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Abstract—Link-based data structures, like linked lists and bi-
nary trees, play an important role in organizing and maintaining
kernel objects. Attackers have a strong motivation to tamper
them for various malicious purposes. Although a lot of techniques
have been proposed to protect kernel objects from unauthorized
modifications, existing methods can hardly be applied to most
kernel data structures. In this paper, we design iCruiser, a novel
protection mechanism to universally secure the protected data
fields in link-based data structures within kernel. iCruiser intro-
duces a secure canary to guard the protected data fields, and it
employs a stream cipher to prevent attackers from compromising
the canary field. Without the seed key of the stream cipher,
attackers can hardly conduct unauthorized modifications to the
protected fields without being detected. Furthermore, to monitor
the protection status of iCruiser, we employ the execution trace
recording technologies to record the execution of iCruiser, which
ensures that any attack attempt happening on iCruiser will be
traceable and auditable. Through iCruiser, we can easily narrow
down the attacking vectors of link-based kernel data structures
for attackers. To show the effectiveness, we applied our design
on some critical doubly linked lists in Linux kernel and analyzed
the performance overhead at the instruction level.

I. INTRODUCTION

Kernel data structures are important in organizing kernel
objects, which provide fundamental building blocks for OS
developers in designing kernels. For one hand, kernel ob-
jects cooperate together to help kernel achieve its complicate
functions; for the other hand, they record the execution states
of kernel and provide kernel runtime information for upper-
level applications. For example, on a Linux system, users can
get a snapshot of current processes by executing command
ps, which traverses a linked list connecting all the current
processes and prints out the process information. If the linked
list of the current processes is compromised by an attacker,
the process information obtained through ps command is not
trustworthy. Furthermore, for most of the time, users will not
be aware of the compromise.

As a result, attackers would like to compromise kernel data
structures to achieve various malicious goals. One goal is
to erase attacking trace. An attacker may erase his attacking
traces from system logs and hide his existence on the victim
machine. Further, he may want to keep his unauthorized
privileges by installing a backdoor program [1], [2]. The

backdoor program is capable of providing the attacker abilities
reinvading the system and retrieving illegal privileges for
future attacks. However, the backdoor programs can be easily
detected from kernel data structures through system monitor
tools. Therefore, attackers have a strong desire to tamper
kernel data structures to hide backdoor programs.

Typically, attackers use kernel rootkits [3], [4], [5] to
conduct malicious activities in kernel. Kernel rootkit is a
kind of malicious program, which modifies kernel stealthily
to achieve various malicious goals, including hiding malicious
processes, disabling firewalls, changing audit system, and so
on. A kernel rootkit can be implemented in many ways. For
operating systems supporting loadable kernel module, rootkits
are usually implemented with kernel modules, which are
running as part of OS kernel. Consider most security tools are
user-space applications and will not be able to protect kernel
space resources, it is not easy for users to detect malicious
activities happened in kernel. A lot of efforts have been done
to protect operating systems from being infected by kernel
rootkits.

There are mainly three kinds of methods in defending
kernel rootkits: detecting kernel object modification, virtual
machine inspection, and binary analysis. Detecting kernel
object modification [6], [7], [8], [9] makes use of heuristic
pre-knowledge of kernel and searches memory space for
kernel data and object layout and invariants. Since kernel
usually has a fixed memory space layout and many kernel
objects will not be changed once established, these ground
truths can be used to detect kernel rootkits attacks. Virtual
machine inspection [10], [11], [12], [13] takes advantages of
virtualization technologies to detect kernel rootkits. Virtual
machine monitor (VMM) has a higher privilege than guest
OS, which can be used to monitor kernel activities in guest
OS. Running at the lowest level, VMM can intercept and
retrieve kernel memory pages for security purposes. Binary
analysis [14], [15] is another practical method to defend kernel
rootkits. Before being loaded into kernel, new kernel modules
and device drivers will be profiled with binary analysis to
predict potential behaviors. Since malicious kernel modules
significantly differ from nonmalicious modules, they can be
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detected through binary analysis. Although these methods
can help defending kernel rootkits, their protection requires
additional supports and resources more or less, which cannot
be applied universally.

In this paper, we design iCruiser, a novel protection mech-
anism to universally secure linked data structures in kernel.
Different from existing methods, iCruiser can be universally
applied to protect all linked data structures. iCruiser introduces
a secure canary to guard the protection fields of a linked node.
The protection information is stored in secure canary with
stream cipher encryption. The secure canary makes sure that
all the unauthorized modifications are detectable. Consider the
rootkits enjoy the same privilege with benign code in kernel,
there is still a chance for attackers to hack our protection
mechanism. To monitor the protection status of iCruiser, we
employ an execution trace recording mechanism for auditing
purposes. The traces are recorded in read-only mode and can
provide sufficient proof for auditing if needed, which ensures
attackers cannot escape from being detected.

Our contributions include:
• To our best knowledge, this is the first work reported in

open publications that use secure canary to protect other
data fields within kernel data structures.

• Among the existing kernel protection methods, iCruiser
is the first work to provide a universal way to protect all
the link-based data structures in kernel.

• iCruiser is mostly compatible with the legacy kernels and
can be used in any mainstream operating systems.

• Our method uses stream cipher to protect kernel data
structures, which ensures any unauthorized modification
is detectable.

• The security of our protection is traceable. If an attacker
is interested in bypassing our protection stealthily, his
attempts are recorded and traceable in our execution
traces.

We present the threat model in Section II. In Section III,
we discuss the motivation of our work. The iCruiser design
is presented in Section IV. Section V gives an example of
applying our protection on a doubly linked list in Linux kernel
and analyzes its possible performance overhead. The security
analysis is given in Section VI. We introduce the software
cruising methodology employed by iCruiser in Section VII.
The related work is given in Section VIII, and conclusion is
with Section IX.

II. THREAT MODEL

In this paper, we focus on protecting link-based kernel data
structures. Fig. 1 demonstrates our threat model. Our goal is to
protect the data field X using secure canary S, a new added
data field. As can be seen in Fig. 1, we have a linked-list
node A with a protected data field X and a secure canary
field S. The secure canary S protects the integrity information
of X with a stream cipher. We assume the stream cipher key
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Fig. 1. Threat Model

is well-protected and cannot be obtained by attackers, which
can be achieved through certain secure hardware device or
VMM. Also, we assume both X and S can be updated legally
through a Data Fields Update Module. In the Data Fields
Update Module, the cipher key will be retrieved securely
and the secure canary S will be updated based on the latest
modification to X . In our assumption, the attacker has root
privilege in kernel and wants to tamper the protected field X

in A. There are two ways for the attacker to modify the field
X in A, unauthorized modifications and other attacks, which
are demonstrated as red arrows in the figure. Unauthorized
modifications are defined as the attacker directly modifies
X by locating A’s reference or memory address, which can
be achieved in many ways. In unauthorized modifications,
since the attacker has no cipher key to update the secure
canary, the unexpected modification on X can be detected by
checking A’s canary field. The Other Attacks include returned
oriented programming attack [16], [17], code reuse attack [18],
[19], and any other attack which is able to bypass iCruiser’s
protection. The attacker is able to jump to the address of field
update module and executes it. Since the modification is made
through Data Field Update Module, A’s canary field is updated
legally as well. The modifications achieved by other attacks
cannot be detected by checking A’s canary field. However,
the entire bypassing execution process will be recorded in our
execution traces. We leverage previous research results [20] to
monitor iCruiser protection, and the entire trace mechanism
is trusted and the integrity of the traces is well protected,
which ensures all other attacks are recorded and traceable.
More details will be given in Section IV.

III. MOTIVATION

Open design of modern operating system provides users sig-
nificant flexibilities in using computer systems. For example,
Linux operating system provides users flexible mechanisms to
change kernel, like kernel recompiling, loadable kernel module
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(LKM), kernel configuration files and tools, device driver,
and so on. Taking benefits from these mechanisms, users can
dynamically modify running operating systems. Experienced
users can even choose to customize a Linux kernel for a special
version which can only be used by himself. However, given
the flexibilities, an attacker can modify an operating system
for malicious purposes as well. The attacker can write a kernel
rootkit and load it as a kernel module. In a kernel, the kernel
rootkits will be treated with no discriminations and enjoy the
same privileges with other legal modules. And, due to kernel
rootkits are running at a low level, the mainstream security
tools are unable to detect them, which makes regular users
can hardly detect attacks brought by kernel rootkits.

Link-based kernel data structures are easy targets of kernel
rootkits, for they are widely used in kernel and can be easily
obtained and modified by a loadable kernel module. There are
a lot of attacking vectors available for attackers to compro-
mise link-based kernel data structures. As we mentioned in
Section I, the attacker has a strong desire to tamper kernel
data structures. Here are two attacking examples on kernel
linked list:

1) Process Hiding: Process hiding [21], [9] is a typical
attack employed by kernel rootkits to hide a malicious
process from system utilities, such as ps. It relies on the
fact that kernel uses different process lists for scheduling
and accounting usages. In Linux, all the processes are
linked in a all-tasks list, which is headed with
init process and connects the rest other processes;
the process scheduler visits another list run-list to
schedule processes for execution. To hide a malicious
process, attackers can remove it from the all-tasks
list and keep it in the run-list list. As a result, the
malicious process can keep running, while the users
cannot see it by executing ps command.

2) Tampering Binary Formats: Inserting a new ker-
nel binary format can help attackers invoke arbitrary
malicious code whenever a new process is created.
When the kernel generates a new process, a function
search_binary_handler is called. The function
traverses the formats list, a global linked list main-
taining all binary formats, to locate a proper handler
to deal with the new process. It invokes each handler
of the formats list. If the current handler returns an
error code, the function continues with the next handler
until a success code is returned. An attacker can insert
a new format to the formats list and prepare a bad
handler carrying malicious code and returning an error
code always. Each time the formats list is traversed,
the bad handler is invoked.

To prevent the unauthorized modifications (see Fig. 1), we
introduce a secure canary field into link-based kernel data
structures. The protected fields are encrypted with a stream
cipher and stored in the secure canary field. Each time the

protected fields are modified, the secure canary will be recalcu-
lated as well. With several simple stream cipher functions, the
secure canary could be verified to show whether the protected
fields are compromised or not.

IV. DESIGN OVERVIEW

To protect link-based kernel data structures in a relatively
open kernel environment, several important design choices are
made. First, the unauthorized modifications detection should
not depend on the reliance from outside of the kernel. We
expect to design a self-contained protection method without
extra technical supports out of kernel. Second, our protection
method should be a typical one which can be universally
applied to all link-based data structures. Typically, when we
talk about security, secure or not secure is usually described
as a feature of the protected object. If we consider security as
an attribute of the protected object, we can use a data field of
security to store the security information of the protected data
fields. Third, we should consider efficiency as well as security.
We choose stream cipher encryption to protect the security
data field, which is featured with a high efficiency. Last, we
should consider the security of our protection mechanism. In
case our protection is bypassed or attacked, we considering
employing the execution trace recording techniques to secure
iCruiser.

A. Secure Canary

Our method inserts an additional data field of security,
namely secure canary, in the protected data structure. Just
as its name implies, secure canary guards the protected data
fields from being tampered. The secure canary should ensure
(1) once a compromise happens, the attacker cannot recover
the corrupted canary; (2) the canary generation and verification
algorithms should be efficient so that they will not hurt kernel
performance and detection latency.

We attempt to use simple XOR encryption to compute the
secure canary, e.g., a key K ⊕ a protected data field X. For an
attacker, if he tampers X, when verifying the secure canary,
the calculation of K ⊕ X will get a different value instead
of the secure canary. Then, we are aware of the compromise.
The calculation of canary’s value should be protected, which
means obtaining the key stream is an extreme difficulty for the
attacker. The encryption algorithm and details of calculation
will be illustrated in next subsection.

Here, the protected data field could be a link pointer or
any protected data field in a link-based data structure. For
example, we want to protect the next_pointer field of a
single link list. The computation of the secure canary should
be the corresponding key K ⊕ next_pointer. We compare
the calculated result with the current secure canary field. If
they do not match, we know the next_pointer field is
compromised.
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B. Stream Cipher

We choose stream cipher [22] to calculate the secure canary.
Stream cipher is a secure cryptography algorithm, which can
be regarded as a highly reliable one-time password [23], [24]
system. It uses only two secret information, the seed key
and position information, and the seed key could be very
short that can be protected without using many resources.
It’s efficient encryption/decryption operations exactly fit our
protection scenarios. As we mentioned in Section II, we
assume the seed key is protected well and the attacker cannot
steal it. When updating the secure canary, the seed key and
the position information will be retrieved securely to calculate
the latest canary values. Whenever a verification request is
issued, the same calculation will be executed and verified the
same way. If an attacker compromised the protected fields,
the compromise will be detected when the secure canary is
verified.

C. Link-Based Data Structures

When talking link-based data structure, we mean the data
structure is constructed through linkages (linkage represents
pointer or reference in real programming languages). Fig. 2
shows the examples of protecting link-based data structures
with iCruiser. We demonstrate two link-based data structures,
link list, and binary tree. As can be seen from the figure,
Ni represents the ith node in the list N. In the data fields
of node Ni, Pi stands for the protected data field, while Si

represents for the secure canary. The nodes Ni and Ni+1 are
two adjacent nodes linked by a pointer. In Ni, we want to
protect Pi with Si. The symbols used in the figure are designed
as follows: StreamKey i is the ith stream key, StreamCipher()

is the stream cipher function to generate key stream, Seed

is the initial seed key to generate stream cipher keys, and

RoundNumberi is the round information used in generating
StreamKey i.

StreamKey i = StreamCipher(Seed ,RoundNumber i)

Si = Pi ⊕ StreamKey i (1)

The above equation shows the calculations of the key
stream and the secure canary. The StreamKeyi is gener-
ated by given two privacies, the Seed and RoundNumberi .
The RoundNumberi information could be easily referred
or calculated within node Ni. Our assumption is the Seed

is under protection and the attacker cannot get it. Given
only RoundNumberi , the attacker cannot manufacture a valid
canary field. The secure canary is the encryption result of the
StreamKeyi and the protected data field. Stream cipher takes
XOR as the encryption and decryption operations. Since the
attacker cannot have Seed and further obtain the StreamKeyi ,
he cannot use the right stream key to generate a valid canary
field. We especially note that the protected data field could be
any valuable information of the node Ni, such as an important
data field or a pointer pointing to next node.

There is a key assumption in our design, that is we assume
the attacker cannot get the Seed . Since the kernel rootkits have
the same privileges with kernel, it is not safe to store the Seed

within kernel. About the details on how to protect the Seed ,
we will give more details in Section V.

V. PROTECTING KERNEL DOUBLY LINKED LISTS WITH

ICRUISER

A. Kernel Doubly Linked Lists

Doubly Linked List is a representative kernel data structure.
It provides both forward and backward circular structures
to link data elements. Each DL-List node contains two link
fields, which are two pointers pointing to the two adjacent
neighbours, the previous node and the next node. Usually,
each DL-List is leaded with an initial node, called head node,
where the DL-List starts growing. Due to every DL-List node
is pointed by its previous and next node, a DL-List can be
traversed both in forward and backward directions, which
provides a great convenience for a user to visit a certain node.

Doubly Linked List has been widely used in the OS kernel,
such as memory organization, process managements, device
operations, and file system operations. In memory manage-
ment, the DL-List is used to organize memory pages; for
process management, kernel use different DL-List lists to
organize processes.

B. Protecting Kernel DL-Lists with iCruiser

We use iCruiser to protect kernel DL-List. One secure
canary will be guarding each protected link field and ensures
that all the unauthorized modifications are detectable. The
protection is ensured with RC4 [25], a stream cipher using
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symmetric-key cryptograph algorithm. To ensure the protec-
tion effectiveness of iCruiser, we employ an existing execution
trace recording technique.

1) Unauthorized Modifications: An attacker has a strong
desire to compromise the DL-List structure in the kernel so
that he can achieve various malicious purposes. Through a
loadable kernel module, an attacker can easily obtain a node of
run-list. Following the forward or backward pointers, he
can easily locate the malicious process and remove it from the
run-list. Consequently, the system utility, like ps, will miss
the malicious process when displaying the running processes.
We call this kind of modification on a DL-List instance as
unauthorized modifications. Our protection mainly focuses on
the unauthorized modification of kernel DL-Lists.

2) Our Protection Goal: The reason why the above attacks
succeed is because kernel does not provide a verification
mechanism to detect unauthorized modifications on a DL-List.
That is, a DL-List node’s two pointer fields can only know
they “have” two adjacent nodes, but they do not know “who”
are their neighbours. We need the DL-Lists nodes are able to
verify “who” are their neighbours so that we can detect the
unauthorized modifications. Fig. 3 shows inserting a malicious
node in a DL-List, and our method should be able to detect
the unauthorized modifications like this.

Our goal is to protect and verify the two pointer fields of
each DL-List node. With our method, attackers can hardly
recover a corrupted DL-List node or generate a new valid
DL-List node. Each pointer field will be protected with a
secure canary, which securely stores “who” is the authenticate
neighbour node. With our protection, an attacker can hardly
make unauthorized modifications without being detected.

3) Implementation: We add two secure canary fields in
DL-List structure, canary prev and canary next, to protect
prev and next link pointer respectively. Besides, we also add
a field position, which is used in the RC4 stream cipher to
generate a key. The canary prev and canary next fields store
the encryption results of prev and next pointers. Fig. 4 shows
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Fig. 4. A DL-List with Linked Secure Canary

a DL-List protected with linked secure canaries. We can see
the DL-Lists nodes are also linked by secure canaries. With
these two fields, all DL-Lists operations changing prev and
next fields have to recalculate and update secure canary fields.
If the attacker still wants to hack prev and next without being
detected, he has to recalculate and update secure canary fields
as well, which could be extremely hard under our protection.

To calculate the secure canaries, we use RC4 stream cipher.
RC4 stream cipher uses a seed key and S-box to produce a
key stream. The seed key is used to initialize the S-box, and
the S-box follows an irreversible pseudo-random algorithm to
generate a key stream. The pseudo-random algorithm ensures
that, as long as the seed key is fixed, the RC4 can always
generate a same key stream.

Verifying an unauthorized modification can be easily
achieved by checking the related canary fields. For example,
we want to verify the node Ni as shown in Fig. 4. First,
we can traverse the DL-Lists instance to locate node Ni

and retrieve its related fields, position, prev, and next. Then
we use the position information to invoke RC4 key stream
generation functions to obtain the corresponding keys. With
the keys, we can compute the XOR results of its prev and
next field. If the XOR results exactly match Ni’s canary prev
and canary next fields, no authorized modification happens on
Ni. Otherwise, we know an authorized modification happens.
Through checking Ni’s neighbours, we can further know
which node or field is compromised. Similarly, we can verify
a whole DL-Lists instance.

C. Performance Analysis

1) Memory Usage: We add three new data fields to the DL-
Lists data structure, and each DL-Lists node will need twenty
two more bytes (the three data fields are position, canary prev,
and canary next) to store a data element. Assume there are
one hundred DL-Lists instances in kernel, and each DL-Lists
instance may have one hundred nodes. The extra memory used
for iCruiser could be hundreds of kilobytes in total. Compared
with the memory space controlled by kernel, the amount of
extra memory introduced by iCruiser should be acceptable to
most users.
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2) Computation Overhead: The extra computations intro-
duced by iCruiser are RC4 operations on two new added
canary fields. There are two frequently used functions in RC4,
key stream generation and encryption (the encryption and
decryption are two same operations for RC4 is a symmetric-
key cryptograph algorithm). Every time we update a canary,
we need to execute these two functions. To verify the canaries,
we need to obtain the stream key and run the encryption
operation to calculate the latest canary value. If the two values
match, we know everything is fine; otherwise, we know there
is a compromise.

The heaviest operation in key stream generation function is
S-box mutation, which is composed of two basic operations,
modulo operation and value switching on two variables. These
two basic operations will be translated into several simple
binary instructions. The instructions are pretty simple and only
takes several instructions cycles. Besides, the encryption/de-
cryption computations of RC4 are just XOR operations, which
has been well supported inside of CPU. The new overhead
introduced by iCruiser are quite trivial.

D. Execution Trace Recording

Consider attackers may make use of ROP, kernel code
reuse, and other attacking methods to bypass the protec-
tion of iCruiser. We introduce the execution trace recording
mechanism to monitor iCruiser protection status. We want
to achieve that, if an attacker successfully hacked iCruiser
by using ROP or code reuse attacks, we should be able
to audit when it happens and how it finishes. There are
many execution logging choices, like deterministic replay [26],
[27], OS level logging [28], [29], [30], and specialized hard-
ware [31], [32]. Based on our requirements, we would like
to choose XTRec [20], a real-time execution trace recording
solutions for commodity systems. XTRec supports instruction-
level execution recording and provides evidences to show
whether a particular code has been executed, which can be
used to the happening of ROP or code reuse attacks.

E. Miscellaneous

We want to talk several practical points when applying
iCruiser. The security of the iCruiser is relying on the cryp-
tograph algorithm. In our implementation, we use RC4, and
RC4’s security guarantee is based on the fact that the attacker
can hardly obtain the seed key. In our scenario, we assume
the seed key is well protected in TPM and the attacker cannot
obtain it anyway.

Also, since the iCruiser is applied in kernel where both ma-
licious program and benign program enjoy the same privilege,
we need to deploy some measurements to prevent attackers
attacking the iCruiser protections. Here, a successful attacking
on iCruiser can be explained like this. If an attacker can
succeed compromising the protected fields and iCruiser cannot
detect that, we call this a successful attacking. Just as we
talked in Section II, there are still other attacks available for

an attacker to bypass iCruiser protection. More details will be
given in Section VI.

VI. SECURITY ANALYSIS

Our goal is using secure canaries to protect data fields from
unauthorized modifications. Through a simple verification,
iCruiser is guaranteed to detect whether the unauthorized
modifications happened or not. As we analyzed in Section
design V, we can achieve our goal with iCruiser. Since we
use RC4 to protect secure canaries, the security of iCruiser
actually relies on RC4’s attack resistance in some degree. The
key generation algorithm of RC4 has been proved irreversible
and hard to forfeit. As long as the attacker cannot obtain the
seed key, it is almost impossible for attackers to hack RC4. We
choose to store the seed key in TPM hardware. TPM has been
widely deployed on most personal computers and is becoming
a standard hardware component. With TPM’s protection on the
seed key, we can say the stream cipher is well protected and
iCruiser’s protection is ensured.

However, some attacks are still able to disturb iCruiser’s
protection, such as Return-Oriented Programming (ROP) [16],
[17] and code reuse [18], [19]. An attacker can achieve the
modifications by jumping to the start address of the Data
Fields Update Module and invoke the functions. Or, he can
copy the code to a controlled memory region and execute
it arbitrarily. Although these attacks have a high attacking
bar, well-prepared attackers can still finish it. To monitor the
protection status of iCruiser, we execution trace recording
technologies. With the execution trace, we can audit whether
the Data Field Update Module program is executed by an
attack or not.

VII. SOFTWARE CRUISING

The iCruiser work is part of a larger project on software
cruising [33], [34], [35], which is a novel software monitoring
methodology that has been used in heap buffer integrity
checking, kernel memory cruising, object invariant checking,
data structure protection, rootkit detection, and so on. It makes
use of dedicated threads to constantly check and monitor
user or kernel programs, for policy enforcement or security
violation problems. Following our previous work, Cruiser [33]
which detects heap buffer overflows using lock-free algorithms
and Kruiser [34] which detects heap buffer overflow in kernel
using semi-synchronized algorithms, iCruiser aims to protect
link-based data structure in kernel.

Cruiser tries to solve the heap buffer overflow problem by
leveraging the popular multiprocessor architectures and lock-
free data structures. The basic idea of Cruiser is using a
separate monitor thread to detect buffer overflow violations
on user threads. The security check of Cruiser is achieved
by a parallel thread instead of inline code, which greatly
improves the protection performance and reduces the resource
reclamations.
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Similarly, Kruiser is trying to solve buffer overflow prob-
lem within kernel. By using a novel semi-synchronized non-
blocking monitoring algorithm, Kruiser is able to detect page-
level buffer overflows. Besides, it also uses virtualization
technologies to collect the memory information of a guest OS.
Kruiser greatly migrates the security enforcement overhead in
monitoring kernel buffer overflow problem.

iCruiser follows the software cruising research and tries to
protect the data structures. In contrast to Cruiser and Kruiser,
iCruiser employs secure canaries to protect the data structures
from being compromised by unauthorized modifications. The
canary fields can be used to protect any data field or valuable
information related with the data structure. In our application,
the secure canaries are protected by stream cipher, which
prevents the attackers recovering a tampered canary or forging
a new valid canary.

VIII. RELATED WORK

Kernel objects modifications usually happen on two kinds
of kernel objects, control data and noncontrol data. Control
data covers system call tables, system hooks, jump tables,
and other objects controlling kernel functions. Noncontrol data
includes memory metadata, task list, file inode chains, and so
on. SBCFI [6] is proposed to protect kernel from control-flow
attacks, which aims to protect the system hooks by periodically
checking its memory area and ensure they point to the proper
locations. Similarly, Wang et al. [7], [8] propose a lightweight
kernel hook protection framework. Based on the observation
that the kernel hooks are usually accessed by read instead
of write, they propose to relocate those kernel hooks to a
dedicated memory space and protect it with hardware-based
protection. While protecting kernel control data is critical,
noncontrol data protection is also important. Noncontrol data
can help attackers hiding malicious processes, affecting system
performance, and disturbing kernel random number genera-
tions. To target noncontrol data protection, Petroni et al. [9]
present a unified architecture that checks kernel data against a
set of integrity specifications, no matter the data is control
data or noncontrol data. iCruiser falls in this category as
well. Compared with existing methods, iCruiser does not rely
on extra support and has an easier implementation and less
overhead.

Binary analysis is usually used in analyzing software be-
haviors. Kruegel et al. [14] first use binary analysis to inspect
the kernel modules to be loaded. They collect the behaviors
of existing rootkits. If a given module resembles the behavior
of a rootkit, this module could be regarded as malicious and
will not be loaded into kernel. The method is building on a
basis that an abstract model of kernel module behavior will
not get affected by small changes in the binary image of the
module. Limbo [15] is proposed to protect Windows systems
from kernel rootkits. Limbo checks the binary content and
run-time behavior of the coming kernel driver and determines

whether it is a kernel rootkit. It conducts a characteristic
study of the current rootkits and design effective policies
for distinguishing benign kernel driver and malicious kernel
drivers. While the above binary analysis methods offer helpful
options in detecting kernel rootkits, their methods suffer false
alarms because the analysis is actually based on conservative
approximations.

Virtual machine inspection (VMI) is first provided by
Garfinkel et al. [10] in 2003. The initial VMI idea is designed
to move the intrusion detection system (IDS) from a host
machine to a virtual machine, which helps IDS achieve a
better attack resistance. Virtual machine provide an isolation
mechanism which can be used for security purposes. Litty et
al. [11] designed Manitou, a VMM aided system that helps
users arbitrarily modify a program, regardless of the integrity
and type of the OS. Manitou makes use of hypervisor privilege
to intercept the memory page and modify the permission bits,
which can be used to kernel rootkits detections. In addition to
the VMI, the virtual machine is also used to monitor the kernel
memory space, which can be used to detect kernel rootkits as
well. Out-of-VM introspection [12], [13] has been applied to
study kernel malware, including kernel rootkits. These protec-
tions take the protections through actively monitoring certain
kernel memory space. The VM related research provides a lot
of valuable methods for protecting kernel from kernel rootkits
and other malwares. However, some of them cannot be used
to detect kernel data structures. And, these methods require
the protected systems are running at virtualization platform,
which cannot be applied to many legacy systems.

Besides, some technologies combine two or more tech-
niques to achieve kernel rootkits detections. Gibraltar [36],
[14] is an example. It combines kernel object modification
and binary analysis to protect kernel. Gibraltar analyzes the
entire kernel to locate the vulnerable places and summarize
the invariants of the kernel. Here, the invariants mean the
properties that are always holding when kernel is running.
Through binary analysis, Gibraltar builds up a specification
of a health kernel, and compare the observation with the
specification. If any observation is found an unexpected kernel
object modification, a possible rootkit may happen. Although
many rootkits can be detected by Gibraltar, it cannot detect
all the compromise on data structures.

IX. CONCLUSION

In this paper, we have introduced iCruiser, a novel protection
mechanism to universally secure all link-based data structures.
In iCruiser, we employ a secure canary to guard the protected
data fields. The secure canaries are protected with stream ci-
pher. To demonstrate the effectiveness of our method, we have
applied iCruiser to protect doubly linked list data structures in
Linux kernel. We have analyzed the performance and security
effectiveness of iCruiser. Our analysis shows that iCruiser is
effective to protect link-based data structures in kernel.
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