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Abstract
Graph Convolutional Network and many of its
variants are known to suffer from the dilemma
between model depth and over-smoothing issues.
Stacking layers of GCN usually lead to the ex-
ponential expansion of the receptive field (i.e.,
high-order neighbors). In order to incorporate the
information from high-order neighbors to learn
node representations without drastically increas-
ing the number of graph convolution layers, we
propose a simple and effective pre-processing
technique to increase graph connectivity. Our
approach selectively inserts connections between
center nodes and informative high-order neigh-
bors, with learnable weights to control the infor-
mation flow through the connection. Experiments
show that our approach improves the performance
of GCN, and reduce the depth of GCNII without
sacrificing its performance. Besides, our proposed
homophily-based weight assignment can mitigate
the effect of graph structural attacks.

1. Introduction
Graph Neural Networks (GNNs) have achieved great suc-
cess in various tasks conducting graph data, including rec-
ommendation systems (Ying et al., 2018), drug discov-
ery (Shi et al., 2020), and traffic prediction (Guo et al.,
2019). One important factor behind the success is that
GNNs exploit message passing mechanism to aggregate
information from nodes as well as their neighborhoods. For
example, Graph Convolutional Network (GCN) (Kipf &
Welling, 2017), one of the most popular GNN variants, de-
fines spectral graph convolution to aggregate the information
from multi-hop neighborhoods. However, some of the deep
GNNs suffer from over-smoothing (Li et al., 2018), indicat-
ing that the node representations become indistinguishable
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as the number of layers goes large. Besides, the parameter
size becomes large as the model depth increases, which may
lead to overfitting (Kipf & Welling, 2017).

Recently, GCNII (Chen et al., 2020) constructs a residual
connection from the input layer to address over-smoothing.
However, GCNII requires great depth to achieve competitive
performance, which significantly increases computational
cost. Considering the improvement and the price, they ag-
gregate information from high-order neighbors in a lazy
manner, which is not efficient. Specifically, 32/64-layer GC-
NII aggregates the information from almost the entire graph
without filtering, which includes unnecessary information
from high-order neighbors for the center node. Besides,
due to the high homophily nature of graphs (Zhao et al.,
2020), high-order neighbors play an auxiliary role in GNN’s
representation learning.

In this work, instead of using spectral graph convolution
defined by GCN, we leverage node features in addition
to graph structure for the convolutional filter formulation.
We propose an approach to sample high-order neighbors
and assign high weights to informative high-order neigh-
bors to form a new filter. Specifically, we leverage random
walk to efficiently sample potential high-order neighbors.
Among the sampled high-order neighbors, weights are as-
signed using our proposed homophily-based loss function,
which evaluates the “informativity” of selected neighbors
by the distance between selected neighbors’ features and
local features. By introducing high-order neighbors, GCN
enhanced with our proposed approach shows considerable
improvements in performance on the semi-supervised node
classification task and we can can reduce the required depth
of GCNII.

Our proposed homophily-based loss function controls the
information flow, which can serve as a potential defense
technique against graph structure attacks. Adversarial at-
tacks (Zügner & Günnemann, 2019a) on graph structure
usually perturb the adjacency matrix and aim to change the
information flow, thus degrading the GNNs’ performance.
By reassigning weights to the edges with our method, we
can guide the flow of information back to informative neigh-
bors and mitigate the negative impact of graph structure
attacks (Zhang & Zitnik, 2020). We compare the perfor-
mance with other state-of-the-art GNN defense models. Al-
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though our method does not target GNN structure attacks,
our method still shows comparable or better performance,
which demonstrates that graph homophily can be a key fac-
tor in designing GNN defense models.

2. Preliminary
2.1. Notations

We denote the graph as G = (V,E), where V is the node
set {v1, · · · , vN} with |V | = N and E is the edge set. We
can represent the adjacency matrix as A ∈ {0, 1}N×N , and
Aij = 1 if and only if there is an edge on the graph. We
denote the neighborhood of node vi as Ni = {vj |Aij = 1}.
So the diagonal degree matrix can be denoted as D, where
Dii =

∑n
j=1 Aij . We denote the feature matrix as denoted

as X ∈ RN×F where each node v has a F -dimensional
feature vector Xv. We represent the one-hot label matrix
as Y ∈ {0, 1}N×C , where Yi ∈ {0, 1}C is a one-hot vector
and

∑C
j=1 Yij = 1 for any vi ∈ V .

2.2. Vanilla GCN and GCNII

The graph convolution layer of Graph Convolution Network
(GCN) (Kipf & Welling, 2017) can be written as:

H(l) = f
(
H(l−1), A

)
= σ

(
D̃− 1

2 ÃD̃− 1
2H(l−1)Θ(l)

)
,

where σ denotes the non-linear activation function and Θ(l)

is the parameter of l-th layer. Accordingly, the l-th layer of
GCNII can be written as follows:

H(l+1) = σ
((

(1− αl) P̃H(l) + αlH
(0)

) (
(1− βl) I + βlΘ

(l)
))

,

(1)
where P̃ = D̃− 1

2 ÃD̃− 1
2 , αl and βl control the extent that

the input feature H(0) and l − 1th layer’s node representa-
tions H(l−1) mix with H(l) respectively.

3. Expanding High-order Neighbors for
Spectral Graph Convolution Methods

The architecture of graph convolution networks dictates
that only after k layers of graph convolution, the k-order
neighbors’ node representations can be embedded into the
final representations for each node. This property leads to
a dilemma in the choice of model depth: model with too
few layers restricts the receptive field; model with too many
layers dilute the influence of important low-order neighbors.

To solve the above dilemma, we aim to introduce high-
order neighbor information into the final node representation
without increasing the depth of the model. Our method is
to increase graph connectivity by adding edges to high-
order informative neighbors for each node. Adding such

edges can enlarge the receptive field. High-order neighbors
will be sampled from random walk and reweighted by our
proposed loss function. The sampling, reweighting, and
training approaches will be introduced in Section 3.1, 3.2,
and 3.3 respectively.

Formally, we define the formulation of the modified GCN’s
l-th layer as

H(l) = f
(
H(l−1), A′

)
= σ

(
D̃− 1

2 Ã′D̃− 1
2H(l−1)Θ(l)

)
,

(2)
where A′ = A + Q and Q contains our inserted edges
connecting high-order neighbors.

3.1. Sampling High-order Neighbors with Random
Walk

The most straightforward way of embedding high-order
neighbor information into final node representation is to
establish connectivity between them with induced edges.
However, directly connecting all the high-order neighbors
in the adjacency matrix will greatly increase the graph den-
sity, and thus increase the computation time of the graph
convolution operation. To avoid significant changes in graph
structure as well as high computational complexity, we ex-
ploit random walk to sample high-order neighbors for each
node.

3.2. Reweighting High-order Neighbors

In our observation, the information of some nodes in the
high-order neighborhood overlaps with the local neighbor-
hood to a certain extent. Our aim is to select these high-
order nodes to improve the smoothness of node representa-
tions (Zeng et al., 2021). Accordingly, we present an unsu-
pervised Lasso (Tibshirani, 1996) approach to catch these
high-order nodes and assign larger weights by minimiz-
ing the distance between the local features and high-order
neighbors’ features as follows (Liu et al., 2019):

L =
n∑

i=1

Li

=
n∑

i=1


∥∥∥∥∥∥

n∑
j=1

(
Xj −

(
P̃X

)
i

)
Qij

∥∥∥∥∥∥
2

2

+ λ
n∑

j=1

|Qij |

 ,

(3)

In the loss function L, for each target node i and its high-
order neighbor j, (P̃X)i is the aggregated node feature after
a graph convolution layer. When minimizing Li on weight
vector Q, we aim to assign larger weights to the high-order
neighbors whose feature has a small distance with target
node feature (P̃X)i. λ

∑n
j=1 |Qij is the penalty factor to

limit the magnitude of Qij , and λ controls the strength of

2



Enhancing Multi-hop Connectivity for Graph Convolutional Networks

the penalty. More specifically, the Lagrangian form Li can
be rewritten as follows (Breiman, 1995):

minimize
Q

∥∥∥∥∥∥
n∑

j=1

(
Xj −

(
P̃X

)
i

)
Qij

∥∥∥∥∥∥
2

2

,

subject to Qij ≥ 0,
n∑

j=1

Qij = φi

(4)

where φi is the sum of the weights for high-order neigh-
bors of node i in Q. It is well known that the number of
high-order neighbors is different from that of the first-order
neighbors. So it is necessary to control the sum of weights
of the high-order neighbors. We minimize the 2-norm of the
difference vector between the aggregated feature vector of
first-order neighbors and that of high-order neighbors. To
this end, Li has the following form:

Li =

∥∥∥∥∥ n∑
j=1

(
xj −

(
P̃X

)
i

)
Qij

∥∥∥∥∥
2

2
n∑

j=1

Qij =
n∑

j=1

(DφQ)ij

Qij ≥ 0

(5)

Note that we can optimize all Li in parallel.

3.3. Training Framework

In the process of random walk sampling, our method gener-
ates different random graph structures from the input data
and can serve as a topology-level augmentation skill for
graphs. Inspired by the application of consistency training
on unsupervised data augmentation, we naturally exploit
consistency regularization loss function (Sajjadi et al., 2016)
for our supervised learning. In this work, we use the consis-
tency loss function proposed by Feng et al. (2020). Given K
augmented graph structure matrix for each training epoch,
we minimize the loss function as follows:

L = Ls + γLc, (6)

where

Ls = − 1

K

K∑
k=1

∑
i∈DT

Yi logZ
(k)
i , (7)

and

Lc =
1

K

K∑
k=1

N∑
i=1

∥∥∥Z ′
i − Z

(k)
i

∥∥∥2
2
. (8)

Here, DT is the training dataset, and Z
(k)
i is the output of

GCNs on the k-th augmented structure matrix. Consistency
regularization loss Lc allows different inputs to have similar

Table 1. Classification results on fixed split (%)

Method Cora Citeseer Pubmed

GCN 81.5 70.3 79.0
GAT 83.0 72.5 79.0
APPNP 83.8 71.6 79.7
JKNet 81.1 69.8 78.1
DropEdge-GCN 82.8 72.3 79.6

Ours (GCN) 83.9 74.0 79.9

predictions. Following the sharpening trick (Berthelot
et al., 2019), we compute Zi = 1

K

∑K
k=1 Z

(k)
i and

Z
′
i = Z

1
T

i /
∑C

c=1 Z
1
T
ic , where T is a hyperparameter used

to adjust the “temperature” in the sharpening trick.

4. Experiments
In this section, we evaluate the performance of our proposed
method on semi-supervised node classification tasks. To
show the robustness of our method, we also compare our
method with other state-of-the-art defense methods against
graph adversarial attacks.

Dataset. We exploit three citation network datasets Cora,
Citeseer, and Pubmed (Sen et al., 2008) for semi-supervised
node classification and graph defense evaluation. For
graph defense evaluation, we follow Zügner & Günnemann
(2019a); Zügner et al. (2018) and only consider the largest
connected component (LCC).

4.1. Semi-supervised Node Classification

Settings, Baselines, and Results. We exploit the stan-
dard fixed splits (Yang et al., 2016) on these datasets, with
20 nodes per class for training, 500 nodes per class for
validation, and 1000 nodes for testing. For baselines, we in-
clude GCN (Kipf & Welling, 2017), GAT (Veličković et al.,
2018), APPNP (Klicpera et al., 2019), DropEdge (Rong
et al., 2019), and JKNet (Xu et al., 2018). Table 1 re-
ports the mean classification accuracy on the test nodes
after 100 runs. We reuse the metrics reported in the corre-
sponding papers. Our method improves GCN by a margin
of 2.4%, 3.7%, and 0.6% on Cora, Citeseer, and Pubmed
respectively. And our method achieves the best on these
datasets, outperforming multihop baselines such as APPNP
and JKnet, which suggests we can use high-order neighbors
to obtain better performance without increasing the depth
of the graph neural networks. In this way, we prevent the
over-smoothing problem for deep GNN models by reducing
the depth of model while incorporating information from
high-order neighbors.
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Table 2. Summary of classification accuracy (%) results with vari-
ous depths.

Dataset Method Layers
2 4 8 16 32 64

Cora

GCN 81.1 80.4 69.5 64.9 60.3 28.7
GCN(Drop) 82.8 82.0 75.8 75.7 62.5 49.5
JKNet - 80.2 80.7 80.2 81.1 71.5
JKNet(Drop) - 83.3 82.6 83.0 82.5 83.2
Incep - 77.6 76.5 81.7 81.7 80.0
Incep(Drop) - 82.9 82.5 83.1 83.1 83.5
GCNII 82.2 82.6 84.2 84.6 85.4 85.5
GCNII* 80.2 82.3 82.8 83.5 84.9 85.3
Ours (GCNII) 84.0 84.0 85.2 85.3 85.1 83.9

Citeseer

GCN 70.8 67.6 30.2 18.3 25.0 20.0
GCN(Drop) 72.3 70.6 61.4 57.2 41.6 34.4
JKNet - 68.7 67.7 69.8 68.2 63.4
JKNet(Drop) - 72.6 71.8 72.6 70.8 72.2
Incep - 69.3 68.4 70.2 68.0 67.5
Incep(Drop) - 72.7 71.4 72.5 72.6 71.0
GCNII 68.2 68.9 70.6 72.9 73.4 73.4
GCNII* 66.1 67.9 70.6 72.0 73.2 73.1
Ours (GCNII) 70.7 70.4 71.5 73.9 73.7 73.4

Pubmed

GCN 79.0 76.5 61.2 40.9 22.4 35.3
GCN(Drop) 79.6 79.4 78.1 78.5 77.0 61.5
JKNet - 78.0 78.1 72.6 72.4 74.5
JKNet(Drop) - 78.7 78.7 79.1 79.2 78.9
Incep - 77.7 77.9 74.9 OOM OOM
Incep(Drop) - 79.5 78.6 79.0 OOM OOM
GCNII 78.2 78.8 79.3 80.2 79.8 79.7
GCNII* 77.7 78.2 78.8 80.3 79.8 80.1
Ours (GCNII) 78.0 77.8 78.9 80.0 OOM OOM

4.2. Model Depth Analysis for GCN

In order to prove that our method can achieve good perfor-
mance without increasing the number of layers, we have
done some experiments on GCNII in terms of model depth.
Table 2 reports the results for various models with different
depth and we reuse the results from DropEdge and GC-
NII (Chen et al., 2020). We can observe that when our
method is combined with shallow-depth GCNII, it can get
better results on cora and citeseer. Specifically, our method
gets 85.2% accuracy on cora with only 8 layers, and GC-
NII needs 32 layers to get above 85% accuracy. Besides,
our model achieves 73.9% accuracy on citeseer with 16
layers, which is better than all results of GCNII. Although
our model does not perform well on pubmed, we can still
achieve similar performance to GCNII at 16 layers. These
results demonstrate that our method can indeed achieve very
good performance in the case of a low number of layers,
which can reduce the complexity of the model. In addi-
tion, our method can effectively reduce the number of layers
of the deep model, which suggests we need to design a
better graph convolutional layer to effectively aggregate in-
formation from high-order neighbors and we just provide a
strategy.

Table 3. Node classification performance (Accuracy) under non-
targeted attack (meta-attack).

Dataset Ptb Rate (%) 15 20 25

Cora

GCN 65.10 59.56 47.53
GAT 69.78 59.94 54.78

RobustGCN 66.82 59.27 50.51
GCN-Jaccard 71.03 65.71 60.82
GCN-SVD 66.69 58.94 52.06
Pro-GNN-fs 76.01 68.78 56.54

Pro-GNN 76.40 73.32 69.72
Ours 76.55 75.26 72.37

Citeseer

GCN 64.52 62.03 56.94
GAT 69.02 61.04 61.85

RobustGCN 65.69 62.49 55.35
GCN-Jaccard 65.95 59.30 59.89
GCN-SVD 63.26 58.55 57.18
Pro-GNN-fs 70.82 66.19 66.40

Pro-GNN 72.03 70.02 68.95
Ours 73.69 68.22 69.57

Pubmed

GCN 78.66 77.35 75.50
GAT 71.13 68.21 65.41

RobustGCN 73.91 71.18 67.95
GCN-Jaccard 84.76 83.88 83.66
GCN-SVD 83.10 83.01 82.72
Pro-GNN-fs 87.20 87.09 86.71

Pro-GNN 87.20 87.15 86.76
Ours 85.85 85.83 85.57

4.3. Defense Performance

In this section, we evaluate the defense performance of our
selection algorithm in Section 3.2. Note that we exploit the
homophily property of graphs to defend against the attack
on graph structures.

Settings, Baselines, and Results. The performance of our
method is compared with other baseline methods against
Meta-attack (Zügner & Günnemann, 2019a). Meta-attack
utilizes meta-learning to learn the best poisoning strategy.
For the settings of our method, we set hidden units to 32
and keep other hyper-parameters unchanged compared with
GCN. The defense performance is compared with many
state-of-the-art defense mechanisms: RobustGCN (Zügner
& Günnemann, 2019b), GCN-Jaccard (Wu et al., 2019),
GCN-SVD (Entezari et al., 2020), and Pro-GNN series (Jin
et al., 2020). Table 3 reports the results of our method
and other baselines, and we use the metric reported in (Jin
et al., 2020). We observe that our method outperforms
other defense mechanisms on Cora and Citeseer in most
cases, and achieves relatively close performance with the
best defense mechanism on Pubmed.
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5. Conclusion
We present a pre-processing method for selecting high-order
neighbors for GCNs. By assigning weights to high-order
neighbors with our proposed loss function, we can control
information flow to informative high-order neighbors. Our
approach can effectively boost the performance of shallow-
depth GCNII, thus reducing the amount of computation in
GCNII. Moreover, our selection algorithm can also defend
against graph structure attacks.
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