A Preliminary Analysis and Case Study of Feature-based Software Customization
(Extended Abstract)

Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu
The Pennsylvania State University
University Park, PA 16802, USA
{yzj107,czhang,dwu,pliu} @ist.psu.edu

Abstract—Maodern software engineering practice heavily re-
lies on third party libraries, existing frameworks, high level
programming languages, and agile development methodologies,
which allows us build more complex software and deliver it
faster. However, on the other hand, such practice causes some
negative consequences such as bloatware and feature creep.
A phenomenon of importing and implementing redundant
features into software products has been observed in many
software evolution and iteration lifecycles. In this paper, we
describe an approach to customizing Java bytecode by applying
static dataflow analysis and enhanced programming slicing
technique. This approach allows developers to customize Java
programs based on various users’ requirements or remove
unnecessary features from tangled code in legacy projects. Our
preliminary evaluation and case study results show that our
approach has the potential for practical use.

Keywords-program analysis, bloatware, feature creep, soft-
ware customization

I. INTRODUCTION

A typical modern software system delivers a set of fea-
tures to its users in a bundled way. The requirements of
removing and customizing one or some of those bundled
features are raised from both developers and users, for both
software engineering reasons and software security reasons.

From software engineering perspective, with the rapid
development of modern software engineering, the com-
plexity of modern software keeps increasing, which causes
the problem known as bloatware [1]. A type of bloatware
is caused by the feature creep phenomenon. Apparently,
feature-creep bloatware causes many negative consequences
for the resulted software, including larger size, higher code
complexity, and potential reliability and security issues. It
is more difficult for developers to change, maintain, and
manage the code. It also means longer testing time, more
bug reports, and releasing patches in a higher frequency.
From software security perspective, removing unnecessary
features according to different requirements not only reduces
the attack surface, but also achieves moving target defense
by increasing software diversity.

Existing technologies and previous research on bloatware
touch this problem from different perspectives and cannot
solve this problem very well [2], [3]. Code review can help
mitigate these issues to some degree in some scenarios.
However, in many cases code review is not a feasible
solution due to the cost or the availability of source code.
The effort of automatically removing bloat from bloatware
has been made by some researchers. However, they did not
touch the bloatware that caused by feature creep. Some

® ®
@ | int return_value’*—instance.fcgo (a_parameter) ;‘

[O) O]

Figure 1: Delete Overview

studies focus on code local optimization [2], [3], [4]. In
this paper, we propose a novel approach to conducting
feature-based program customization via multiple-step static
analysis. One of the steps of our approach is based on an
enhanced program slicing method called solo slicing. Based
on a set of seed methods defining a feature, our approach
investigates its call sites, return values, and parameters. Then
starting from the return values and parameters at the call
sites, we remove any code that depends on return values,
and any code on which only the parameters depend. Next,
we remove call site itself. At last, if possible, we remove
method definition by checking a set of rules.

II. APPROACH

Intuitively, a software feature can be represented by a set
of data structures and methods that implement this feature.
Many features cross cut with other business logic. So feature
customization cannot be done by modifying one or several
methods’ definition. Features are usually implemented as
many spread and repeated method calls. Therefore, we define
the methods of interests as seed methods and define a feature
as all call sites of seed methods.

Based on the definition, to remove a feature, we can
clearly define our task is to remove all call sites of the seed
methods safely and clear all the redundancy caused by this
removal. Fig. 1 shows a mock call site. The arrows in the
figure indicate potential dependency relationship with the
context. The numbers in the figure denotes the index of the
steps. To remove all methods invocation in a program, we
potentially need to remove 4 parts of code in order. The
first part is the code that depends on the return value or side
effects (objects and array references that redefined in the
callee) of the call site. The second part is the call site itself.
The third part is the code on which only the parameters of the
call site depend. And the last part is the method definition.

We perform feature-based customization in four steps:

Step 1: Forward Slicing: To remove the code that
depends on the return value or side effects of the call
sites, we take advantage of forward slicing technology.

Algorithm 1 Solo-slicing Algorithm

1: function SOLOSLICING(G,S)

2: PDG «+— G

3: CallSite VerticesSet < S

4 WorkList < CallSite VerticesSet

5: while WorkList # () do

6: Vertex < WorkList.getOneVertex()
7

8

9

PDG.removeGiven Vertex(Vertex)
PDG .update VerticesOutDegree()
: for each vertex v changes its out degree do
10: if v.OutDegree = 0 then

11: WorkList.add(v)
12: end if

13: end for

14: end while

15: end function

Specifically, we use return values and side effects of the
call site as slicing criteria. The forward slicing algorithm
searches the System Dependency Graph (SDG) to slice out
the statements that depend on the slicing criteria via data
flow or control flow. By removing the sliced out statements,
we make sure that the program is still runnable after seed
method call sites removal.

Step 2: Call Sites Delete: In this step, we remove all
call sites of interests. In this step, we successfully disable
a feature of the program. For example, by removing all
call sites of method java.io.DatalnputStream.read(), we cus-
tomize an original program into a data-reading-free program.

Step 3: Solo Slicing: There are some statements on
which only the actual parameters of seed method call sites
depend. After call sites removal, these statements become
redundant and should be removed. Traditional backward slic-
ing cannot slice out the statements on which only the slicing
criteria depend. Namely, other parts of a program might also
depend on its sliced out statements. We develop an enhanced
program slicing methodology called solo-slicing to slice out
the statements on which only the slicing criteria depend.
Our algorithm is based on worklist and graph search which
is shown in Algorithm 1. The key part of the solo slicing
algorithm is to recursively update the out-degree of nodes
in SDG and delete redundant nodes whose out-degree are
ZEero.

Step 4: Method Definition Delete: After all three pro-
cedures above, in this step, we check if it is possible to
remove the seed methods definition. If a seed method resides
in an application class or a third-party library class, then we
remove it. If this method is in Java Runtime Environment
(JRE), then we do not remove it.

III. CASE STUDY

We report here briefly our preliminary case studies results.
First, we investigate how pervasive cross cutting features are
in real world Java programs. We use network connection,
database connection, and logging features as the sample of
cross cutting features. We analyze 10 programs whose main
business logic has nothing to do with the sample features

Table I: Call Sites of method openConnection and
openStream in DrJava

SEEDS: java.net.URL.openConnection/openStream
edu.rice.cs.drjava.ui.New VersionPopup$6.update Action
edu.rice.cs.drjava.ui.New VersionPopup.getManualDownloadURL
edu.rice.cs.drjava.ui.MainFrame._generateJavaAPISet
edu.rice.cs.drjava.ui.New VersionPopup.getBuildTime

from DaCapo 9.12-bach benchmarks. Among 10 programs,
7 programs have network connection features. 5 programs
have database connection features. 5 programs have logging
features.

Second, we customize DrJava, a lightweight Java pro-
gramming environment for pedagogic purposes, as a case
study. The core functionality of DrJava has little to do
with network connection. However, it does have network
connections in its code for checking updates. We remove
the network feature from DrJava with our proposed method.
Network related features are defined by methods openCon-
nection and openStream in class java.net.URL. Specifically,
if the developers want to have network connection in their
program, they must call those APIs. Thus, they form the seed
methods in our analysis and customization. Table I shows
the specific call sites of the seed methods.

Among these call sites, we use the method updateAction
in class NewVersionPopup as an example. We first conduct
forward slicing based on the return value of the call site.
In this step, 14 sliced out statements are removed. The
method openConnection does not have parameters. So the
backward solo-slicing will not be performed. At the end, we
find out that the method openConnection is in JRE. So the
method definition will not be removed. After customization,
we test DrJava by the test cases designed by us. First,
DrJava can start up successfully. Second, DrJava cannot
access Internet to check and download update. Third, rest
of functions work normally. The preliminary results show
that our approach is a promising method for feature-based
software customization.

Acknowledgments: This research is supported in part
by the Office of Naval Research (ONR) grant N0O0014-13-
1-0175.

REFERENCES

[1] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky,
“Software bloat analysis: Finding, removing, and preventing
performance problems in modern large-scale object-oriented
applications,” in Proceedings of the FSE/SDP Workshop on
Future of Software Engineering Research (FOSER ’10), 2010.

[2] Y. Bu, V. Borkar, G. Xu, and M. J. Carey, “A bloat-aware
design for big data applications,” in Proc. ISMM 13, 2013.

[3] G. Xu, “Finding reusable data structures,” in Proc. OOPSLA
’12, 2012.

[4] F. Tip, C. Laffra, P. . Sweeney, and D. Streeter, ‘“Practical
experience with an application extractor for Java,” in Proc.
OOPSLA 99, 1999.

