
Feature-based Software Customization: Preliminary
Analysis, Formalization, and Methods

Yufei Jiang, Can Zhang, Dinghao Wu, and Peng Liu
The Pennsylvania State University
University Park, PA 16802, USA

{yzj107,czhang,dwu,pliu}@ist.psu.edu

Abstract—Modern software engineering practice allows us to
build more complex software than ever before. However, on
the other hand, it causes some negative consequences such as
bloatware and feature creep which have been observed in many
software evolution and iteration lifecycle. In this paper, we pro-
pose an approach to customizing Java bytecode by applying static
dataflow analysis and enhanced programming slicing technique.
This approach allows developers to customize Java programs
based on various users’ requirements or remove unnecessary
features from tangled code in legacy projects. We evaluate our
approach by conducting case studies on removing cross cutting
features from real world Java programs. The results show that
our approach has the potential for practical use. Additionally,
we find out that, by increasing the diversity of the software, our
approach can help achieve moving target defense.

I. INTRODUCTION

A typical modern software system delivers a set of features
to its users in a bundled way. The requirements of removing
and customizing one or some of those bundled features are
raised from both developers and users, for both software
engineering reasons and software security reasons.

From software engineering perspective, with the rapid de-
velopment of modern software engineering, the complexity of
modern software keeps increasing, which causes the problem
known as bloatware [30]. A type of bloatware is caused by
the feature creep phenomenon. Taking Microsoft Word as an
example. Besides the function of text editing, users can also
use MS Word to read and send emails. However, people seldom
use MS Word in this way. Many other software products
encounter similar situations. According to a survey, on average,
more than 45% functions of a software product are never used
by most users [22].

Apparently, feature-creep bloatware causes many negative
consequences. It has larger size, higher code complexity, and
potentially is less reliable and secure. Developers are difficult
to change and maintain the code. It also implies longer testing
time, more bug reports and releasing patches in a higher
frequency.

From software security perspective, a feature-based soft-
ware customization is required to respond to several differ-
ent threats. In current trust model, users or developers can
use analysis tools to scan the applications or libraries. Such
scanning helps improve our confidence on the integrity of the
applications or libraries but cannot give a guarantee. Once the
decision of using a specific application or library is made, we
have to 100% trust the behavior of those code as a whole.

If a feature-based customization solution is available, we do
not need to fully trust the application or the library even if
we choose to use them. By removing some user-identified
unnecessary features which might have sensitive behavior such
as writing data to Internet or logging user’ profile, we can
achieving active defense. In addition, removing unnecessary
features based on different requirements not only reduces the
attack surface, but also achieves moving target defense by
increasing software diversity.

Existing technologies and previous research cannot solve
this problem very well. The effort of automatically removing
bloat from bloatware has been made by some researchers.
However, they did not touch the bloatware that is caused by
feature creep. Some research focus on code local optimiza-
tion [4], [15], [29]. For example, Xu [29] raises a methodology
on addressing bloatware problem by identifying reusable data
structures. Some other researchers try to eliminate bloat from
the code size perspective. For example, Tip et al. [23] develop
Jax to remove unused methods and fields from Java programs
with the help of call graph and manual annotation. However, a
feature is neither a class nor a component, which has different
granularity compared with a program feature. Research on
change impact analysis and code refactoring partially touches
this problem. However, change analysis does not transform
program itself. It identifies which part of test cases are affected
by newly added functions and need to be replayed. Automatic
code refactoring transforms program to enhance the perfor-
mance, readability, and reliability of the code without changing
its behavior. However, in our research question, we want to
customize and transform the program to change the behavior
of the program.

In this paper, we propose a novel approach to conducting
feature-based program customization via multistep static anal-
ysis. One of the steps of our approach is based on an enhanced
program slicing method called solo slicing. Based on a set of
seed methods defining a feature, our approach investigates its
call sites, return value, and parameters. Then starting from the
return values and parameters at call sites, we remove any code
that depends on return values, and any code on which only the
parameters depend. Next, we remove call site itself. At last,
if possible, we remove method definition by checking a set of
rules.

More specifically, we use return values in the seed method
call sites as our forward slicing criteria to find out all state-
ments that depend on the return values on both data flow and
control flow. By removing these statements, we guarantee the
program is still runnable after seed method call sites removal.

1

We use parameters in the seed method call sites as our solo
slicing criteria to find out all statements on which only the
parameters depend via data flow or control flow. By removing
these statements, we trim off the redundancy caused by the
absence of the seed methods call sites.

We evaluate our methodology by conducting case studies
on several real-world Java applications. We aim to remove
the network connection feature, database connection feature,
and logging feature from those applications respectively. The
results of the case studies show that our approach is correct and
effective. In summary, we make the following contributions:

• We define the feature and the problem of features-
based customization.

• We propose a multistep static analysis which is based
on enhanced program slicing technology to perform
feature-based customization.

• We identify several features that are prone to be
interwoven with other code and contains security-
sensitive behavior.

• We conduct a preliminary case study to evaluate
the feasibility, correctness, and effectiveness of our
approach.

The rest of the paper is organized as follows. Section II pro-
vides the motivation of our research. We define and formalize
the research problem of feature-based software customization
in section III. We present the general approach in Section IV.
The evaluation and case study are reported in Section V.
Discussion is presented in Section VI. We introduce the related
work in Section VII and conclude in Section VIII.

II. MOTIVATION

In this section, we elaborate the motivations of our research
from both software engineering and software security perspec-
tives. We give a formal definition of our research problem and
the terms that we are going to use in the following sections.

A. Software Engineering Pragmatic Issues

Rinard [18] lists several reasons causing functionality bloat
in modern software. Based on his work, we summarize some
software engineering pragmatic issues related to feature creep
problem. First, feature creep happens in most software devel-
opment projects. When a software product becomes mature
and stable, the developers still update it by adding more
functions into original design. Second, software is designed
and delivered as general purpose software which contains
all functions required by all potential users. However, for
a specific user, his or her requirements on the software are
special. Only a small part of the functions of the software are
useful. Other functions, to this specific user, become redundant
features. Third, software reusing is also an important source
of functionality bloat. The design of libraries tends to be
generalized. The design of legacy projects is specialized for
the purpose of legacy requirements. None of them are built
for current projects and requirements. Building applications
upon them inevitably brings redundant features into the soft-
ware. Fourth, development “errors” also import new features.
Developers are not always aware of the all effects potentially

Listing 1: A simplified example showing how the transaction
integrity feature cross cuts with the moneyTransfer business

logic
public void moneyTransfer(int amount, User sender,

User receiver){
logger.info("transaction starts");
//do money transfer business logic;
logger.info("money was deducted from sender’s balance");
//do money transfer business logic;
logger.info("money was added to receiver’s balance");
logger.info("transaction completes");}

caused by the code they are writing. Holzmann [7] calls
this phenomenon “dark code” which means “the application
somehow can do things nobody programmed it to do”.

1) Why customizing a feature is difficult: If a property,
feature, or component is well abstracted, then it is easy to
be changed, extended, or removed. The challenges of features
removal actually are caused by the challenges of features
abstraction. Modern programming languages (e.g. OO lan-
guages), code organization (e.g. package domain, name space)
and other software engineering toolkit give developers a way
to model a real-world work flow and split them into smaller
and smaller units. However, a system could be modeled into
different abstractions and concerns. Programmers can only
design the software according to the primary abstractions.
The secondary and third important abstractions might be cross
cut with the primary abstractions. Kiczales et al. [11] discuss
several cross-cutting features in typical real world applications.
For example, to design an online banking system, the concepts
and entities that are primarily abstracted would be “balance”,
“account”, “user”, and etc. Extending and changing those
entities are relatively easy because of well abstraction and
encapsulation.

Feature “transaction integrity” also needs to be abstracted
and implemented in an online banking system. However, it
is not a primary abstraction of an online banking system.
Code listing 1 shows an example. In that code snippet, feature
“transaction integrity” which is enforced by logging cross cuts
with money transfer and any other transaction business logic.
If developers want to change or remove the implementation
of money transfer business logic, they just need to change the
business logic code inside method moneyTransfer. However,
if developers want to enhance the “transaction integrity” by
changing logging policy. They have no way to change the
code in one place. They have to change all methods that the
transaction integrity cross cuts with such as “moneyTransfer”,
“directDeposit”, “checkDeposit”, and many others. Similar
examples could be found in the way how people implement
network connection and database connection. Code listing 2
shows how network connection feature cross cuts with other
business logic. Code listing 3 shows a similar example on
database connection feature cross cutting with other business
logic. These examples just demonstrate some common cases
shared by many projects. In each specific project, it has more
specialized features that are tangled with other code.

Correctly customizing a well modularized component in
a program is already a challenge. From the examples above
we can see that the pervasive features that cross cut with

2

Listing 2: A simplified example showing how the network
connection feature cross cuts with the ingestContent business

logic
public void ingestContent() throws Exception {
URL oracle = new URL("http://www.example.com/");
URLConnection yc = oracle.openConnection();
BufferedReader in = new BufferedReader(
new InputStreamReader(yc.getInputStream()));
String inputLine;
while ((inputLine = in.readLine()) != null){
//do business logic;

}
in.close();}

Listing 3: A simplified example showing how the database
connection feature cross cuts with the userAuthentication

business logic
public void userAuthentication(){
Class.forName("org.postgresql.Driver");
Connection connection = null;
connection = DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:fakename",
"username","password");

//do business logic;
connection.close();}

other business logic additionally increase the difficulty of cus-
tomizing. That probably is one of the reasons that developers
keep them there even after recognizing the negative effects that
might be caused by some redundant features.

B. Security Concerns

We also have strong motivations to customize some fea-
tures from the software for security reasons. Redundant fea-
tures play a role in at least three security threat models.

First, malicious software vendors might threat users’ pri-
vacy. There are many cases that the software companies insert
backdoors to collect users’ or their competitor software’s
behavior. If network connection feature is not used by users at
all, then the users can just trim the network connection feature
or at least writing-to-network feature off from the software. For
example, many text editors have network connection feature.
Trimming off such a feature will not affect the functions of
the text editors. If the users of software hold highly sensitive
data or they work in a settings with some hard constraints (e.g.
military offices), they should remove those features that are not
useful to users’ business but with sensitive behaviors.

Second, malicious libraries provider might repackage orig-
inal authenticated libraries to insert code for their own interests
which threat the integrity of software that includes such a
library. For example, many mobile application developers
include adware library (adware here refers to the software
that allows third party distributes and displays advertisements
on your own apps, web pages, or software) to earn extra
revenue. Some adware might secretly collect both developers’
data and users’ information. Besides existing scanning and
malicious behaviors detecting technologies, developers still
have requirements and motivation to customize third party
libraries they include in their applications to achieve active
defense.

Third, the software systems that lack diversity might be
compromised all together at one time by outside attackers. The
approach of moving target defense aims to create asymmetric
uncertainty for cyber threats [10]. Feature-based software
customization according to users’ requirements offers a natural
way to increase software diversity and achieve moving target
defense.

III. PROBLEM DEFINITION

Before we discuss the approach to conducting feature-
based program customization, we first define, formalize, and
set the scope for the research problem in this section. Based
on the previous analysis in last section, we have found that
many features cross cut with other business logic. So feature
customization cannot be done by modifying one or several
methods’ definition. Features are implemented as many spread
and repeated method calls. So we use methods call sites as
feature definition basis.

We formally define feature based on interprocedural con-
trol flow graph (ICFG) G = (V,E) which regards method
invocation as a special kind of control flow [17]. Besides
the normal control flow edges En, three special kinds of
control flow edges are imported to handle procedure invo-
cation process: call-to-return-site edge Ecall-to-return-site, call-
to-start edge Ecall-to-start, and exit-to-return edge Ecall-to-return.
Call-to-return edge connects the call site node and the node
following the call site. Call-to-start edge connects the node
that invokes the method and the entry node of the callee.
Exit-to-return connects the exit node (usually return node)
to the node immediate after the call site. Formally, all-
edges set E is the unions of those five subsets of edges, i.e.
E = En ∪ Ecall-to-return ∪ Ecall-to-start ∪ Eexit-to-return-site.

Definition 3.1. We define seeds as a set of methods denoted
by SEEDS = {m1,m2,m3, ...,mk}. Seeds could be the
methods in Java standard libraries or part of the application
which are specified by users or developers. Seeds usually are
the methods conducting sensitive operations or other functions
of interests. Simply, we call a set of methods of interest “seed
methods”.

Definition 3.2. We define call sites of a method f a set
of node on this graph G, Cm = {cm1 , cm2 , . . . , cmn }, such that
∀cmi ∈ Cm,∃ei ∈ Ecall-to-start connects cmi and the entry node
of method m. Simply, we call the all statements that invoke a
method the “call sites” of that method.

Definition 3.3. We define a feature a set of call sites
F = {Cm1

, Cm2
, Cm2

, ..., Cmn
} such that ∀Cmi

∈ F,mi ∈
SEEDS , Simply, a feature consists of all call sites of SEEDS .

Example. In our example program snippet shown in code
listing 4, if we specify methods f and g as the seed methods,
then SEEDS = {f, g}. The call site of method f is C1. The
call site of method g is C2. In this case, the feature is a
set consisting of two call sites: {C1, C2}. Taking a network
feature for example, the seed set is defined to be the set of
network-related APIs and the feature set is the set of call
sites to these APIs. In some scenarios, we need to remove the
network feature from an application. In this paper, we discuss
an approach of feature removing.

3

Entry

B1

C1

Call f();

B2

B5 B6

B7

B4

C2

Call g();

B3

B8

B9

Exit

Method f()

Method g()

call-to-return edge

call-to-start edge

exit-to-return edge

normal control flow edge

Fig. 1: Interprocedural Control Flow Graph of code listing 4

Listing 4: A code listing example
public class CodeListing {
public static void main(String[] args) {
int argument=Integer.parseInt(args[0]);
int ret=0;
CodeListing instance=new CodeListing();
if(argument<=42){

ret=instance.f(argument);
}

instance.g();
}
public int f(int x){
int y;
if(x>0){

y=1;
}else{

y=-1;
}
return y;

}
public void g(){
System.out.println("Hello");
System.out.println("World");

}
}

IV. APPROACH

A. Overview

Based on the definition given by last section, we can
clearly define our task is to remove all call sites of the seed
methods safely and clear all the redundancy caused by this
removal. To remove all methods invocation in the program,
we potentially need to remove 4 parts of code in order: the
code that depends on the return value or side effects (objects
and array references that redefined in the callee) of the call
site, call site itself, the code that is only depended by the
parameters of the call site, and the method definition. To better
demonstrate our idea, we will use a Java program example
shown in code listing 5 through the whole section to show how
our solution deletes those tangled code step by step. The Java
code in listing 5 shows a simplified SMTP client that interacts
with network. We omit the exception handling and invalid
data checking in this example. This program opens a network
connection after necessary preparation. It writes string message
to the network (line 14). It reads data from the network and
stores the data into array b via calling method read of class
DataInputStream which is in JRE (line 16). We also show a
simplified implementation of method DataInputStream.read in
code listing 6 to ease the elaboration of our approach. In the

Listing 5: An example that a client reads data from and
writes data to the network

1 public class SocketInAndOut{
2 public static void main(String[] args) {
3 Socket smtpSocket = null;
4 DataOutputStream os = null;
5 DataInputStream is = null;
6 String message_body=args[1];
7 String message="message_example";
8 int offset=0;
9 byte[] b=new byte[100];
10 smtpSocket = new Socket("hostname", 25);
11 os = new DataOutputStream

(smtpSocket.getOutputStream());
12 is = new DataInputStream

(smtpSocket.getInputStream());
13 int array_length=b.length;
14 os.writeBytes(message);
15 String responseLine;
16 int actual_length=is.read(b, offset, array_length);
17 if(actual_length<array_length){
18 System.out.println(actual_length);
19 }
20 System.out.println(b[0]);
21 System.out.println(offset);
22 os.close();
23 is.close();
24 smtpSocket.close();
25 }
31}

end, the program prints the actual length of the data that is
read from the network, the first byte of the message, and the
value of offset.

Our goal is to customize this program into a data-reading-
free program which only writes data to but never receives any
data from the network. The seed method in our example is
DataInputStream.read(byte[] b, int off, int len). The only call
site in our case is the statement in line 16 of listing 5. Fig. 2
highlights this call site and denotes 4 customization steps.
In the first step, all code that depends on the return value
actual_length and the value of the cells of array b which
is changed in the callee would be removed. In the second
step, call site itself would be removed. In the third step, we
are going to remove the code on which only the parameters
depend. In the last step, we are going to check if it is possible
to delete the method definition of DataInputStream.read(byte[]
b, int off, int len). It is not always the case that we need
to perform all four steps every time. In our example, the
deleting in step 4 will not happen because the seed method
we choose is part of JRE. In other cases, we may skip step
2 or step 3 if the method does not have return value and
side effects or the number of its parameters is 0. We unified
all 4 steps of program customization as Program Dependency
Graph (PDG) and System Dependency Graph (SDG) updating
and reachability problems solving process. We need to build
call graph and SDG as analysis preparation procedure. The
details of each step are given by the following subsections
respectively.

B. First Step: Forward Slicing

We now present the approach of forward slicing to identify
the variables that rely on the return value and the side effect
of the call site. We use the two-pass SDG-searching algorithm
introduced by Horwitz, Reps, and Binkley [9].

4

int actual_length=is.read(b, offset, array_length);

1

2

3

4

1

33

1

Fig. 2: Delete Overview

Listing 6: A simplified java.io.DataInputStream.read
implementation

1 public final int read(byte b[], int offset, int len){
2 int c = read();
3 b[offset] = (byte)c;
4 int i=1;
5 for(;i<len;i++){
6 c=read();
7 if(c==-1){
8 break;
9 }
10 b[offset+i]=(byte);
11 }
12 return i;
13}

First, we need to identify which variables in the program
are slicing criteria. The selected variables should be the ones
that are defined or redefined in the method and caused the
effects out of the scope of that method. Apparently, the
return value of the method is such a variable. Besides the
return value, a method may have other side effects. The side
effects are caused by the change to the value pointed by
array or object reference or the change to the array or object
reference itself. In SDG, both explicit return value and implicit
side effects data flow can be handled uniformly. We show
a simplified DataInputStream.read(byte b[], int off, int len)
implementation in code listing 6 which is called in line 16
of code listing 5. Method read has one return value and one
side effect. The return value is that it returns an integer to
the variable actual length in line 16 of code listing 5. The
side effect is caused by the change to the value of the cells
of array b in code listing 6. The cells of array b is used as
right value after the call site of read. We present a partial
SDG in Fig. 3 to show how read method interprocedurally
depends with the code in the listing 5. In Fig. 3, the nodes
in grey are special nodes in SDG. They map the data flow
between actual parameters and formal parameters. Because
SDG captures all interprocedural dataflow dependency, in the
figure we can see that the return value and side effect are
modeled in the same way. Thus, from all actual out nodes of
the call sites, a graph reachability analysis would be performed
to slice out all statements that depend on the “output” of the
call sites. The sliced out statements would be deleted. In our
example of code listing 5, line 17 depends on actual length
via data flow. Line 18 depends on actual legnth via control
flow. Line 20 depends on the value stored in array b via data
flow. However, line 21 would not be removed. Method read
does not mutate the value of offset, so the offset in line 21 does
not depend on the call site of read in line 16. In summary, line
17 to line 20 would be deleted. After this step, there are no
statements depending on the seed methods.

ENTER read

int c=read();

byte b[] formal in int offset formal in int len formal in

int i=1; b[offset]=(byte)c;

while(i<len)

c=read(); if(c==-1)

break;

return i;

formal b out actual b out

System.out.println(b[0]);

formal i out

int actual_length=is.read(b, offset, array_length);

b actual in offset actual in array_length actual inactual_length actual out

i++;

Other Part of Program

Other Part of Program

Other Part of Program

Control Dependence Data Dependence
All Interprocedural Dependence (Method Invocation/Actual In-Formal In

Mapping/Formal Out-Actual Out Mapping)

Fig. 3: Forward Slicing on Return Value and Side Effect

16 int actual_length=is.read(b, offset, array_length);

8 int offset=0;

21 System.out.println(offset);

……

……

 Backward Slicing

Depends on

Fig. 4: Traditional Slicing Fails to Identify the Redundancy
Caused by Call Site Removal

C. Second and Third Step: Call Site Delete and Solo-slicing

In these two steps, our target is to remove the call sites
and the statements on which only the parameters of seed
methods call sites depend. Program slicing cannot help us
solve this problem. According to the definition given by
Weiser [28], program slicing could be denoted by a slicing
criterion. Formally, it is a tuple defined as C =< i, V >,
where i is a statement of program P and V is a subset of
variables of program P . Slicing technology helps identify the
statements that may affect V in i via data flow or control flow.
Theoretically, the slicing result is still an executable program.
However, our research question in this step could be abstracted
as, which statements only affect V . This question could also
be asked in the other way equivalently: after removal of the
call sites, which statements before call sites could be removed
safely. Here we do not require the sliced-out result still a
runnable program. But we require the program left is still
runnable.

We still use code listing 5 as our example. If we set the
backward slicing criteria as the variable offset call site of read
at line 15, then the statement in line 8 would be sliced out.
However, we cannot delete the statement in line 8 because
line 21 still depends on it. Fig. 4 highlights the relationship
between these statements. This example demonstrates why
slicing cannot solve this problem. Some other various versions
of slicing technologies such as thin slicing [21] improved the
slicing results based on an evolved slicing definition. They also
cannot solve the problem we raised here.

5

3

2

0
3

1

0

1 1

2

1

2

0

1 1

The fixed point is reached

1

1

The fixed point is reached

Fig. 5: Solo-slicing Algorithm Illustration

To this end, we find out that traditional slicing and its
existing variation versions cannot solve the problem we en-
counter in this step. We define an enhanced program slicing
methodology called solo-slicing to solve our problem. Like
other slicing technology, we define solo-slicing and develop
our algorithm based on System Dependency Graph (SDG).

1) Program Dependence Graphs and Solo-slicing: Our
algorithm is based on a worklist and graph search which is
shown in Algorithm 1. The main idea is to delete one vertex
first from SDG and the edges pointing to it. The first step
has removed the statements depending on the return value
and side effects of seed method call sites. After removing call
site vertex, we update the SDG and check the out degree of
vertices in the updated graph. Specifically, if there are vertices
whose out degree is zero, we can remove those vertices and
the in-degree edges pointing to those vertices. We repeat this
process until there are no vertices having zero out degree.
When no vertices have zero out degree, we say the fixed point
is reached and the algorithm stops. By this algorithm, we can
calculate the solo-slicing result and delete the solo-sliced-out
statements along side. Fig. 5 illustrates two examples of solo-
slicing. The number on each vertex denotes the out degree
of that vertex. The vertex that has zero out degree is in red.
Two examples have the same vertices number and the different
initial dependency relationship settings. The figure shows how
they reach the fixed point via different number of steps.

Back to the example in code listing 5, call site of read in
line 16 is the slicing criterion of solo-slicing which will be
removed first as the trigger of the graph updating. It has three
parameters, array b, integer offset , and integer array length.
Among them, array b depends on line 9 where array b is
declared. Variable array length depends on line 13 and line
9 via data flow. No other statements depend on line 9 and line
13. Thus these two statements are removed. Variable offset
depends on line 8. However, variable offset in line 21 also
depends on line 8. According to solo-slicing algorithm, line
8 would not be removed. In summary, in step 2 and 3, call
site of read in line 16, redundancy in line 9 and line 13 are
identified and removed.

Algorithm 1 Solo-slicing Algorithm
1: function SOLOSLICING(G,S)
2: PDG ← G
3: CallSiteVerticesSet ← S
4: WorkList ← CallSiteVerticesSet
5: while WorkList 6= ∅ do
6: Vertex ←WorkList .getOneVertex ()
7: PDG .removeGivenVertex (Vertex)
8: PDG .updateVerticesOutDegree()
9: for each vertex v changes its out degree do

10: if v.OutDegree = 0 then
11: WorkList .add(v)
12: end if
13: end for
14: end while
15: end function

Listing 7: After Customization
1 public class SocketInAndOut{
2 public static void main(String[] args) {
3 Socket smtpSocket = null;
4 DataOutputStream os = null;
5 DataInputStream is = null;
6 String message_body=args[1];
7 String message="message_example";
8 int offset=0;
10 smtpSocket = new Socket("hostname", 25);
11 os = new DataOutputStream

(smtpSocket.getOutputStream());
12 is = new DataInputStream

(smtpSocket.getInputStream());
14 os.writeBytes(message);
15 String responseLine;
21 System.out.println(offset);
22 os.close();
23 is.close();
24 smtpSocket.close();
25 }
31}

D. Fourth Step: Method Definition Delete

After all the processes above, in this step, we check if it is
possible to remove the seed methods definition. If the a seed
method resides in an application class or a third-party library
class, then we remove it. If this method is in Java Runtime
Environment (JRE), then we do not remove it.

After all four steps, the result of our customization on code
listing 5 is shown in code listing 7. After customization, this
code snippet is runnable, does not contain the read feature
and does not have redundancy code caused by the feature
customization.

V. EVALUATION AND CASE STUDIES

A. The Pervasiveness of Cross Cutting Features in Real World
Java Program

In this subsection, we present the results to the research
question “how pervasive the cross cutting features are in the
real world Java program”. We select three features. They are
network connection, database connection, and logging.

We conduct experiments on DaCapo 9.12-bach bench-
marks, which contain 10 programs. These 10 benchmarks are

6

typical desktop standalone applications that are designed by
following the principle of “small is beautiful”. For most of
them, network connection and data persistence are not their
proposed functions. If one benchmark’s main function happens
to be network connection and data persistence, we will skip
that application.

1) Presence of Network Connection Call Sites: The number
of network connection call sites of each benchmark is shown
in the first row of Table I. Among the benchmarks, tomcat is a
web server whose main business logic includes network con-
nection. In this case, we do not consider network connection
feature as a cross cutting feature for benchmark tomcat. So we
do not calculate this number for the benchmark tomcat. From
the table, we can see that 7 out of 9 benchmarks have cross
cutting network connection API call sites. The benchmark
batik has the highest call sites number 83. The benchmark
avrora and sunflow do not network connection call sites. On
average, each benchmark has 15 network connection call sites.

2) Presence of Database Connection: The number of
database connection call sites of each benchmark is shown in
the second row of Table I. Among the benchmarks, h2 itself
is a database. So we do not calculate database connection call
sites number for benchmark h2. From the table, we can see that
5 out of 9 benchmarks have cross cutting database connection
API call sites. The benchmark tomcat has the highest call
sites number 8. On average, each benchmark has 2 database
connection call sites.

3) Presence of Logging: The number of logging call sites
of each benchmark is shown in the third row of Table I. From
the table, we can see that 5 of out of 10 benchmarks have cross
cutting logging API call sites. The benchmark lucene has the
highest call sites number 962. On average, each benchmark
has 125 logging call sites.

The data above provides the evidence that the features that
have nothing to do with applications’ main business logic are
pervasive in real world Java applications. This fact indicates
that, first, it is feasible to remove undesired features; second,
it is important to remove those undesired features.

B. Case Studies

In this subsection, we evaluate the correctness of our
approach. Further impacts (e.g. performance and security) of
feature removal are out of the scope of current stage, which
is our future work. The fact that if a feature is correctly
removed or not is hard to be measured quantitatively, therefore
we choose case studies as our evaluation methodology. Each
customized application is validated by selected tests running
and manual inspecting.

1) DrJava: Network Connection: DrJava is a lightweight
Java programming environment for pedagogic purpose [1]. The
core functionality of DrJava has nothing to do with network
connection. However, it does have network connections in its
code for checking updates. DrJava has 687 classes. The total
number of lines of code are 163,566. We conduct a case study
on removing network based feature from Dr.Java. Network
related features are defined by methods openConnection and
openStream in class java.net.URL. Specifically, if the devel-
opers want to have network connection in their program, they

Listing 8: DrJava openConnection Callsite Forward Slicing
Results

321 URLConnection uc = fileURL.openConnection();
322 final int length = uc.getContentLength();
323 InputStream in = uc.getInputStream();
324 ProgressMonitorInputStream pin =

new ProgressMonitorInputStream
(_mainFrame, "Downloading "+fileName+" ...", in);

325 ProgressMonitor pm = pin.getProgressMonitor();
326 pm.setMaximum(length);
327 pm.setMillisToDecideToPopup(0);
328 pm.setMillisToPopup(0);
330 { public void run() { closeAction(); } });
331 BufferedInputStream bin = new BufferedInputStream(pin);
334 edu.rice.cs.plt.io.IOUtil.copyInputStream(bin,bout);
335 bin.close();
337 if ((!destFile.exists())

|| (destFile.length() != length)) {
338 abortUpdate("Could not download update."); return;
339 }

must call those APIs. Thus, in this case, SEEDS consists of
methods openConnection and openStream. Table II shows the
specific call sites of the seed methods. We use them as seed
methods to conduct feature-based customization based on the
approach we proposed.

Among these call sites, we use method updateAction in
class NewVersionPopup as an example. Code listing 8 shows
the forward slicing results of openConnection inside method
updateAction. The call site is at line 321. The return value
of this call site is uc whose type is URLConnection. This
call site does not have side effect. So the only slicing criteria
is uc in the statement of line 321. The statements shown in
code listing 8 would be deleted. The method openConnection
does not have parameters. So the backward solo-slicing would
not be performed. In the end, we find out that the method
openConnection is in JRE. So the method definition will not be
removed. After customization, we test Dr.Java by the test cases
designed by us. First, DrJava could start up successfully after
feature customization. Second, DrJava cannot access Internet
to check and download update. Third, rest of functions could
work normally.

2) Hadoop: Database Connection: Apache Hadoop is an
open source software for scalable distributive computing. In
this case study, we want to remove the database connection
feature from Apache Hadoop project. Database connection
related features are defined by method getConnection in
class java.sql.DriverManager. Specifically, to connect with
database, developers must write a sequence of routine code
to perform a series of operations which starts with Driver-
Manager.getConnection. So in this case, SEEDS contains only
one method getConnection. It has two call sites. Both of them
are in method getConnection of class DBConfiguration. Code
listing 9 shows two call sites of our seed method in DBCon-
figuration.getConnection. It is notable and interesting that DB-
Configuration.getConnection actually is a wrapper method of
Java standard API DriverManager.getConnection. They even
have the same method name. DBConfiguration.getConnection
directly uses the return value of seed method as its own return
value (line 151 and line 153). This fact causes that all call sites
of DBConfiguration.getConnection are also removed from the
program in the forward slicing stage.

7

TABLE I: Network, Database, and Logging Features

Benchmarks avrora batik fop h2 jython lucene pmd sunflow tomcat xalan
Number of Network Feature Call Sites 0 83 28 1 1 8 3 0 N/A 9
Number of Database Feature Call Sites 0 0 0 N/A 2 6 3 0 8 1
Number of Logging Feature Call Sites 0 0 87 1 5 962 0 0 195 0

TABLE II: Call Sites of method openConnection and
openStream in DrJava

SEEDS: java.net.URL.openConnection/openStream
edu.rice.cs.drjava.ui.NewVersionPopup$6.updateAction
edu.rice.cs.drjava.ui.NewVersionPopup.getManualDownloadURL
edu.rice.cs.drjava.ui.MainFrame. generateJavaAPISet
edu.rice.cs.drjava.ui.NewVersionPopup.getBuildTime

Listing 9: The Code of Call Sites of
DriverManager.getConnection

150 if(conf.get(DBConfiguration.USERNAME_PROPERTY) == null) {
151 return DriverManager.getConnection(

conf.get(DBConfiguration.URL_PROPERTY));
152 } else {
153 return DriverManager.getConnection(

conf.get(DBConfiguration.URL_PROPERTY),
conf.get(DBConfiguration.USERNAME_PROPERTY),
conf.get(DBConfiguration.PASSWORD_PROPERTY));

155 }

The backward solo-slicing starts from the parameters of
DriverManger.getConnection. We use the call site at line 151
as an example. That seed method call site uses the anonymous
return value of conf.get(DBConfiguration.URL PROPERTY))
as its parameter. Apparently, an anonymous return value is
impossible to be used somewhere else but its call site. So
the call site conf.get is also removed. After this removal, the
number of statements that depend on constant value DBConfig-
uration.URL PROPERTY is one less. But the SDG shows that
its out degree is still greater than zero at this moment. So the
solo-slicing stops here and the static constant field DBConfig-
uration.URL PROPERTY will not be removed. The backward
solo-slicing from parameters of call site in line 153 follows
the same manner. But the results are different. The static con-
stant fields DBConfiguration.USERNAME PROPERTY and
DBConfiguration.PASSWORD PROPERTY are removed in the
end because line 153 is the only statements that depend on
these two fields. At last step, we check if it is possible to
delete the method definition. Our seed method is part of JRE.
So the seed method definition will not be deleted. But its
wrapper method DBConfiguration.getConnection, whose call
sites are removed as well, is in application space. So the
method definition of DBConfiguration.getConnection will be
deleted.

After customization, we test Hadoop-mapreduce-client by
the test cases designed by us. We find out that the database
connection is disabled. The project’s rest of functions could
work normally.

3) Maven: Logging: Apache Maven is a software project
management tool written in Java which can facilitate building
automation, documents generation, and dependency resolving.
In this case study, we want to remove debugging information
logging feature from Maven. In Java, there are multiple logging

frameworks. But their design are quite similar. By calling
different methods of logger, logger can log the information and
label these information with different importance-level tags.
Thus administrators can handle or retrieve these logs according
to their importance levels for different purposes. Maven uses
the logging framework from Plexus project. In this framework,
the logging importance levels, from least important to most
important, are ranked as LEVEL DEBUG, LEVEL INFO,
LEVEL WARN, LEVEL ERROR, and LEVEL FATAL. To log
debug information, developers need to call Logger.debug
method. So SEEDS in this case study, contains one method
org.codehaus.plexus.logging.Logger.debug. By removing this
seed method, we can remove debug information logging fea-
ture.

The seed method has 60 call sites in 17 classes as shown in
Table III. Some package names are omitted due to its length
exceeding the page limit. We use one of these call sites in
class DefaultProjectDependenciesResolver as an example. The
relevant code is highlighted in listing 10. The code from line
253 to line 277 is omitted due to the page limit. This code list-
ing displays a quite typical scenario that logging feature cross
cuts with other business logic. The business logic of method
visitEnter is about node dependency resolving. Logging code
is interwoven with the main business logic of the method here.
The call site of Logger.debug is at line 283. It does not have
return value. So we do not need to perform forward slicing.
It takes buffer.toString() as its parameter. The backward solo-
slicing will start from buffer.toString(). After removing call
site, buffer in line 281 will lose its only dependent. Thus line
281 would be deleted which causes buffer in line 280 lose its
only dependent. Such a solo-slicing chain will go all the way
back to line 250. The solo-slicing will not stop until line 250
is deleted. In other 59 call sites, the operation and removing
process is similar. After we remove all call sites of the seed
method. We can remove the seed method definition because
this seed method is in a third party library.

To this end, we have removed the debugging information
feature from Apache Maven project. We test Maven by the test
cases designed by us. We find that Maven cannot do debugging
information logging any more. Other functions of Maven work
normally.

VI. DISCUSSION

A. Solo-slicing

To solve the problem of redundancy removal, we propose
a new slicing concept and technique, solo-slicing. Solo-slicing
could slice out the statements that are only affected by or only
affect the slicing criteria. As a side product of our research on
feature-based software customization, solo-slicing potentially
could be applied to many other research areas independently.
Solo-slicing might improve the slicing efficiency on software
debugging, transformation, and binary difference comparison

8

TABLE III: Logger.log Call Sites in Apache Maven project

SEEDS: java.util.logging.Logger.log
The Classes that have SEEDS call sites Call Sites Number
org.apache.maven.bridge.MavenRepositorySystem 1
org.apache.maven.classrealm.DefaultClassRealmManager 8
org.apache.maven.DefaultMaven 3
org.apache.maven.lifecycle.internal.LifecycleDebugLogger 20
org.apache.maven.· · · .DefaultLifecyclePluginAnalyzer 1
org.apache.maven.lifecycle.internal.MojoDescriptorCreator 1
org.apache.maven.· · · .MultiThreadedBuilder 2
org.apache.lifecycle.DefaultLifecycles 1
org.apache.maven.LoggingRepositoryListener 2
org.apache.maven.plugin.internal.DefaultMavenPluginManager 5
org.apache.maven.· · · .DefaultPluginPrefixResolver 3
org.apache.maven.· · · .DefaultPluginVersionResolver 5
org.apache.maven.plugin.DebugConfigurationListener 2
org.apache.maven.project.DefaultProjectBuildingHelper 2
org.apache.maven.project.artifact.MavenMetadataSource 1
org.apache.maven.project.DefaultProjectDependenciesResolver 1
org.apache.maven.toolchain.DefaultToolchainsBuilder 1

Listing 10: The Code Around One Call Site of Seed Method
in Apache Maven Project

249 public boolean visitEnter(DependencyNode node){
250 StringBuilder buffer = new StringBuilder(128);
251 buffer.append(indent);
252 org.eclipse.aether.graph.Dependency dep

= node.getDependency();
253 if (dep != null){

...//omit due to page limit.
277 }else{
278 buffer.append(project.getGroupId());
279 buffer.append(’:’).append(project.getArtifactId());
280 buffer.append(’:’).append(project.getPackaging());
281 buffer.append(’:’).append(project.getVersion());
282 }
283 logger.debug(buffer.toString());
284 indent += " ";
285 return true;
286 }

tasks in certain scenarios. The possible impact there is worth
further investigation.

B. Limitations and Future Work

This paper focuses on a novel research question, the for-
malization and analysis of this research question, and potential
techniques for solving the problem. We evaluate our approach
from several perspectives. However, we have not done large-
scale experiments yet in this preliminary feasibility study. In
the future, we will conduct more empirical studies to evaluate
our approach in a more comprehensive way.

VII. RELATED WORK

A. Bloatware

With the fast development of modern software engineering,
“bloatware” problem is gaining more and more attention from
both academia and industry. From static perspective, bloat-
ware increases the cost of dependency management, building,
changing, and storing. Morgenthaler et al. try to lower the dif-
ficulty of dependency management and target building caused
by huge monolithic code base [14]. By removing the build files
associated with dead code, identifying “unbuildable targets”
and unnecessary command line flags, developers could ease the
process of target building and pay down so-called “technical

debt”. They try to mitigate the problem without changing
the code base. Wang et al. follow the similar approach and
additionally include code base itself into consideration [26].
They implement a tool to find out intra- and inter-module de-
pendencies on both symbol level and module level. Developers
can use those information to conduct large-scale refactoring
on their huge code base. Vakilian et al. propose an approach
to decomposing large build targets into smaller ones to avoid
frequently triggering build and test tasks [25]. Ryder and Tip
propose change impact analysis to precisely identify affected
regression testing cases due to the change to the large code
base [19]. Holzmann gives an overview about the problems
of bloatware and code inflation [7]. From the performance
perspective, Xu [29] proposes a strategy of reusing those
redundant objects by utilizing a tool called Coco, which can
replace ineffective Java collections into effective ones to get
rid of bloat from Java software soundly and adaptively.

B. Program Slicing

There has been a substantial amount of research on pro-
gram slicing. Mark Weiser first raises the idea of program
slicing, which could be applied to regression testing, program
parallelization and automatic debugging [28]. Along with
this idea, he also presents a static program-slicing algorithm.
However, this algorithm could only be applied to a program
that has a monolithic procedure. Arvind and Shankar presented
a methodology to use program-slicing technology to facilitate
regression testing [2]. Specifically, their methodology is based
on alias analysis and an interprocedural program slicing algo-
rithm proposed by Horwitz et al. [8]. Ottenstein and Ottenstein
developed the program dependence graph (PDG) [16]. This
data structure provides an infrastructure to develop a new
more effeicent program slicing algorightm. But PDG only
facilitates intraprocedural program slicing analysis. Horwitz et
al. solved the problem of interprocedural program slicing. They
introduce a new form, system dependence graph (SDG), to
represent the program [8]. The challenge of conducting inter-
procedural slicing is analyzing calling context of procedures.
Compared with PDG, this approach overcomes the difficulty
by importing transitive dependences relationship. Some other
researchers make efforts on dynamic slicing techniques. Wang
and Roychoudhury implement a Java dynamic tool called
JSlice [27]. The strength of this tool is that huge bytecode
traces could be represented in an very effective manner.
Hammacher implements a tool called JavaSlicer [6], which is
easy to set up and use. To make this tool Java virtual machine
implementation independent, the author takes advantage of
Java agent technology. Treffer and Uflacker also implement
Java dynamic slicing on soot framework [24].

C. Software Diversity

Software diversity enhances the software security from
multiple aspects. Software diversity offers a probabilistic pro-
tection mechanism [12]. Additionally, it is a kind of active
defense which can defend a wide range of types of attack,
including unknown attack methods. Software could be di-
versified in different levels by different approaches. It offers
a large design space to software diversity researchers. Our
research offers one way to diversify software via feature-based
customization. Other research in this area diversifies software

9

by different granularities. Snow et al. diversify the software
on instruction level [20]. Their approaches include equivalent
instructions and equivalent instruction sequences substitution.
Some other works diversify the software on basic block
level [5], [13]. Their technologies include opaque predicate
insertion and branch function insertion. On the program level,
approach instruction set randomization [3] and virtualization-
based obfuscation are proposed. They are efficient on defend-
ing code injection attacks.

VIII. CONCLUSION

In this paper, we discuss and formally define a novel re-
search problem of feature-based software customization. Based
on that, we present a multistep static program slicing based
approach to conducting feature-based software customization.
Additionally, as a part of of the multistep approach, we propose
a new concept, solo-slicing, which can slice out the statements
that are only affected by or only affect the slicing criteria.
Our approach can help remove a feature from the software
safely and clean all redundancy caused by this removal, and
can potentially help legacy code retrofitting and maintenance.

IX. ACKNOWLEDGMENTS

This research was supported in part by the Office of Naval
Research (ONR) grants N00014-13-1-0175 and N00014-16-
1-2265.

REFERENCES

[1] E. Allen, R. Cartwright, and B. Stoler, “Drjava: A lightweight pedagogic
environment for java,” in Proceedings of the 33rd SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’02. ACM,
2002, pp. 137–141.

[2] D. Arvind and P. Shankar, “Slicing of Java programs using the Soot
framework,” Master’s thesis, Indian Institute of Science, 2006.

[3] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanović, “Random-
ized instruction set emulation,” ACM Transactions on Information and
System Security (TISSEC), vol. 8, no. 1, pp. 3–40, 2005.

[4] Y. Bu, V. Borkar, G. Xu, and M. J. Carey, “A bloat-aware design for big
data applications,” in Proceedings of the 2013 International Symposium
on Memory Management, ser. ISMM ’13. ACM, 2013.

[5] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proceedings of the 25th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ser. POPL ’98. ACM, 1998, pp. 184–196.

[6] C. Hammacher, “Design and implementation of an efficient dynamic
slicer for Java,” Bachelor’s Thesis, Saarland University, 2008.

[7] G. J. Holzmann, “Code inflation,” Software, IEEE, vol. 32, no. 2, 2015.
[8] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using

dependence graphs,” in Proceedings of the ACM SIGPLAN 1988 Con-
ference on Programming Language Design and Implementation, ser.
PLDI ’88. New York, NY, USA: ACM, 1988, pp. 35–46.

[9] ——, “Interprocedural slicing using dependence graphs,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 12,
no. 1, pp. 26–60, 1990.

[10] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and X. S. Wang, Eds.,
Moving Target Defense: Creating Asymmetric Uncertainty for Cyber
Threats, ser. Advances in Information Security. Springer, 2011, vol. 54.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” in European
Conference on Object-Oriented Programming (ECOOP ’97), 1997.

[12] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in IEEE Symposium on Security and Privacy. IEEE,
2014, pp. 276–291.

[13] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security, ser. CCS ’03.
ACM, 2003, pp. 290–299.

[14] J. D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali, “Searching
for build debt: Experiences managing technical debt at Google,” in Pro-
ceedings. of the Third International Workshop on Managing Technical
Debt, 2012.

[15] K. Nguyen and G. Xu, “Cachetor: Detecting cacheable data to remove
bloat,” in Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering (FSE’13). ACM, 2013, pp. 268–278.

[16] K. J. Ottenstein and L. M. Ottenstein, “The program dependence
graph in a software development environment,” in Proceedings of the
First ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, 1984.

[17] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22Nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, ser. POPL ’95. ACM, 1995, pp. 49–61.

[18] M. Rinard, “Manipulating program functionality to eliminate security
vulnerabilities,” in Moving Target Defense. Springer, 2011.

[19] B. G. Ryder and F. Tip, “Change impact analysis for object-oriented
programs,” in Proceedings of the ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, 2001.

[20] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in IEEE Symposium on
Security and Privacy. IEEE, 2013, pp. 574–588.

[21] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” in Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design
and Implementation, ser. PLDI ’07. ACM, 2007, pp. 112–122.

[22] Standish Group, “CHAOS report 2009,” Tech. Rep., 2009.
[23] F. Tip, C. Laffra, P. F. Sweeney, and D. Streeter, “Practical experience

with an application extractor for Java,” in Proceedings of the 14th
ACM SIGPLAN Conference on Object-oriented Programming, Systems,
Languages, and Applications, ser. OOPSLA ’99. ACM, 1999, pp.
292–305.

[24] A. Treffer and M. Uflacker, “Dynamic slicing with Soot,” in Proceed-
ings of the 3rd ACM SIGPLAN International Workshop on the State of
the Art in Java Program Analysis (SOAP ’14), 2014.

[25] M. Vakilian, R. Sauciuc, J. D. Morgenthaler, and V. Mirrokni, “Au-
tomated decomposition of build targets,” in Proceedings of the 37th
International Conference on Software Engineering, ser. ICSE ’15.
IEEE Press, 2015, pp. 123–133.

[26] P. Wang, J. Yang, L. Tan, R. Kroeger, and J. D. Morgenthaler, “Gen-
erating precise dependencies for large software,” in Proceedings of the
Forth International Workshop on Managing Technical Debt, 2013.

[27] T. Wang and A. Roychoudhury, “Dynamic slicing on Java bytecode
traces,” ACM Transaction on Programming Languages and Systems
(TOPLAS), vol. 30, no. 2, Mar. 2008.

[28] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. IEEE Press, 1981,
pp. 439–449.

[29] G. Xu, “Finding reusable data structures,” in Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications, ser. OOPSLA ’12. ACM, 2012, pp.
1017–1034.

[30] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky, “Software
bloat analysis: Finding, removing, and preventing performance prob-
lems in modern large-scale object-oriented applications,” in Proceedings
of the FSE/SDP Workshop on Future of Software Engineering Research
(FoSER ’10). ACM, 2010, pp. 421–426.

10

