number is in line with the observations by the previous work [20, 21]; that is,

1The “online” bar is calculated by counting wall-clock time because we have to consider the I/O time
introduced by our buffering scheme. Other bars are calculated by counting CPU time.
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Figure 4.12. StraightTaint slowdown on common Linux utilities (Y axes shows the normalized
execution time).

performing one taint propagation operation normally needs six extra instructions. The

overhead incurred by StraightTaint’s online instrumentation is 2.16X (“online-no I/O”

bar), compared to Pin’s environment runtime overhead (1.55X), 39.4% extra performance

penalty added. Due to the CPU bounded test suite, StraightTaint has to put more efforts to

deal with large amount of I/O. Therefore, additional 41.7% overhead to “online-without

I/O” version is introduced.

Next we evaluated StraightTaint on four common Linux utilities that represent three

kinds of workload. tar is I/O bounded, whereas bzip2 and gzip are CPU intensive

program. scp represents a middle level between these two cases. We use tar to archive

and extract GNU Core utilities 8.13 package (∼50MB). And then we apply bzip2 and

gzip to compress and decompress the archive file of Core utilities. For scp, we copy the

archive file of Core utilities over 1Gbps link. We achieve a similar improvement with the

SPEC CPU2006 experiment. As shown in Figure 4.12, StraightTaint imposes a average

2.48X slowdown to native execution, with a 3.32 times speed up to libdft. Besides, the
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additional overhead due to I/O effect is quite small (< 5%). We attribute this to our fast

buffering scheme, which has significantly mitigated the bottleneck of I/O.

On average, StraightTaint generates about 2.8GB of raw trace profiling data for

SPEC2006’s reference workload. Compared to the raw 4-byte tag profile size, the

relative size of StraightTaint is only 49.2%. In general, StraightTaint outperforms DEP’s

encoding [82] by 5 percentages in terms of smaller profiling data size. It is worth

mentioning that we see a significant size reduction for the h264ref benchmark, from

DEP’s 4.8GB to 2.1GB. The reason is h264ref intensively utilizes REP-prefixed

instructions, which are very well handled by StraightTaint’s optimization.

The last bar for each application in Figure 4.11 presents the performance of symbolic

taint analysis, which is normalized to native execution as well. Since we have decoupled

taint tracking from program execution, offline symbolic taint analysis avoids the overhead

introduced by DBI’s environment and computing resource competitions. On the other

hand, symbolic taint analysis engine is in fact an interpreter for each IL, which is much

slower than native execution. To alleviate this issue, we have applied a number of

optimization methods (discussed in Section 4.3.5). The net result is that our offline

symbolic taint analysis takes approximately the same amount of time as libdft (10.06X

for StraightTaint and 9.96X for libdft on average). In several cases (e.g., perlbench and

h264ref), StraightTaint’s offline part outperforms libdft. Considering that StraightTaint is

aiming to shift dynamic taint analysis cost to the offline analysis phase, this degree of

slowdown is tolerable. In Section 7.2, we will discuss several possible ways to further

accelerate offline taint analysis.

Then we quantify the effects of the set of optimizations we adopted for the online

instrumentation. Figure 4.13 shows the impact of instrumentation optimizations when

applied cumulatively on SPEC CPU2006 with the reference workload. The “unopt” bar

48



0
1
2
3
4
5
6
7
8
9

1 0
1 1

a v e r a g e
x a l a n c b m m k

a s t a r
o m n e t p p

h 2 6 4 r e f
l i b q u a n t u m

s j e n g
h m m e r

g o b m k
m c fg c cb z i p 2

p e r l b e n c h

 

 

Slo
wd

ow
n (

no
rm

aliz
ed

 ex
ec

uti
on

 tim
e)

 u n o p t
 O 1
 O 2
 O 3

Figure 4.13. The impact of instrumentation optimization on SPEC CPU2006: O1 (inline
analysis code), O2 (O1 + fast buffering APIs and call linkages), O3 (O2 + optimize rep-prefixed
instructions).

approximates an un-optimized StraightTaint, which does not employ any optimization

methods we discussed in Section 4.2 and Section 4.4. The bar denoted as O1, captures

the effect of our effort on inlining analysis code, bringing a notable overhead step-down

from average 5.69X to 3.19X. Optimization O2, which adds fast buffering APIs and call

linkages, reduce running time further to 2.73X. Optimization to REP-prefixed instructions

(O3) offers an enhanced performance improvement by average 26.4%, with a peak value

63.5% to the h264ref. After investigation, we find that as high as 13.4% of total

executed instructions of the h264ref benchmark are REP instruction repetitions.

4.5.3 StraightTaint vs. FlowWalker

FlowWalker [27] is perhaps the closest work to StraightTaint in its goals: we are both

offline taint analysis in record and replay style. Similar to StraightTaint, FlowWalker
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Figure 4.14. StraightTaint vs. FlowWalker: slowdown on common Linux utilities (Y axes shows
the normalized execution time).

also records limited CPU context on top of Pin to calculate the memory address offline.

However, FlowWalker lacks fine-grained optimizations in both online logging and offline

taint analysis (see Section 3.4). In this experiment, we evaluate StraightTaint (short for

ST) and FlowWalker (short for FW) on four common Linux utilities that represent three

kinds of workload2. tar is I/O bounded, whereas bzip2 and gzip are CPU intensive

program. scp represents a middle level between these two cases. We use tar to archive

and extract GNU Core utilities 8.13 package (∼50MB). And then we apply bzip2 and

gzip to compress and decompress the archive file of Core utilities. For scp, we copy

the archive file of Core utilities over 1Gbps link. We achieve a similar improvement

with the SPEC CPU2006 experiment. As shown in Figure 4.14, StraightTaint imposes a

average 2.48X slowdown to native execution, with a 1.86 times speed up to FlowWalker.

Besides, StraightTaint’s offline taint analysis is faster than FlowWalker with a factor of

1.14. We attribute this to our sub-trace cache and function summary optimizations.

2SPEC2006’s reference workload is too huge for FlowWalker to work out the result in reasonable time.
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4.5.4 Offline Symbolic Taint Analysis

Table 4.1. StraightTaint successfully detected various intrusions with the listed exploits.

Program Vulnerability CVE ID
# Taint (Symbolic) Bytes

libdft StraightTaint pure SE
nginx validation bypass CVE-2013-4547 45 45 1,035

mini_httpd validation bypass CVE-2009-4490 66 66 2,706
libpng denial of service CVE-2014-0333 72 80 2,256
gzip integer underflow CVE-2010-0001 94 94 6,490

tiny server validation bypass CVE-2012-1783 125 131 12,171
coreutils buffer overflow CVE-2013-0221 252 272 –

libtiff buffer overflow CVE-2013-4231 268 280 –
waveSurfer buffer overflow CVE-2012-6303 384 384 –

grep integer overflow CVE-2012-5667 608 644 –
regcomp validation bypass CVE-2010-4052 1,124 1,186 –

Next we evaluate the accuracy of our offline symbolic taint analysis in the task of

software attack detection. To this end, we test ten recent software vulnerabilities using a

set of exploits listed in Table 4.1. These test cases are chosen from CVE vulnerability

data source3 with two criteria: 1) It is easy to mark the locations of taint sinks in the

binary code so that we can count the tainted bytes at the same place; 2) we have exploits

that can trigger these vulnerabilities (not all the CVE vulnerabilities have related exploits).

All of these applications are compiled with the option “gcc -O2”. Taking these exploits

as inputs, we apply StraightTaint on each application and check taint tags at various

taint sinks (e.g., function return value). In all cases, StraightTaint successfully detects

the attacks without false negatives. At the same time, we count the number of tainted

(or symbolic) bytes at the end of taint analysis. We compared StraightTaint with Log-

all and Pure SE. Log-all means recording complete runtime data (e.g., each memory

address and control transfer target) during online logging, and then use the data for

offline taint analysis. Log-all represents vanilla decoupled offline taint analysis, but its

3http://www.cvedetails.com/
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Figure 4.15. Normalized slowdown when the number of taint tags varies.

result is accurate. Pure SE does symbolic taint analysis but without concrete execution

state initialization (see Section 4.3.2) and memory reference address resolution (see

Section 4.3.3). As shown in Table 4.1, the taint bytes added by StraightTaint is quite

close to the Log-all. StraightTaint introduces additional taint bytes to 6 cases, but no one

is beyond 5%. Most likely, our conservative approach to dealing with symbolic memory

indices results in the small additional taint bytes. In contrast, symbolic taint analysis

with a completely unconstrained initial state (pure SE) incurs taint variable explosion.

Pure SE fails in the last 5 test cases due to quickly reaching the memory capacity. Note

that we also identify 14 code segments which can fail DTA tools with incomplete taint

propagation strategies. One such example has been shown in Figure 4.8. In contrast,

StraightTaint’s full-featured offline taint analysis succeeds in all cases.

At last, we show that StraightTaint can support multi-tag taint analysis naturally.

We test a lightweight web server, thttpd4, with a 400-byte size HTTP request as

4http://acme.com/software/thttpd/
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input. In our evaluation, 2 taint tags means that the first 200 bytes are labeled as one

taint tag and the next 200 bytes are labeled as another taint tag; 400 taint tags means

each input byte is associated with a different taint tag. Following the similar style, we

vary the number of taint tags in each round. At the same time, we compare two DTA

tools (Temu [64] and Dytan [15]) which can also perform multi-tag taint analysis, and

Figure 4.15 shows the results. The baseline for each tool is their single-tag version. It is

apparent that as the number of taint tags increases, both Temu and Dytan imposes high

additional overhead, while StraightTaint only introduce 1.48X showdown in the worst

case. Please note that this evaluation demonstrates StraightTaint’s another notable feature:

once a log is captured, it can be analyzed multiple times. In our multiple round testing,

StraightTaint only needs to record the required data once and performs the different

multi-tag propagation rounds on top on the straight-line code. By contrast, both Temu

and Dytan have to rerun at each round.

4.6 Case Study: Attack Provenance Analysis

Because of the offline analysis property, StraightTaint is an ideal fit for ex post facto

security applications. In this section, we demonstrate the merit of StraightTaint with a

case study of attack provenance investigation. The goal is to reveal the provenance of

intrusions or suspicious events (e.g., information leaks). The previous work [34, 87] did

this by generating causal graph linking root causes and suspicious events. Certainly DTA

can be utilized to precisely generate causal dependence between taint source and taint sink.

We show that StraightTaint is able to get a similar level of precision as DTA with multi-

tag backward propagation. The test case is wget5, an open source tool for retrieving

files from web. We execute wget with the command “wget www.google.com

5http://www.gnu.org/software/wget

53



www.google.com www.bing.com

index1.html index2.html

wget

 /* convert links to local files */

 int count = sizeof(downloaded_set)

 for(i=0; i<count; i++)

 {

     convert_links (file, url);

 }

Figure 4.16. Causal relationship between two sinks and two sources.

www.bing.com”.

As shown in Figure 4.16, wget receives two URLs as command line arguments

and the downloads their respective index.html files (index1.html is from

www.google.com and index2.html is from www.bing.com). Supposing we

have already got these two downloaded files, an interesting question is “which exact URL

are they derived from?” “google, bing or both?” Apparently DTA can precisely identify

such mappings by forward taint tracking with multiple tags. Please note the pseudo-code

of Figure 4.16: two files are generated subsequently when the loop is unrolling. As a

result, static taint analysis, without runtime information, fails to identify causal relations

between sources and sinks.

We take the input buffer of fwrite, which is used to generate HTML file, as

symbolic taint sinks. Then we apply StraightTaint for backward tainting along the

straight-line trace. Of course without runtime values and inputs, StraightTaint is unable

to exactly correlates the concrete URL to its corresponding file. However, compared to

pure static approaches, StraightTaint catches conditional causal relationships between
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two sinks and sources: the first downloaded file is derived from the first URL input

and the second one is related to the second URL. Another benefit of StraightTaint’s

conditional tainting is that we are possible to directly map previous taint analysis results

to new inputs and runtime values. For example, supposing new command for wget is

‘‘wget www.bing.com www.google.com”, with the previous conditional causal

relationship, we can get the exact mappings immediately without running DTA again.
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Chapter 5 |

TaintPipe: Pipelined Symbolic

Taint Analysis

In this chapter, we exploit another style of parallelism, namely pipelining, to significantly

improve the performance of dynamic taint analysis on top of the pervasive multi-core

architectures. In our system [63], the execution of expensive taint analysis is decoupled

from application execution to multiple pipeline stages running in parallel. Each worker

thread can start running symbolic taint analysis very early even without knowing the

explicit information, and will switch to the concrete taint analysis when the explicit

information is ready. TaintPipe has two concurrently running parts: 1) the instrumented

application thread doing a very lightweight online logging and acting as the source of

the pipeline; 2) multiple worker threads as different stages of the pipeline to perform

concrete/symbolic taint analysis in parallel. Each worker thread starts running symbolic

taint analysis very early even without knowing the explicit taint tags and will switch to

the concrete taint analysis when the explicit taint state is ready. In this way, the execution

time of each worker thread may have many overlaps with other worker threads. With

these overlaps, TaintPipe can make up the accumulated delay.
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Figure 5.1. Inlined dynamic taint analysis vs. TaintPipe.

5.1 Background

In this section, we discuss the background and context information of the problem that

TaintPipe seeks to solve. We start by comparing TaintPipe with the conventional inlined

taint analysis approaches, and we then present the differences between the previous

“primary & secondary” taint decoupling model and the pipelined decoupling style in

TaintPipe.

5.1.1 Inlined Analysis vs. TaintPipe

Figure 5.1 (“Inlined DTA”) illustrates a typical dynamic taint analysis mechanism based

on dynamic binary instrumentation (DBI), in which the original program code and taint

tracking logic code are tightly coupled. Especially, when dynamic taint analysis runs on

the same core, they compete for the CPU cycles, registers, and cache space, leading to
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 size = getc(infile); 

 A = -1;

 B = size + 1;

 C = (1 << size) - 1;

 D = num & C;

(a) Code segment (b) Symbolic taint state (c) Symbolic taint state resolution
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(1 << tag1) – 1

 (1 << tag1) – 1
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Figure 5.2. An example of symbolic taint analysis on a code segment: (a) code segment; (b)
symbolic taint states, the input value size and num are labeled as symbol1 and symbol2,
respectively; (c) resolving symbolic taint states when size is tainted as tag1 and num is a
constant value (num = 0xffffffff).

significant performance slowdown. For example, “context switch” happens frequently

between the original program instructions and taint tracking instructions due to the

starvation of CPU registers. This means there will be a couple of instructions, mostly

inserted per program instruction, to save and restore those register values to and from

memory. At the same time, taint tracking instructions themselves (e.g., shadow memory

mapping) are already complicated enough. One taint shadow memory lookup operation

normally needs 6–8 extra instructions [21].

Our approach, analogous to the hardware pipelining, decouples taint logic code to

multiple spare cores. Figure 5.1 (“TaintPipe”) depicts TaintPipe’s framework, which

consists of two concurrently running parts: 1) the instrumented application thread

performing lightweight online logging and acting as the source of the pipeline; 2) multiple

worker threads as different stages of the pipeline to perform symbolic taint analysis. Each

horizontal bar with gray color indicates a working thread. We start online logging when

the predefined taint seeds are introduced to the application. The collected profile is passed

to a worker thread. Each worker thread constructs a straight-line code segment and then

performs taint analysis in parallel. In principle, fully parallelizing dynamic taint analysis

is challenging because there are strong serial data dependencies between the taint logic

code and application code [23]. To address this problem, we propose segmented symbolic
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taint analysis inside each worker thread whenever the explicit taint information is not

available, in which the taint state is symbolically calculated. The symbolic taint state

will be updated later when the concrete data arrive. In addition to the control flow profile,

the explicit execution state when the taint seeds are introduced is recorded as well. The

purpose is to reduce the number of fresh symbolic taint variables.

We use a motivating example to introduce the idea of segmented symbolic taint

analysis. Figure 5.2 shows an example for symbolic taint analysis on a straight-line

code segment, which is a simplified code snippet of the libtiff buffer overflow

vulnerability (CVE-2013-4231). Assume when a worker thread starts taint analysis on

this code segment (Figure 5.2(a)), no taint state for the input data (“size” and “num” in

our case) is defined. Instead of waiting for the explicit information, we treat the unknown

values as taint symbols (symbol1 for “size” and symbol2 for “num”, respectively) and

summarize the net effect of taint propagation in the segment. The symbolic taint states

are shown in Figure 5.2(b). When the explicit taint states are available, we resolve the

symbolic taint states by replacing the taint symbols with their real taint tags or concrete

values (Figure 5.2(c)). After that, we continue to perform concrete taint analysis like

conventional DTA. Note that here we show pseudo-code for ease of understanding, while

TaintPipe works on binary code.

Compared with inlined DTA, the application thread under TaintPipe is mainly

instrumented with control flow profile logging code, which is quite lightweight. Therefore,

TaintPipe results in much lower application runtime overhead. On the other hand, the

execution of taint logic code is decoupled to multiple pipeline stages running in parallel.

The accumulated effect of TaintPipe’s pipeline leads to a substantial speedup on taint

analysis.
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5.1.2 “Primary & Secondary” Model

Some recent work [25, 26, 61] offloads taint logic code from the application (primary)

thread to another shadow (secondary) thread and runs them on separate cores. At the same

time, the primary thread communicates with the secondary thread to convey the necessary

information (e.g., the addresses of memory operations and control transfer targets) for

performing taint analysis. However, this model suffers from frequent communication

between the primary and secondary thread. In principle, every memory address that is

loaded or stored has to be logged and transferred. Due to the frequent synchronization

with the primary thread and the extra instructions to access shadow memory, taint logic

execution in the secondary thread is typically slower than the application execution. As

a result, the delay for each taint operation could be accumulated, leading to an delay

proportional to the original execution. ShadowReplica [26] partially addresses this

drawback by performing advanced offline static optimizations on the taint logic code to

reduce the runtime overhead. However, in many security analysis scenarios, precise static

analysis and optimizations over taint logic code are not feasible, e.g., reverse engineering

and malware forensics. In such cases, program static features such as control flow graphs

are possibly obfuscated.

In TaintPipe, we record compact control flow information to reconstruct straight-line

code, in which all the targets of direct and indirect jumps have been resolved. However,

we do not record or transfer the addresses of memory operations. Our key observation is

that most addresses of memory operations can be inferred from the straight-line code.

For example, if a basic block is ended with an indirect jump instruction jmp eax, we

can quickly know the value of eax from the straight-line code. In this way, all the other

memory indirect access calculated through eax (before it is updated) can be determined.

For instance, we can infer the memory load address for the instruction: mov ebx,
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Figure 5.3. Architecture.

[4*eax + 16]. Even when the index of a memory lookup is a symbol, with the

taint states and path predicates of the straight-line code, we can often narrow down the

symbolic memory addresses to a small range in most cases.

Since TaintPipe’s data communication is lightweight, TaintPipe can achieve nearly

constant delay given enough number of worker threads. The upper limit number of

worker threads is also bounded, which equals roughly the ratio of the taint analysis

execution time over the application thread execution time for each segment.

Due to TaintPipe’s pipelining design, it is possible that TaintPipe may detect an

attack some time after the real attack has happened. However, this trade-off does not

prevent TaintPipe from practically supporting a broad variety of security applications,

such as attack forensic investigation and post-fact intrusion detection, which do not

require strict runtime security enforcement. It is worth noting that different from

ShadowReplica, TaintPipe does not depend on extensive static analysis to reduce data

communication. Therefore, TaintPipe has a wider range of applications in speeding

up analyzing obfuscated binaries, as static analysis of obfuscated binaries is of great

challenge.

5.2 Design

Figure 5.3 illustrates the architecture of TaintPipe. We have built the pipelining framework

on top of a dynamic binary instrumentation tool, enabling TaintPipe to work with

unmodified program binaries. The steps followed by TaintPipe are as follows.
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1. TaintPipe takes in a binary along with the taint seeds as input. The instrumented

application thread starts execution with lightweight online logging for control flow

and other information (Section 5.4.1).

2. Then the instrumented program is executed together with a multithreaded logging

tool to efficiently deliver the logged data to memory (Section 5.4.2).

3. When the profile buffer becomes full, a taint analysis engine will be invoked for

online pipelined taint analysis (Section 5.5.1).

4. The generated log data are then used to construct straight-line code, which helps

to solve many precision loss problems in static taint analysis. In this stage, we

generate a segment of executed code blocks for each logged data buffer. The

memory addresses that are accessed through indirect jump targets are also resolved

(Section 5.5.2).

5. The taint analysis engine will further translate straight-line code to taint operations,

which avoid precision loss and support both multi-tag and bit-level taint analysis

(Section 5.5.3).

6. With the constructed taint operations, TaintPipe performs pipelined symbolic

taint analysis. When a thread finishes taint analysis with an explicit taint state,

it synchronizes with its following thread to resolve the symbolic taint state

(Section 5.5.4).

5.2.1 Segmented Symbolic Taint Analysis

In this section, we analyze symbolic taint analysis from a theoretical point of view to

justify the correctness of our pipelining scheme. In order to formalize segmented symbolic

taint analysis, we use the following notations:
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1. Let σ denote a taint state, which maps variables to their taint tags.

2. Let A(σ, S) denote a symbolic taint analysis A on a straight-line code segment S,

with an initial taint state σ. We use Aσ(S) for convenience.

Note that the straight-line code segment S has no control transfer statement.

Conceptually, S only contains one type of statements, namely assignment statements. Of

course, from the implementation point of view, there may be other types of statements,

but they can all be regarded as assignment statements. For example, as we will show in

Section 5.5.3, our taint operations contain assignment operations, laundering operations,

and arithmetic operations. The latter two operations can be derived from taint assignment

operations.

Based on the semantics of assignment statements, we define symbolic taint analysis

for an assignment statement as follows:

Aσ(x := e) = σ[x 7→ et] (5.1)

where et denotes the taint tag of e, and [·] is the taint state update operator. If x is a new

variable, the taint state σ is extended with a new mapping from x to its taint. If x occurs

in the taint state σ, for the variables in the domain of σ whose symbolic taint expressions

depend on x, their symbolic taint expressions will be updated or recomputed with the

new taint value of x.

Assume σ1 = Aσ(i1) for a statement i, then the symbolic taint analysis for two

sequential statements i1; i2 is:

Aσ(i1; i2) = Aσ1(i2) (5.2)
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Assume straight-line code segment S1 = (i1;S ′1). We can then deduce the symbolic

taint analysis on two sequential segments S1;S2 as follows:

Aσ(S1;S2)

=Aσ((i1;S ′1);S2)

=Aσ(i1; (S ′1;S2))

= · · ·

=AAσ(S1)(S2)

(5.3)

That is, given Aσ(S1) = σ1 and Aε(S2) = σ2, where ε is an empty taint state, Eq. 5.3

leads to:

Aσ(S1;S2) = σ2[σ1] (5.4)

Here, we misuse the taint state update operator [·] and apply it to a taint state map,

instead of a single taint variable update. With Eq. 5.4, we can perform segmented taint

analysis in parallel or in a pipeline style. For two segments S1;S2, assume the starting

taint state is σ0. We start two threads, one compute Aσ0(S1) and the other computes

Aε(S2), where ε is an empty taint state. Assume the result of the first thread analysis is

σ1 and the result of the second is σ2. The symbolic taint analysis of S1;S2 is σ2[σ1], that

is, the right hand side of Eq. 5.4. Eq. 5.4 forms the foundation of our segmented taint

analysis in a pipeline style.

5.3 Implementation

To demonstrate the efficacy of TaintPipe, we have developed a prototype on top of

the dynamic binary instrumentation framework Pin [17] (version 2.12) and the binary

analysis platform BAP [33] (version 0.8). The online logging and pipelining framework
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are implemented as Pin tools, using about 3,100 lines of C/C++ code. The taint operation

constructors are built on BAP IL (intermediate language). TaintPipe’s taint analysis

engine is based on BAP’s symbolic execution module, using about 4,400 lines of Ocaml

and running concurrently with Pin tools. We utilize Ocaml’s functor polymorphism

so that taint states can be instantiated in either concrete or symbolic style. All of

the functionality implemented in taint analysis engine are wrapped as function calls.

To support communication between Pin tools and taint analysis engine, we develop

a lightweight RPC interface so that each worker thread can directly call Ocaml code.

The saving and loading of the taint cache lookup table is implemented using the Ocaml

Marshal API, which encodes IL expressions as sequences of compact bytes and then

stores them in a disk file.

Dynamic binary instrumentation tools tend to inline compact and branch-less code to

the final translated code. For the code with conditional branches, DBI emits a function

call instead, which introduces additional overhead. Therefore, we carefully design

our instrumentation code to favor DBI’s code inlining. To fully reduce online logging

overhead, we also utilize Pin-specific optimizations. We leverage Pin’s fast buffering APIs

for efficient data buffering. For example, the inlined INS_InsertFillBuffer()

writes the control flow profile directly to the given buffer; the callback function registered

in PIN_DefineTraceBuffer() processes the buffer when it becomes full or thread

exits. Besides, we force Pin to use the fastcall x86 calling convention to avoid emitting

stack-based parameter loading instructions (i.e., push and pop). Currently Pin-tools do not

support the Pthreads library. Thus we employ Pin Thread API to spawn multiple worker

threads. We also implement a counting semaphore based on Pin’s locking primitives to

assist thread synchronization.
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5.4 Logging

TaintPipe’s pipeline stages consist of multiple threads. The thread of instrumented

application (producer) serves as the source of pipeline, and a number of Pin internal

threads act as worker threads to perform symbolic taint analysis on the data collected

from the application thread. Note that unlike application threads, worker threads are not

JITed and therefore execute natively. One of the major drawbacks of previous dynamic

taint analysis decoupling approaches is the large amount of information collected in the

application thread and the high overhead of communication between the application

thread and analysis thread. To address these challenges, TaintPipe performs lightweight

online logging to record information required for pipelined taint analysis. The logged

data comprise control flow profile and the concrete execution state when taint seeds are

first introduced, which is the starting point of our pipelined taint analysis. The initial

execution state, consisting of concrete context of registers and memory, (e.g., CR0∼CR4,

EFLAGS and addresses of initial taint seeds), is used to reduce the number of fresh

symbolic taint variables.

We take major two steps to reduce the application thread slowdown: First, we adopt

a compact profile structure so that the profile buffer contains logged data as much as

possible, and it is quite simple to recover the entry address of each basic block as well.

Second, we apply the “one producer, multiple consumers” model and N-way buffering

scheme to process full buffers asynchronously, which allows application to continue

execution while pipelined taint analysis works in parallel. We will discuss each step in

the following sub-sections.
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5.4.1 Lightweight Online Logging

Besides the initial execution state when the taint seeds are introduced, TaintPipe collects

control flow information, which is represented as a sequence of basic blocks executed.

Conceptually, we can use a single bit to record the direction of conditional jump [84],

which leads to a much more compact profile. However, reconstruction straight-line code

from 1 bit profile is more complicated to make it fit for offline analysis. Zhao et al. [82]

proposed Detailed Execution Profile (DEP), a 2-byte profile structure to represent 4-byte

basic block address on x86-32 machine. In DEP, a 4-byte address is divided into two

parts: H-tag for the 2 high bytes and L-tag for 2 low bytes. If two successive basic blocks

have the same H-tag, only L-tag of each basic block enters the profile buffer; otherwise a

special tag 0x0000 followed by the new H-tag will be logged into the buffer.

We extend DEP’s scheme to support REP-prefix instructions. A number of x86

instructions related to string operations (e.g., MOVS, LODS) with REP-prefix are

executed repeatedly until the counter register (ecx) counts down to 0. Dynamic binary

instrumentation tools [17,83] normally treat a REP-prefixed instruction as an implicit loop

and generate a single instruction basic block in each iteration. In our evaluation, there

are several cases that unrolling such REP-prefix instructions would be a performance

bottleneck. We address this problem by adding additional escape tags to represent such

implicit loops. Figure 5.4 presents an example of the control flow profile we adopted.

The left part shows a segment of straight-line code containing 1028 basic blocks, and

1024 out of them are due to REP-prefixed instruction repetitions. Our profile (the right

side of Figure 5.4) encodes such case with two consecutive escape tags (0xffff), followed

by the number of iterations (0x0400).

We note that it is usually unnecessary to turn on the logging all the time. For example,

when application starts executing, many functions are only used during loading. At that
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0x804fffa

BB_2

0x8050004

BB_3

0x8050016

BB_4

rep movsd 

0xfffa

0x0000

0x0805

0x8050030

BB_1028

0x0004

0x0016

0xffff

0xffff

0x0400

4-byte tag 

profile

0x8050028

rep movsd 

0x804fff0

BB_1

0xfff0

... 

rep movsd 

0x0030

2-byte tag 

profile

Repetition 

Count: 1024

Figure 5.4. An example of 2-byte tag profile.

time, no sensitive taint seed is introduced. Therefore we perform on-demand logging

to record control flow profile when necessary. As application starts running, we only

instrument limited functions to inspect the various input channels that taint could be

introduced into the application (taint seeds). Such taint seeds include standard input,

files and network I/O. Besides, users can customize other values as taint seeds, such as

function return values or parameters. When the pre-defined taint seeds are triggered, we

turn on the control flow profile logging. At the same time, we save the current execution

state to be used in the pipelined taint analysis. Many well-known library functions

have explicit semantics, which facilitates us to selectively turn off logging inside these

functions and propagate taint correspondingly at function level. We will discuss this

issue further in Section 5.5.3.
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5.4.2 N-way Buffering Scheme

Since TaintPipe’s online logging is lightweight, application (producer) thread’s execution

speed is typically faster than the processing speed of worker threads. To mitigate this

bottleneck, we employed “one producer, multiple consumers” model and N-way buffering

scheme [88]. At the center of our design is a thread pool, which is subdivided into n

linked buffers, and the producer thread and multiple worker threads work on different

buffers simultaneously. More specifically, when the instrumented application thread

starts running, we first allocate n linked empty buffers (n > 1). At the same time, n Pin

internal threads (worker threads) are spawned. Each worker thread is bound to one buffer

and communicates with the application thread via semaphores. When a buffer becomes

full, the application thread will release the full buffer to its corresponding worker thread

and then continue to fill in the next available empty buffer. Given a full profile buffers, a

worker thread will send it to a taint analysis engine to perform concrete/symbolic taint

analysis in parallel. After that, the worker thread will release the profile buffer back to

the application thread and wait for processing the next full buffer.

It is apparent that the availability of unused worker threads and the size of profile

buffer will affect overall performance of TaintPipe (both application execution time

and pipelined taint analysis) significantly. In Section 5.6.1, we will conduct a series of

experiments to find the optimal values for these two factors.

5.5 Symbolic Taint Analysis

When the application thread releases a full profile buffer, a worker thread is waked up

to capture the profile buffer and then communicates with a taint analysis engine for

symbolic taint analysis.
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Figure 5.5. The structure of taint analysis engine.

5.5.1 Taint Analysis Engine

The taint analysis engine will first convert the control flow profile to a segment of straight-

line intermediate language (IL) code and then translates the IL code to even simpler taint

logic operations. The translations are cached for efficiency at taint basic block level. The

key components of taint analysis engine are illustrated in Figure 5.5.

The core of TaintPipe’s taint analysis engine is an abstract taint analysis processor,

which simulates a segment of taint operations and updates the taint states accordingly.

The taint state structure contains two contexts: virtual registers keeping track of symbolic

taint tags for register, and taint symbolic memory for symbolic taint tags in memory.

The taint symbolic memory design is like the two-level page table structure and each

page of memory consists of symbolic taint formulas rather than concrete values. After

the initialization of the symbolic taint inputs, the engines perform taint analysis either

concretely or symbolically in a pipeline style.

5.5.2 Straight-line Code Construction

Given the control flow profiles, recovering each basic block’s H-tag and L-tag is quite

straightforward. A basic block’s entry address is the concatenation of its corresponding

H-tag and L-tag [82]. The taint analysis engine should only execute the instructions
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required for taint propagation. Otherwise, the work thread may run much slower than

the application thread. On the other side, due to the cumbersome x86 ISA, precisely

propagating taint for the complex x86 instructions is an arduous work, especially for

some instructions with side effect of conditional taint (e.g., CMOV). To achieve these two

goals, we first extract the x86 instructions sequence from the application binary and then

lift them to BIL [33], a RISC-like intermediate language. Since we know exactly the

execution sequence, the sequence is a straight-line code. We have removed all the direct

and indirect control transfer instructions and substituted them with control transfer target

assertion statements.

After resolving an indirect control transfer, we go one step further to determine all

the memory operation addresses which depend on this indirect control transfer target. For

example, after we know the target of jmp eax, we continue to trace the use-def chain

of eax for each memory load or store operation whose address is calculated through this

eax. With the initial execution state (containing addresses of taint seeds) and indirect

control transfer target resolving, we are able to decide most of the memory operation

addresses.

For some applications such as word processing, a symbolic taint input may be used

as a memory lookup index. Without any constraint, a symbolic memory index could

point to any memory cell. Inspired by the index-based memory model proposed by Cha

et al. [89], we attempt to narrow down the symbolic memory accesses to a small range

with symbolic taint states and path predicates. We first leverage value set analysis [90]

to limit the range of a symbolic memory access and then refine the range by querying

a constraint solver. The path predicate along the straight-line code usually limits the

scope of symbolic memory access. Figure 5.6 shows such an example where the path

predicate restricts the symbolic memory index i within a range such that 7 < i < 10.
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Figure 5.6. A path predicate constrains symbolic memory access within the boundary of 7 < i <
10.

When propagating a taint tag to the memory cell referenced by i, we conservatively taint

all the possible memory slots, that is, A[8] and A[9] in Figure 5.6 will be tainted as

tag1. In Section 5.7, we will demonstrate that our symbolic memory index solution

only introduces marginal side effects.

5.5.3 Taint Operation Generation

Based on BIL statements, we construct taint operations. Taint operations inside a basic

block are formed as “taint basic block” [28], which are cached for efficiency. To make

the best of cache effect, we merge the basic blocks with only one predecessor and one

successor. Since BIL explicitly reveals the side effect of intricate x86 instructions, it

is easy to perform intra-block optimizations to get rid of redundant taint operations.

Therefore, our taint operations are simple and accurate. Currently our taint operations

mainly consist of three types of operations for tracking taint data:

1. Assignment operations: The operations in this category are involved in copying
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values between registers and registers/memory. We simply assign the taint tag of

source operand to the destination operand.

2. Laundering operations: The operations are used to clean the taint tag of the

destination operand. For example, xor eax,eax will clean the taint result of

eax. We identify all laundering operations in taint basic blocks and substitute

them with assignment operations.

3. Arithmetic and logic operations: This category of operations are the most difficult

to handle. We emulate arithmetic and logic operations on the taint tags to capture

their real semantics.

Figure 5.7 presents an example of taint operations for a basic block. TaintPipe’s

symbolic taint operations outperform conventional DTA approaches in three ways. First

and foremost, multi-tag taint analysis is straightforward for TaintPipe. Each symbolic

variable can naturally represent a taint tag (see Line 1 and Line 2 in Figure 5.7). Second,

previous DTA tools mostly adopted a “short circuiting” method to handle arithmetic

operations, that is, the destination is tainted if at least one of the source operands is

tainted regardless of the real semantics. However, in many scenarios, it will lead to

precision loss. Check the code at Line 4 and 5 in Figure 5.7, value d will always be zero

since b is the negation of a. Unfortunately, some previous work may label d as tainted

incorrectly [31]. Third, different from related work [19, 26], TaintPipe supports bit-level

taint for EFLAGS register, representing whether a bit of the EFLAGS is tainted or not

due to side effects. Recent work has demonstrated the value of bit-level taint in binary

code de-obfuscation [38].

Another major optimization we adopt is so called “function summary”. As many

well-known library functions have explicit semantics (e.g., atoi, strlen), we generate a

summary of each function and propagate taint correspondingly at function level. Table 5.1
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int a, b, c, d;

1: a = read ();

2: c = read ();

3: c = c xor c;

4: b = ~ a;

5: d = a & b;

(a) a basic block (b) a taint basic block

1: Taint (a) = tag1;

2: Taint (c) = tag2;

3: Taint (c) = 0;

4: Taint (b) = ~ tag1;

5: Taint (d) = 0;

Figure 5.7. Example: taint operations.

Table 5.1. Function summary.
Category Function

No tainting strcmp, strncmp, memcmp, strlen, strchr,
strstr, strpbrk, strcspn, qsort, rand,

time, clock, ctime
Function level strcat, strncat, strcpy, strncpy, memcpy,

memmove, strtok, atoi, itoa, abs
tolower, toupper

lists two types of function summary TaintPipe supports: 1) Functions within “no tainting”

category do not have any side effect on taint state. We can safely turn off logging when

executing them. 2) Some functions do propagate taint from an input parameter to output.

We still turn off logging and update taint state correspondingly when these functions

return.

5.5.4 Symbolic Taint State Resolution

In TaintPipe’s pipeline framework, a worker thread may perform taint analysis concretely

or symbolically in parallel. When a worker thread completes taint analysis with concrete

taint tags, the final taint state it maintains is deterministic. Then it synchronizes with

the subsequent worker thread to resolve the symbolic taint state maintained by the latter.

Taint states are allocated in a shared memory area so that multiple threads can access

them easily. Basically, given the concrete taint state at the beginning of a code segment,

we replace a symbolic taint tag with the appropriate starting value (either a taint tag or a
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concrete value). We further update all the symbolic formula containing that symbolic

taint tag. For example, the logic AND formula in Figure 5.2(b) will be simplified to a

single taint tag. After that, the subsequent thread switches to the concrete taint analysis

and continue processing the left segment code.

In this order, the taint states of each segment will be resolved and updated one by

one. The defined taint policy (e.g., a function return value should not be tainted) is

checked along the concrete taint analysis as well. A tainted sink is identified if it contains

a symbolic formula; multiple tags are determined by counting the number of different

symbols in the formula. Note that a previous hardware-assisted approach [23] utilized a

separate “master” processor to update each segment’s taint status sequentially. However,

as pointed out by the paper, when there are more than a few “worker” processors, the

master processor will become the bottleneck. Our approach amortizes the workload of

the master processor to each worker thread.

5.6 Performance Evaluation

We conducted experiments with several goals in mind. First, we wanted to choose

optimal values for two factors that may affect TaintPipe’s performance, namely control

flow profile buffer size and the number of worker threads. Then we studied overall

runtime overhead when running TaintPipe on the SPEC2006 int benchmarks and a

number of common utilities. We also compared TaintPipe with a highly optimized inline

dynamic taint analysis tool. We wanted to make sure TaintPipe is effective in speeding

up various security analysis tasks and can compete with conventional inlined dynamic

taint analysis in precision. We demonstrated three compelling applications: 1) detecting

software attacks; 2) tracking information flow in obfuscated malicious programs.

75



2 4 6 8 1 0 1 2 1 4
1 6

1 8
2 0

4
8

1 2
1 6
2 0
2 4
2 8
3 2
3 6
4 0

8
1 6

3 2
6 4

Slo
wd

ow
 (n

orm
aliz

ed
 ex

ec
uti

on
 tim

e)

 P r o f i l e  b u f f e r  s i z e  ( M B )

#  W o r k e r  t h r e a d s
Figure 5.8. Optimal buffer size and number of worker threads.

5.6.1 Experiment Setup

Our experiment system has two Intel Xeon E5-2690 processors, 128GB of memory, and

a 250GB solid state drive, running Ubuntu12.04. Each processor is equipped with 8

2.9GHz cores, 16 hyper threads, and 20MB L3 cache. The performance data reported in

this section are all mean values with 5 repetitions.

TaintPipe’s performance is affected by the size of the profile buffers and the number

of worker threads. Generally, the more worker threads and larger profile buffers, the

less possibility that an application is suspended to wait for a free buffer. On the other

hand, our taint analysis engine has to take longer time to process larger segment code.

We conducted a series of tests with the SPEC CPU2006 int benchmarks, under different

settings of these two variables. We dynamically adjust the number of worker threads

from 2 to 20 (2, 4, 6, 8, 12, 16 and 20), and profile size from 8MB to 64MB (8MB,
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Figure 5.9. TaintPipe slowdown on SPEC CPU2006.

16MB, 32MB and 64MB). Figure 5.8 displays the experimental results. Roughly, as

number of worker threads and buffer size increase, the application slowdown reduces.

That is mainly because large buffer sizes allow application thread continue to fill up and

worker threads spend less time on synchronization. After a certain point (buffer size ≥

32MB and number of worker threads > 16), overhead increases slightly. Two factors

prevent TaintPipe from achieving more speedup. First, taint analysis engine slows down

when processing large code segment. Second, more worker threads introduce larger

communication latency when resolving symbolic taint states. According to the results,

we set the two factors as their optimal values (32MB buffer size and 16 worker threads),

which will be used in the following experiments.

To evaluate the performance gains achieved by pipelining taint logic, we compared

TaintPipe with a state-of-the-art tool, libdft [19], which performs inlined dynamic taint

analysis based on Pin (“libdft” bar). In addition, we developed a simple tool to measure

the slowdown imposed exclusively by TaintPipe. It runs a program under Pin without any
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form of analysis (“nullpin” bar). The “TaintPipe - application” bar represents the running

time of instrumented application thread alone, and “TaintPipe - overall” corresponds to

the overall overhead when both the application thread and pipelined worker threads are

running. The major reason we reported “TaintPipe - application” and “TaintPipe - overall”

time separately is to show the two improvements, namely “Application speedup” and

“Taint speedup” (see Figure 5.1). Since the application thread typically runs faster than

the worker threads, the “TaintPipe - overall” time is actually dominated by the worker

threads. Therefore, usually the “TaintPipe - overall” time represents the relative time

spent by worker threads as well. The times reported in this section are all normalized

to native execution (the numbers of Y axes), that is, application running time without

dynamic binary instrumentation.

5.6.2 SPEC CPU2006

Figure 5.9 shows the normalized execution times when running the SPEC CPU2006

int benchmark suite under TaintPipe. On average, the instrumented application thread

enforces a 2.60X slowdown to native execution, while the overall slowdown of TaintPipe

is 4.14X. If we take Pin’s environment runtime overhead (“nullpin” bar) as the baseline,

we can see TaintPipe imposes 2.67X slowdown (“TaintPipe - overall” / “nullpin”) and

libdft introduces 6.4X slowdown—this number is coincident to the observation that

propagating a taint tag normally requires extra 6–8 instructions [20, 21]. In summary,

TaintPipe outperforms inlined dynamic taint analysis drastically: 2.38X faster than the

inlined dynamic taint analysis, and 3.79X faster in terms of application execution. In the

best case (h264ref ), the application speedup under TaintPipe exceeds 4.18X.
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Figure 5.10. TaintPipe slowdown on common Linux utilities.

5.6.3 Utilities

We also evaluated TaintPipe on four common Linux utilities, which were not chosen

randomly. These four utilities represent three kinds of workloads: I/O bounded (tar),

CPU bounded (bzip2 and gzip), and the case in-between (scp). We applied tar

to archive and extract the GNU Core utilities package (version 8.13) (∼50MB), then

we employed bzip2 and gzip to compress and decompress the archive file. Finally

we utilized scp to copy the archive file over a 1Gbps link. As shown in Figure 5.10,

TaintPipe reduced slowdown of dynamic taint analysis from 7.88X to 3.24X, by a factor

of 2.43 on average.

5.6.4 Apache and MySQL

In addition to SPEC CPU2006 benchmark and common utilities, we also evaluate

TaintPipe with two larger and more complex software: Apache web server and MySQL
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Figure 5.11. TaintPipe slowdown on Apache web server.
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Figure 5.13. The impact of optimizations to speed up TaintPipe when applied cumulatively: O1
(function summary), O2 (O1 + taint basic block cache), O3 (O2 + intra-block optimizations).

DB server. We tested Apache v2.2.24 and set all settings as their default options. We

executed Apache under libdft and TaintPipe, respectively, using Apache’s utility ab

and static HTML files with different file size (100KB and 1MB). Besides, we also ran

Apache when the SSL/TLS encryption is enabled (i.e., SSL). Figure 5.11 shows the

result. On average, TaintPipe introduces 3.2X slowdown (5.5X for libdft) when testing

with plaintext. Since the intensive cryptographic operations performed by SSL are CPU

bounded, the slowdown is larger when SSL is enabled (4.19X for TaintPipe and 7.75X

for libdft). Figure 5.12 present the results from evaluating MySQL DB server. We tested

MySQL v5.0.51b and its own benchmark suite (sql-bench). The benchmark suite has

four different tests cases that measure the completion time of various DB operations such

as table creation, table modification, data selection, and insertion. The average slowdown

introduced by TaintPipe is 3.98X and 6.3X for libdft.
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5.6.5 Effects of Optimizations

In this experiment, we quantify the effects of taint logic optimizations we presented in

Section 5.5, which are paramount for optimized TaintPipe performance. Figure 5.13

shows the impact of these optimizations when applied cumulatively on SPEC CPU2006

and the set of common utilities. The “unopt” bar approximates an un-optimized TaintPipe,

which does not adopt any optimization method. The “O1” bar indicates the optimization

of function summary, reducing application slowdown notably by 26.6% for SPEC

CPU2006 and 25.0% for the common utilities. The “O2” bar captures the effect of

taint basic block cache, leading to a further reduction by 19.0% and 22.9% for SPEC

and utilities, respectively. Intra-block optimizations, denoted by “O3”, offer further

improvement, 12.0% with SPEC and 11.6% with the utilities).

5.7 Security Applications

In the section, we demonstrate TaintPipe’s appealing applications to software attack

detection and malware taint graph generation.

5.7.1 Software Attack Detection

One important application of taint analysis is to define taint policies, and ensure they

are not violated during taint propagation. We tested TaintPipe with 12 recent software

exploits listed in Table 5.2, which covers a wide range of real-life software vulnerabilities.

For example, the vulnerabilities in nginx, micro_httpd, and tiny server allow

remote attackers to bypass input validation and crash the program. The libtiff

buffer overflow vulnerability leads to an out of bounds loop limit via a malformed gif

image. Both boa and thttpd write data to a log file without sanitizing non-printable
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Table 5.2. Tested software vulnerabilities.

Program Vulnerability CVE ID
# Taint Bytes

libdft Temu TaintPipe
Nginx Validation Bypass CVE-2013-4547 45 45 45

Micro_httpd Validation Bypass CVE-2014-4927 80 85 80
Tiny Server Validation Bypass CVE-2012-1783 125 126 125
Regcomp Validation Bypass CVE-2010-4052 1,124 1,148 1,180
Libpng Denial Of Service CVE-2014-0333 72 72 72
Gzip Integer Underflow CVE-2010-0001 94 112 96
Grep Integer Overflows CVE-2012-5667 608 682 653

Coreutils Buffer Overflow CVE-2013-0221 252 260 256
Libtiff Buffer Overflow CVE-2013-4231 268 286 290

WaveSurfer Buffer Overflow CVE-2012-6303 384 418 406
Boa Information Leak CVE-2009-4496 164 164 164

Thttpd Information Leak CVE-2009-4491 328 328 328

characters, which may be exploited to execute arbitrary commands. Since we have

detailed vulnerability reports, we can easily mark the locations of taint sinks in the

straight-line code and set corresponding taint policies. For example, gif2tiff.c

in libtiff takes an integer variable stemming from input as a loop limit (line 13

in Figure 5.14). However, this variable can be manipulated as a large number via a

malformed gif image. An out-of-bound loop limit leads to memory corruption.

In our evaluation, TaintPipe did not generate any false positives and successfully

identified taint policy violations while incurring only small overhead. At the same time,

we evaluated the accuracy of TaintPipe. To this end, we counted the total number of

tainted bytes in the taint state when taint analysis hit the taint sinks. Column 4 ∼ 6 of

Table 5.2 show the number of taint bytes when running libdft, Temu [64] and TaintPipe,

respectively. Compared with the inlined dynamic taint analysis tools (libdft and Temu),

TaintPipe’s symbolic taint analysis achieves almost the same results in 8 cases and

introduces only a few additional taint bytes in the other 4 cases. We attribute this to our

conservative approach to handling of symbolic memory indices. The evaluation data
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unsigned int prefix[4096];

unsigned char suffix [4096];

int datasize, codesize, codemarsk; /* decoder working variables */ 

int clear, eoi, avail, oldcode; /* special code values */

…  //omitted
datasize = getc(infile);  /* infile is a picture with gif format */

clear = 1 << datasize;

eoi = clear + 1;

avail = clear + 2;

oldcode = -1;

codesize = datasize + 1;

codemask = (1 << codesize) - 1;

for (code = 0; code < clear; code++) {    /* access violation */

prefix[code] = 0;

suffix[code] = code;

}

…  //omitted

1 

2 

3  

4 
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8 
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10 
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12 

13  

14 
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16 

17 

Figure 5.14. Libtiff vulnerability (CVE-2013-4231).

Table 5.3. Malware samples and taint graphs.

Sample Type
Taint Graph Control Flow

Node # Edge # Obfuscation
Svat Virus 90 62
RST Virus 154 82
Agent Rootkit 624 402 X
KeyLogger Trojan 554 368 X
Subsevux Backdoor 1648 764 X
Tsunami Backdoor 734 534 X
Keitan Backdoor 618 482 X
Fireback Backdoor 1038 620 X

show that TaintPipe does not result in over-tainting [14] and rivals the inlined dynamic

taint analysis at the same level of precision.

5.7.2 Malware Taint Graph Generation

We ran 8 malware samples collected from VX Heavens1 with TaintPipe.2 Similar to

Panorama [10], we tracked information flow and generated a taint graph for each sample.

1http://vxheaven.org
2All these 8 samples are not packed. To analyze packed binaries, we can start TaintPipe when the

unpacking procedure arrives at the original entry point.
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In a taint graph, nodes represent taint seeds or instructions operating on taint data, and

a directed edge indicates an explicit data flow dependency between two nodes. Taint

graph faithfully describes intrinsic malicious intents, which can be used as malware

specification to detect suspicious samples [91]. The statistics of our testing results are

presented in Table 5.3. It is worth noting that 6 out of 8 malware samples are applied with

various control flow obfuscation methods (the fifth column), such as opaque predicates,

control flow flattening, obfuscated control transfer targets, and call stack tampering. As

a result, the control flow graphs are heavily cluttered. For example, malware samples

Keitan and Fireback have a relatively high ratio of indirect jumps (e.g., jmp eax).

Typically it is hard to precisely infer the destination of an indirect jump statically. Thus,

the taint logic optimization methods that rely on accurate control flow graph [26, 92]

will fail. In contrast, our approach does not rely on control flow graph and therefore we

analyzed these obfuscated malware samples smoothly.
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Chapter 6 |

Applications to Reverse Engi-

neering

In addition to runtime security policies enforcement, taint analysis has been widely

applied in a variety of “post-fact” security analysis applications as well, such as attack

provenance investigation [34], computer forensic analysis [36], malware analysis [9, 10],

and reverse engineering [32, 37, 38]. Dynamic taint analysis in these applications still

suffers from high runtime overhead. Therefore, out decoupled taint analysis approaches

are particularly well suited for such post fact security analysis tasks. Our full-featured

symbolic taint analysis can achieve better accuracy and performance when analyzing

obfuscated code. In addition, our current version of symbolic taint analysis can be

extended to support more fine-grained taint tracking. For example, we can associate each

4-byte application word with an 8-byte metadata in the shadow memory. When a 4-byte

word is tainted, the first 4-byte of the metadata records current instruction address (i.e.,

the value of eip), and the left 4-byte stores the address of the source operand. In this way,

we can reconstruct a detailed taint propagation trace. To make the techniques described

in this thesis applicable to a broader range of such applications, we are interesting in

86



integrating the decoupled symbolic multi-tag taint analysis into the tasks of cryptography

function detection and speeding up semantics-based binary diffing. Our technique can

significantly speed up the tedious work in these applications.

Furthermore, we have designed a binary code control flow profiling tool, BinCFP, as a

part of TaintPipe’s pipeline infrastructure and StraightTaint’s multithreaded fast buffering

scheme. BinCFP allows efficient and complete binary code control flow profiling on

ubiquitous multi-core platforms. In many tasks of reverse engineering and binary code

analysis (e.g., hybrid disassembly, resolving indirect jump, and decoupled taint analysis),

the knowledge of detailed dynamic control flow can be of great value. However, the high

runtime overhead beset the complete collection of dynamic control flow. The previous

efforts on efficient path profiling cannot be directly applied to the obfuscated binary code

in which an accurate control flow graph is typically absent. To address these challenges,

we develop BinCFP, an efficient multi-threaded binary code control flow profiling tool by

taking advantage of pervasive multi-core platforms. BinCFP relies on dynamic binary

instrumentation to work with the unmodified binary code. The key of BinCFP is a multi-

threaded fast buffering scheme that supports processing trace buffers asynchronously.

To achieve better performance gains, we also apply a set of optimizations to reduce

control flow profile size and instrumentation overhead. Our design enables the complete

dynamic control flow collection for an obfuscated binary execution. We will introduce

our technique applications to reverse engineering tasks in the following sections.

6.1 Binary Code Control Flow Profiling

Dynamic control flow information is typically represented as a sequence of basic blocks

executed during run time [82]. In many applications of reverse engineering and binary

code analysis, the detailed dynamic control flow can be very handy. For example,
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control flow information can increase the accuracy of static disassembly [93] and reverse

the effect of control flow obfuscation [94] by resolving indirect jump targets, which

are a known challenge for static-only approaches. Also, efficiently recording control

flow data can facilitate decoupled taint analysis [26, 63] to improve the overall taint

analysis performance. However, the significantly high runtime overhead is the most

obvious barrier to the complete collection of dynamic control flow, which further slows

down the related security analysis tasks. On the other hand, the topic of efficient trace

profiling has been well studied in the code generation and optimization area [95–97].

Unfortunately, these previous efforts cannot be directly applied to the obfuscated binary

code. They either require an accurate control flow graph for path profile encoding or

cannot work when continuous control flow information is required. Therefore, an efficient

and complete binary code control flow collection tool is necessary to reverse engineering.

One of the byproduct of StraightTaint and TaintPipe projects is that we design a novel

binary code control flow profiling tool, BinCFP, which allows efficient and complete

binary code control flow profiling on ubiquitous multi-core platforms. Based on the

logged data, we can construct a straight-line code trace for the further offline analysis.

BinCFP is built on dynamic binary instrumentation so that it works with unmodified

binary code. The core of BinCFP is a multi-threaded fast buffering scheme, which allows

the application to continue executing while trace buffers are processed asynchronously.

We also adopt an enhanced control flow profile structure to produce compact profile

size. In addition, we apply a set of instrumentation optimizations to achieve better

performance gains. Furthermore, BinCFP supports multi-threaded applications as well.

We have developed BinCFP on top of Pin [17], a dynamic binary instrumentation

platform. BinCFP relies on very lightweight logging of the execution control flow

information to reconstruct a straight-line code later. We have evaluated BinCFP on a
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number of applications such as SPEC2006 and obfuscated common utility programs.

The performance experiments show that BinCFP imposes a small impact on application

runtime performance and a considerable speedup over the previous approaches. Besides,

BinCFP’s control flow profile sizes are only about 49.2% that of conventional profiles.

With optimization and compression, the profile size can be further lowered. Such

experimental evidence shows that BinCFP can be applied for various software security

applications. The details of BinCFP have been presented in Section 4.2.

To evaluate the application performance slowdown imposed exclusively by BinCFP,

we have developed a simple tool to measure Pin’s environment runtime overhead, which

runs a program under Pin without any form of analysis (“nullpin” bar). Besides, we also

compare BinCFP with other three profile formats. “BB_pc” bar refers the conventional

4-byte basic block profile, which records the entry address of each basic block. “CF_bit”

indicate using a single bit to record the binary decision of a conditional jump. “DEP”

refers the control flow profile scheme proposed by Zhao et al. [82].

Figure 4.11 shows the normalized execution time of running SPEC CINT2006 with

reference workload. We expect these results can estimate the worst case. On average,

BinCFP imposes a 2.97X slowdown to native execution, which is the lowest among

the four profile formats. Due to the large profile size produced, BB_pc’s application

is often blocked for available free buffers. BinCFP outperforms DEP greatly in the

test cases that use REP-prefixed instructions intensively, such as h264ref and gcc.

CF_bit introduces as much as the 4.0X slowdown on average. The reason is CF_bit’s

instrumentation contains a number of conditional branches, which are hard to be inlined.

Then we evaluate BinCFP on four common Linux utilities, which represent three

kinds of workload. tar is I/O bounded, whereas bzip2 and gzip are CPU intensive

programs. Between these two cases is scp. We use tar to archive and extract GNU
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Figure 6.1. BinCFP slowdown on SPEC CPU2006.
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Figure 6.2. BinCFP slowdown on obfuscated common utilities.
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Table 6.1. Different optimization or obfuscation options.
Obfuscator Options
Loco -freorder-blocks (reorder basic blocks)

-funroll-loops (unroll loops)
-finline-small-functions (inline functions)

Obf-LLVM -mllvm -sub (instructions substitution)
-mllvm -bcf (opaque predicate)
-mllvm -fla (control flow flattening)

Core utilities 8.13 package (∼50MB). And then we apply bzip2 and gzip to compress

and decompress the archive file of Core utilities. For scp, we copy the archive file

of Core utilities over 1Gbps link. Also, we obfuscate the tested programs by applying

two obfuscators: Loco [98] and Obfuscator-LLVM [99]. Loco [98] is an obfuscation

tool based on Diablo [100], a link-time optimizer. Diablo rewrites the binaries during

link-time. Loco can obfuscate binaries by performing control flow flattening [101] and

inserting opaque predicates [102]. Obfuscator-LLVM is a fork of the LLVM compilation

suite [103] to provide code obfuscation options, and each option is implemented as an

LLVM pass. The detailed obfuscation options are shown in Table 6.1. Note that several

options can greatly obfuscate control flow graph, e.g., “-funroll-loops” unrolls loops,

“-mllvm -bcf” inserts opaque predicates, and “-mllvm -fla” does control flow flattening.

Therefore, the previous efforts on efficient path profiling [95–97] cannot be directly

applied to these obfuscated binary code.

As shown in Figure 4.12, the experimental results are very similar to SPEC CPU2006.

BinCFP imposes an average 2.47X slowdown to native execution, with a 1.30X speed up

to CF_bit. Compared to nullpin, BinCFP only incurs a 1.36X slowdown. This evaluation

shows that BinCFP supports the complete and efficient dynamic control flow collection

of obfuscated binary code.

We also evaluate the profile size (uncompressed) introduced by the four different

control flow profile formats: BB_pc, CF_bit, DEP, and BinCFP. We take the naive 4-byte
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Table 6.2. Uncompressed trace profile size percentage (%).
Application BB_pc CF_bit DEP BinCFP
Utilities 100.0 21.9 56.6 51.6
SPEC CPU2006 100.0 22.6 53.0 47.8
Average 100.0 22.3 54.3 49.2

Table 6.3. Cryptography function detection time.
Algorithm TaintPipe (s) Temu (s)

TEA 3.8 (<1.1X) 15.2 (2.2X)
AES-CBC 12.3 (1.2X) 125.6 (3.8X)
Blowfish 4.5 (<1.1X) 21.4 (2.5X)

MD5 7.4 (<1.1X) 35.1 (2.6X)
SHA-1 8.8 (1.1X) 40.2 (3.3X)

profile (BB_pc) size as the baseline. Table 6.2 shows the average proportion related to

BB_pc’s profile size. The lower value in Table 6.2 means the size is more compact. On

average, the relative size of BinCFP is only 49.2%, less than DEP’s size by 5 percentages.

It is worth pointing out that we see a significant profile size reduction for the h264ref

benchmark, from 54.9% (DEP) to 24.6% (BinCFP). That is due to the intensive usage

of REP-prefixed instructions. BinCFP optimizes this case (discussed in Section 4.2.2)

and produces more compact profile size. CF_bit results in a much denser profile size

with the 22.3% percentage. However, CF_bit instrumentation is hard to be optimized,

which leads to the highest overhead in our evaluation. In summary, BinCFP represents a

practical solution that balances the runtime performance and the profile size. Note that

trace compression methods (e.g., VPC3 [104], Sequitur [105]) are also be applied on

BinCFP. We can benefit from these new trace compression algorithms to further reduce

the profile size.
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6.2 Encoding Function Detection

Malware authors often use cryptography algorithms to encrypt malicious code, sensitive

data, and communication. Detecting cryptography functions in the binary code facilitates

malware analysis and forensics. Recent work leverages so called avalanche effect:

each byte in the encrypted message is dependent on almost all bytes of input data or

key [9, 106, 107]. One bit change in the input may cause significant change in the output.

Therefore, the previous approaches quickly identify possible cryptography functions by

observing the input-output dependency with multi-tag taint analysis. However, multi-tag

dynamic taint analysis normally has to sacrifice more shadow memory and imposes much

higher runtime overhead than single-tag dynamic taint analysis. Recall that our symbolic

taint analysis supports multi-tag taint propagation transparently. We have carried out a

preliminary experiment to detect such avalanche effects in binary code. We utilize the

test case suite of Crypto++ library1 and test 5 encryption algorithms. Each byte of the

plain messages is labeled as a different taint tag. To this end, we taint each byte in the

buffer where the data is stored. Our symbolic taint analysis tracks how the tainted inputs

are propagated along the encryption algorithm execution. After that, we check each byte

in the buffer of the write() system call to identify the high taint degree [9].

We compare TaintPipe with Temu [64], which supports multiple byte-to-byte taint

propagation as well. The detection time is shown in Table 6.3. We also report the

ratio of multi-tag’s running time to single-tag’s. The results show that TaintPipe is

able to detect cryptographic functions with little additional overhead (less than 1.1X on

average), while Temu’s multi-tag propagation imposes a significant slowdown (2.9X to

single-tag propagation on average). Table 6.3 shows the preliminary experiment result is

1http://www.cryptopp.com/
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encouraging. We plan to apply our decoupled symbolic taint analysis to cryptography or

encoding function detection in obfuscated binary code and malware.

6.3 Speeding Up Semantics-based Binary Diffing

Since most malware spread in binary form, the techniques to detect the difference between

two binaries (binary diffing) have been widely applied to malware reverse engineering

tasks. Conventional binary diffing tools identify syntactical differences such as instruction

sequences, byte n-grams, and basic block hashing [108]. However, they can be easily

evaded by various obfuscation methods [109–112]. The core method of the advanced

semantics-based binary diffing [37,52,113,114] is to first identify semantically equivalent

basic block pairs. It represent the inputs to the basic block as symbols and then simulates

the effect of each instruction by updating the corresponding symbolic formula. The

output of symbolic execution is a set of formulas that represent input-output relations of

the basic block. After that, we try to find whether there is an equivalent mapping between

two basic block output formulas. If yes, we conclude that two basic blocks are equivalent

in semantics. Figure 6.3 presents a motivating example to illustrate how the semantics of

a basic block is simulated by symbolic execution. The two basic blocks in Figure 6.3

are semantically equivalent, even though they have different x86 instructions (labeled as

bold).

We take the inputs to the basic block as symbols and simulate the effect of each

instruction by updated the corresponding symbolic formula. The output of symbolic

execution is a set of formulas that represent input-output relations of the basic block.

Now determining whether two basic blocks are equivalent in semantics boils down to

find an equivalent mapping between output formulas. Note that due to obfuscation such

as register renaming, basic blocks could use different registers or variables to provide the
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Basic block 1

/*mov edx, ecx*/     

edx_0 = ecx_0;

Outputs

Symbolic inputs to basic block 1:

ecx_0 = i1; eax_0 = i2

eax_2 = i1 - i2 - 1;

ebx_1 = i1;

ecx_2 = 0x0;

edx_1 = i1 + 0xA;

/*mov ebx, 0x000A*/     

ebx_0 = 0xA;
/*add edx, ebx*/     

edx_1 = edx_0 + 0xA;
/*mov ebx, ecx*/     

ebx_1 =ecx_0;
/*sub ecx, eax*/     

ecx_1 = ecx_0 – eax_0;
/*mov eax, ecx*/     

eax_1 = ecx_1;
/*dec eax*/     

eax_2 = eax_1 - 1;
/*and ecx, 0*/     

ecx_2 = 0x0;

/*jmp 0x401922*/     

Basic block 2 (obfuscated)

/*lea eax, [ebx]*/     

eax_0 = ebx_0;

Outputs

Symbolic inputs to basic block 2:

ebx_0 = j1; ecx_0 = j2

ecx_2 = j1 - j2 - 1;

edx_1 = j1;

ebx_1 = 0x0;

eax_3 = j1 + 0xA;

/*mov edx, 0x000A*/     

r_edx_2 = 0xA;

/*add eax, edx*/     

eax_1 = eax_0 + 0xA;

/*mov edx, 0x000A*/     

edx_0 = 0xA;
/*nop*/     

/*nop*/    

/*xchg eax, eax*/     

/*not ecx*/     

ecx_1 = - ecx_0 - 0x1;
/*add ecx, ebx*/     

ecx_2 = ecx_1 +  ebx_0 ;
/*lea edx, [ebx]*/     

edx_1 = ebx_0 ;
/*xor ebx, ebx*/     

ebx_1 = 0x0;

/*jmp 0x401A22*/     

Semantically

 equivalent

Figure 6.3. Example: basic block symbolic execution. The symbolic execution is performed
based on IL (for brevity, we do not show the modification to the EFLAGS bits).

eax_2

ebx_1

ecx_2

edx_1

Query result

false

false

true

eax_3

constant (0) 

ebx_1

true

false

false

ecx_2

false

true

false

edx_1

Figure 6.4. Output formulas equivalence query results.

same functionality. As a result, current approaches exhaustively try all possible pairs to

find if there exists a bijective mapping between output formulas. Figure 6.4 shows such

formulas mapping attempt for the output formulas shown in Figure 6.3. The variables

shown in the leftmost column are from basic block 1 in Figure 6.3; while the variables

in the upmost row are from basic block 2. The “true” or “false” indicates the result of
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equivalence checking, such as whether edx_1 = eax_3. After 10 times comparisons,

we identify a perfect matched permutation and therefore conclude that these two basic

blocks are truly equivalent.

However, semantics-based binary diffing suffers from significant performance

slowdown, hindering it from analyzing large numbers of malware samples [115, 116].

We look into the overhead imposed by semantics-based binary diffing and find that one

major factor dominates the cost; that is, the high number of invocations of constraint

solver. Recall that current approaches check all possible permutations of output formulas

mapping. The constraint solver will be invoked every time when verifying the equivalence

of formulas. For example, two basic blocks in Figure 6.3 have three symbolic formulas

and one constant value, respectively. As shown in Figure 6.4, We have to employ

constraint solver at most nine times to find an equivalent mapping between the three

output formulas. Too frequently calling constraint solver incurs a significant performance

penalty.

To reduce the number of basic blocks to be compared, we utilize multi-tag taint

analysis to reduce the number of possible matches. For example, we can assign different

taint tags to various fields of the input or system call output values. Basic block pairs

that share the same taint tags have the high priority to match. In this way, the set of

matching candidates of each basic block drops from the set of all basic blocks in a

program (in terms of thousands or tens of thousands) to just a few basic blocks on a

particular execution trace with the same taint tags. We compare thttpd and gzip with

their different versions. We first assigns different taint tags to various parts or fields of

the input and then compare execution traces to find semantically equivalent basic blocks.

Out of the basic blocks that are successfully matched, we count the number of them that

actually contain the same taint tags. Results (see Table 6.4 and Table 6.5) show that
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more than 34% and 67% of the matched basic blocks in thttpd and gzip, respectively,

contain the same taint tags. This shows that 1) multi-tag taint analysis is effective in

helping to identify basic block matchings, as a large number of these matchings do

contain the same taint representation; 2) even though many basic blocks are not tainted

by our limited number of program inputs, their neighbors are tainted in most cases and

the tainted neighbors help matchings to be identified.

thttpd- 2.20 2.20c 2.21 2.25
2.19 34.8% 38.2% 39.9% 37.4%

Table 6.4. Percentage of matched basic blocks with the same taint tags (thttpd).

gzip- 1.3.12 1.3.13 1.40
1.2.4 67.9% 72.2% 72.6%

Table 6.5. Percentage of matched basic blocks with the same taint tags (gzip).

When comparing two basic blocks, current approaches exhaustively try all possible

pairs to find if there exists a bijective mapping between output formulas. This permutation

matching leads to a performance bottleneck. Multi-tag taint propagation can improve

binary diffing in two ways: 1). We can first compare output variables with the same taint

tags. 2). We can compare instruction slice that only is tainted by the same taint color.

As we have shown in Section 4.5.4, traditional multi-tag taint analysis is expensive. By

contrast, our decoupled symbolic multi-tag taint analysis introduces small additional

overhead. Semantics-based binary diffing and decoupled symbolic multi-tag taint analysis

can seamlessly weave together and amplify each other’s benefit. By applying decoupled

symbolic multi-tag taint analysis, our approach significantly increases the effectiveness

and efficiency of semantics-based binary diffing.
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Chapter 7 |

Discussion and Future Work

In this chapter, we discuss some additional problems of our proposed techniques and

possible future work.

7.1 Discussion

StraightTaint is a prototype to demonstrate that completely decoupling dynamic taint

analysis is feasible. The performance of online logging and offline taint analysis can be

further improved. StraightTaint’s offline taint analysis is as fast as, but not faster than,

DTA on average, but not faster, since in StraightTaint the semantics of taint operations

are simulated. On the other hand, StraightTaint offline analysis is full-featured and

performing multi-tag and bit-level taint analysis is natural, with very low extra overhead,

while DTA typically incurs much higher extra overhead for multi-tag or bit-level taint

analysis.

Since TaintPipe’s pipelining design leads to an asynchronous taint check, TaintPipe

may detect a violation of taint policy after the real attack happens. One possible solution

is to provide synchronous policy enforcement at critical points (e.g., indirect jump and

system call sites). In that case, we can explicitly suspend the application thread, and
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wait for the worker threads to complete. As TaintPipe may perform symbolic taint

analysis when explicit taint states are not available, TaintPipe exhibits similar limitations

as symbolic execution of binaries. TaintPipe recovers the straight-line code by logging

basic block entry address. However, with malicious self-modifying code, the entry

address may not uniquely identify a code block. To address this issue, we can augment

TaintPipe by logging the real executed instructions at the expense of runtime performance

overhead. Our focus is to demonstrate the feasibility of pipelined symbolic taint analysis.

We have not fully optimized the symbolic taint analysis part which we believe can be

greatly improved in terms of performance based on our current prototype. Currently

TaintPipe requires large share memory to reduce communication overhead between

different pipeline stages. Therefore, our approach is more suitable for large servers with

sufficient memory.

Currently, BinCFP’s control flow profile encodes basic block entry addresses.

However, the entry address may not uniquely identify self-modifying code blocks. To

address this issue, we can configure BinCFP to record the real executed instructions.

BinCFP spawns worker threads in the same process running both Pin and the application.

To increase isolation, we plan to switch the worker threads to different processes.

It is important to discuss how precise our symbolic taint analysis can achieve. As

we have demonstrated, StraightTaint supports full-featured taint propagation strategies,

which are quite robust to trace explicit information flow in the context of obfuscated binary

analysis. Our symbolic taint analysis leads to much more accurate taint propagation

results than conventional dynamic taint analysis tools. However, we have identified two

significant challenges that can prevent our approach from further improving the accuracy.

First, StraightTaint’s conditional tainting represents the causal relationships between

sources and sinks with taint logic constraints, which will be solved later by a constraint
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solver to map new inputs. One challenge here is a taint logic constraint could become too

complicated. Subject to computing resources (e.g., memory and CPU) and the inherent

undecidability of the problem, a complicated formula could be hard or infeasible to

solve. Second, malware writers could evade dynamic taint analysis through control

dependence and implicit flows, such as pointer tainting [117]. Cavallaro et al. [118]

have demonstrated that mitigating such evasion attacks will lead to an increase in false

positives as well. We will continue to address these challenges and improve our symbolic

taint analysis accuracy.

7.2 Future Work

Currently, the upper bound of online logging performance that we can achieve is restricted

by Pin’s environment runtime overhead. One of our future work is to leverage the

advanced development toolkits such as Uroboros [67, 119] so that we can insert the taint

tracking code directly at the disassemble code and then compile it to the binary code again.

In this way, we can remove DBI’s environment overhead. One future work to speed up

offline taint analysis is to construct a recompilable straight-line program from execution

trace. As a result, we can apply another round of DTA directly on the straight-line

program. Currently, StraightTaint works on sequential programs. To support taint analysis

for multi-threaded programs, we have to carefully handle the complicated inter-thread

taint propagation, such as concurrent accesses to shared locations and corresponding

taint tag updates. We plan to explore these directions in future. The collected data during

online logging for some long running program are still too large to be saved up for

offline analysis. Another direction we plan to explore is decoupling taint analysis via

parallelization, which performs taint analysis on-the-fly without the log storage.

TaintPipe spawns worker threads in the same process of running both Pin and the
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application. In the future, we plan to replace the worker threads with different processes

to increase isolation. Recent work MAYHEM [89] proposes an advanced index-based

memory model to deal with symbolic memory index. We plan to extend our symbolic

memory index handling in the future. As our taint analysis engine simulates the semantics

of taint operations, the speed of taint analysis is slow. One future direction is to execute

concrete taint analysis natively like micro execution [85] and switch to the interpretation-

style when performing symbolic taint analysis.

An interesting future work for BinCFP is to study efficient memory references

profiling for the obfuscated binary code. Since memory references profiling size is much

larger than control flow profiling size, we have to carefully design trace profile structure.

Because emerging platforms (e.g., mobile phones and embedded systems) have been

widely employed in our daily lives to serve critical functions, , the security of emerging

platform becomes extremely important. Another direction I would like to explore is to

develop decoupled taint analysis to reason security and safety properties for emerging

platforms.
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Chapter 8 |

Conclusion

Taint analysis has a wide variety of compelling applications in security tasks, from

software attack detection to data lifetime analysis. Static taint analysis propagates taint

values following all possible paths with no need for concrete execution, but is generally

less accurate than dynamic analysis. Unfortunately, the high performance penalty

incurred by dynamic taint analyses makes its deployment impractical in production

systems. To ameliorate this performance bottleneck, recent research efforts aim to

decouple data flow tracking logic from program execution. We continue this line of

research in this thesis and propose pipelined symbolic taint analysis, a novel technique

for decoupling and parallelizing taint analysis to take advantage of ubiquitous multi-core

platforms.

In this thesis, we first presented StraightTaint, a technique for completely decoupling

dynamic taint analysis for offline symbolic taint analysis. Unlike previous approaches,

StraightTaint does not rely on complete runtime values or inputs, which enables very

lightweight logging and much lower online execution slowdown. StraightTaint can also

support full-featured, multi-tag, and bit-level taint analysis with low extra overhead.

We have evaluated StraightTaint on a number of applications such as utility programs,

SPEC2006, and real-life software vulnerabilities. The results show that StraightTaint can
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rival dynamic taint analysis at a similar level of precision, but with a much lower online

execution slowdown and more flexible functionalities. The performance experiments

demonstrate that StraightTaint can speed up application runtime performance 3.32

times on a set of utility programs, and 3.25 times on SPEC2006, respectively. Such

experimental evidence indicates that StraightTaint can be applied to speed up various ex

post facto security applications with full-featured offline taint analysis.

We then presented TaintPipe, a novel tool for pipelining dynamic taint analysis

with segmented symbolic taint analysis. Different from previous parallelization work

on taint analysis, TaintPipe uses a pipeline style that relies on straight-line code with

very few runtime values, enabling lightweight online logging and much lower runtime

overhead. Instead of waiting for the explicit taint state, each worker thread can start

running symbolic taint analysis very early. In this way, TaintPipe has much smaller delay

with the application execution. We have evaluated TaintPipe on a number of benign

and malicious programs. The results show that TaintPipe rivals conventional inlined

dynamic taint analysis in precision, but with a much lower online execution slowdown.

The performance experiments indicate that TaintPipe can speed up dynamic taint analysis

by 2.43 times on a set of common utilities and 2.38 times on SPEC2006, respectively.

Such experimental evidence demonstrates that TaintPipe is both efficient and effective to

be applied in real production environments.

The multi-threaded fast buffering scheme we designed for the StraightTaint and

TaintPipe projects has been applied to binary code control flow profiling. We have

developed BinCFP, an efficient multi-threaded binary code control flow profiling tool

by taking advantage of ubiquitous multi-core platforms. Unlike previous approaches,

BinCFP does not rely on fine-grained static analysis, which enables broad applications in

speeding up binary code analysis such as hybrid disassembly and decoupled taint analysis.
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The experimental results on SPEC2006 and obfuscated common utility programs are

encouraging, which shows a considerable speedup over the previous work. Because of the

dynamic taint analysis decoupling style, both StraightTaint and TaintPipe are particularly

well suited for ex post facto security analysis tasks, such as computer forensic analysis

and reverse engineering. To make our techniques applicable to a broader range of security

applications, we have integrated the decoupled symbolic multi-tag taint analysis into the

tasks of encoding function detection and speeding up semantics-based binary diffing.

With our techniques, we are able to detect cryptography functions in binary code with

little additional overhead and significantly reduce the number of possible basic block to

be compared.

In summary, our research work demonstrates that pipelined symbolic taint analysis

is a compelling method to complement existing expensive runtime security analysis. In

future, we plan to further reduce offline taint analysis overhead, support taint analysis for

multi-threaded programs, and develop decoupled taint analysis for mobile platforms.
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