The Pennsylvania State University
The Graduate School

College of Information Sciences and Technology

OPAQUE PREDICATE: ATTACK AND DEFENSE IN

OBFUSCATED BINARY CODE

A Dissertation in
Information Sciences and Technology
by
Dongpeng Xu

© 2018 Dongpeng Xu

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Doctor of Philosophy

August 2018

The dissertation of Dongpeng Xu was reviewed and approved® by the following:

Dinghao Wu
Associate Professor of Information Sciences and Technology

Dissertation Advisor, Chair of Committee

Peng Liu
Professor of Information Sciences and Technology

Committee member

Sencun Zhu
Associate Professor of Computer Science and Technology

Committee member

Trent Jaeger
Professor of Computer Science and Technology

Outside member

Andrea Tapia
Associate Professor of Information Sciences and Technology

Director of Graduate Programs

*Signatures are on file in the Graduate School.

ii

Abstract

An opaque predicate is a predicate whose value is known to the obfuscator but is
difficult to deduce. It can be seamlessly applied together with other obfuscation
methods such as junk code to turn reverse engineering attempts into arduous work.
Opaque predicates have been widely used in various areas of software security such as
software protection, software watermarking, obfuscation, and metamorphic malware.
The arms race between the construction and detection of opaque predicates is an
interesting topic in computer security area.

This thesis introduces new attack and defense techniques about opaque predi-
cates in binary code. First, a logic oriented opaque predicate detection tool called
LOOQOP is proposed. By conducting symbolic execution along a trace, LOOP con-
structs general logical formulas to represent the intrinsic characteristics of opaque
predicates. The formulas are then solved by a constraint solver and the result an-
swers whether the predicate under examination is opaque or not. Besides, LOOP is
obfuscation resilient and able to detect previously unknown opaque predicates. Our
experimental result demonstrates LOOP is effective and efficient. By integrating
LOOP with code normalization for matching metamorphic malware variants, we
show that LOOP is an appealing complement to existing malware defenses.

Second, a new control flow obfuscation scheme called generalized dynamic opaque
predicate is proposed. We extend the conventional concept of dynamic opaque
predicate to common program structures (e.g., straight-line code, branch, and loop).
Besides, our new design does not require dynamic opaque predicates to be strictly
adjacent, which is more resilient to deobfuscation techniques. The evaluation
result shows generalized dynamic opaque predicates overcome the limitations in
conventional opaque predicates.

Third, we propose a novel technique called bit-precise symbolic loop mapping
to identify cryptographic functions in obfuscated binary code. Advanced opaque
predicates adopt cryptographic functions to challenge existing opaque predicate
detection methods. Our trace-based approach captures the semantics of possible
cryptographic algorithms with bit-precise symbolic execution in a loop. Then we

il

perform guided fuzzing to efficiently match boolean formulas with known reference
implementations. We have developed a prototype called CryptoHunt and evaluated
it with a set of obfuscated synthetic examples, well-known cryptographic libraries,
and malware. Compared with the existing tools, CryptoHunt is a general approach
to detecting commonly used cryptographic functions such as TEA, AES, RC4,
MD5, and RSA under different control and data obfuscation scheme combinations.
Our research deepens and expands the knowledge of attack and defense tech-
niques about opaque predicates. We are the first to give a systematic categorization
of opaque predicates and a method for the detection of dynamic opaque predicates.
Our research about the extension of dynamic opaque predicates greatly widens its
application. The cryptographic algorithm detection can be applied to various fields,
such as ransomware detection, malware analysis, and software reverse engineering.

v

Table of Contents

List of Figures
List of Tables

Acknowledgments

ix

xXi

xii

Chapter 1
Introduction
1.1 Opaque Predicate
1.2 Arms Race.
1.2.1 Attack
1.2.2 Defense
1.3 Thesis Organization

Chapter 2
Overview
2.1 Logic-Oriented Opaque Predicate Detection
2.2 Generalized Dynamic Opaque Predicate
2.3 Crypto Function Detection in Obfuscated Binary Code
2.4 Contributions

Chapter 3

Background and Literature Review

3.1 Code Obfuscation

3.2 Opaque Predicate Categories
3.2.1 Invariant Opaque Predicates
3.2.2 Contextual Opaque Predicates
3.2.3 Dynamic Opaque Predicates

3.3 Opaque Predicate Enhanced by Cryptography

3.4 Opaque Predicate Detection

3.5 Infeasible Path Identification

3.6 Cryptographic Function Detection

3.6.1 Static Method

3.6.2 Dynamic Method

3.7 Symbolic Execution L oo

3.8 Concolic Testing

3.9 Binary Difference Analysis
Chapter 4

Logic-Oriented Opaque Predicate Detection in Binary Code

4.1 Introduction

4.2 Overview
4.2.1 Method
422 Example

4.3 Approach
4.3.1 Online Logging
4.3.2 Slicing and Symbolic Execution
4.3.3 Invariant Opaque Predicates
4.3.4 Contextual Opaque Predicates
4.3.5 Dynamic Opaque Predicates
4.3.6 Solving Opaque Predicate Formulas
4.3.7 Whole Program Deobfuscation.

4.4 Implementation

4.5 Evaluation
4.5.1 Evaluation with Common Utilities.
4.5.2 Evaluation with Obfuscated Malware
4.5.3 Metamorphic Malware Matching

4.6 Discussions and Future Work
4.6.1 Dynamic Approach
4.6.2 Floating Point oo
4.6.3 Two-way Opaque Predicates

Chapter 5

Generalized Dynamic Opaque Predicates

5.1 Introduction

5.2 Method
5.2.1 Correlated Predicates
5.2.2 Straight-line Code
5.2.3 Branches.
0.24 Loops

vi

5.3 Implementation 0oL 49
54 Evaluation 50
5.4.1 Obfuscation Metrics with Coreutils 50
54.2 Resilience 52
54.3 Cost 53
544 Case Study 54
Chapter 6
Cryptographic Function Detection in Obfuscated Binaries 56
6.1 Introduction 56
6.2 Overview 58
6.3 Reference Formula Generation 59
6.4 Execution Trace Recording 60
6.5 Loop Body Identification 61
6.6 Bit-precise Symbolic Execution in Loop 64
6.7 Guided Symbolic Variable Mapping 66
6.7.1 Motivation Lo 67
6.7.2 Definitions oL 68
6.7.3 Algorithm Description 71
6.74 Exampleo 72
6.7.5 Algorithm Analysis 75
6.8 Verification 76
6.9 Implementation 76
6.10 Evaluation 7
6.10.1 Answer to RQ1: Crypto Libraries 7
6.10.1.1 Dataset, 77
6.10.1.2 Peer Tools 79
6.10.1.3 Obfuscation Options 79
6.10.1.4 Evaluation Result 80
6.10.1.4.1 TEA 80
6.10.1.4.2 AES 82
6.10.1.43 RC4 82
6.10.1.4.4 MD5 82
6.10.1.4.5 RSA 83
6.10.2 Answer to RQ1: Individual Implementations 83
6.10.3 Answer to RQ1: Malware Samples 85
6.10.4 Answer to RQ2: Normal Programs 86
6.10.5 Answer to RQ3: Overall Performance 87
6.10.6 Answer to RQ3: Mapping Algorithm 88

vii

Chapter 7

Discussion and Future Work

7.1 Complex Path Conditions

7.2 Inductive Constraints
7.3 Unsolved Conjectures

7.4 Cryptographic Function Detection

Chapter 8
Conclusion

Appendix
Publication List

Bibliography

viil

90
90
91
91
92

94

96

98

List of Figures

3.1
3.2

3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6

6.1

6.2
6.3
6.4
6.5

Examples of two invariant opaque predicates for all integers x. . . .
Example of a contextual opaque predicate for all integers satisfying
T >3
Example of a dynamic opaque predicate.
Since F' has the same input-output mapping with TEA algorithm,
we can recognize F' as TEA with an overwhelming probability. . . .

Opaque predicate detector.
A motivating example.o Lo
An execution trace given x=4.
The architecture of LOOP.
Trace segment comparison (A and B represent different inputs). . .
Example of an opaque predicate in malware.
Example of two-way opaque predicates.

Dynamic opaque predicate insertion in straight-line code.
Dynamic opaque predicate insertion in a branch program..
Dynamic opaque predicate insertion in a loop.
An example of loop invariants.
The architecture of dynamic opaque predicate obfuscator.
Comparison between CFGs after different rounds of dynamic opaque

predicate obfuscation. oL

An overview of CryptoHunt’s workflow. The words in italics rep-

resents CryptoHunt’s key components, and “Bit-SE” stands for

bit-precise symbolic execution.
A reference implementation of TEA.
Loop identification in an execution trace.
Nested loops identification.
An example of data obfuscation.

iX

6.6 Variable mapping.o 68

6.7 Mapping examples. 71
6.8 Final result of variable mapping. 74
6.9 A reference implementation of XTEA’s decryption. 84
6.10 The decryption function in an Apache Module injection malware. . 84
7.1 Example of 3x+1 conjecture. 91

List of Tables

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3

5.4
5.9

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Common mathematical formulas and their STP solving time.
Contextual opaque predicates used in common utilities evaluation. .
Evaluation results on Linux common utilities.
Various obfuscation methods applied by malicious program.

Speed up metamorphic malware variants matching

Examples of correlates predicates.

Obfuscation metrics and BinDiff scores of hot functions in Coreutils.

The result of LOOP detection. Det. refers to the number of detected

Cost evaluation of the dynamic opaque predicate obfuscation.
Obfuscation metrics of sort_files. R1 and R2 refer to the first
and the second round of obfuscation.

Cryptographic algorithm categories.
Evaluation result on crypto libraries.
Evaluation result on an XTEA variant from malware.
Evaluation result on malware samples.
False positive evaluation dataset.
CryptoHunt’s offline analysis performance on OpenSSL.
Evaluation of the Mapping Algorithm. The second column shows
the number of loops. The third column shows the number of map-
ping variable candidates. “NM” stands for “No mapping”, which
means the number of STP queries without the mapping algorithm.
Similarly, the column “M” shows the number of STP queries with
the mapping algorithm.

xi

30
32
32
34
35

41
o1

52
o4

38

Acknowledgments

Firstly, I would like to express my special appreciation and thanks to my advisor
Prof. Dinghao Wu for the continuous support of my Ph.D. study and related research,
for his patience, motivation, and immense knowledge. His guidance helped me in
all the time of my research, communication, and career development. I appreciate
all his contributions of time, ideas, and funding to make my Ph.D. experience
productive and stimulating. I could not have imagined having a better advisor and
mentor for my Ph.D. study.

I would also like to thank the rest of my thesis committee: Prof. Peng Liu,
Prof. Sencun Zhu, and Prof. Trent Jaeger, for their insightful comments and
suggestions, but also for the questions which encourage me to improve and widen
my research from different perspectives.

I thank my fellow labmates for the stimulating discussions, for every project
we were working on day and night, and for all the fun and difficulties we have
had in the last five years. In particular, I am grateful to my friend and colleague,
Dr. Jiang Ming, for providing invaluable help on both my research and life.

Last but not the least, I would like to thank my family, for always supporting
and encouraging me spiritually in my life. The last word of acknowledgment I have
saved for my dear wife Shan Jing, who is always my support in the moments when
there was no one to answer my queries.

This research was supported in part by the National Science Foundation (NSF)
under grants CNS-1223710, CCF-1320605, and CNS-1652790, and the Office of
Naval Research (ONR) under grants N00014-13-1-0175, N00014-16-1-2912, N00014-
16-1-2265, and N00014-17-1-2894.

xii

Chapter 1
Introduction

Nowadays as large numbers of computers and smart phones are connected to
the Internet, software has become a target of attackers, copyright pirates, and
malware developers. As a result, software users and developers pay more and more
attention on software protection. One of the most important techniques in software
protection is software obfuscation. Generally speaking, software obfuscation is the
act of creating source or machine code that is difficult for human to understand.
After the concept was first introduced by the research from Collberg et al. [1-3],
varieties of software obfuscation methods have been proposed [4-8]. While the
technique is originally proposed to protect benign programs, it has been broadly
used by malware developers to help malware evade from detection [9-12]. Detection
of these obfuscated malware becomes a challenging problem in modern malware

analysis.

1.1 Opaque Predicate

Among software obfuscation techniques, opaque predicate is a simple and effective
method. In computer science, predicates are conditional expressions that evaluate
to true or false. An opaque predicate means its value are known to the obfuscator at
obfuscation time, but it is difficult for an attacker to figure it out afterwards. Used
together with junk code, the effect of opaque predicates results in a heavily cluttered
control flow graph with redundant infeasible paths. Therefore, any further analysis
based on the control flow graph will turn into arduous work. Compared with other
control flow graph obfuscation methods such as control flow flattening [13] and call

stack tampering [14], opaque predicates are more stealthy because it is difficult to

differentiate opaque predicates from original path conditions in binary code [15,16].
Also, another benefit of opaque predicates is they have little impact on the runtime
performance and code size. First proposed by Collberg et al. [1], opaque predicates
have been applied widely in various ways, such as software diversification [17,18],
metamorphic malware mutation [19,20], software watermarking [21,22], and Android
Apps obfuscation [23]. Due to the low-cost and stealthy properties, most real-world
obfuscation toolkits have supported inserting opaque predicates into a program,
through link-time program rewriting or binary rewriting [24-26].

Real-world obfuscation tools have already supported embedding opaque predi-
cates into programs at link time or binary level [24-26]. As a result, control flow
graph is heavily cluttered with infeasible paths and software complexity increases
as well [27]. Unlike other control flow graph obfuscation schemes such as call stack
tampering or control flow flattening [13], opaque predicates are more covert as it is
hard to distinguish opaque predicates from normal conditions. Furthermore, opaque
predicates can be seamlessly woven together with other obfuscation methods, such
as opaque constants [5] and metamorphic mutations [28] to further subvert reverse
engineering efforts. One example can be found in a recent notorious “0 day” exploit
(CVE-2012-4681), in which opaque predicates are used together with encrypted
code [29]. Therefore, it has become more difficult to locate the exploit code of

interest due to the use of opaque predicates.

1.2 Arms Race

In computer security, arms race happens commonly between two counter techniques,
such as opaque predicate construction and detection in this thesis. In terms of
attack and defense, we use the term “attack” to refer to the work to construct
more effective opaque predicates, because opaque predicates are widely adopted by
malware developers to hide their malware. In contrast, we use “defense” to refer to
those work to detect opaque predicates inside software. Those detection methods

help security analysts defend against obfuscated malware.

1.2.1 Attack

From the attacker’s perspective, researchers propose varieties of methods for con-
structing opaque predicates with low runtime cost and resilience to deobfuscation.
Existing opaque predicates can be classified into three categories.

The first category is called invariant opaque predicates. These predicates are
always evaluated to the same value for all possible inputs. Invariant predicates
are mainly constructed from well-known algebraic theorems [21,22]. For example,
predicate (z —x = 0 (mod 3)) is opaquely true for all integers x. Since it is easy
to construct invariant opaque predicates they are commonly used. The second
category, contextual opaque predicates, is built on some program invariant under a
specific context. That means only the obfuscator knows such a predicate is true
(false) at a particular point, but could be false (true) if the context is not satisfied.
The third category, dynamic opaque predicates, is the most advanced one. In this
category, a set of correlated and adjacent predicates evaluate to the same value
in any given run, but the value might be different in another run. In any case,
the program produces the same output. To make matters worse, dynamic opaque
predicates can be carefully crafted by utilizing the static intractability property of
pointer aliasing [1]. In addition, cryptography has been adopted to enhance opaque
predicate [30].

1.2.2 Defense

On the other hand, as the defense technique, opaque predicate detection has
attracted many security researchers’ attention. A number of methods have been
proposed to identify opaque predicates [1,31-34]. Collberg et al. [1] propose a
heuristics based method, which is able to detect a specific type of already known
opaque predicates. Preda et al. [32] use abstract interpretation to defend specific
opaque predicates, such as Vo € Z : n|f(z). Madou [31] and Udupa et al. [34]
did research on opaque predicate detection based on the fact that the value of
opaque predicate doesn’t change during multiple executions. The invariant property
of those “static” opaque predicates leads to the fact that they are likely to be
detected by program analysis tools. However, all existing detection approaches only
focus on invariant opaque predicates. There has been little work on systematically

modeling and solving contextual or dynamic opaque predicates. Detection of

opaque predicates that are enhanced by cryptography is also a challenge for security

analysts.

1.3 Thesis Organization

In this thesis, we mainly present three research work on the attack and defense
techniques about opaque predicate obfuscation. The first one is a defense technique,
which detects opaque predicate based on logic formulas. The second one is an
attack method called generalized dynamic opaque predicate. The third work is
a defense technique, which can detect cryptographic functions inside obfuscated
binary code.

The rest of the thesis is organized as follows. Chapter 2 shows a high level
picture of the three methods. Chapter 3 provides the background knowledge and
related work about opaque predicate and cryptographic function detection. Chapter
4 presents the detailed design and evaluation of the logic based opaque predicate
detection. Chapter 5 shows the design of generalized opaque predicate in depth and
the experiment result. Chapter 6 presents the defense work to detect cryptographic
function inside obfuscated binary code. We discuss the limitations and future work

in Chapter 7 and conclude the thesis in Chapter 8.

Chapter 2
Overview

This chapter provides a quick tour of the three research work in this thesis. In
terms of attack and defense, the first and the third work are defense methods,
which help detect opaque predicates. The second work is an attack method, which

constructs advanced opaque predicates.

2.1 Logic-Oriented Opaque Predicate Detection

The first research work, LOOP, is a new logic-based, general method to detect
opaque predicate in binary code. This work fills in the blank of detecting contextual
and dynamic opaque predicate.

In general, we first perform symbolic execution on an execution trace to build
path condition formulas, on which we detect invariant opaque predicates (the first
category) by verifying tautologies with a constraint solver. In the next step, we
identify an implication relationship to detect possible contextual opaque predicates
(the second category). Finally, with input generation and semantics-based binary
diffing techniques, we further identify correlated predicates to detect dynamic
opaque predicates. Our method is based on formal logic that captures the intrinsic
semantics of opaque predicates. Hence, LOOP can detect previously unknown
opaque predicates. A benefit of LOOP’s trace oriented detection is that it is resilient
to most of the known attacks that impede static analysis, ranging from indirect
jump, pointer alias analysis [35], opaque constants [5], to function obfuscation [36].
Our results can be fed back to security analysts to further de-obfuscate the cluttered

control flow graph incurred by opaque predicates.

We have implemented LOOP to automate opaque predicate detection on top of
the BAP platform [37] and conducted the evaluation with a set of common utilities
and obfuscated malicious programs. The experimental results show that LOOP
is effective and general in detecting opaque predicates with zero false negatives.
Several optimizations such as taint propagation and “short cut” strategy offer
enhanced performance gains. To confirm the merit of our approach, we also test
LOOP in the task of code normalization for metamorphic malware [19,20]. This kind
of malware often uses opaque predicates to mutate the code during propagations
to evade signature-based malware detection. The result indicates that LOOP can

greatly speed up control flow graph matching by a factor of up to 2.0.

2.2 Generalized Dynamic Opaque Predicate

In the second research work, we present a systematic design of a new control flow
obfuscation method, Generalized Dynamic Opaque Predicates, which is able to
inject diversified dynamic opaque predicates into complicated program structures
such as branches and loops. Being compared with the previous technique which can
only insert dynamic opaque predicates into straight-line program, our new method
is more resilient to program analysis tools. We have implemented a prototype tool
based on the LLVM compiler infrastructure [38]. The tool first performs fine-grained
data flow analysis to search possible insertion locations. After that it automatically
transforms common program structures to construct dynamic opaque predicates. We
have tested and evaluated the tool by obfuscating several hot functions of GNU core
utilities with different obfuscation levels. The experimental results show that our
method is effective and general in control flow obfuscation. Besides, we demonstrate
that our obfuscation can defeat the commercial binary difference analysis tools and
the state-of-the-art formal program semantics-based deobfuscation methods. The
performance data indicate that our proposed obfuscation only introduces negligible

overhead.

2.3 Crypto Function Detection in Obfuscated Binary
Code

In order to defend against the opaque predicate enhanced by cryptography, we
propose a new method, CryptoHunt, to detect cryptographic functions inside
obfuscated binary code. Our key idea is to capture the fine-grained semantics
of the principal cryptographic transformation iterations along an execution trace.
The execution trace is further split into segments according to an enhanced loop
abstraction. We then perform bit-precise symbolic execution inside a loop body,
and the generated boolean formulas are later used as signatures to efficiently match
cryptographic algorithms in obfuscated binaries. Our core technique, bit-precise
symbolic loop mapping, is effective to revert various data and control obfuscation
effects, and also with a much broader detection scope.

We have evaluated CryptoHunt on a set of synthetic examples collected from
GitHub, well-known cryptographic libraries, and malware. We compared Crypto-
Hunt with other six representative tools, and the experiment results are encouraging.
In all cases, only CryptoHunt is able to detect commonly used cryptographic func-
tions (e.g., TEA, AES, RC4, MD5, and RSA) under different control and data

obfuscation scheme combinations.

2.4 Contributions
In summary, we make the following contributions in this thesis.

1. We study the common limitations of existing work in detecting opaque
predicates and propose LOOP, an effective and general approach that identifies
opaque predicates in obfuscated binary code. LOOP is based on strong
principles of program semantics and logic, and can detect known and unknown,
simple invariant, intermediate contextual, and advanced dynamic opaque

predicates.

2. LOOP is developed based on symbolic execution and theorem proving tech-
niques. Our evaluation shows that LOOP automatically diagnoses opaque

predicates in an execution trace with zero false negatives.

. LOOP is the first solution towards solving both contextual and dynamic

opaque predicates.

. We propose an effective and generalized opaque predicate obfuscation method.
Our method outperforms existing work by automatically inserting opaque
predicates into more general program structures like branches and loops,

whereas previous work can only work on straight-line code.

. We demonstrate generalized dynamic opaque predicate is very resilient to the

state-of-art opaque predicate detection tool.

. We propose a new method called CryptoHunt to detect cryptographic func-
tions in obfuscated binaries. Our key solution is to match the principal
cryptographic transformation iterations with bit-precise symbolic loop map-
ping. CryptoHunt exhibits stronger resilience to code obfuscation techniques

and a wider detection range than previous methods.

. We design a guided fuzzing method to solve the scalability issue of bit-wise
symbolic formula equivalence checking. Our approach greatly reduces the
number of possible matches, and can be applied to speed up other semantics-

based binary difference analysis methods.

. We have implemented prototype systems for each of the three work and the

source code is publicly available.

Chapter 3
Background and Literature Re-
view

3.1 Code Obfuscation

Code obfuscation techniques, which are first designed to protect software intellectual
property [1], deliberately transform code to make it more difficult to understand.
Nowadays malware authors also heavily rely on code obfuscation to evade detec-
tion [39]. For example, one frequently used obfuscation technique in malware is
binary packing [14], which first compresses or encrypts an executable binary into
data and then recover the original code when the packed program starts running.
In general, obfuscation techniques can be classified as two pervasive methods:
control obfuscation and data obfuscation. Control obfuscation, such as control flow
flattening [40] and opaque predicate [2], greatly changes control flow information to
impede reverse engineering. Data obfuscation is intended to conceal data value and
usage. For example, data encoding schemes [41,42] convert a variable representation
to an obscure one, while data aggregation [43] changes how a variable or array is
aggregated. Recovering high-level data abstractions and types from binary code is

already pretty hard [44,45], and data obfuscation will make it more challenging.

__ ==

‘ I
false true false

o '

(a) always true (b) always false

Figure 3.1: Examples of two invariant opaque predicates for all integers x.

true false

Figure 3.2: Example of a contextual opaque predicate for all integers satisfying
T > 3.

3.2 Opaque Predicate Categories

3.2.1 Invariant Opaque Predicates

An opaque predicate is invariant when its value always evaluates to true or false for
all possible inputs, but only the obfuscator knows the value in advance. Figure 3.1
shows two cases of invariant opaque predicates: always true and always false. The
dashed line indicates that the path will never be executed. Due to the simplicity,
this kind of opaque predicates have a large set of candidates. Most of them are
derived from well-known algebraic theorems [22] or quadratic residues [21]. However,
the invariant property also becomes the drawback of this category. For example,
we can identify possible invariant opaque predicates by observing the branches that

never change at run time with fuzzing testing [31].

10

.
true@false
) !

|1; |2.
1)

l4;
lp; | —»

I3;

'
trie<q>fafe

l2;
|3;

I3;

Figure 3.3: Example of a dynamic opaque predicate.

3.2.2 Contextual Opaque Predicates

To avoid an opaque predicate always produces the same value for all inputs,
Drape [46] proposes a more covert opaque predicate that is always true (false)
under a specific precondition, but could be false (true) when precondition does not
hold. We call this kind as contextual opaque predicates, which can be carefully
constructed based on program invariants under a particular context. Figure 3.2
shows an example of contextual opaque predicate, in which 2% — 42 + 3 > 0 is
always true if the precondition x > 3 holds. Note that the constant value in the

precondition can be further obfuscated [5] to hide the context relationship.

3.2.3 Dynamic Opaque Predicates

Palsberg et al. [47] introduce the idea of dynamic opaque predicates, which are
a family of correlated and adjacent predicates that all present the same value in
any given run, but the value may vary in another run. That means the values of
such opaque predicates switch dynamically. Combined with code clone, dynamic
opaque predicates can always produce the same output. The term “correlated” is
used to describe that dynamic opaque predicates contain a set of mutually related
predicates, and “adjacent” means these opaque predicates execute one after another
strictly. Figure 3.3 illustrates an example of dynamic opaque predicates. Two

correlated predicates, p and ¢, meet the requirement of evaluating to true (false)

11

in any given run. The original three instructions {I; I5; I3; } execute one after
another. After transformation, each run either follows the path p A ¢ (blue path)
or =p A —q (red path). In any case, the same instructions will be executed. Look
carefully at Figure 3.3, we can find another common feature. Since predicate ¢
divides both blue path and red path into different segments (i.e., {I1; } vs. {I1; Is; }
and {Io; I3; } vs. {I3}), p and ¢ must be strictly adjacent; or else the transformation
is not semantics-persevering. The correlated predicates can be crafted by utilizing
pointer aliasing, which is well known for its static intractability property [1].
Existing efforts in identifying opaque predicates mainly focus on invariant
opaque predicates and they are unable to detect more covert opaque predicates such
as contextual and dynamic opaque predicates. A general and accurate approach to

opaque predicate detection is still missing. Our research aims to fill in this gap.

3.3 Opaque Predicate Enhanced by Cryptography

Zobernig et al. [30] adopt cryptographic functions to enhance existing opaque
predicate. They borrow the idea from using cryptographic hash function to protect
password check program. Similarly, they use hash functions to hide the opaque
predicate, which is a constant comparison function as follows. Equation 3.1 shows
a normal opaque predicate, in which P(z) always equals to the constant C'. The
opaque predicate can be enhanced by a cryptographic hash function H() as shown
in Equation 3.2. The same hash function H() is applied to P(x) and C, so the
result must still be equivalent. The computational complexity of the hash function

H() guarantees that no automated theorem prover is able to solve the equation.
P(z)=C (3.1)

H(P(x)) = H(C) (3.2)

Cryptographic opaque predicate challenges all opaque predicate detection meth-
ods based on theorem prover and auto testing techniques. In this thesis, we propose
a new technique to detect cryptographic functions inside obfuscated binary code.

This method helps identify cryptographic opaque predicate inside binary code.

12

3.4 Opaque Predicate Detection

The concept of opaque predicates is first proposed by Collberg et al. [1] to prevent
malicious reverse engineering attempts. Collberg et al. [1] also provide some
ad-hoc detection methods. One of them is called “statistical analysis”; that is,
a predicate that always produces the same result over a larger number of test
cases has a great chance to be an opaque predicate. Due to the limited set of
inputs, statistical analysis could lead to high false positive rates. Preda et al. [32]
propose to detect opaque predicates by abstract interpretation. However, their
approach only detects a specific type of known invariant opaque predicates such as
Vo € Zn|f(x). Madou [31] first identifies candidate branches that never change at
run time, and then verifies such predicates by fuzz testing with a considerably high
error rate. Udupa et al. [34] utilize static path feasibility analysis to determine
whether an execution path is feasible. However, their approach cannot work on a
highly obfuscated binary with, for example, complicated opaque predicates based
on pointer aliasing, which is known to be statically intractable. OptiCode [33] has
a similar idea in using theorem prover to decide if a desired branch is always true or
false, but it can only deal with invariant opaque predicates. Our work is different
from the previous work in that LOOP is both general and accurate. We are able to
detect previously unknown opaque predicates in obfuscated binary, including more

sophisticated ones such as contextual and dynamic opaque predicates.

3.5 Infeasible Path ldentification

The effect of opaque predicates is to obfuscate control flow graph with infeasible
paths. In software testing, eliminating infeasible paths saves efforts to generate
redundant test cases. Previous work identifies infeasible paths in source code,
either by branch correlation analysis [48], pattern matching [49], or monitoring the
search for test data [50]. However, these work cannot be directly used to detect
opaque predicates in an adversary environment, in which the program source code
under examination is typically absent. Therefore, we believe LOOP has compelling

application in identifying infeasible paths in binary.

13

Input Input Key Plaintext

OxFF 0x12345678 OxFF 0x12345678
F TEA
Output Ciphertext |
0x6403900C 0x6403900C

Figure 3.4: Since F' has the same input-output mapping with TEA algorithm, we
can recognize F' as TEA with an overwhelming probability.

3.6 Cryptographic Function Detection

3.6.1 Static Method

Static crypto detection methods detect cryptographic functions in binaries prior to
execution. They perform static analysis to recognize code/data features. Lutz’s
work [51] recognizes cryptographic code via three heuristics, such as the presence
of loops, entropy, and a high ratio of bitwise operations. Wang et al. [52] utilize
a similar method to identify the message decryption phase so as to locate the
encrypted data. Matenaar et al. [53] apply multiple detection heuristics such as
entropy, constant value, and crypto API. Lestringant et al. [54] utilize data flow
graph as the signature to identify symmetric cryptographic algorithms. Static
detection has no runtime overhead and is sufficient for unobfuscated programs.
However, static visible signatures can be easily camouflaged by code obfuscation
techniques [5]. Calvet et al. [55] have demonstrated a very lightweight data
obfuscation scheme (splitting a const value into two smaller numbers) can fail static

detection.

3.6.2 Dynamic Method

Dynamic detection searches visible cryptographic algorithm features at run time.
Compared with the pre-execution tools, dynamic approaches are more accurate

since it follows the real execution path and knows the actual dynamic state.

14

Therefore, dynamic detection is widely applied to analyze obfuscated malware.
CipherXRay [56] detects cryptographic operations by observing data avalanche
effect, which refers to a property of cryptographic algorithms such that a slight
change in the input would cause significant changes in the output. However,
CipherXRay is still based on some intuitive observations, which cannot detect the
exact cryptographic algorithm used. Furthermore, stream ciphers neither show such
avalanche effect. Grobert et al. [57] first propose a reliable dynamic approach by
mapping cryptographic function input-output (I/O) relations. They first aggregate
contiguous memory accesses to form input and output parameters and then find
whether there is an ezactly the same 1/O mapping with a known cryptographic
function (see Figure 3.4). Aligot [55] extends this idea by automatically identifying
and extracting parameters at a loop boundary. It also performs an inter-loop
data flow analysis so as to better catch the parameter candidates. Then, Aligot
also checks whether there exist a perfect match between loop 1/O mapping and a
reference implementation.

Since all the methods that rely on identifying unique input-output relations [55,
57,58] treat a series of cryptographic operations as a “black box”, they can tolerate
code obfuscation and different implementations that happen within the “black box”.
Their detection effects ultimately depend on three key assumptions: 1) accurately
locate the boundary where they want to compare I/O mappings with golden
implementations (e.g., identify the scope of F' in Figure 3.4); 2) precisely recover
I/O parameters from memory (e.g., extract the input and output values); 3) F in
Figure 3.4 must have a perfect match. However, a skilled attacker can easily break
down these assumptions. For example, the smallest parameter size that current
approaches can extract is one byte. Any data obfuscation scheme that aggregates
a non one-byte multiples variable (e.g., a 15-bit length variable in Figure 6.5) can
complicate parameter extraction. Also, Base64 encoding is commonly found in
malware to disguise their malicious payloads [42], which can convert 1/O parameter
values to different ones and fail the I/O mapping eventually. And even worse,
malware authors have already customized non-standard cryptographic algorithm
implementations [59,60] so that F' in Figure 3.4 produces a different output. In
contrast, our approach inherits dynamic analysis advantages and take F' as a “gray
box” by representing 1/O mappings with bit-precise symbolic execution, which is

effective to beat both code obfuscation and non-standard implementations.

15

3.7 Symbolic Execution

Being first proposed by King [61], symbolic execution is an effective technique in the
program analysis field. Briefly speaking, symbolic execution replaces concrete values
in a program with symbolic values and simulates the execution of the program so
that all variables hold symbolic expressions. Symbolic execution has emerged as a
fundamental approach for reasoning software security problems [62-64]. EXE [65]
automatically detects bugs in C code. KLEE [66] is capable of automatically
generating test cases that achieve high path coverage. BAP platform [37], the
successor of BitBlaze [67], provides binary code symbolic execution and verification
functions. We also perform symbolic execution to model the semantics of a loop
body. However, our approach reveals a distinct design choice: CryptoHunt’s
symbolic execution contains only one atomic data type, boolean. CryptoHunt
substitutes each loop input variable as a set of bit-symbols and represents loop
input-output relations as multiple boolean formulas. Suppose we want to find
whether two 32-bit symbolic variables are equivalent, instead of matching two whole
32-bit vectors, we compare them bit-by-bit. In this way, we can find the fact that,
for example, the low 15-bit of these two variables are matched. Our solution ensures

that we can accurately capture data obfuscation effects.

3.8 Concolic Testing

Our logic-based approach is inspired by the active research in concolic testing [62,
65,66, 68|, a hybrid software verification method combining concrete execution with
symbolic execution. Similar to SAGE [62], LOOP first maps symbols to inputs
and then collects constraints of these symbolic inputs along a recorded execution
trace. The difference is our primary purpose is not for path exploration; instead we
construct formulas representing the characteristics of opaque predicates and solve
these formulas with a constraint solver. In addition to automatic input generation,
we have seen applications of concolic testing in discovery of deviations in binary [69],
software debugging with golden implementation [70], and alleviating under-tainting
problem [71]. Our approach adopts part of the concolic testing idea in software

deobfuscation and malware analysis.

16

3.9 Binary Difference Analysis

Another related field to our work is automatically finding semantic differences/simi-
larities in binaries [72-79], which has a wide application in practice, such as malware
lineage inference [72,78], software plagiarism detection [74,79] and cross-architecture
bug search [76,77]. CryptoHunt differs from this previous work in a number of
ways. First, CryptoHunt is specifically designed to detect cryptographic function
reusing in obfuscated binaries, and a cryptographic function typically occupies
a small fraction of binary code. Most of the previous work more or less relies
on static features, such as control flow graph [73,74,76,77,79] and identifying
function in stripped binaries [75], which make them not competent to our task.
Second, much previous work also compares binaries with symbolic execution and
constraint solving [72-74,78,79]. But they suffer from high performance penalty
due to excessive symbolic variable mapping. To relieve this performance bottleneck,
we propose a guided fuzzing approach to filter out large numbers of impossible

matches.

17

Chapter 4
Logic-Oriented Opaque Predi-
cate Detection in Binary Code

4.1 Introduction

In this chapter, we introduce a new logic-based, general approach to detecting
opaque predicates progressively in obfuscated binary code. We first perform
symbolic execution on an execution trace to build path condition formulas, on which
we detect invariant opaque predicates (the first category) by verifying tautologies
with a constraint solver. In the next step, we identify an implication relationship
to detect possible contextual opaque predicates (the second category). Finally,
with input generation and semantics-based binary diffing techniques, we further
identify correlated predicates to detect dynamic opaque predicates. Our method is
based on formal logic that captures the intrinsic semantics of opaque predicates.
Hence, LOOP can detect previously unknown opaque predicates. A benefit of
LOOP’s trace oriented detection is that it is resilient to most of the known attacks
that impede static analysis, ranging from indirect jump, pointer alias analysis [35],
opaque constants [5], to function obfuscation [36]. Our results can be fed back to
security analysts to further de-obfuscate the cluttered control flow graph incurred
by opaque predicates.

We have implemented LOOP to automate opaque predicates detection on top of
the BAP platform [37] and conducted the evaluation with a set of common utilities

and obfuscated malicious programs. The experimental results show that LOOP

The work of this chapter is published in the 22nd ACM Conference on Computer and
Communications Security [80].

18

is effective and general in detecting opaque predicates with zero false negatives.
Several optimizations such as taint propagation and “short cut” strategy offer
enhanced performance gains. To confirm the merit of our approach, we also test
LOOP in the task of code normalization for metamorphic malware [19,20]. This
kind of malware often uses opaque predicates to mutate the code during propagation
to evade signature-based malware detection. The result indicates that LOOP can
greatly speed up control flow graph matching by a factor of up to 2.0.

In summary, we make the following contributions.

o« We study the common limitations of existing work in detecting opaque
predicates and propose LOOP, an effective and general approach that identifies
opaque predicates in the obfuscated binary code. Our approach captures the
intrinsic semantics of opaque predicates with formal logic, so that LOOP can

detect previously unknown opaque predicates.

e Our method is based on strong principles of program semantics and logic, and
can detect known and unknown, simple invariant, intermediate contextual,

and advanced dynamic opaque predicates.

o LOOP is developed based on symbolic execution and theorem proving tech-
niques. Our evaluation shows that our approach automatically diagnoses

opaque predicates in an execution trace with zero false negatives.

e To the best of our knowledge, our approach is the first solution towards

solving both contextual and dynamic opaque predicates.

The rest of this chapter is organized as follows. Section 4.2 illustrates our core
method with a motivating example. Section 4.3 describes each step of our approach
in detail. Section 4.4 introduces our implementation. We evaluate our approach in

Section 4.5. Discussions and future work are presented in Section 4.6.

4.2 QOverview

4.2.1 Method

The core of our approach is an opaque predicate detector, whose overall detection

flow is shown in Figure 4.1. There are three rounds in our system to detect three

19

Reduced path Culprit Contextual opaque

Symbolic Tautology condition Implication | Pranches Input generation New trace | gemantics-based predicates
formulas check check putg binary diffing Dynamic opaque
T predicates
Invariant opaque .
predicates Original trace
N J
The first round The second round The third round

Figure 4.1: Opaque predicate detector.

kinds of opaque predicates progressively. Here we present an overview of our core
method.

Since embedding opaque predicates into a program is a semantics-preserving
transformation, deterministic programs before and after opaque predicate obfusca-
tion should produce the same output. Let us assume the program P is obfuscated
by opaque predicates and the resulting program is denoted as P,. The logic of an
execution of P, is expressed as a formula W, which is the conjunction of all branch

conditions executed, including the following opaque predicates.

Formula W represents the conditions that an input must satisfy to execute the
same path. Supposing constraint ¢; is derived from an opaque predicate, we call
; a culprit branch. The key to our approach is to locate all culprit branches in W.
Similar to dynamic symbolic execution [62] on binary code, we first characterize
the logic of an execution in terms of symbolic path conditions, by performing a
symbolic execution on the concrete execution trace.

Then our approach carries out three rounds of scanning. In the first round,
we diagnose whether 1); is derived from an invariant opaque predicate by proving
whether v; is always true; that is, it is a tautology. Note that the false branch
conditions have already been negated in the recorded trace. After that, we remove
identified culprit branches from ¥ and continue to detect possible contextual
opaque predicates in the second round. Our key insight is that a contextual opaque
predicate does not enforce any further constraint on its prior path condition. Based

on this observation, diagnosing whether a path constraint ¢; (1 < i < n) is a

20

2{

O©oO~NOO P~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28}

1 int opaque(int x)

int *p = &x;

int *q = &x;

inty =0;

if (x*x <0) /I invariant opaque predicate
X = x+1;

if (x> 3)

{ /I contextual opaque predicate
if (x*x-4x+3 > 0)
X = X<<1;

}

if (*p)%2 == 0) // dynamic opaque predicate
y =x+1;

else

{
y = x+1;
y =y+2;

}
if (("q)%2 == 0)
{

y =y+2;

X =y+3;
}
else

X =y+3;
return x;

contextual opaque predicate boils down to answering an implication query, namely

Note that dynamic opaque predicates satisfy such implication check as well. For
example, the combination of path condition for Figure 3.3 is either p A ¢ or =p A —q.

It is straightforward to infer the following implication relationship.

Assume we have detected p = ¢ in the second round of scanning. To further clarify

p and ¢ are correlated dynamic opaque predicates, we go one step further in the

Figure 4.2: A motivating example.

1/)1 VANPIRVAN wi—l = 1/11

(p=q) A (=p=—q)

21

int *p = &x;

int *q = &x;

inty =0;

if (x*x <0) /I invariant opaque predicate
if (x> 3)

{ /I contextual opaque predicate
10 if (x*x-4x+3 > 0)

1 X = x<<1;

12 }

13 if ((*p)%2 == 0) // dynamic opaque predicate
14 y=x+1;

20 if ((*q)%2 == 0)

21 {

22 y=y+2

23 x=y+3;

24 '}

27 return x;

28}

©O© oo~ Ww

Figure 4.3: An execution trace given x=4.

third round to verify whether —p = —¢ holds as well. To this end, we automatically
generate a new input that follows the path of =p A =¢q. If =p = —q is also true, we
continue to compare trace segments guided by both p A ¢ and —p A =q to make sure
two paths are semantically equivalent. Further details about the detection process

are discussed in Section 4.

4.2.2 Example

We create a motivating example (shown in Figure 4.2) to illustrate our core method.
Figure 4.2 contains three different kinds of opaque predicates. Note that the two
dynamic opaque predicates are constructed using pointer deference (line 13 ~
line 27). The predicates in line 13 and line 20 are correlated, since they evaluate
to the same value at any given run. In any case, the same instruction sequence
{ly=2+1, y=y+2; x =y+ 3;} will be executed. Consider an execution
of the code snippet given x = 4 as input. Figure 4.3 shows a source-level view
of such execution trace. We perform backward slicing and symbolic execution to
calculate path condition formula W. In our example, the predicates are represented

as follows.
Y1 xxx >=0

22

Yo >3

Yy xxx—4r+3>0
g (xp) %02 ==

s 1 (xq) %2 ==

U by Ahba N3 Naby AN i

We present the three rounds step by step.

1. At the first round, we verify whether a predicate satisfies invariant property;
i.e., it is a tautology. In our example, we prove that 1; (x * x >=0) is always
true and therefore conclude that v is an invariant opaque predicate. After
that, we remove v; from path condition ¥ to reduce the formula size and

pass the new path condition to the next round.

2. We start the second round to detect possible contextual opaque predicates
by performing implication check cumulatively from the first predicate. We
identify two cases that satisfy the implication check in our example: ¥y = 13
(11 has been removed), i.e., (x > 3) = (zxx—4x+3 > 0) and Y A3 Ay = 5,
e, (x>3)A(z*xx—4x+3>0)A((xp)%2 ==0) = ((*x¢q)%2 == 0). Note
that 95 in the second case is corresponding to the second culprit branch of

the dynamic opaque predicates.

3. In the third round, we trace back from the culprit branches identified in the
second step and further verify whether their prior predicates are correlated
or not. Recall that another property of dynamic opaque predicates is being
adjacent. In our example, we first negate each prior predicate as =)y and
o A 3 A by and automatically generate inputs to satisfy such new path
conditions. Here we generate two new inputs respectively, namely, z = 0 and
x = 5. With the new traces, we perform implication check for =y = —1)3
and ¥y A Y3 A =Py = —ps. It is evident that —ipy = —)3 fails under the
counterexample of x = 0. At last, we compare trace segments controlled by
4 A Y5 and —ihy A b5 to make sure they are semantically equivalent. As a
result, we conclude that 13 is a contextual opaque predicate and v, and 5

consist of dynamic opaque predicates.

23

Online Offline

Program ——| DBI Opaque predicate
BAP IL Slicing and symbolic detector Opaque

converter execution predicates

trace

I
I
Input—l—» Trace logging

Constraint solver

I
| Generic unpacking
I
I

Figure 4.4: The architecture of LOOP.

For the presentation purpose, all the examples in this section are shown as C code
and the predicates are presented as the “if” conditional statements. LOOP works
at the binary level, in which the conditional statements such as “if” and “switch”
are compiled as conditional jump instructions like je/jne/jg. LOOP identifies the

conditional jump instructions that are opaquely true or false.

4.3 Approach

In this section, we present each step of our approach in detail. Figure 4.4 illustrates
the architecture of LOOP, which includes two main parts: online trace logging and
offline analysis. The online part, as shown in the left side of Figure 4.4, is built on
top of a dynamic binary instrumentation (DBI) platform, enabling LOOP to work
with unmodified binary code. To analyze packed malware, our online part includes
two tools: generic unpacking and trace logging.

The logged trace is passed to the second part of LOOP for offline analysis (the
right component of Figure 4.4). We first lift x86 instructions to BAP IL [37], a
RISC-like intermediate language. Then starting from each predicate (branch), we
perform backward slicing to determine the instructions that contribute to the value
of the predicate. Then we perform symbolic execution along the slice to calculate
a symbolic expression for each predicate. Based on that, our opaque predicate
detector will construct formulas to represent the semantics of opaque predicates.
We then solve them with a constraint solver. As discussed in Section 4.2, the
detector conducts three rounds of scanning. The net result is a set of culprit

branches corresponding to the opaque predicates.

24

4.3.1 Online Logging

As shown in Figure 4.4, LOOP’s online part is built on a dynamic binary in-
strumentation framework. To undermine anti-malware detection, most malware
developers apply different packers to compress or encrypt malware binaries. As a
result, when a packed sample starts running, unpacking routines will first restore
the original payload (e.g., decompress or decrypt) and then jump to the original
entry point (OEP) to continue the execution. One of our implementation choices is
we only detect opaque predicates within malware real payload. To this end, when
a malware sample starts running, we first invoke our generic unpacking tool to
monitor memory write operations. If a memory region pointed by the eip register
is “written and then execute” [81], it indicates that we have identified the newly
generated code. Then we activate our trace logging tool to start trace recording.
In general, analyzing all the instructions could be a tedious job. To keep the
logged trace compact, LOOP supports on-demand logging to optionally record
instructions of interest. In addition, our logging tool can perform dynamic taint

tracking so that only the tainted instructions are collected.

4.3.2 Slicing and Symbolic Execution

Taking the logged trace as input, LOOP’s offline analysis first lifts x86 instructions
to BAP IL, which is a RISC-like intermediate language without side effect. In
addition, the property of static single assignment (SSA) format facilitates tracing
the use-def chain when we perform slicing. The symbolic execution is carried out
on BAP IL as well.

Given a predicate (or branch), LOOP first identifies all the instructions that
contribute to the calculation of this predicate. Note that x86 control transfer
instructions typically depend on certain bits of the eflags register (e.g., jz and
jnz). Therefore, the slicing criteria look like (eip, zf), where eip is the instruction
pointer and zf is the abbreviation of the zero flag bit. Starting from the slicing
criteria, we perform dynamic slicing [82] to backtrack a chain of instructions with
data and control dependencies. We terminate our backward slicing when the source
of the slice criteria satisfy one of the following conditions: constant values, static

strings, user defined value (e.g., function return value) or input. Besides, we also

25

observe a case that the conditional logic is implemented without eflags register:
jecxz jumps if register ecx is zero. LOOP handles this exception as well.

By labeling inputs or user defined values as symbols, we conduct symbolic
execution along the slice to compute a symbolic expression for each predicate. The
result will be passed to the opaque predicate detector, the core of LOOP’s offline
analysis. Figure 4.1 shows the components of our opaque predicate detector, which
consists of three rounds of scanning to detect invariant, contextual and dynamic
opaque predicates progressively. We will present each round of detection in the

following subsections.

4.3.3 Invariant Opaque Predicates

Invariant opaque predicates refer to those predicates that are always true or false
for all possible inputs. This kind of opaque predicates mainly relies on well-
known algebraic theorems [21,22]. Since they are easy to construct, invariant
opaque predicates are the most frequently used ones. The detection method is
straightforward by exploiting the invariant property. Tautology check in Figure 4.1
is used to prove whether the symbolic expression for each predicate in the trace
always evaluates to true. For instance, one symbolic expression may be expressed
as Vr € Z. (% — 2)%3 = 0. We feed this formula to a constraint solver to prove
its validity. Another characteristic of this category of predicates is that they are
independent from each other, and therefore it is natural to parallelize the detection.
We remove the identified invariant opaque predicates from the path condition to
reduce its size. After that, the reduced path condition is sent to the second round

of scanning.

4.3.4 Contextual Opaque Predicates

Different from the invariant property of the first category of predicates, a contextual
opaque predicate relies on some program invariants so that it always produces the
same value when certain precondition holds. At other places, such a predicate
may evaluate to a different value. The precondition can be further obfuscated
to camouflage the context information. Our detection method is based on the
observation that a contextual opaque predicate (¢;) does not impose additional

constraint on its prior path condition. Therefore, v; should be logically implied by

26

its prior path condition: ¥ As... A1);_1; that is, ¥y As... A;_1 = ;. The process
of testing whether a predicate ¢; and its preceding predicates satisfy the relation
U1 N a... A1 = 1, is called implication check. Without knowing which predicate
is a potential contextual opaque predicate, we have to perform the implication check
cumulatively starting from the first predicate to the last one. One challenge here is,
subject to computing resources (e.g., memory and CPU), a complicated formula
may be hard or infeasible to solve. To address this issue, we adopt a “short cut”
strategy. When the generated formula becomes too complicated, we divide it into
each single predicate and detect whether ¢; = ;, 5 < 4. If this check passes, we
do not need to prove Y1 A 1s... A ;_1 = 1); any more, as the standard implication
check will pass certainly.

The results of the second round of scanning are culprit branches that pass
the implication check. Note that at this point, we cannot conclude whether these
culprit branches are corresponding to real contextual opaque predicates. Recall
the correlation property of dynamic opaque predicates discussed in Section 3.2,
most dynamic opaque predicates (from the second to the last one in a family of
related dynamic opaque predicates) satisfy the implication check as well. In the
third round of detection, LOOP will distinguish these two categories and identify

all correlated dynamic opaque predicates.

4.3.5 Dynamic Opaque Predicates

Dynamic opaque predicates consist of a family of correlated and adjacent predicates
which produce the same boolean value in any given run. However, the value may
switch to a different result in another run. Locating correlated predicates is the key
to dynamic opaque predicate detection. A set of predicates are correlated means
they are implied by each other, or in other words, they are logically equivalent.

Therefore, predicates 11, s, ..., 1, are correlated iff

Y & Yy & .. &Yy,

Assume we have two correlated predicates ;1 and ;. Recall that in the detection
of contextual opaque predicates, we have proved that v;_; = ;. Now we have to

go one step further to verify whether v; = ¥;_;. In logic, we have the following

27

Algorithm 1 Testing dynamic opaque predicates
P: a set of predicates which pass the implication check
T the execution trace from which P is derived

1: function TESTDOP(T, P)

2 for each v; in P do

3 T" < GenTrace(—);_1)

4: i < Next(T', —);_1)

5: if ¢ # —; then

6 return False

7 end if

8 if —;_1 = —); then

9 if 7,1, ~T/_,, then

// semantically equivalent

10: return True
11: else
12: return False
13: end if
14: else
15: return False
16: end if

17: end for
18: end function

equation.

Vi = i1 = i1 = Y

Therefore, we alternatively verify whether —);_; implies —1); by generating a new
input. Another property of dynamic opaque predicates is that they utilize code
clone to make sure the same instructions are executed in any case. As a result, we
have to compare the two traces to ensure they are semantically equivalent. Similar
to the trace-oriented binary diffing tool [36], our comparison approach relies on
symbolic execution and theorem proving techniques so that we can find that two
code pairs with ostensibly different syntax are semantically equivalent.

Suppose ;1 and 1); are dynamic opaque predicates and 1; has been identified
as a culprit branch satisfying implication check. The procedure of our third round
of detection is shown in Algorithm 1. First, we negate the predicate v;_; and use
constraint solver to generate a new input to follow the path ¢y A 1s... A =1);_4.
Given the new trace, the predicate following —);_; is ¢.. Then we verify 1] is

equivalent to —);. Next, we test whether —),_; = —;. If it succeeds, we will

28

AB

vy
trie@falie

l4;

l4;
Is;

Merge " »

‘ ‘ basic block 1| Compare | 4
> | I « > |s;

I3; ls;

true false

v v

I2;
Is;

ls;

Figure 4.5: Trace segment comparison (A and B represent different inputs).

compare the trace segments controlled by ;1 Av; and —);_1 A —);. Different from
previous semantics-based binary diffing tools [36], whose comparison unit is a single
basic block, LOOP merges all the basic blocks which have control flow dependence
with ¥;_1 A 1; or =b;_1 A —1; as a trace segment (as shown in Figure 4.5). LOOP
carries out symbolic execution for the trace segment and represents its input-output
relation with a set of formulas. At last, LOOP uses a constraint solver to compare
the output formula pairs and then finds a bijective equivalent mapping among
them. If so, we conclude that these two trace segments are semantically equivalent
and therefore 1);_; and 1; are dynamic opaque predicates. If =1, _; = —); fails or
new trace segment is different to the original one, we conclude 1); is a contextual
opaque predicate.

Following the similar idea, we can identify the correlated predicates containing
more than two predicates and then check the equivalence of the trace segments

which have control dependence on these predicates.

4.3.6 Solving Opaque Predicate Formulas

It is evident that the efficacy of LOOP depends on the capability of constraint
solvers in proving the validity of a formula. State-of-the-art constraint solvers (e.g.,
STP [83], Z3 [84]) have supported all arithmetic operators found in the C pro-
gramming language (e.g., bitwise operations, multiplication, division, and modular

arithmetics). Table 4.1 shows ten mathematical formulas that are commonly used

29

Table 4.1: Common mathematical formulas and their STP solving time.

Formulas Solving time (s)
Ve e Z 2?2 >0 0.003
Vi€ Z 2| x(z+1) 0.008
Ve e Z. 3| x(x+1)(x + 2) 0.702
Va,y € Z. Ty?* — 1 # 22 0.008
Vo e Z. (22 +1)%7T #0 17.762
Vo€ Z (22 +x+T)%81 £ 0 22.657
Vr € Z. (422 + 4)%19 £ 0 15.392
Ve e Z. 4| 2%z +1)(x+1) 0.012
VeeZ 2|zVv8| (22 —1) 0.022
Vre Z. 2] (%] 0.015

as invariant opaque predicates, including integer division, modulo and remainder
operations. We solve these formulas with STP in our testbed and present the
solving time in the second column. Most formulas only need less than 0.1 seconds,
which are almost negligible. However, we notice that formulas involving modular
arithmetic increase the solving time considerably. For example, the solving time for
three complicated modular arithmetic formulas in Table 4.1 varies from 15 to 23
seconds. Even so, compared with other methods which need to run a large set of
test inputs (e.g., statistical analysis [1] and fuzz testing [31]), our approach achieves

better performance and accuracy.

4.3.7 Whole Program Deobfuscation

After three rounds of detection, LOOP returns all possible opaque predicates in
an execution trace. Our result can be fed back to security analysts to further
deobfuscate the cluttered control flow graph of a whole program. For example, the
unreachable paths introduced by invariant opaque predicates are discarded; the
redundant contextual opaque predicates are cut off as well. To reverse the effect
of dynamic opaque predicates, we remove the set of correlated dynamic opaque
predicates and replace the corresponding multiple paths with a single straight-line
path. Since our approach is trace-oriented, we deobfuscate a part of the control
flow graph each time. To increase path coverage, we can leverage automatic input

generation techniques [62,65].

30

4.4 Implementation

LOOP’s online logging part consists of two tools, generic unpacking and trace
logging, which are implemented based on the Pin DBI framework [85] (version
2.12) with 1,752 lines of code in C/C++. To make the logged trace compact, we
start trace logging when unpacking routine finishes and support on-demand logging
for instructions of interest. LOOP’s offline analysis part is implemented on top of
BAP [37] (version 0.8) with 2,588 lines of OCaml code. We rely on BAP to lift up
x86 instructions to the BAP IL and convert BAP IL to CVC formulas. LOOP’s
backward slicing is performed on BAP IL; the opaque predicate detector and trace
segment comparison tool are built on BAP’s symbolic execution engine. We use
STP [83] as our constraint solver. Besides, we write 644 lines of Perl scripts to glue
all components together to automate the detection. To facilitate future research,
we have made LOOP code available at https://github.com/s3team/loop.

4.5 Evaluation

We evaluate LOOP’s effectiveness to automatically detect various opaque predicates.
We test LOOP with a set of Linux common utilities and highly obfuscated malicious
programs. We make sure we have the ground truth so that we can accurately assess
false positives and false negatives. Also, since LOOP is strongly motivated by its
application, we evaluate the impact of LOOP in the task of code normalization for
metamorphic malware. The experiments are performed on a machine with a Intel
Core i7-3770 processor (Quad Core, 3.40GHz) and 8GB memory, running both
Ubuntu 12.04 and Windows XP SP3.

4.5.1 Evaluation with Common Utilities

This experiment is designed to evaluate the effectiveness and efficiency of our
method. First, we select ten widely used utility programs in Linux as our test
cases. To ensure the samples’ variety, those candidates are picked from different
areas, including data compression, core utilities, regular expression search, hash
computing, web file transfer, and HTTP server. Since all of those programs are

open source, we can easily verify our detection results. We implement automatic

31

Table 4.2: Contextual opaque predicates used in common utilities evaluation.

VeeZ x>b=x>0

VeeZ x>3=2>—-4r+3>0

VeeZ a2%4=0= 2%2=0

Vee Z 2%9=0= 2%3 =0

Ve e Z. 2%10=0= 2%5 =0

Vo € Z. 3|(Tx — 5) = 9](282% — 13z — 5)
Vo € Z.5|(2z — 1) = 25|(142? — 192 — 19)
Va,y,2 € Z. (242 AN21y) = 2% + y* # 22

O 3 O Ul i W N

Table 4.3: Evaluation results on Linux common utilities.

) #Predicates Invariant Contextual Dynamic
Program taint, taint) [#OP SE (s) STP (s) | #OP SE () STP (5 | #0P SE(s) TP (5| D #FN)
bzip (6,313, 13) 4 0.9 1.4 6 1.2 2.3/1.9 2 1.8 2.4 (5, 0)
grep (4,969, 16) 5 09 15 6 18 1.6/13 3 24 0.3 (6, 0)
Is (o 867, 21) 13 3.3 3.9 3 224 35/28 1 125 2.1 (10, 0)
head (1,496, 11) 6 07 2.5 711 1.3/13 119 1.0 1, 0)
md5sum (3,450, 14) 3 2.8 45 3 15 25.0/20.3 1 1.0 2.2 (0, 0)
thttpd (6,605, 124) 3 8.7 16.8 3 3.6 54/22 1 14 0.7 (0, 0)
boa (4,718, 131) 3 6.8 18.7 3 2.5 6.2/1.8 1 1.7 0.8 (0, 0)
wget (3,230, 36) 5 3.0 7.6 3 20 22/12 1 15 0.7 (2,0
scp (2,402, 30) 5 34 5.8 4 28 41/24 1 15 0.7 (3, 0)
libpng (25,377, 446) 7 514 3516 4 146 33.2/11.6 2 104 5.2 (6, 0)

opaque predicate insertion as an LLVM pass, based on Obfuscator-LLVM [25].
For each program, we insert seven opaque predicates, including three invariant,
three contextual and one dynamic opaque predicates. The three invariant opaque
predicates are randomly selected from Table 4.1; the three contextual opaque
predicates are chosen from Table 4.2. We use the example of dynamic opaque
predicates shown in Figure 4.2. At the same time, we make sure that all the opaque
predicates can be reached by the test inputs.

We first label the inputs of test cases as tainted and record tainted instructions.
Then we run LOOP’s offline analysis to detect the opaque predicates. Table 4.3
shows the experimental results. The second column shows the number of predicates
before and after taint. It is evident that forward taint propagation reduces the
number of predicates significantly. For each category of opaque predicate, we report
the number of opaque predicate detected (#OP), the time of symbolic execution
(SE) and the time of running STP solver (STP). Note that in the column of STP
time for contextual opaque predicates, we list the different time before and after

“short cut” optimization (see Section 4.3.4).

32

For the majority of our test cases, the symbolic execution and STP solver only
take several seconds. Because libpng’s trace size is large and its invariant opaque
predicates inserted involve modulus arithmetic, the corresponding STP solving time
is the longest. The data presented in the eighth column indicate that the effect
of “short cut” optimization is encouraging, especially for the cases with large path
formulas (e.g., libpng). Furthermore, we manually verify each logged traces and
find that our approach successfully diagnoses all the opaque predicates if there is
any; that is, we have zero false negatives (#FN in the last column).

To test false positives of our approach, namely whether LOOP mistakes a normal
condition as an opaque predicate, we conduct a similar evaluation on our test cases’
clean version (no opaque predicate insertion). Contrary to our expectation, we
notice that seven out of ten cases detect opaque predicates but all of them are false
positives (#FP in the last column). We look into the factors leading to the false
positives and find that one major reason is “under tainting” [71], which is a common
problem in taint analysis. Generally, under tainting means instructions that should
be tainted are not recorded. As a result, under tainting will mistakenly replace
some symbols with concrete values. For instance, supposing y with a concrete value
of 2 is not labeled as a symbol in the predicate y > 1, the predicate in the trace

would be 2 > 1, which is a tautology, and LOOP will issue a false alarm.

4.5.2 Evaluation with Obfuscated Malware

Opaque predicates are also widely used by malware developers. Moreover, opaque
predicates are typically integrated with other obfuscation methods to impede
reverse engineering attempts. To evaluate the resilience of LOOP against various
obfuscation methods, we collect 15 malware binaries from VX Heavens.! These
malware samples are chosen for two reasons: 1) they are representative in obfuscation
techniques; 2) we have either source code (e.g., QQThief and KeyLogger) or detailed
reverse engineering reports (e.g., Bagle and Mydoom). Hence, we can accurately
evaluate our detection results.

Table 4.4 shows a variety of obfuscation techniques with different purposes.
Column 4 ~ 9 represent the methods to obfuscate code and data, such as binary

compression and encryption packers, junk code, code reorder, and opaque constant.

Thttp://vxheaven.org/sre.php

33

Table 4.4: Various obfuscation methods applied by malicious program.

= = o o
ERRs 5| & Z | e
P R =R T AV = I I &
) o IR N I I I - B R I * S
=4 SO ARIE e |lE]glc]| > - ~
< ol < R R = B RO N I N A e & B g
£ E|2|E|B|EIR|a|E|E|E ol &% E
Sample Type N Packer O|R | »|0O|0 |0 |0O|O|=<|= F= z =
Bube Virus 12 FSG v ViV vV (0,0,0) | (0, 0) 3.4
Tefuss Virus 29 UPX v Vv v v v (2,00)] (0,0) 4.2
Champ Virus 13 PECompact v V|V v | v | (0,0,0) | (0,0) 3.0
BullMoose | Trojan 30 VMProtect VvV v (5,3,1) | (2,0) 7.8
QQThief Trojan 32 | Yoda’s Protector | v | v/ V|V V|V (3,0,0) | (1,0) | 154
KeyLogger | Trojan 33 ASPack VR v v (8,1,1) | (0,0) | 223
Autocrat | Backdoor | 276 PECompact v V|V v | v | (12,0,0) | (4,0) | 244.5
Codbot | Backdoor | 30 ASPack Vv v v (2,0,0) | (0, 0) 8.2
Loony Backdoor | 20 ASPack V|V v v (0,0,0) | (1, 0) 5.3
Branko Worm 17 Themida v vV Vv | v | Vv](100,0)] (0,0) 8.5
Hunatcha Worm 61 PolyEnE Vv v VIV (90,3,1) | (0,0) | 36.2
Bagle Worm 47 UPack VIiVIiVv|Vv (6,0,0) | (2,0)| 246
Sasser Worm 60 UPack VIiVvIiv|Vv v (4,0,0) | (0,0) | 18.2
Mydoom Worm 41 ASProtect VIiVIVIVv Y v (6,0,0) | (1,0) | 132.3
Zeynep Worm 85 | Yoda’s Protector | v | v/ V|V V| v (8,1,0) | (3,0) | 192.3
call near ptr GetFontData ; eax = OxFFFFFFFF
; ebp, esp are even numbers
and eax, ebp ; eax = eax & ebp
; eax is an even number
inc eax ; eax += 1, eax is an odd nhumber
and eax, 01h
cmp eax, 0 ; eax=01h
jne new_target ; always true

Figure 4.6: Example of an opaque predicate in malware.

Column 10 ~ 12 denote the control flow obfuscation methods in addition to opaque
predicates, including call-stack tampering, CFG flatten, and obfuscated control
transfer target. The methods in column 13 and 14 are used to detect the debugging
and virtual machine (VM) environment. The “# OP” column presents the number
of opaque predicates detected by LOOP. The triple such as (5,3,1) represents
the number of invariant, contextual, and dynamic opaque predicates, respectively.
We find that most malware samples (12 out of 15) are embedded with opaque
predicates and invariant opaque predicates are the most frequently used. The high
number (90) of invariant opaque predicates detected in Hunatcha is caused by loop
unrolling. With the help of source code and reverse engineering reports, we count
false positives and false negatives (shown in column 16). Similar with common

utilities’ results, LOOP achieves zero false negatives. That is, LOOP does not

34

Table 4.5: Speed up metamorphic malware variants matching

Family Basic blocks | Isomorphism
reduction (%) | speedup (X)
Metaphor 26 2.0
Lexotan32 20 1.6
Win32.Evol 16 1.2

miss any opaque predicates. The last column lists the total offline analysis time.
Note that our generic unpacking cannot handle virtualization obfuscators [86] such
as VMProtect? and Themida®. In our test cases, we find two malware samples
(BullMoose and Branko) are obfuscated with virtualization obfuscation. As a
result, the logged trace mixes the code of virtualization interpreter with the code
of malicious payload. LOOP nevertheless detects opaque predicates successfully.
Figure 4.6 shows an opaque predicate we detected in KeyLogger Trojan. This
opaque predicate utilizes the fact of stack memory alignment, and therefore both
ebp and esp are even numbers. After several arithmetic operations, the last
branch is always true. In summary, our experiments show that LOOP is effective in
detecting opaque predicates in obfuscated binary code with a zero false negative rate.
Considering that LOOP aims to provide a general and automatic deobfuscation
solution, which usually involves tedious manual work, the false positive rate is

tolerable.

4.5.3 Metamorphic Malware Matching

To confirm the value of our approach in malware defenses, we also test LOOP in the
task of code normalization for metamorphic malware [19,20]. Metamorphic malware
mutates its code during infection so that each variant bears little resemblance to
another one in syntax. It is well known that metamorphism can undermine the
signature-based anti-malware solutions [28]. Bruschi et al. [19,20] propose code
normalization to reverse the mutation process. To test whether an instance of
metamorphic malware is present inside an infected host program, they compare
malicious code and normalized program by inter-procedural control flow subgraph

isomorphism. The drawback is that they do not handle opaque predicates, although

2http://vmpsoft.com/
3http://www.oreans.com/themida.php

35

opaque predicates are one of the commonly used mutation methods. Opaque
predicates can seriously thwart normalized control flow graph comparison [19]. We
re-implement their code normalization based on BAP and test the speedup of
normalized control flow graph isomorphism under the preprocess of LOOP on three
famous metamorphic malware families.

Since the three metamorphic malware samples are all file-infecting, we first

4 For each family, we follow

force each malware to infect 20 Cygwin utilities.
similar steps as in Bruschi et al. to normalize infected programs and compare
their control flow graphs (CFG) with malicious code’s CFG, leveraging VFLIB
library [87]. In addition, we apply LOOP to preprocess infected programs to remove
the corresponding superfluous branches and infeasible paths. Table 4.5 shows the
improvements introduced by our approach on average. Compared with the results
without applying LOOP, we remove redundant basic blocks as much as 26% and

speed up subgraph isomorphism by a factor of up to 2.0 (e.g., Metaphor).

4.6 Discussions and Future Work

We further discuss about our design choices, limitations and future work in this

section.

4.6.1 Dynamic Approach

Our approach bears the similar limitations as dynamic analysis in general. For
example, LOOP can only detect opaque predicates executed at run time. Static
analysis might explore all the possible paths in the program. However, even
static disassembly of stripped binaries is still a challenge [88,89]. Moreover, the
various obfuscation techniques listed in Table 4.4 will undoubtedly deter extracting
accurate control flow graph from binary code. We believe our approach, based on
the test cases that execute opaque predicates, is practical in analyzing a malicious
program. A possible way to increase path coverage is to leverage test-generation
techniques [62,65] to automatically explore new paths. Another concern we want to
discuss is scalability issue. The size of a slice may become significant for a program

with high workload, and our detection approach is linearly dependent on the size of

4www.cygwin.com

36

Figure 4.7: Example of two-way opaque predicates.

a slice. In that case, LOOP has to analyze a large number of predicates, resulting
in a substantial performance slowdown. One way to alleviate the high overhead is
to detect opaque predicates in parallel. We plan to explore this direction in our
future work. Detecting repetitive opaque predicates due to loop unrolling leads to
performance penalty. We will extend our tool with loop identification in the next

version.

4.6.2 Floating Point

The effect of LOOP is restricted by the capability of the constraint solver and
symbolic execution tools. One example is floating point. Since precisely defining
the rounding semantics of floating point is challenging, current binary symbolic
execution does not support floating point instructions (e.g., fdiv and fmul) [37]. As
a result, currently LOOP is unable to detect opaque predicates involving floating
point operations. One might argue that attackers can easily get around LOOP by
using floating point equations. However, using floating point equations in malware
increases the possibility of detection as well, because both floating point instructions
and related numerics library APT calls (e.g., log, exp and sqrt) are rarely seen in

malicious code.

4.6.3 Two-way Opaque Predicates

Figure 4.7 shows a subtle case of opaque predicate, in which two possible directions
will sometimes be taken and Iy; I are executed in any case. P does not belong

to the categories we summarized in Section 3.2 and therefore we cannot ensure P

37

is an opaque predicate in a single trace. One way to detect such case is to check

semantic equivalence of P’s two jump targets [90].

38

Chapter 5
Generalized Dynamic Opaque
Predicates

5.1 Introduction

In this chapter, we present a systematic design of a new control flow obfuscation
method, Generalized Dynamic Opaque Predicates, which is able to inject diversified
dynamic opaque predicates into complicated program structures such as branch and
loop. Being compared with the previous technique which can only insert dynamic
opaque predicates into straight-line program, our new method is more resilient
to program analysis tools. We have implemented a prototype tool based on the
LLVM compiler infrastructure [38]. The tool first performs fine-grained data flow
analysis to search possible insertion locations. After that it automatically transforms
common program structures to construct dynamic opaque predicates. We have
tested and evaluated the tool by obfuscating several hot functions of GNU core
utilities with different obfuscation levels. The experimental results show that our
method is effective and general in control flow obfuscation. Besides, we demonstrate
that our obfuscation can defeat the commercial binary difference analysis tools and
the state-of-the-art formal program semantics-based deobfuscation methods. The
performance data indicate that our proposed obfuscation only introduces negligible
overhead.

In summary, we make the following contributions.

The work of this chapter is published in the 19th Information Security Conference [91].

39

« First, we propose an effective and generalized opaque predicate obfuscation
method. Our method outperforms existing work by automatically inserting
opaque predicates into more general program structures like branches and

loops, whereas previous work can only work on straight-line code.

e Second, we demonstrate our obfuscation is very resilient to the state-of-art

opaque predicate detection tool.

o Third, we have implemented our method on top of LLVM and the source

code is available.

The rest of this chapter is organized as follows. Section 5.2 presents our new
obfuscation method, generalized dynamic opaque predicates in detail. Section 5.3

presents our implementation details. We evaluate our method in Section 5.4.

5.2 Method

In this section, we present the details of the generalized dynamic opaque predicates
method. First, we introduce the concept of correlated predicate. After that, we
explain how to insert generalized dynamic opaque predicates into straight-line

programs, branches and loops.

5.2.1 Correlated Predicates

Correlated predicate, as briefly discussed in Section 3.2, is a basic concept in
dynamic opaque predicate. In this section, we present the formal definition of
correlated predicate. First we need to define correlated variables. Correlated
variables is a set of variables that are always evaluated to the same value in any
program execution. One common example of correlated variables is the aliases of
the same variable, like the pointers in C or the references in C++ or Java.
Correlated predicates are a set of predicates that are composed of correlated
variables and have a fixed relation of their true value. The fixed relation means
that, given a set of correlated predicates, if the true value of one of them is given,
all other predicates’ true value are known. Usually, it is intuitive to construct
correlated predicates using correlated variables. Table 5.1 shows some examples

of correlated predicates. The integer variables x, y and z in the first column is

40

Table 5.1: Examples of correlates predicates.

cv CP; CP, CPs

X X >0 X%2 == 1 X+X > 0
y y >0 y%2 == 0 | 2xy <= 0
z zZ2<=0]2%2==1| 2z<<1 >0

the correlated variables (CV). The CP;, CP; and CP5 columns show three sets of
different correlated predicates.

Here we take the C'P, column as an example to show how correlated predicates
work. First, since X, y and z are correlated integer variables, they are always
equivalent. There are three predicates in CPjs, X%2 == 1, y%2 == 0 and z%2
== 1. Note that X, y and z are integer variables, so they are either even or odd.
Therefore, given the true value of any one of these predicates, we can immediately
get the others’ true values. Furthermore, it is not necessary that correlated
predicates have similar syntax form. We can use semantically equivalent operations
to create correlated predicates. C'Ps shows such an example. Although the syntax
of each predicate is different from others, they still meet the definition of correlated
predicates.

One problem we need to pay attention to is that the value of the correlated
variables should not be changed during the dynamic opaque predicates, which
ensures that every correlated variable are evaluated to the same value in all dynamic
opaque predicates in one execution. Therefore, we compute the def-use chain inside
a function and choose the section between two definitions of a variable as the
candidate to be obfuscated. Note that pointer access operations could still cause
the variable’s value changes. Our solution is performing a simple alias analysis
to decide whether the pointer is an alias of the variable. If not, we can include
the pointer access instructions inside the dynamic opaque predicates; otherwise
not. Since alias analysis is complicated and difficult, we only run a light-weighted
address-taken algorithm [92] in our implementation. It is flow-insensitive and
context-insensitive. If the analysis cannot tell whether the pointer is an alias of
the correlated variable, we will conservatively consider that it could point to the

variable and exclude it from the dynamic opaque predicates candidates.

41

-

e

s

2
1
l 1 ; 2
1 y 1 1 1 1 3
2 2 2 2 2 2
3 3 3 3 2 3 3 3
4 4 4 4 3 4 4 4
5 5 5 5 5 5
2
' MHIE
4 : 5
5
4
5 5
(a) (b) (c) (d) (e)

Figure 5.1: Dynamic opaque predicate insertion in straight-line code.

5.2.2 Straight-line Code

In this section, we present how to insert dynamic opaque predicate into a straight-
line code. Before digging into the details, we first explain the symbols in the figures

as follows.

1. A rectangle is a basic block.
2. A number in a rectangle represents one instruction.
3. A circle indicates a correlated predicate.

4. An arrow between two basic blocks indicates the control flow transfer. Typ-
ically, it is a conditional or unconditional jump. If there is only one arrow
between two blocks, it is an unconditional jump; otherwise, it is a conditional

jump.

42

Given the definition above, Fig. 5.1(a) shows a straight-line code which contains
only one basic block, in which there are five sequential instructions. If a straight-line
code comprises multiple basic blocks which are connected by unconditional jumps,
it can be merged into one basic block. So for the ease of understanding, we use the
single basic block example to present straight-line code.

When inserting dynamic opaque predicates into straight-line code, we have
two strategies, depth-first and breadth-first, whose obfuscation result is shown in
Fig. 5.1(c) and Fig. 5.1(e). Here we introduce the depth-first style first and briefly
discuss the breadth-first later since they are similar. When inserting dynamic
opaque predicates in depth-first style, we select the first correlated predicate and
then make a copy of the original basic block, as shown in Fig. 5.1(b). After that,
the two basic blocks are split at different locations so as to create two chains of
basic blocks in which each basic block are different with each other. At last, we
insert other correlated predicates to ensure that the control flow takes either all
left branches or all right branches.

Furthermore, when inserting depth-first dynamic opaque predicates, we could
insert as many correlated predicates as we can by splitting the basic blocks at
different locations. As shown in Fig. 5.1(c), those basic blocks constitute two chains,
in which the execution flow will either take every left branch or right branch. We call
the basic block sequence that consists of all left or right branches an opaque trace.
In this paper, the multiple execution traces caused by the effect of opaque predicates
are called opaque trace. As shown in Fig. 5.1(c), if the execution flow takes all the
left branches, the opaque trace is [1 2]->[3 4]->[5]. Similarly, when taking all
right branches, the opaque trace is [1]1->[2 3]1->[4 5]. Therefore, Fig. 5.1(c)
contains two opaque traces.

Generally speaking, the steps to insert depth-first dynamic opaque predicates

to a single basic block BB are described as follows.

1. Select a correlated variable and creating the first correlated predicate accord-

ingly.

2. Clone a new basic block BB’ from BB.

43

3. Split BB and BB’ at different locations to create two sequences of basic blocks,

or say, two opaque traces T; and T:

T, = BB; — BBy — --- — BB,
T, = BB, — BB, — --- — BB,

4. Create and insert the remaining n — 1 correlated predicates.

5. Insert conditional or unconditional jumps into the end of each basic block to

create the correct control flow.

The other strategy is breadth-first inserting dynamic opaque predicates. It
create more opaque traces via correlated predicates that have multiple branches.
The inserting process is similar as depth-first. Assuming each predicate has three
branches, the first step is to select and insert the first correlated predicate and
create two copies of the original basic block as shown in Fig. 5.1(d). Then split the
three basic blocks at different offsets so as to create three opaque traces. At last,
insert the other correlated predicates and other jump instructions to adjust the
CFG. The result is shown in Fig. 5.1(e).

Furthermore, we can easily create more complicated generalized dynamic opaque
predicates by iteratively applying depth first and breadth first injection. For
example, the basic block [1,2,3] can also be split to create a depth first generalized
dynamic opaque predicate. Note that it naturally breaks the adjacency of the two
predicates in Fig. 5.1(e). Being compared with the conventional dynamic opaque
predicate shown in Section 3.2 which only has two adjacent predicates p and ¢, our
method can insert more generalized and non-adjacent dynamic opaque predicates

in straight-line code.

5.2.3 Branches

In the previous section, we present the approach to inserting dynamic opaque
predicates into straight-line code. However, real world programs also consist of
other structures such as branches and loops. When considering inserting dynamic
opaque predicates into branches or loops, one straight forward idea is only inserting

dynamic opaque predicates into basic blocks independently by treating them as

44

straight-line code. However, this idea has one obvious problem: it doesn’t spread
the dynamic opaque predicates across the branch or loop condition, so essentially
it is still the same as what we have done in Section 5.2.2.

In this section, we describe the process to insert dynamic opaque predicates
into a branch program, which improves the program obfuscation level. For the ease
of presenting our approach, we consider the branch program which contains three
basic blocks as shown in Fig. 5.2(a). Our solution can also be applied to more
complicated cases such as each branch contains multiple basic blocks. As shown in
Fig. 5.2, Cond is the branch condition. BB; is located before the branch condition.
BBy is the true branch and BBj is the false branch.

Cond

(a) (b) ()

Figure 5.2: Dynamic opaque predicate insertion in a branch program.

As the first step of inserting branch dynamic opaque predicate, we backwards
search for an instruction that is independent from all instructions until the branch
condition, and also independent from the branch instruction. In this paper, this

instruction is called a branch independent instruction. Essentially, it can be moved

45

across the branch condition so as to create the offset in different opaque traces.
In Fig. 5.2(a), the underlined instruction 4 is a branch independent instruction.
Based on our observation, there are plenty of branch independent instructions. For
example, the Coreutils program 1s contains 289 branch conditions, in each of which
we find at least one branch independent instruction. Typically, these instructions
prepare data which are used both in the true and false branch.

After identifying the branch independent instruction, we select and insert the
correlated variables, then make a copy of each basic blocks. Moreover, we move the
instruction 4 along the right opaque trace across the branch condition and Fig. 5.2(b)
shows the result. Note that due to instruction 4 is branch independent, so moving
it to the head of basic blocks in the branches will not change the original program’s
semantics. At last, we create straight-line code dynamic opaque predicates for BB,
BBj and BBj. The final result of the obfuscated CFG is shown in Fig. 5.2(c). We
briefly summarize the steps of inserting dynamic opaque predicates into a branch

program as follows.

1. Find the branch independent instruction in BB;.

2. Select and insert the correlated predicates.

3. Clone BB;, BB, and BBs as BB, BB}, and BBj.

4. Move the branch independent instruction from BB, to BB, and BBj,.

5. Split basic blocks and create dynamic opaque predicates as in straight-line

code.

5.2.4 Loops

Previous sections present the details about how to insert dynamic opaque predicates
into straight-line code and branch programs. In this section, we consider inserting
dynamic opaque predicates into a loop. In this paper, a loop refers to a program
which contains a backward control flow, such as Fig. 5.3(a). BB, is the first basic
block of the loop body and BB, is the last one. The dashed line indicates other
instructions in the basic block. The dashed arrow means other instructions in the

loop body, which could be a basic block, branch or even another loop. Particularly,

46

BB+ BB'

=N
=N

BB

|
|
|
|
|
BB, /)\ BBy
3

Cond

|

(@) (b)

Figure 5.3: Dynamic opaque predicate insertion in a loop.

if there is only one basic block in the loop body, BB; and BB, refer to the same
basic block.

The key idea in inserting dynamic opaque predicates to a loop program is finding
a loop independent instruction and moving it across the loop condition in the same
opaque trace. We define loop independent instruction as an instruction in a loop
whose operands are all loop invariants. Loop invariant is a classical concept in
compiler optimization. A variable is called loop invariant if its value never changes
no matter how many times the loop is executed. For instance, Fig. 5.4 shows a loop
invariant. The variable m is defined outside the loop and is never changed inside
the loop. Each iteration of the loop accesses the same array element A[m] and
assigns it to the variable x. Therefore, m, A[m] and x are loop invariant. Note that
here we use the C source code to present the idea. Actually we are working on the
compiler IR level, where every instruction is close to a machine instruction. As a
result, in the IR level, all instructions that only operate the loop invariants are loop

independent instructions. For instance, the instruction that load the value of A[m]

47

for (i = 0; 1 < 10; i++) {
X = A[m]; /* loop invariant x/
B[i] = x x 1;

=W N =

Figure 5.4: An example of loop invariants.

from memory to X is an loop independent instruction. Based on our observation,
there are plenty of loop independent instructions inside a loop body, such as the
instructions to compute a variable’s offset address. In the experiment, we find at
least loop independent instruction for each of the 61 loops in the Coreutils program
ls.

In traditional compiler optimization, the loop independent instructions are
extracted out of the loop body so as to reduce the loop body size and further
improve the runtime performance. All compiler frameworks implement a data
flow analysis to analyze and identify the loop invariants. In this paper, we take
advantage of the loop independent instructions to create the offset between opaque
traces. Consider the example shown in Fig. 5.3(a). First, we search and identify
that instruction 2 is a loop independent instruction. Second, we lift the instruction
2 to the beginning of the loop body, since other instructions might need the output
of instruction 2. Then we make copies of BB; and BB as BB/ and BB),. After that
we select the correlated predicates and initialize the first one to ensure that it takes
the left branch. The bold arrow in Fig. 5.3(b) indicates the initialized predicates.
We will soon discuss the reason. At last, the loop independent instruction 2 is
moved from BB’ to BB and the final result is shown in Fig. 5.3(c). We summarize

the steps of creating loop dynamic opaque predicates as follows.
1. Find the loop independent instruction I;.
2. Lift I; to the beginning of the loop body in BB;.
3. Select the correlated predicates and initialize the first one correctly.
4. Clone BB; and BBy as BB, and BBj,.

5. Remove I/ from BB’ and add it to the end of BBj.

48

=I

Loop

|

|

|

: Obfuscated

| IR LLVM Executable
|

|

|

|

|

Source
Code

Clang | Backend Code

Figure 5.5: The architecture of dynamic opaque predicate obfuscator.

6. Add dynamic opaque predicates as separate basic blocks and according jumps

to build correct control flow.

Note that at the third step, we initialize the correlated variables so as to ensure
the control flow goes to the left branch at the first iteration. The reason is that
we have to make the loop invariant instructions executed at least once at the first
iteration of the loop in order to assure all loop invariants loaded, computed and
stored correctly. The value of correlated variables may change during the dashed
part of the loop body so as to divert the execution flow to each opaque trace.
Particularly, when the execution reaching the last iteration of the loop, there is a
redundant instruction 2 if the execution follows the right branch. Since instruction

2 is loop independent, it doesn’t affect the semantic of the program execution.

5.3 Implementation

Our implementation is based on Obfuscator-LLVM [25], an open source fork of
the LLVM compilation suite that aims to improve the software security via code
obfuscation and tamper-proofing. The architecture of our system is shown in
Fig. 5.5. The generalized dynamic opaque predicate obfuscator (GDOP obfuscator)
is surrounded with dashed lines. Basically, our automatic GDOP obfuscator works
as a pass in LLVM framework. The workflow contains three steps. First, the LLVM
frontend Clang read the source code and translate it into LLVM IR. Second, GDOP
obfuscator reads the IR and inserts generalized dynamic opaque predicates to the
appropriate location. At last, the LLVM backend outputs the executable program
based on the obfuscated IR files.

Particularly, we implement the procedure of inserting generalized dynamic

opaque predicates to a straight-line, branch and loop program as three separate

49

passes, which includes 1251 lines of C++ code in total. We also write a driver
program to invoke the three passes so as to insert all kinds of generalized dynamic
opaque predicates. In addition, we implement a junk code generator to insert
useless code into functions, such as redundancy branches and extra dependencies.
Moreover, we provide a compiler option for users to configure the probability
for inserting generalized dynamic opaque predicates. For each basic block, our
obfuscator generates a random number between zero and one. If the number is
smaller than the given probability, it tries to insert generalized dynamic opaque

predicates into the basic block; otherwise it skips the basic block.

5.4 Evaluation

We conduct our experiments with several objectives. First, we want to evaluate
whether our approach is effective to obfuscate control flow graph. To this end, we
measure control flow complexity of GNU Coreutils with three metrics. We also test
our tool with a commercial binary diffing tool which is based on control flow graph
comparison. Last but not least, we want to prove our approach can defeat the
state-of-the-art deobfuscation tool. Our testbed consists of an Intel Core i7-3770
processor (Quad Core with 3.40GHz) and 8GB memory, running Ubuntu Linux
12.04 LTS. We turn off other compiler optimization options by using -g option.

5.4.1 Obfuscation Metrics with Coreutils

This section shows our evaluation result of inserting generalized dynamic opaque
predicates into the GNU Coreutils 8.23. Since the generalized dynamic opaque
predicate is an intra-procedural obfuscation [47], we evaluate it by comparing the
control flow complexity of the modified function before and after the generalized
dynamic opaque predicate obfuscation. In this experiments, we choose five hot
functions in the Coreutils program set by profiling. At the same time, we make
sure all the functions containing at least ten basic blocks!. After profiling, the five

hot functions we select are as follows.

"We do not consider dynamic link library functions because our approach takes the target
program source code as input.

20

Table 5.2: Obfuscation metrics and BinDiff scores of hot functions in Coreutils.

Fun # of Basic Blocks| # of CFG Edges | Cyclomatic Number | Bindiff Score
Orig. 50% 100% | Orig. 50% 100% | Orig. 50% 100% | 50% 100%
1 43 171 229 | 62 258 338 | 21 89 111 0.05 0.02
2 20 75 105 | 30 114 158 | 12 41 55 0.02 0.01
3 30 94 120 | 49 141 177 | 21 49 59 0.02 0.02
4 | 46 138 208 | 80 220 320 | 36 & 114 0.04 0.01
5 76 272 376 | 117 425 573 | 43 155 199 0.05 0.02
1. get_next: This function is defined in tr.c. It returns the next single

character of the expansion of a list.

make_format: This function is defined in stat.c. It removes unportable

flags as needed for particular specifiers.

length_of_file_name_and_frills: This function is defined in 1s.c for

counting the length of file names.

print_file_name_and_frills: This function is also defined in 1s.c. It
prints the file name with appropriate quoting with file size and some other

information as requested by switches.

eval6: This function is defined in eval6.c to handle sub-string, index,

quoting and so on.

The metrics that we choose to show the CFG complexity are the number of

CFG edges, the number of basic blocks and the cyclomatic number. The cyclomatic

number is calculated as e — n + 2 where e is the number of CFG edges and n is the

number of basic blocks. The cyclomatic number is considered as the amount of

decision points in a program [93] and has been used as the metrics for evaluating

obfuscation effects [2]. We first insert generalized dynamic opaque predicates into
the hot functions with two different probability level: 50% and 100%. After that, we

perform functionality testing to make sure our obfuscation is semantics-preserving.

Table 5.2 shows the obfuscation metrics of the original clean version and the

obfuscated version. The data shows that our dynamic opaque predicate obfuscation

can significantly increase the program complexity.

o1

Table 5.3: The result of LOOP detection. Det. refers to the number of detected
DOP.

Function Straight Line DOP Branch DOP Loop DOP
Total Det. Ratio | Total Det. Ratio | Total Det. Ratio
1 52 3 5.77% | 21 0 0.00% 8 0 0.00%
2 28 2 7.14% 15 0 0.00% 6 0 0.00%
3 27 2 T41% | 23 0 0.00% 6 0 0.00%
4 54 5 9.26% | 26 0 0.00% 8 0 0.00%
5 82 8 9.76% | 52 0 0.00% 14 0 0.00%

To test the control flow graph after our obfuscation is heavily cluttered, we
also evaluate our approach with BinDiff?, which is a commercial binary diffing
tool by measuring the similarity of two control flow graphs. We run BinDiff to
compare the 50% and 100% obfuscated versions with the original five programs and
the similarity score is presented in the fifth column in Table 5.2. The low scores

indicate that the obfuscated program is very different from the original version.

5.4.2 Resilience

In this experiment, we evaluate the resilience to deobfuscation by applying LOOP [94],
the latest formal program semantics-based opaque predicate detection tool. The
authors present a program logic-based and obfuscation resilient approach to the
opaque predicate detection in binary code. Their approach represents the char-
acteristics of various opaque predicates with logical formulas and verifies them
with a constraint solver. According to the authors, LOOP is able to detect various
opaque predicates, including not only simple invariant opaque predicates, but also
advanced contextual and dynamic opaque predicates.

In our evaluation, we run two round of 100% obfuscation on the five Coreutils
functions and use LOOP to check them. The results are presented in Table 5.3.

As shown in Table 5.3, LOOP can detect very few number of the generalized
dynamic opaque predicates inserted in straight-line code but fails to detect all those
in branches and loops. We look into every generalized dynamic opaque predicate
that is detected by LOOP and find that they are all conventional adjacent dynamic

Zhttp:/ /www.zynamics.com/bindiff.html

92

opaque predicates. We also check verify that LOOP fails to detect the remaining
generalized dynamic opaque predicates.

We carefully analyze LOOP’s report and find several reasons that lead to
LOOP’s poor detection ratio on generalized dynamic opaque predicates. First,
iterative injection causes LOOP fails to detect majority of the generalized dynamic
opaque predicates in straight-line code. Our obfuscation method can be iteratively
executed on a candidate function, which means we are able to insert generalized
dynamic opaque predicates into the same function several times. Note that each
time we choose different correlated variables and different correlated predicates.
Therefore, the generalized dynamic opaque predicates that are inserted by the later
pass will break the adjacency of those inserted by the previous pass. In addition,
junk code injection is another reason that prevents LOOP’s detection.

Second, generalized dynamic opaque predicates spread across the branch or
loop structure so they naturally break the adjacency property, which causes LOOP
detects none of the generalized dynamic opaque predicates in branches and loops.
For example, when we execute the loop shown in Fig. 5.3, there are two correlated
but not adjacent predicates. They are separated by the instructions in the dashed
line and the loop condition. Therefore, the detection method in the LOOP paper

fails to detect the generalized dynamic opaque predicates.

5.4.3 Cost

This section presents the cost evaluation of our generalized dynamic opaque pred-
icate obfuscation. We evaluate the cost from two aspects: binary code size and
execution time. For binary code size, we measure and compare the number of bytes
of the compiled programs that contain the five hot functions. For instance, we
compare the size of tr’s binary code when inserting generalized dynamic opaque
predicates to function get_next with different probabilities such as 50% and 100%.
For the evaluation of execution time, we record and compare the execution time of
clean version and the obfuscated program. We configure the switches and input
files so as to ensure the control flow touches the obfuscated function.

Table 5.4 shows the evaluation result. We can observe that our approach slightly
increases the binary code size, which is less than 0.7%. Moreover, according to

our experiments, the generalized dynamic opaque predicates have a small impact

93

Table 5.4: Cost evaluation of the dynamic opaque predicate obfuscation.

Binary Size (Bytes) Execution Time (ms)

Orig. 50% 100% Ratio | Orig. 50% 100%
tr 132,084 132,826 133,491 0.53% 2.2 2.2 2.4
stat 210,864 211,355 211,710 0.20% 4.0 4.0 4.1
ls 350,076 350,916 351,527 0.21% 23.2 234 237
ls 350,076 351,083 351,742 0.24% 23.2 233 238
expr 129,696 130,836 131,409 0.66% 0.6 0.6 0.6

Fun | Program

T W N =

Table 5.5: Obfuscation metrics of sort_files. R1 and R2 refer to the first and
the second round of obfuscation.

of Basic Blocks | # of CFG Edges | Cyclomatic Number
Orig. R1 R2 | Orig. R1 R2 | Orig. RI1 R2
sort_files | 19 160 405 25 255 539 8 97 136

Function

on program performance. The execution time of most programs stays the same
when inserting generalized dynamic opaque predicates with 50% probability and

increases a little when inserting with 100% probability.

5.4.4 Case Study

As mentioned in Section 5.4.2, our generalized dynamic opaque predicates can be
iteratively apply to a candidate program so as to create more obfuscated result.
In this section, we provide a case study to show the result of generalized dynamic
opaque predicate obfuscation iteration.

The target function is the sort_files function in the ls program. We choose
this function since its CFG size is appropriate and it contains straight-line codes,
branches and loops, which are suited for inserting all three categories of generalized
dynamic opaque predicates. We perform two rounds of generalized dynamic opaque
predicate obfuscation with 100% probability. Table 5.5 presents the same measures
as shown in the last section and Fig. 5.6 shows the result CFG. Fig. 5.6(a) shows
the original CFG of sort_files Fig. 5.6(b) presents the CFG after the first round
of dynamic opaque predicate obfuscation. Next, we perform another round of
dynamic opaque predicate obfuscation on (b) and the result is shown in Fig. 5.6(c).

The comparison of the three CFGs clearly indicates that our generalized dynamic

o4

opaque predicate obfuscation can significantly modify the intra-procedural control

flow graph.

(b) The CFG after one (c) The CFG after two
(a) The original CFG. round of obfuscation. rounds of obfuscation.

Figure 5.6: Comparison between CFGs after different rounds of dynamic opaque
predicate obfuscation.

95

Chapter 6
Cryptographic Function Detec-
tion in Obfuscated Binaries

6.1 Introduction

In this chapter, we present a new approach, CryptoHunt, to detect crypto functions
inside binary code. This technique helps detect the opaque predicate enhanced by
cryptography. Our key idea is to capture the fine-grained semantics of the principal
cryptographic transformation iterations along an execution trace. The execution
trace is further split into segments according to an enhanced loop abstraction. We
then perform bit-precise symbolic execution inside a loop body, and the generated
boolean formulas are later used as signatures to efficiently match cryptographic
algorithms in obfuscated binaries. Our core technique, bit-precise symbolic loop
mapping, is effective to revert various data and control obfuscation effects, and also
with a much broader detection scope.

In particular, CryptoHunt’s detection includes the following main steps. First,
we automatically represent the core transformations of a reference cryptographic
algorithm (i.e., golden implementation) using boolean formulas. Then, we run
the target obfuscated program and record an execution trace. Our enhanced loop
abstraction can accurately identify loop structures inside the trace. After that, we
run bit-precise symbolic execution to translate the loop bodies into boolean formulas,
which are later compared with the reference implementations. However, bit-wise

symbolic formula equivalent matching using theorem prover is computationally

The work of this chapter is published in the 38th IEEE Symposium on Security and Pri-
vacy [95].

o6

expensive and impractical. To ameliorate this performance bottleneck, we propose
a guided fuzzing method to filter out most of the impossible symbolic variable
mappings, leaving only about 5% for further verification.

We have evaluated CryptoHunt on a set of synthetic examples collected from
GitHub, well-known cryptographic libraries, and malware. We compared Crypto-
Hunt with other six representative tools, and the experiment results are encouraging.
In all cases, only CryptoHunt is able to detect commonly used cryptographic func-
tions (e.g., TEA, AES, RC4, MD5, and RSA) under different control and data
obfuscation scheme combinations. In addition to obfuscation, skilled malware
developers would customize cryptographic algorithms to evade detection [59]. We
indeed identified such a non-standard XTEA implementation that reveals a different
key schedule constant [60]. Our evaluation shows CryptoHunt is a general and
obfuscation-resilient approach, and can be applied to real-word malware analysis

and forensics. In summary, we make the following contributions:

o We have proposed a new approach, CryptoHunt, to detect cryptographic
functions in obfuscated binaries. Our key solution is to match the principal
cryptographic transformation iterations with bit-precise symbolic loop map-
ping. CryptoHunt exhibits stronger resilience to code obfuscation techniques

and a wider detection range.

o We have designed a guided fuzzing method to solve the scalability issue
of bit-wise symbolic formula equivalence checking. Our approach greatly
reduces the number of possible matches, and can be applied to speed up other

semantics-based binary difference analysis methods.

o We have implemented a prototype of CryptoHunt. The source code is publicly
available at https://github.com/s3team/CryptoHunt.

The rest of the chapter is organized as follows. Section 6.2 presents an overview
of CryptoHunt. Section 6.3 to 6.8 discuss the details of each step in our method.
Section 6.9 describes our implementation details. We present our evaluation results
in Section 6.10.

57

Reference Boolean
Implementations Formulas

a=x<<4 +2;
b = (xty)"a;

V1=Ya8yalys...
Vo=Yaly1 ...
V3=~y1&Ys ...
va4=y2 | ~y3

Bit-SE

Binary Code Trace Loop Body Boolean Formulas Boolean Equations
Trace Loop = Constraint
! mov eax ... g B U1=x1[X2lXa...
?aé%? Recording | G "% Detection | moy eax ... Bit-SE u;=x1l&2|x;._, el Sy X38Xa ... = Xi[XolX... ‘Solving
ine 0x804. shlebx ... o . 1m00) XolX1 ... = Xq & Xp oo
010111 jne 0x804... ine 0x804 U3=~Xa|X3 ... Variable Mapping X185 ... = ~Xolxs
000101 add ecx... ine Oxo04.... u4=x3 & ~x4

Next Loop

New Trace

Figure 6.1: An overview of CryptoHunt’s workflow. The words in italics repre-
sents CryptoHunt’s key components, and “Bit-SE” stands for bit-precise symbolic
execution.

6.2 Overview

The shortcomings of existing work inspire us to design a new general solution to
detect cryptographic algorithms and variations in obfuscated binaries. Instead of
searching syntactical signatures, we attempt to capture the fine-grained semantics
of the principal cryptographic transformations. Figure 6.1 illustrates CryptoHunt’s

workflow, which contains the following key steps.

1. Ezecution trace generation. Since dynamic analysis has previously been
demonstrated to be effective in control flow deobfuscation [34,80] and analyz-
ing self-modifying code [96], our study continues dynamic detection direction.
We first run the target binary code and record the execution trace, which

contains detailed runtime information.

2. Loop body identification. Like many dynamic detection methods [55,57],
we identify loop structures to narrow down search scope. The reason is
cryptographic algorithms consist of a large of repeated transformations, which

are typically implemented as loops.

3. Bit-precise symbolic execution. Attackers can impede further analysis by
transforming (I/O) parameters with data obfuscation schemes. To revert
data obfuscation effects, our key idea is to represent loop I1/O relations

with bit-precise symbolic execution. In this way, loop input parameters are

o8

1

2

3

4 uint32_t
5) uint32_t
6

7 /* delta:
8 uint32_t
9

10 for (i =
11 sum +=
12 vl +=
13 vl +=
14 }

15

16 v[O] = vO;
17 |}

void encrypt (uint32_tx v,

/* v: plain text, k: key

vl = v[0], vl =
ko k[0], k1

a key schedule

uint32_tx k) {

*x/

v[1l], sum = 0, 1i;

k[1], k2 = k[2], k3 = k[3];

constant x/

delta = 0x9e3779b9;

0; i < 32; i++)
delta;

{ /* main loop */

((vl<<4) + kO) ™ (vl + sum) ©~ ((vl>>5) + kl1);
((vO<<4) + k2) ~ (vO + sum) © ((v0>>5) + k3);

v[1l] = v1;

/* cipher text x/

expressed as boolean variables, which is the only atomic data type. The

Figure 6.2: A reference implementation of TEA.

output parameters are represented as a set of boolean formulas.

4. Variable mapping and comparison. We propose a guided fuzzing approach
to efficiently find whether a symbolic formula is equivalent to a reference

implementation. Only a small portion of symbolic formulas need to be further

verified by a theorem prover.

We will present the details of each step in the following sections.

6.3 Reference Formula Generation

We compare boolean formulas from the target execution trace with those from the
reference implementation. In this section, we describe how to generate boolean
formulas from the reference implementation. We choose standard cryptographic
algorithm implementations (e.g, widely-used OpenSSL crypto library) as the refer-
ence. Since we have access to the C source code of the reference implementation,

we first iterate C code structures to identify the principal cryptographic transfor-

29

mation iterations with CIL [97]. The main loop in Figure 6.2 shows such a key
transformation iterations in TEA cipher. Section 6.10.1.4 will provide more details
about the key transformation that we capture in commonly used cryptographic
algorithms.

Next, we compile the source code into an executable and run it to record a trace.
Then we perform bit-precise symbolic execution for the loop body and generate
a set of boolean formulas, which will be used as semantic detection signatures
later. More details about trace recording and bit-precise symbolic execution will be
presented in Section 6.4 and 6.6. The reference formulas usually have two attributes.
One is that they are compact to describe the most representative feature of a given
cryptographic algorithm. It is not necessary to depict the whole transformation of
the algorithm in the reference formula. The other attribute is abstraction, which
means the formulas are independent of a specific implementation. Security analysts
can generate the reference formulas by just reading the algorithm description. The
feature described by the formula should be encoded into all implementations of the

algorithms. Taking TEA as an example, the reference formulas are as follows:
y=((xr1 <<4)+229) B (r1 +23) D (11 >>5) + 74) + 75

Here we group a set of bit symbols as x1, ..., x5 for the easy presentation purpose.
Note that the concrete variable sum in Figure 6.2 is represented as a symbolic
variable z3. It is because the value of sum derives from a key schedule constant,
delta. Skilled malware authors can customize this constant value to produce
implementation variations, which will bypass our detection. To make the reference
formula more flexible, we substitute sum as a symbol as well. We will discuss such

a non-standard XTEA implementation we identify in Section 6.10.2.

6.4 Execution Trace Recording

When analyzing a target binary program, we first record its execution trace.
CryptoHunt’s trace record component is built based on Pin, a dynamic binary
instrumentation framework developed by Intel [85]. All instructions except system

call are recorded during the run time. The trace includes the following information.
1. The memory address of each instruction

60

2. The machine instruction name (opcode) which describes its operation, such

as lLoad or mov

3. The source and destination operands of the instruction, which could be an

immediate value, a register name, or a memory address

Malware authors commonly apply various binary packing tools to hide the real
code and then recover the real malicious code during execution. Recording binary
unpacking routine will bring many useless instructions. Our purpose is to detect
the cryptographic algorithm inside obfuscated binaries. To this end, we utilize
generic runtime unpacking techniques [96,98] to renew trace recording when the

execution flow returns to the original entry point.

6.5 Loop Body Ildentification

From the previous step, we obtain an execution trace of the target program. As
mentioned before, CryptoHunt detects cryptographic code inside loop structures.
In this section, we present how to identify loop bodies inside a trace. Our method
extends Calvet’s loop detection algorithm [55] so as to detect more categories of
loops.

First, we clarify the loop definition in this paper. A loop is a sequence of

instructions that meets one of the following requirements.

1. The opcode of the sequence of instructions repeat at least one time.

2. The instruction sequence ends with a conditional or unconditional jump

instruction jumping to the beginning of the instruction sequence.

Figure 6.3 shows two trace examples according to the loop definition. In
Figure 6.3(a), the instruction sequence [1,2,3,4] repeat at least two times, which
meets the first loop definition. This loop form is usually corresponding to an
unrolled loop by compiler optimization. In Figure 6.3(b), the trace contains a
conditional jump instruction jne 8048100, which jumps to an instruction that
has been executed. So it meets the second rule in our loop definition. Notice that
although the control flow jumps back to a previously executed instruction, the

following instruction sequence is not as same as the previous one. This is because

61

there might be conditional branches inside a loop body, which leads to execution of
different instructions in each loop iteration. In practice, many loops in an execution
trace fall into the second category. One example in cryptographic algorithm is the
modular exponentiation implementation in RSA. It is typically implemented as a
loop containing two branches. One branch is a multiplication and the other one is
a squaring and a multiplication. In every iteration, the execution flow takes one
branch based on the bit of the exponent being referenced so the iterations of the
same loop could be different. Calvet’s loop detection algorithm [55] only detects
the case in Figure 6.3(a). Our loop identification method covers both cases in
Figure 6.3.

We provide a brief description of the loop identification algorithm. First, when
scanning the first category of loops in a trace, we reuse the loop detection algorithm
in Calvet’s work [55]. One extension in our loop identification algorithm is matching
function call/return instructions pairs. Function calls could break the loop definition
in Figure 6.3(a). For example, calling the same function with different parameters
could result in different control flow in the function. Therefore, we need to eliminate
the function calls’ interference inside the execution trace. We try to match the
function call and return instruction during the loop identification. The matching
procedure is one scanning pass on the execution trace. We maintain a stack to
simulate nested function calls inside the trace. During the matching process, when a
call instruction is seen in the scanning procedure, we push it to the stack and record
the entrance address. When a return instruction is seen, we pop the call instruction
from the stack and replace the whole function body with the call instruction and
its entrance address. In this way, during the loop identification, function calls with
the same entrance address are recognized as the same instructions, which prevent
the function calls’ interference in the loop identification algorithm.

In order to identify the second category of loops, we seek for the jump instructions
whose destination instruction has been executed in the trace. When such a jump
instruction is identified, we mark the address range between the jump instruction and
its destination. If the instruction following the jump is the destination instruction,
we identify the range as a loop. The process is repeated until the next instruction
of the jump is not its destination. Note that we could identify different iterations
of the same loop in this category. For example, in Figure 6.3(b), [1,2,3,4] and

[1,5,6] are two iterations of the same loop. By computing the hash value of each

62

8048100 8048100
1 1
2 2
3 3
4 4
8048120
1 jne 8048100
8048100
2 1
3 5
4 6

(a) (b)

Figure 6.3: Loop identification in an execution trace.

loop iteration, we can distinguish and only record the different iterations for future
analysis. For the sake of efficiency, the identification of the second loop category is
processed together with the first category.

Moreover, we also identify nested loops by folding all detected loop body
iterations. Figure 6.4 shows the folding procedure. In Figure 6.4(a), we identify the
repeated instruction sequence [2,3] as the innermost loop L;. Then we fold all
iterations of L; and replace them with a pseudo instruction named L1 and continue
the loop identification as shown in Figure 6.4(b). In the folded trace, we identify
the repeated instruction sequence [1,L1,4] as the outer loop L,. Similarly, all
iterations of Ly are folded and replaced by the pseudo instruction L2. The final
folded trace is shown in Figure 6.4(c).

After all, the output of loop identification is a set of different loop iterations.
Since the number of candidates could be very large, we apply some crypto algo-
rithm specific heuristic methods to filter out non-related loop iterations. Since
cryptographic algorithms usually contain intensive bitwise operations, one heuristic
method is counting the number of bitwise instructions inside a loop [99]. Another
heuristic method is using the absolute entropy of the memory regions accessed
in the loop body. It is because that encrypted data is considered to have a high
information entropy [51]. The loop iterations after filtering are passed to the

following phases for future analysis.

63

L1

A\ 4
A\ 4
(6]

L1

DN[(B[WIN|WOIN[WIN[=2[R[WIN[W[IN|—
(¢,

(@) (b) ()

Figure 6.4: Nested loops identification.

6.6 Bit-precise Symbolic Execution in Loop

After identifying loops in the execution trace, we extract each loop body and
perform bit-precise symbolic execution to transform them into boolean formulas. In
our method, we analyze the loop body, which is only one iteration of the loop. We
first identify the free output variables in the loop body and then perform backward
slicing from each output variable. In each slice, we can backtrack to the input
variables of the loop body. We claim the input variables which meet the following

conditions as free input variables and mark them as symbols.

1. The variable is loaded from memory.

2. The variable is not a loop invariant. Since the execution trace includes all
run-time information, we can check whether a variable is a loop invariant by

comparing different loop iterations.

After that, we symbolically run each slice so as to transform them into a boolean
formula, which is composed of a series of boolean functions. Each function is a

transformation which takes multiple input variables and generates one output.

64

Particularly, we transform each free variable into boolean variables. For example,
if a free variable is in a 32-bit register, it is transformed to 32 boolean individual
variables. Therefore, with bit-precise symbolic execution, we transform the opera-
tions associated with the output variables into a boolean formula, which accurately
describes the semantics of the instructions inside a loop body.

One benefit of bit-precise symbolic execution is it reveals the fine-grained
semantic meaning of the operations inside a loop body so as to resist obfuscation
techniques. This feature makes our method outperforms lots of previous work. For
example, the current research work Aligot [55] utilize the input/output relation to
identify cryptographic functions. One limitation of this category of research is that
the parameters in the target program must be exactly same as the parameters in
the reference implementation. It is because that they treat the whole loop body
as a “black box” without looking into the details inside. In practice, simple data
obfuscation such as data aggregation and data split can easily work around Aligot.
We present an example in Figure 6.5.

Figure 6.5(a) shows the normal program before the data obfuscation. Variables
a and b are two input variables for the while loop. If we already know a and b are
small integers, which will not use the higher bits of the 32 bits, we can aggregate
the two variables into 32 bits variable X as shown in Figure 6.5(b). Therefore, the
while loop only has one input variable X. Notice that X is not equivalent to either a
or b. As a result, cryptographic detection tools based on input and output relation
such as Aligot cannot identify those two programs are semantically equivalent.
Similarly, we can also split the variable a into two variables al and a2 as shown in
Figure 6.5(c) and the input and output data of the while loop is also obfuscated.
What’s more, there are plenty of encoding obfuscation in this category, such as the
obfuscation using homomorphic functions [100] and variable merging [43].

On the other hand, bit-precise symbolic execution provides a perfect and final
solution for this problem. By translating the operations into boolean formulas, we
can compare the fine-grained semantics of different loop bodies. For instance, if we
translate the while loops in Figure 6.5(a) and (b) into boolean formulas, we will

find that the two sets of formulas are essentially doing the same task.

65

struct {

int a : 15;
int b : 17;
FX
/* aggregate a,b to X x/
int a = f(); X.a = f();
int b = g(); X.b =g();
while () { while (...) {
m=a << 4; m= X.a << 4;
n=>bx*5; n=X.b *x 5;
} }
(a) Normal program. (b) Data aggregation.
a=T1();
b = ;
/* split a to al, a2 */
short al = a & O0QOFffff;
short a2 = a >> 20 & 00000fff;

while (...) {
int aa = (int) a2 << 20 | al;
m = aa << 4;
n=>bx5;

(c) Data split.

Figure 6.5: An example of data obfuscation.

6.7 Guided Symbolic Variable Mapping

The bit-precise symbolic execution in the last section output a group of boolean
formulas. In this section, we compare these formulas with the reference formulas so
as to decide whether they are equivalent. Since each input and output variable is

transformed into boolean variables, typically there are dozens of input and output

66

variables. When comparing those formulas, the key problem is mapping the input
variables in target formulas to those in the reference formulas. In previous related
work, the mapping is mainly done by permutation and then using a theorem prover
to check them one by one.

However, the number of variables in our work is significantly larger so simple
permutation will cause serious performance issue. Therefore, we propose a new
method to quickly find the possible variable mappings and filter out the impossible
ones. In another word, the mapping procedure itself can partially verify the

formula’s semantics before applying the theorem prover.

6.7.1 Motivation

Before describing the detail matching algorithm, first we provide an example to
show why we need a mapping algorithm. Suppose we are comparing two loop
bodies. One is from the target program and the other one comes from the reference
program. The operations in both loop bodies have been translated to two sets of
boolean functions as shown in function set 6.1 and 6.2. Here we call a set of boolean
functions as a formula. In this example, we suppose that the target and reference
program both include three input boolean variables and two output variables.
Particularly, formula F' is extracted from loop bodies in the target execution trace
and G is from the reference program. In formula F', x;, x5, and z3 are input
variables, u; and us are output variables, and f; and f, are the boolean functions
that compute the output variable value based on the inputs. Similarly, formula G
shows input/output variables and functions in the reference program. Notice that
here we use x and y to distinguish the input variables in the target program and

the reference program.

Uy = T1,%2,23) =1 N2 VT

e 1 = fi(z1, 22, 23) 1A\ x2 V3 (6.1)
uy = fo(x1, To, 23) = 21 V 23 A Ty
V1 = s N = /\ /\

G o) o= 0y ys) =2 Aye) Ays 6.2)
v2 = G2(y1, Y2, Y3) = y1 V (Y2 A y3)

In order to check whether the two formulas are semantically equivalent, we need

to find out which input variable in formula F' is identical to the input variable in

67

G, and also the output variables. In another word, we need to find two variable

mappings as shown in Figure 6.6.

~ —

(a) Input mapping. (b) Output mapping.

Figure 6.6: Variable mapping.

Assuming the mappings in Figure 6.6 have been found, we can build a boolean
equation set 6.3 to check whether F' and G are equivalent. Multiple methods such as
fuzz testing and theorem proving can be applied to verify the equation set. If every
equation in the set always holds, it proves that formula F' and G are equivalent,
which means the loop body in the target program is equivalent to the reference.
As a result, the target program includes a cryptographic function implementation.
We check all loop bodies and report finding a cryptographic algorithm when one
loop body matches.

{ ZEl/\IQ\/l’g:_\(Ig/\l’g)/\fEl (63)

sl \/_|I3/\.’L'2 =29V (333/\.1’1>

6.7.2 Definitions

Starting from this section, we present the formal mapping algorithm. First, we

introduce the formal definitions of the concepts used in our algorithm.

Definition 1 We define a boolean function f(x1,zs,...,x,) as a mathematical

function that takes n boolean arguments (inputs) and returns one boolean result
(output).

Definition 2 We define a boolean formula F), ,, which has n inputs and m outputs

as a function set that includes m boolean functions, each of which has n inputs:

68

fl(xlax% s 71‘”)

T1, X2, .., Ty
A
fm(xl, To, ... ,xn)
Definition 3 Given a boolean function f(x1,xs,...,x,), we define its Input Iden-
tity Matrix as a n X n matriz:
1 0\ (&
;o 0 1 0 B 77
0 0 1 7T

where TT is the ith row vector.

In an input identity matrix, each row vector ff represents one input by setting

only one variable to 1 and the rest to 0. An input identity matrix enumerates all

possibilities of these inputs.

Definition 4 Given a boolean formula F, ,,, we define its Output Matrix as an

n X m matriz:

a1
21
o _
anm =
an1

where

CLZ']‘ = f](sz>, Z = 172,

Q12 - Qi
Q22 -+ Q2m
Ap2 = Apm

oonandj=1,2,....,m.

In an output matrix, each row is the outputs by feeding the corresponding row

vector in the input identity matrix into

every boolean function. The insight is that,

each row of the output matrix corresponds to one input variable and each column

corresponds to one output variable. A permutation of rows in a output matrix is a

permutation of the input variable. Similarly, a permutation of columns in a output

matrix is a permutation of output variables. Therefore, the mapping problem is

essentially equivalent to the following problem:

69

Can we transform one output matrix to the other by permuting rows and
columns?

This is the key idea in our mapping algorithm. Notice that permuting rows
and columns still keep the sum of each row or column unchanged. This feature
provides a hint for mapping the rows and columns, which correspond to the input
and output variables. So we go ahead to define the row sum vector and column

sum vector in an output matrix.

Definition 5 The row sum vector 70 and column sum vector ¢ of an output

matriz M©

wm are defined as follows.

m n
> > ai
i=1

J=1

m n
. Z agz | Zaiz
Ty = | j=1 ,CU = | i=1

. .
Z a/nj Z aim
=1

Each element of the row sum vector is the sum of the corresponding row in
Mgm. Essentially it describes the fact that how many outputs is evaluated to 1
when setting a specific input to 1 and leave the rest to 0. Similarly, a column sum
vector describes how many output variables are set to 1 in each column of Mnom.
rv and cv are used for computing the mapping in a given output matrix.

For example, given an output matrix MY, its 70 and ¢0 are shown as follows.

1

1 01 2
M2O3: 7717): 707}: 0
’ 001 1 9

So far we have defined the concepts related to inputs and outputs of formulas.
Since our objective is to find the mapping between two formulas’ inputs and outputs,
we need to clarify the concept of mapping in this paper. There are two types of
mapping, full mapping and partial mapping. As shown in Figure 6.7(a), a full
mapping means every element in one set has been mapped to a unique element in
the other set. A partial mapping means we only find mappings for partial elements

in one set. Taking Figure 6.7(b) as an example, we have found mappings for the

70

elements ay, ag and a4 in S’. However, the mapping for as and as is still not decided.

Possible mappings are ay — b3, as — b5 or ag — bs, as — bs.

S T

(a) A full mapping. (b) A partial mapping.

Figure 6.7: Mapping examples.

6.7.3 Algorithm Description

We have introduced the basic concepts that are needed to formalize the algorithm.
As mentioned above, we transform the variable mapping problem to the output
matrix mapping problem; that is, given an input identity matrix, a variable mapping
exists if and only if one output matrix can be transformed to the other by permuting
rows and columns.

Based on this idea, we propose the variable mapping algorithm, which is
described in Algorithm 2. Briefly speaking, the algorithm recursively seeks for all
possible mappings based on a series of specific inputs. The method is complete,
which means if a mapping exists, it must appear in the result. It is possible that
the mapping algorithm generates some false positive mappings and they will be
checked by the following verification steps.

Given two boolean formulas F; and F5, the high-level panorama of the mapping
algorithm is shown as follows. We provide an example to show the mapping

algorithm step by step in the following section.

1. Feed the Input Identity Matrix I into F; and F3 respectively and generate

two output matrix MY and MY .

2. Create the row and column sum vectors for MY and MY and check them

using heuristic constraints.

71

3. Create mappings based on the row and column mappings. Check whether

the mappings are consistent.

4. If one variable is mapped, add it to the mapped list. Otherwise permute

building mappings for the elements.
5. Randomly create new inputs based on the mapped variables.

6. Recursively call VarMapping to map the remaining inputs and outputs.

6.7.4 Example

Last section describes an overview of the mapping algorithm. Now we provide an
example to show the whole procedure in details. We still use ' and G as shown in
formula 6.1 and 6.2. We initiate the partial mapping list L set as follows. M;, and

M,,; are initiated as empty.

{1, 22, w3} = {y1, 90, Y3}
{uy, ug} — {vy,v9}
First, since M;, is empty, there is no mapped variable. We generate the input
identity matrix for all input variables. After that we create the output matrix
accordingly. For the ease of understanding, we show the procedure in equation 6.4

and the matrix in 6.5.

{I’l :1,$2:O,ZL‘3:0}${U1:O,U2:0}
{371 =020 =1,23 = 0} = {Ul =0,us = 1} (64)
{1 =0,29=0,23 =1} = {u; = 1,us =0}

Ml = MO = (6.5)

o O =
o = O
_ o O
_ o O
[)

Following the same method, we feed the inputs into G and the result is shown
in 6.6 and 6.7.

{yi=1,92=0,y3 =0} = {v1 = 1,0, = 0}
{y=0,12=1y3 =0} = {v1 = 0,0, =0} (6.6)
{y1 :0,y2:O,y3: 1} :>{U1 :O,ng 1}

72

Mj = (6.7)

o O =
o = O
= o O
o)
I
o O =
— o O

Based on M? and MY, we create the row and column sum vectors as follows.

0 1
ror=|1],cu1 = 1 , T = | 0| ,cUy = 1
1 1

The sorting result of ¥, and 705 shows they are equivalent and so do ¢0; and
c0y. Therefore, we move on to the next step to connect the rows that have the
same number in row sum vectors. So x — yo and {xs, 3} — {y1,y3} is created
and added to L. Similarly, we create connections between columns. As a result, L

is updated as follows.

{21, 02, 23} = {y1, y0, Y3}
T1 > Y2
{2, 25} = {y1, us}
{uy, ug} — {vy,v9}

We reduce the connections in L by intersection operations. L can be normalized

to the following form.

Ty = Y2
{wo, 23} = {1, 43}
{U17u2} — {UbUZ}

After that, in Line 27 of the mapping algorithm, we find a mapping x; — ys.
So we remove it form L and add it to M;, since it is a connection of the input
variables. Then we recursively call VarMapping again using the updated L and
M;,.

In the second call of VarMapping, we generate random input for variables in M;,.
Notice that the connected variables must have the same value. For example, we
generate r1 = 1,y, = 1. We still generate input identity matrix for the remaining

input variables in L. Therefore, the input and output matrix are as follows.

73

H
|
/-~
—
S =

1
0 MO = 0
1 11
1 10 11
Ml = MY =
011 01

Similarly, we create the row and column sum vectors for M and M.

~ 1 . 2 B 2\ . 1
ro; = ,C0p = Ty = ,Cly =
e R 7)) e

The vectors pass the sorting check as before. By updating and reducing L, the
result is as follows.

To = Y3
T3 = Y1
Uy — V9

Ug = U

After moving the mapping in L to M, and M,,;, L is empty. So the final result
will be returned in M;, and M,,; when calling VarMapping next time. The final

mapping result is shown in Figure 6.8.

=t

a) Input mapping. b) Output mapping.

Figure 6.8: Final result of variable mapping.

Based on the variable mapping information, we can produce the equation set

for the following verification procedure.

(6.8)

x1A$2V$3:$3V($1/\$2)
-y V 3 A xe = (23 A xy) A Xo

In this example, our mapping algorithm generates one candidate variable map-

ping. Being compared with the permutation, which will generate 3! x 2! = 12 inputs

74

and outputs combinations, our method reduces the number of candidates. Notice
that in our example we only show three input variables and two output variables.
Since permutation is a factorial function, when the number of variables increases,
the number of permutation will grow very fast. Our mapping algorithm can filter

out unmapped formulas and significantly reduce the number of candidates.

6.7.5 Algorithm Analysis

In Section 6.7.2, we state that the variable mapping problem is equivalent to the
following question:

Can we transform one output matrix to the other by permuting rows and
columns?

In fact, the matrix permutation problem can be further proved to be equivalent
to bipartite graph isomorphism problem. The proof is shown as follows.

Given two output matrices M and MY, which both have n rows and m columns.
Supposing they are adjacent matrices, we construct two bipartite graphs G; and
(5. G1 has n blue vertices by, by, ..., b, and m red vertices r1,7,...,7,. In M?,
if the element at the ith row and jth column is 1, an edge is created connecting
the vertex b; and r; in Gy. Similarly, Gy is constructed from M. Permutation of
the rows and columns in M and M only changes the order of vertices. It does
not change the topological structure of the corresponding graph. Therefore, the
problem of checking whether M can be transformed to M by permuting rows
and columns is equivalent to checking whether G; and G5 are isomorphic.

The bipartite graph isomorphism problem is not known to be solvable in
polynomial time, so the matrix permutation problem in this paper has the same
complexity. Therefore, in general our guided-fuzzing method does not always
guarantee to return the mapping result in a reasonable time. In some extreme
cases, our method could lead to time out. For example, when there are many
redundant variables in both of the two matrices, our method has to permute all
possible mappings between each pair of them, because flipping these redundant
variables does not change the out matrix. The permutation could cause time out.
However, in practice the reference formula in our method is from an open source

crypto library, we can guarantee it does not contain those redundant variables. If

I6)

only the target program has redundant variables, our method can still return the

correct mapping result.

6.8 Verification

In this section, we present the method to verify the boolean equations generated
by the previous step. Basically, we use two methods, fuzz testing and theorem
proving. Fuzz testing is quick but the result is not sound; that is, passing fuzz
testing does not mean the equations always hold. Theorem proving is slow but the
result is sound. Therefore, we use fuzz testing as the first round to filter out some
candidates and apply theorem proving to the remains.

We randomly generate some inputs and feed them into the boolean equation set
to test whether they hold. In our practical experience, this is an easy and quick way
to get rid of many wrong mappings and give a partial equivalence checking. For
example, if all mapping candidates do not pass fuzz testing, we can safely decide
the two sets of formulas are semantically different.

After the equation sets pass fuzz testing, we utilize a theorem prover to prove
the formulas. If the formulas hold, we claim that the target program and the

reference program are semantically equivalent; otherwise they are different.

6.9 Implementation

We build a tool named CryptoHunt as an implementation of the idea in this paper.
The trace logging component is built based on Intel’s Pin DBI framework [85]
(version 2.12) with 945 lines of code in C/C++. The loop identification component
is implemented with 374 lines of Perl code. CryptoHunt’s bit-precise symbolic
execution is built based on BAP [37] (version 0.8), which is used to lift x86
instructions to the BAP IL and further into boolean formulas in CVC format.
We also built a framework to implement the formula mapping algorithm, fuzz
testing, and other formula analysis, which includes 1700 lines of C/C++ code.
Moreover, we adopt STP [83] as the theorem prover. For the convenience of future
research, we have released CryptoHunt source code at https://github.com/
s3team/CryptoHunt.

76

Table 6.1: Cryptographic algorithm categories.

Category Algorithm
Block cipher TEA and AES
Stream cipher RC4
Hashing algorithm MD5
Asymmetric cipher RSA

6.10 Evaluation

In this section, we evaluate CryptoHunt from two main aspects: effectiveness and
performance. Particularly, we conduct our experiments to answer the following

research questions (RQs).

1. RQ1: Is CryptoHunt effective to detect widely used cryptographic algorithms

in obfuscated binaries? (effectiveness)
2. RQ2: How many false positives can CryptoHunt produce? (effectiveness)

3. RQ3: How much overhead can CryptoHunt’s dynamic detection approach

introduce? (performance)

As the answer to RQ1, we compare CryptoHunt with other peer tools using
crypto projects collected from GitHub with different obfuscation techniques. We
also evaluate them on malware samples. In RQ2, we use normal programs such
as core utilities, compression tools, and server programs to test the false positives.
In response to RQ3, we report CryptoHunt’s performance data such as running
time, number of identified loops, and number of STP queries. We also report the

performance improvement introduced by our guided fuzzing approach.

6.10.1 Answer to RQ1: Crypto Libraries

6.10.1.1 Dataset

We first test CryptoHunt with commonly used cryptographic algorithms from four
categories (see Table 6.1). We choose TEA and AES as block cipher examples. Tiny
Encryption Algorithm (TEA) [101] is a simple block cipher, which is frequently

7

adopted by malware authors to hide malicious intent; while the Advanced Encryp-
tion Standard (AES) [102] is a more complicated block cipher, which has been
used by crypto-ransomware to encrypt victim’s documents. RC4 is chosen as the
stream cipher candidate. It is used by standards such as IEEE 802.11 within WEP
(Wireless Encryption Protocol) using 40 and 128-bit keys. We choose MD5 [103] as
the hashing algorithm since it is widely used on the Internet for software integrity
checking. At last, we use RSA [104] as the asymmetric cipher candidate. RSA is
one of the first practical asymmetric ciphers in the world and is widely used for
secure data transmissions. In practice, programmers usually take advantage of
existing cryptographic libraries when they need encryption/decryption function.
This is due to two reasons. First, cryptographic algorithms are highly standardized.
Many cryptographic libraries such as OpenSSL and Libgerypt already have correct
implementations, so there is no need for normal programmers to re-implement them.
The other reason is that cryptographic algorithms are complicated and difficult
to implement. It is common that user-implemented cryptographic algorithms are
buggy. Therefore, as one common scenario of using cryptographic algorithms, we
evaluate CryptoHunt on popular cryptographic libraries. In our evaluation, we test
two open source libraries: OpenSSL! and Libgerypt?. OpenSSL and Libgerypt are
both widely used in real world software systems such as web server, email client and
web browser. Our purpose is to detect commonly used cryptographic algorithms
provided by standard libraries. To this end, we collect 25 open source projects from
GitHub?. For each crypto algorithm in Table 6.1, we collect 5 projects. All the
25 projects reuse cryptographic functions from either OpenSSL or Libgerypt. The

configuration of our testbed machine is shown as follows.
« CPU: Intel Core i7-3770 processor (Quad Core with 3.40GHz)
e Memory: 8GB
o OS: Ubuntu Linux 14.04 LTS
o Compiler: GCC 4.8.4

o Crypto Libraries: OpenSSL 1.1.0-pre3, Libgcrypt 1.6.4

Thttps://www.openssl.org/
Zhttps://www.gnu.org/software/libgerypt /
3https://github.com

78

6.10.1.2 Peer Tools

We compare CryptoHunt with six cryptographic code detection tools: Cryp-
toSearcher, Findcrypto2, Signsrch, DFGIsom, Kerchkhoffs, and Aligot. These six
tools represent both static and dynamic detection directions. CryptoSearcher [105]
is an assembly tool that identifies cryptographic programs by static signatures.
Similarly, both Findcrypto2 [106] and Signsrch [107] are IDA [108] plug-in tools
and search static signatures for cryptographic function detection. DFGIsom [54]
statically identify symmetric cryptographic algorithms and their parameters inside
binary code based on Data Flow Graph (DFG) isomorphism*. Kerchkhoffs [57] is a
trace analysis tool, which provides methods to reconstruct high-level information
from a trace, for example control flow graphs or loops, to detect cryptographic
algorithms and their parameters. The advanced detection tool, Aligot [55], relies

on identifying unique input-output relations at loop boundary.

6.10.1.3 Obfuscation Options

To obfuscate cryptographic algorithm implementations, we rely on a state-of-the-art
compile-time obfuscation tool, Obfuscator-LLVM [110], which supports popular
obfuscation transformations [1,111]. We have extended Obfuscator-LLVM to include
three obfuscation options, N, O1, and 02, which specify different obfuscation levels.

The details of the obfuscations included in each option are listed as follows.
1. N: The obfuscator does not perform any obfuscation.

2. O1: The obfuscator performs simple instruction-level obfuscation and control
flow obfuscation, including dead code insertion, instruction substitution,
opaque predicate, control flow flattening, loop unrolling and subroutine

reordering.

3. 02: In addition to O1, the obfuscator performs data obfuscations including
variables encoding, data split and data aggregation. O2 contains both control
and data obfuscations. Therefore, O2 has a much stronger obfuscation effect

that O1.

4Since this tool is not publicly available, we simulate the approach by BAP’s built-in feature
to generate DFGs. We implement DFGIsom’s normalization rules to simplify DFGs, which are
then matched by Ullman’s subgraph isomorphism algorithm [109].

79

We use the source code in OpenSSL as the reference implementation. Since OpenSSL
does not include the TEA algorithm, we use the code shown in Wheeler’s paper [101]
as TEA’s reference implementation. First we compile the crypto libraries with
different obfuscation options. Then we compile and statically link the 25 collected
cryptographic projects to the crypto libraries. At last, we run CryptoHunt and other
crypto detection tools to detect them. We evaluate CryptoHunt in two scenarios.
First, the testing library is same as the reference library. In this case, we use
OpenSSL as both the reference and testing library. The other scenario is that the
testing library is different from the reference library. In this case, we use OpenSSL
as the reference library and Libgcrypt as the testing library. One exception is that
TEA is not included in Libgerypt, we select another implementation TEA* [112].

6.10.1.4 Evaluation Result

The evaluation result is shown in Table 6.2°. Basically, only CryptoHunt is able
to detect commonly used cryptographic functions in all cases, while other tools
are severely restricted under different obfuscation combinations and algorithm
implementations. For example, the advanced dynamic detection tool, Aligot, fails
in all of the tasks with the O2 obfuscation option. Next, we provide more details
behind the results.

6.10.1.4.1 TEA TEA is a 64-bit cipher which uses 128-bit key. It is usually
implemented as 64 rounds of Feistel structure [101]. In CryptoHunt, we use the
transformations inside one Feistel structure loop as the reference implementation (see
Figure 6.2). As shown in Table 6.2, all tools except Finderypto2 successfully identify
the TEA algorithm in the unobfuscated code in both OpenSSL and Libgcrypt. The
reason is Findcrypto2 does not contain TEA’s static signature. In the O1 version,
DFGIsom fails to detect TEA because data flow graph is obfuscated. Signsrch
and CryptoSearcher rely on the magic number 0x9e3779b9 as the static signature.
This number cannot be obfuscated by control obfuscation techniques, so Signsrch
and CryptoSearcher still work in O1 version. Aligot and Kerchkhoffs are resilient
to the control obfuscation techniques. With data obfuscation added in the O2

5We find that the crypto detection tools either detect all the five projects in one algorithm
category, or detect none of them. Therefore, for simplicity we use the check mark v* to indicate
that the tool detects all five samples and blank showing it detect none of them.

30

Table 6.2: Evaluation result on crypto libraries.

JUNHOMAID NS ™S S S S SIS S SIS S SIS S SIS S SIS S SIS S SN S SIS S S
1031 [> ASIES NS NS AN NS NS
SHOUIUDIDY | AN
wosTHAA ™ ~ S ~ S S
10UDIROGOIdAID) [N N [N N S S AN S S
OISUSIS N N S N SSS S
goydAmopuryg AN NN
= o~ o~ o~
3-58~88-38»38~58|=58x58-38»38=583
o < n <t e < = p) <t o) <
200 m € O A o5 @) O A
=l & | = | & | 2| & 2 < | & | 2| &
e -
s A =
8 < 3
2 3 2
3 @) —

81

version, only CryptoHunt is able to detect the highly obfuscated TEA algorithm.

In another implementation TEA*, the result is the same.

6.10.1.4.2 AES The AES design is based on substitution-permutation net-
work [102], which is stronger than the Feistel structure in TEA. We use the core
transformation in the innermost loop in OpenSSL’s implementation as the refer-
ence. Most tools successfully identify AES algorithm in the OpenSSL experiment
without obfuscation. We attribute this to AES’s distinct feature such as the lookup
table. With O1 obfuscation, DFGIsom fails due to the same reason as in TEA.
Particularly, we notice that Aligot fails to detect unobfuscated AES algorithm in
Ligcrypt when using OpenSSL as the reference. We looked into the source code
and binary code and find it is because of the different implementations between
OpenSSL and Libgerypt. The input and out variables in the innermost loop of
OpenSSL’s implementation is different from those in Libgcrypt. Since Aligot views
the loop body as a black box without checking the details inside, it cannot perform

more fine-grained detection as CryptoHunt.

6.10.1.4.3 RC4 RC4, a classical steam cipher, generates a random stream of
bits as a key stream. The key stream is used to encrypt or decrypt by performing
an XOR operation on the input. Typically, the encryption procedure in RC4 is a
simple XOR operation. It cannot be used as the reference to recognize RC4 algorithm
because it will cause lots of false positives. Instead, we use the transformation in
the key generation algorithm as the reference implementation. Table 6.2 shows only
Aligot and CryptoHunt successfully detect the RC4 algorithm in the unobfuscated
program and O1 version. The reason is, unlike TEA and AES, RC4 lacks obvious
features that can be used as detection signatures. However, Aligot fails in the O2

version again.

6.10.1.4.4 MD5 MD5 algorithm [103] is a widely used cryptographic hash
function to generate message digest. It produces a 128-bit hash value for any input
message. The input message is split into chunks of 512-bit and then processed
in a main loop. We use the transformations in the main loop as the reference
implementation. CryptoSearcher, Aligot, and CryptoHunt successfully detect the

clean version of MD5. Typically, there is an initial value for the digest variable

82

in a MD5 implementation, such as 0x67452301 in OpenSSL. Therefore, Cryp-
toSearcher detects MD5 by searching for this constant value in binaries. Since
control obfuscation does not change these constants and the input/output variables
in a loop body, CryptoSearcher and Aligot is still able to detect MD5 in O1 option.
However, after adding data obfuscation with O2 option, only CryptHunt detects
MD5 algorithm.

6.10.1.4.5 RSA The RSA cryptographic algorithm [104] is one of the most
widely used public-key cryptosystems. RSA achieves this asymmetric goal based
on the computation difficulty of factoring the product of two large prime numbers.
Therefore, typically a RSA implementation includes a specific method to represent
large integer numbers. Due to the difference between varieties of implementations,
this representation can be viewed as an encoding of inputs and outputs. So this
“built-in” data encoding makes detection of RSA more difficult than of other cryp-
tographic algorithms. Table 6.2 shows that all of the peer tools fail to identify
the RSA algorithm. We find out three reasons contributing to the poor detection
result. First, RSA reveals no evident static features and therefore the tools such
as CryptoSearcher and Findcrypto2 are not able to detect it. Second, for Aligot,
the big number encoding in OpenSSL causes the extracted loop I/O parameters
from binary code cannot be directly matched to the reference implementation. In
contrast, CryptoHunt takes advantage of bit precise formulas so as to accurately
identify the semantically equivalent operations. At last, RSA’s modular exponenti-
ation implementation usually contains a main loop which matches the model in
Figure 6.3(b). Each iteration of the loop could goes into two branches, either one
multiplication or one squaring and a multiplication. Aligot’s incomplete loop model

causes it to miss the main loop and to fail to detect RSA.

6.10.2 Answer to RQ1: Individual Implementations

In addition to the standard implementation, some cryptographic algorithms allow
users to customize some key values to generate a new version. XTEA is such an
example. XTEA is the extended version of TEA. One important enhancement
is that the number of rounds is not fixed in XTEA, but 64 rounds is suggested.
Figure 6.9 shows a reference implementation of the decryption procedure in XTEA.

However, malware authors have already abused such flexibility to produce new

33

—_
=)

—_ =
W N =

—_
S
—

—_

void decipher(uint32_t v[2], uint32_t const key[4],
unsigned int num_rounds) {
unsigned int i;

uint32_t vO=v[0], vl=v[1];
uint32_t delta=0x9E3779B9, sum=deltaxnum_rounds;

CO 1O Ui Wi

for (i=0; 1 < num_rounds; i++) {
vl -= (((v0<<4)"(v0>>5))+v0) ~ (sum+key[(sum>>11) & 3]1);
sum -= delta;
vl -= (((vl<<4)”™(v1>>5))+vl) ~ (sum+key[sum & 31);

}
v[O] = vO; v[1] = v1;

Ne)

Figure 6.9: A reference implementation of XTEA’s decryption.

unsigned int num_rounds = 11, i;

uint32_t vO, vl;
uint32_t delta = 0x61C88647, sum = OxCC623AF3;

for (i=0; 1 < num_rounds; i++) {
vl -= (((v0<<4)~(v0>>5))+v0) ™~ (sum+key[(sum>>11) & 3]);
sum -= delta;
vl -= (((vl<<4)”™(v1>>5))+vl) ~ (sum+key[sum & 3]);

O © 00O Ui Wi+

}

Figure 6.10: The decryption function in an Apache Module injection malware.

variations to evade detection. A recent study [60] reports that a variant of XTEA
is used in an Apache module injection attack. We reverse engineer the Apache
module’s binary code and manually recover the new XTEA version. Figure 6.10
presents the core part of the new XTEA in C code.

In Figure 6.10, we can observe that the malware author modified XTEA al-
gorithm by replacing the original magic number OX9E3779B9 with 0x61C88647.
He also used 11 rounds of transformation rather than the suggested 64 rounds. In
order to show whether CryptoHunt can detect this modified version of XTEA, we

implement the function in Figure 6.10 as a C program. The source code shown in

84

Table 6.3: Evaluation result on an XTEA variant from malware.

g
S =
< = e= =
E L2 E 2 2
5 3 s 5 5
5 oE 2 2 2 £
E R PR ESE
Algo Obf = ;» © A X < O
N v v
Modified XTEA | O1 v
02 v

Figure 6.9 is used as the reference implementation. Similar to the evaluation on
crypto libraries, we compile the testing program with different obfuscation options
N, O1, and 0O2. We also run other detection tools to compare with CryptoHunt.
The result is shown in Table 6.3.

From the result, we can see that only CryptoHunt detected the modified
XTEA in all three versions. Because the malware author changes the magic
number and rounds, all static tools based on these signatures fail to detect it.
Particularly, due to the new magic number, the computation in the loop body
changes. Therefore, input and output values in the modified version do not match
the reference implementation, which causes Aligot to deliver a poor detection result.
DFGIsom correctly extracts and match the DFG so it can identify the modified
XTEA in the unobfuscated version. This case study shows that CryptoHunt is
able to catch the crucial transformations related to cryptographic functions and
ignore the differences introduced by obfuscation and modification to the original

algorithm.

6.10.3 Answer to RQ1: Malware Samples

Table 6.4 shows the evaluation results on malware samples we collect from the In-
ternet, including now-infamous crypto-ransomware. RansomCrypt is a ransomware
sample. When first run on a system, it iterates all files and encrypts them using
TEA. Another ransomware sample, Locky, utilizes AES to encrypt files in victim’s
computer. Sality malware code has two sections; the first section decrypts the
second section using RC4 and redirects the execution to the beginning of the second

section. Waledac malware sample runs MD5 to generate a unique ID for every

85

Table 6.4: Evaluation result on malware samples.

Findcrypto2

DFGIsom
| Kerchkhoffs

Malware Algo
RansomCrypt | TEA
Locky AES
Sality RC4
Waledac MD5
CryptoWall | RSA

<« | CryptoSearcher

<| Signsrch

NS & Aligot
< S A A & CryptoHunt

Table 6.5: False positive evaluation dataset.

Category Programs
Core Utilities Is, cp, mv, cat, head
Compression tools | Gzip, bzip2, 7-zip
Server thttpd, lighttpd

bot. The notorious CryptoWall ransomware encrypts a wide variety of files in the
compromised computer using RSA.

From Table 6.4, we can see that many detection tools are able to identify TEA
in RansomCrypt. It’s because RansomCrypt uses the standard TEA algorithm with
only slight obfuscation. However, in other crypto algorithms, most of the detection
tools fail. One reason is that usually malware authors call Windows Crypto API
in the malware and apply obfuscation methods to hide the API call address. The
malware itself does not include the crypto algorithm implementation. Therefore,
signature-based tools fail to detect the crypto algorithms. Aligot fails to detect AES
in Locky due to the implementation difference between OpenSSL and Windows
crypto APIL. It also fails to detect RSA for the similar reasons we discussed in

Section 6.10.1.4: 1) big-integer encoding; 2) incomplete loop identification.

6.10.4 Answer to RQ2: Normal Programs

Too many false positives limit cryptographic function detection’s application in
practice. In this section, we test CryptoHunt with a set of normal programs to

evaluate its false positives. As shown in Table 6.5, our dataset includes GNU

36

Table 6.6: CryptoHunt’s offline analysis performance on OpenSSL.

Time (min) TEA AES RC4 MD5 RSA
Loop identification | 12.7 23.1 21.5 24.8 33.2
Variable mapping 0.7 26 1.9 2.1 3.4
Verification 2.3 4.1 4.5 5.2 6.7
Total 15.7 30.8 27.9 32.1 433

core utilities, compression tools, and lightweight server programs. We choose
compression tools because they also contain intensive bitwise operations, and server
programs contain a large number of loops. Our test dataset includes two groups.
The first is the original programs without any change. In the other group, we inject
magic numbers which could be used by crypto detection tools such as @x9E3779B9.
The second group mimics possible malware attacks. They are likely to insert known
signatures into benign programs to mislead detection tools. However, our result
shows that CryptoHunt reports no cryptographic function detected in all cases.

That means CryptoHunt has no false positive in our test dataset.

6.10.5 Answer to RQ3: Overall Performance

In this section, we provide the answer to RQ3 about CryptoHunt’s performance.
There are two phases when analyzing using CryptoHunt, trace logging and offline
analysis. We take advantage of Pin [85] to record the execution trace. The online
trace logging overhead is typically 5-6X slowdown. Table 6.6 presents the offline
analysis performance of CryptoHunt. We record the running time of different
components in CryptoHunt. The most time-consuming part is loop identification
since it goes over the whole trace multiple times and tries to identify nested loops.
Based on our observation, the nested loop level significantly increases the loop
identification time. Another factor that affects the performance is the number of
input and output variables of the loops. More variables will cause the variable
mapping algorithm generate more mapping candidates, which potentially raise the
chance of launching a theorem prover. Compared with Aligot’s result, which usually
takes more than 6 hours to analyze one execution trace, CryptoHunt delivers much

better performance.

87

Table 6.7: Evaluation of the Mapping Algorithm. The second column shows
the number of loops. The third column shows the number of mapping variable
candidates. “NM” stands for “No mapping”, which means the number of STP
queries without the mapping algorithm. Similarly, the column “M” shows the
number of STP queries with the mapping algorithm.

Algorithms Loops Vars Nl\%/él of 813; P %ﬁie?%]
TEA 7 41 | 2825 173 6.1
AES 13 96 | 7138 351 4.9
RC4 9 73 | 6055 337 5.6
MD5 8 77 | 8301 429 5.2
RSA 15 89 | 15521 803 5.2

6.10.6 Answer to RQ3: Mapping Algorithm

In this section, we present the experimental data to show the performance improve-
ment introduced by our guided fuzzing approach, which aims to reduce the number
of symbolic variables to be verified by a theorem solver. The data is collected in
the OpenSSL evaluation in Table 6.2. We collect the number of identified loops,
number of mapping variables candidates, and number of STP queries. The result
is shown in Table 6.7. In order to compare with the mapping algorithm, we also
implement a naive mapping procedure, which generates every possible combination.
However, the naive mapping outputs too many candidates. Thus we add some
simple heuristics to reduce the candidate number. The reduced number is shown
in the “NM” row. From the data, we can see that our mapping algorithm reduce

about 95% STP queries on average.

38

Algorithm 2 Mapping I/O Variables

1: Parameters:

2.l = (27,77 = Fy(y"): Boolean formulas
3 L: Current partial mapping list.

4 M;,: Full mapping of input.

5: M ;: Full mapping of output.

6: function VARMAPPING(Fy, Fy, L, My, Myyu)
7 if L is empty then

8 return (M;,, My.;)

9: end if

10: I < CreateldentityMatrix(L)

11: R < RandomlInput(M;,)

12 M{ + CreatelnputMatrix(/, R, F})

13: M} + CreatelnputMatrix(I, R, F,)

14: MP « CreateOM(F;, M)

15: MY « CreateOM(Fy, M)

16: 70, < CreateRowVector(M9)
17: ¢y <+ CreateColumnVector(MP)
18: 70y < CreateRowVector(MS)
19: by < CreateColumnVector (M)

20: if Sort(rdy) # Sort(rvsy) || Sort(chy) # Sort(ciq) then
21: return False

22: end if

23: UpdateMapping(L, 701, r0s)

24: UpdateMapping(L, ¢iy, c0y)

25: Reduce(L)

26: if L is not a partial mapping then

27: return False

28: end if

29: if ds+—t € L then

30: Remove s +— t from L

31: Add s — ¢t to M;,, or M,

32: VarMapping(Fy, Fo, L, M, Myw:)

33: else

34: for Permute the set connection s’ — t' € L do
35: Remove s’ + t/ from L

36: Add the permutation to M;, or M,
37: VarMapping(Fy, Fo, L, M, Mow:)

38: end for

39: end if

40: end function

39

Chapter 7
Discussion and Future Work

Opaque predicate detection techniques such as LOOP, rely on solvers to solve path
constraints. However, path conditions may include arithmetic constraints that are
infeasible to solve. For example, the constraints are computationally unsolvable, or
they are undecidable. Those path conditions present challenges to program analysis
methods such as symbolic execution plus constraint solver. In this chapter, we list
several predicates that is hard to analysis and propose possible future research work.
Moreover, we also discuss the limitations and future work in the cryptographic

function detection research.

7.1 Complex Path Conditions

In general, non-linear integer constraints are undecidable [113]. Therefore, these
constraints cause solvers unable to solve the path condition. Existing classical
concolic methods mitigate these problems by replacing some symbolic values with
concrete values using heuristic strategies. These reduction methods slightly improve
the solver’s ability so that they can handle non-linear predicates in some cases.
However, usually the simplification leads to over-approximation and misses possible
solutions.

Dinges and Agha [114] present a method combining symbolic reasoning, concrete
evaluation, and heuristic search. For non-linear constraints, it finds a point induced
by the linear constraints with an solver. Then starting from this point, it uses
adaptive search guided by the constraint fitness function to find a solution. Li
et al. [115] propose a new symbolic execution method. Instead of relying on

the classical constraint solving, the feasibility problem is first transformed into

90

optimization problems by minimizing some dissatisfaction degree. The optimization
problem are then handled by a optimization solver through machine learning guided
sampling and validation [116]. However, in general these work are based on heuristic

assumptions or sampling so they still suffer from the over-approximation limitation.

7.2 Inductive Constraints

Another category of constraints that are hard for solvers to solve is inductive
constraints. Existing SMT solvers such as Z3 and CVC are not able to solve
statements that requiring non-trivial use of induction. Leino [117] presents a pre-
processing of formula to perform inductive reasoning in program verifier. A more
recent work proposed by Reynolds [118] enhances SMT solvers to handle inductive
constraints. It uses heuristics to filter irrelevant intermediate lemmas when proving

the inductive constraints.

7.3 Unsolved Conjectures

X =input ();
l4;
Yy=X
x = input (); \{Nh”e =1
:15 > it (y%2 1= 0)
z y =3%y+1;
elsey =y/2;
}

I2;

Figure 7.1: Example of 3x+1 conjecture.

Recently Wang et al. [119] proposed a more stealthy obfuscation scheme by
incorporating linear unsolved conjectures, which appear to be correct but without
proof. Figure 7.1 presents an example of embedding the well-known 3x+1 conjecture
into a program. This conjecture asserts that given any positive integer y, the loop
will always terminate. In principle, we could treat the conjunction of branch

conditions derived from the unroll loop as a single opaque predicate, which always

91

evaluates to be true for any positive integer. However, different from dynamic
opaque predicates, the number of conditions is various under different inputs
and conditions themselves are not correlated as well. To detect such unsolved
conjectures, we observe that all the examples [119] will eventually converge to
a fixed value regardless of the initial value. Therefore, one naive solution is to
automatically generate test cases to explore different paths and observe whether

the multiple inputs cover the same value when the conjecture loop ends.

7.4 Cryptographic Function Detection

Since CryptoHunt works with adversaries, we have to consider how a skilled attacker
could circumvent CryptoHunt once our approach is known. In this section, we
discuss CryptoHunt’s limitations, possible attacks, and countermeasures, which
also light up our future work. First, like any binary dynamic analysis approach, one
limitation of CryptoHunt is its incomplete path coverage. Typically, CryptoHunt
can detect cryptographic functions exhibiting during run time. One way to increase
the path coverage is to leverage automatic input generation techniques [62,120].
The static analysis may consider multiple paths. However, the various obfuscation
methods adopted by malware authors will undoubtedly impede the accurate static
analysis [5]. The best way to reconcile such tradeoff is still a hot subject of research
in security analysis. We believe CryptoHunt is practical in analyzing obfuscated
malware.

Second, our prototype is not well optimized for performance. For example,
CryptoHunt’s online logging imposes 5-6X slowdown on average. We can rely on
pervasive multi-core architectures to parallelize dynamic instrumentation [121] for
better runtime performance. Meanwhile, the performance of CryptoHunt’s offline
analysis depends on the trace size. The loop detection will become performance
bottleneck when the trace size is too large. We leave addressing the performance
issue as our future work.

Another threat to CryptoHunt is environment-sensitive malware [122-124]. Since
we run malware with Pin, a malware sample can detect itself running in Pin instead
of the physical machine and then quit immediately. A possible countermeasure to
such sandbox environment check is analyzing malware in a transparent analysis

platform via hardware virtualization (e.g., Ether [125]).

92

Our symbolic variable mapping depends on the output of our backward slicing,
which already filters out irrelevant instructions. However, attackers can defeat it
by adding artificial dependencies between normal data flow and redundant code.
In an extreme case, the sliced segment could contain all the executed instructions.
While such an attack could reduce the efficacy of CryptoHunt, at the same time it
also requires extensive efforts and high cost for attackers. In summary, CryptoHunt

significantly raises the bar for skilled cybercriminals to defeat our approach.

93

Chapter 8
Conclusion

Opaque predicates have been widely used in software protection and malicious
program to obfuscation program control flow. Existing efforts to detect opaque
predicates are either heuristics-based or work only on specific categories. Dynamic
opaque predicate obfuscation is regarded as a promising method since the predicate
values may vary in different executions and thus make them more resilient to
detection. Furthermore, cryptographic functions are adopted to help hide opaque
predicates from detection. The attack and defense techniques related to opaque
predicates attract many researchers’ attention.

In this thesis, we present our new research work related to opaque predicate
obfuscation and deobfuscation in binary code. First, we propose LOOP, a program
logic-based and obfuscation resilient approach to opaque predicate detection in
binary code. Our approach represents the characteristics of various opaque pred-
icates with logical formulas and verifies them with a constraint solver. LOOP
detects not only simple invariant opaque predicates, but also advanced contextual
and dynamic opaque predicates. Our experimental results show that LOOP is
effective in detecting opaque predicates in a range of benign and obfuscated binary
programs. By diagnosing culprit branches derived from opaque predicates in an
execution trace, LOOP can help analysts for further deobfuscation. The experiment
of speeding up code normalization for matching metamorphic malware variants
confirms the value of LOOP in malware defenses.

Second, an enhanced control flow obfuscation method called generalized dynamic
opaque predicate is proposed. Our method automatically inserts dynamic opaque
predicates into common program structures and is hard to be detected by the state-

of-the-art formal program semantics-based deobfuscation tools. The experimental

94

results show the efficacy and resilience of our method with negligible performance
overhead.

Third, a new technique to detect cryptographic function in binary code is
proposed for defense against the opaque predicates enhanced by cryptography. Our
technique is called bit-precise symbolic loop mapping. It first captures the specific
features of cryptographic algorithms with boolean formulas, which are later used as
signatures for efficiently matching possible cryptographic algorithms in obfuscated
binary code. We have implemented our approach called CryptoHunt and evaluated
it with a set of cryptographic algorithms under different obfuscation schemes and
combinations. Our comparative experiments show that CryptoHunt outperforms

existing work in terms of better obfuscation resilience and broader detection scope.

95

Appendix
Publication List

1. Jiang Ming, Dongpeng Xu, Yufei Jiang, and Dinghao Wu, BinSim: Trace-based
Semantic Binary Diffing via System Call Sliced Segment Equivalence Checking.
In Proceedings of the 26th USENIX Security Symposium, Vancouver, BC,
Canada, August 16-18, 2017.

2. Dongpeng Xu, Jiang Ming, and Dinghao Wu, Cryptographic Function De-
tection in Obfuscated Binaries via Bit-precise Symbolic Loop Mapping. In
Proceedings of the 38th IEEE Symposium on Security and Privacy, San Jose,
CA, May 22-24, 2017.

3. Dongpeng Xu, Jiang Ming, and Dinghao Wu, Generalized Dynamic Opaque
Predicates: A New Control Flow Obfuscation Method. In Proceedings of The
19th Information Security Conference, Honolulu, HI, USA, September 7-9,
2016.

4. Jiang Ming, Dongpeng Xu, and Dinghao Wu, MalwareHunt: Semantics-Based
Malware Diffing Speedup by Normalized Basic Block Memoization. Journal
of Computer Virology and Hacking Techniques, vol. 13, no. 3, August 2017.

5. Jiang Ming, Dongpeng Xu, Li Wang, and Dinghao Wu, LOOP: Logic-Oriented
Opaque Predicate Detection in Obfuscated Binary Code. In Proceedings of the

22nd ACM Conference on Computer and Communications Security, Denver,
Colorado, USA, October 12-16, 2015.

6. Jiang Ming, Dongpeng Xu, and Dinghao Wu, Memoized Semantics-Based

Binary Diffing with Application to Malware Lineage Inference. In Proceedings

96

of the 30th IFIP SEC 2015 International Information Security and Privacy
Conference (IFIP SEC 2015), Hamburg, Germany, May 26-28, 2015.

97

Bibliography

1]

2]

COLLBERG, C., C. THOMBORSON, and D. Low (1997) A tazonomy of
obfuscating transformations, Tech. rep., The University of Auckland.

(1998) “Manufacturing cheap, resilient, and stealthy opaque con-
structs,” in Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (POPL’98).

COLLBERG, C. and J. NAGRA (2009) Surreptitious software: obfuscation,
watermarking, and tamperproofing for software protection, Addison-Wesley
Professional.

LinN, C. and S. DEBRAY (2003) “Obfuscation of executable code to improve
resistance to static disassembly,” in CCS’03.

MOSER, A., C. KRUEGEL, and E. KIRDA (December 2007) “Limits of static

analysis for malware detection,” in Proceedings of the 23th Annual Computer
Security Applications Conference (ACSAC’07).

Porov, I. V., S. K. DEBRAY, and G. R. ANDREWS (2007) “Binary
obfuscation using signals,” in USENIX Security "07.

SHARIF, M., A. Lanzi, J. GIFFIN, and W. LEE (2008) “Impeding Malware
Analysis Using Conditional Code Obfuscation,” in Proceedings of the 15th
Annual Network and Distributed System Security Symposium (NDSS’08).

Wu, Z., S. GIaANVEccHIO, M. XIE, and H. WANG (2010) “Mimimorphism:
A New Approach to Binary Code Obfuscation,” in Proceedings of the 17th
ACM conference on Computer and communications securit (CCS’10).

SCHIFFMAN, M. (2010) “A brief history of malware obfuscation,” Cisco,
security, http://blogs. cisco. com/security.

WonaG, W. and M. Stamp (2006) “Hunting for metamorphic engines,”
Computer Virology, 2(3), pp. 211-229.

98

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

KONSTANTINOU, E. and S. WOLTHUSEN (2008) Metamorphic Virus: Analy-
sis and Detection, Tech. rep., RHUL-MA-2008-02, University of London.

CHRISTODORESCU, M. and S. JHA (2003) “Static Analysis of Executables to
Detect Malicious Patterns,” in Proceedings of the 12th conference on USENIX
Security Symposium.

Wang, C., J. HiLr, J. C. KNIGHT, and J. W. DAVIDSON (2001) “Protection
of Software-Based Survivability Mechanisms,” in Proceedings of the 2001
International Conference on Dependable Systems and Networks (DSN’01).

RounDy, K. A. and B. P. MILLER (2013) “Binary-code Obfuscations in
Prevalent Packer Tools,” ACM Computing Surveys, 46(1).

CAPPAERT, J. and B. PRENEEL (2010) “A General Model for Hiding Control
Flow,” in Proceedings of the 10th Annual ACM Workshop on Digital Rights
Management (DRM’10).

CHEN, H., L. Yuan, X. Wu, B. ZANG, B. HUuANG, and P.-c. YEW (2009)
“Control Flow Obfuscation with Information Flow Tracking,” in Proceedings of
the 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 42).

CorpPENS, B., B. DE SUTTER, and J. MAEBE (2013) “Feedback-driven
Binary Code Diversification,” ACM Transactions on Architecture and Code
Optimization (TACO), 9(4).

LARSEN, P., A. HOMESCU, S. BRUNTHALER, and M. FRANZ (2014) “SoK:
Automated Software Diversity,” in Proceedings of the 2014 IEEE Symposium
on Security and Privacy (SP’14).

BruscHi, D., L. MARTIGNONI, and M. MoONGA (2006) “Detecting Self-
mutating Malware Using Control-Flow Graph Matching,” in Proceedings of
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA’06).

(2007) “Code Normalization for Self-Mutating Malware,” IEEE Secu-
rity and Privacy, 5(2).

ARrBoIT, G. (2002) “A Method for Watermarking Java Programs via Opaque
Predicates,” in Proceedings of 5th International Conference on Electronic

Commerce Research (ICECR-5).

MvyLES, G. and C. COLLBERG (2006) “Software watermarking via opaque

predicates: Implementation, analysis, and attacks,” FElectronic Commerce
Research, 6(2), pp. 155 — 171.

99

[23] KOVACHEVA, A. (2013) Efficient Code Obfuscation for Android, Master’s
thesis, University of Luxembourg.

[24] COLLBERG, C., G. MYLES, and A. HUNTWORK (2003) “Sandmark—A Tool
for Software Protection Research,” IEEE Security and Privacy, 1(4), pp.
40-49.

[25] JunoD, P., J. RINALDINI, J. WEHRLI, and J. MICHIELIN (2015)
“Obfuscator-LLVM - Software Protection for the Masses,” in Proceedings
of the 1st International Workshop on Software PROtection (SPRO’15).

[26) Mapou, M., L. VAN PuTt, and K. DE BOSSCHERE (2006) “LOCO: An
Interactive Code (De)Obfuscation Tool,” in Proceedings of the 2006 ACM

SIGPLAN Symposium on Partial Fvaluation and Semantics-based Program
Manipulation (PEPM’06).

[27] ANCKAERT, B., M. MADOU, B. D. SUTTER, B. D. Bus, K. D. BOSSCHERE,

and B. PRENEEL (2007) “Program obfuscation: a quantitative approach,” in
Proceedings of the 2007 ACM workshop on Quality of Protection (QoP’07).

[28] SzoRr, P. (2005) The Art of Computer Virus Research and Defense, Addison-
Wesley Professional.

[29] DEFENSECODE (last reviewed, 04/27/2015), “Diving into recent
Oday Javascript obfuscations,” http://blog.defensecode.com/2012/10/
diving-into-recent-0day-javascript.html.

[30] ZOBERNIG, L., S. D. GALBRAITH, and G. RUSSELLO “Indistinguishable
Predicates: A New Tool for Obfuscation,” .

[31] MaDpou, M. (2007) Application Security through Program Obfuscation, Ph.D.
thesis, Ghent University.

[32] PREDA, M. D., M. MaDpou, K. D. BOSSCHERE, and R. GIACOBAZZI (2006)
“Opaque Predicate Detection by Abstract Interpretation,” in Proceedings

of 11th International Conference on Algebriac Methodology and Software
Technology (AMAST’06).

[33] QUYN, N. A. (2013) “OptiCode: Machine Code Deobfuscation for Malware
Analysis,” in Proceedings of the 2013 SyScan.

[34] Ubupa, S. K., S. K. DEBRAY, and M. MADOU (2005) “Deobfuscation:
Reverse Engineering Obfuscated Code,” in Proceedings of the 12th Working
Conference on Reverse Engineering (WCRE’05).

100

[35]

[36]

[37]

[38]

[42]

[43]

[45]

[46]

BRUMLEY, D. and J. NEWSOME (2006) Alias Analysis for Assembly, Tech.
Rep. CMU-CS-06-180R, School of Computer Science, Carnegie Mellon Uni-
versity.

MING, J., M. PaN, and D. Gao (2012) “iBinHunt: Binary Hunting with
Inter-Procedural Control Flow,” in Proceedings of the 15th Annual Interna-
tional Conference on Information Security and Cryptology (ICISC’12).

BrRUMLEY, D., I. JAGER, T. AVGERINOS, and E. J. SCHWARTZ (2011)
“BAP: A Binary Analysis Platform,” in Proceedings of the 23rd international
conference on computer aided verification (CAV’11).

LATTNER, C. and V. ADVE (2004) “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization (CGO’04).

OKANE, P., S. SEZER, and K. MCLAUGHLIN (2011) “Obfuscation: The
Hidden Malware,” IEEE Security and Privacy, 9(5).

WAaNG, C., J. DAaviDsoN, J. HiLL, and J. KNIGHT (2001) “Protection of
software-based survivability mechanisms,” in Proceedings of International
Conference on Dependable Systems and Networks (DSN’01).

COLLBERG, C. and J. NAGRA (2009) Surreptitious Software: Obfusca-
tion, Watermarking, and Tamperproofing for Software Protection, chap. 4.4,
Addison-Wesley Professional, pp. 258-276.

SIKORSKI, M. and A. HONIG (2012) Practical Malware Analysis: The Hands-
On Guide to Dissecting Malicious Software, chap. 13, No Starch Press, pp.
269-296.

ViTiCcCHIE, A., L. REGANO, M. ToRCHIANO, C. BASILE, M. CECCATO,
P. ToNELLA, and R. TIELLA (2016) “Assessment of Source Code Obfus-
cation Techniques,” in Proceedings of the 16th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM’16).

LiN, Z., X. ZHANG, and D. XU (2010) “Automatic Reverse Engineering of
Data Structures from Binary Execution,” in Proceedings of the 17th Network
and Distributed System Security Symposium (NDSS’10).

LEE, J., T. AvGERINOS, and D. BRUMLEY (2011) “TIE: Principled Reverse
Engineering of Types in Binary Programs,” in Proceedings of the 18th Network
and Distributed System Security Symposium (NDSS’11).

DRAPE, S. (2010) Intellectual Property Protection using Obfuscation, Tech.
Rep. RR-10-02, Oxford University Computing Laboratory.

101

[47]

[48]

[49]

[54]

[55]

[56]

PALSBERG, J., S. KRISHNASWAMY, M. KwoON, D. MA, Q. SHAO, and
Y. ZHANG (2000) “Experience with Software Watermarking,” in Proceedings
of the 16th Annual Computer Security Applications Conference (ACSAC’00).

Bobpik, R., R. GuPTA, and M. L. SOFFA (1997) “Refining Data Flow
Information Using Infeasible Paths,” in Proceedings of the 5th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE’97).

Nco, M. N. and H. B. K. TAN (2007) “Detecting Large Number of Infeasible
Paths Through Recognizing Their Patterns,” in Proceedings of the the 6th
Joint Meeting of the Furopean Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC-FSE’07).

BueNo, P. M. S. and M. JINO (2000) “Identification of Potentially Infeasible
Program Paths by Monitoring the Search for Test Data,” in Proceedings of
the 15th IEEE International Conference on Automated Software Engineering

(ASE’00).

Lutz, N. (2008) “Towards revealing attacker’s intent by automatically
decrypting network traffic,” Mémoire de maatrise, ETH Zirich, Switzerland.

WANG, Z., X. JiaNG, W. Cur, X. WANG, and M. GRACE (2009) “ReFormat:
Automatic Reverse Engineering of Encrypted Messages,” in Proceedings of the
14th European Conference on Research in Computer Security (ESORICS’09).

MATENAAR, F., A. WICHMANN, F. LEDER, and E. GERHARDS-PADILLA
(2012) “CIS: The Crypto Intelligence System for Automatic Detection and
Localization of Cryptographic Functions in Current Malware,” in Proceedings
of the Tth International Conference on Malicious and Unwanted Software
(MALWARE’12).

LESTRINGANT, P., F. GUIHERY, and P.-A. FOUQUE (2015) “Automated
Identification of Cryptographic Primitives in Binary Code with Data Flow
Graph Isomorphism,” in Proceedings of the 10th ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS’15).

CALVET, J., J. M. FERNANDEZ, and J.-Y. MARION (2012) “Aligot: Cryp-
tographic Function Identification in Obfuscated Binary Programs,” in Pro-
ceedings of the 2012 ACM Conference on Computer and Communications

Security (CCS’12).

L1, X., X. WANG, and W. CHANG (2014) “CipherXRay: Exposing Crypto-
graphic Operations and Transient Secrets from Monitored Binary Execution,”
IEEE Transactions on Dependable and Secure Computing, 11(2).

102

[57]

[58]

59

[60]

[61]

[62]

[63]

[64]

[67]

GROBERT, F., C. WILLEMS, and T. HoLz (2011) “Automated Identification
of Cryptographic Primitives in Binary Programs,” in Proceedings of the

14th International Conference on Recent Advances in Intrusion Detection
(RAID’11).

Zuao, R., D. Gu, J. L1, and R. YU (2011) “Detection and Analysis of
Cryptographic Data Inside Software,” in Proceedings of the 14th International
Conference on Information Security (ISC’11).

ScumiTT, P.; “A Different Kind of Crypto: Crypto Algorithms Designed for
Payload Obfuscation,” BlackHat 2014.

GRUNZWEIG, J. (2013), “Digging Into the New Apache Injection
Module,” https://www.trustwave.com/Resources/SpiderLabs-Blog/
Digging-Into-the-New-Apache-Injection-Module/, SpiderLabs Blog.

King, J. C. (1976) “Symbolic Execution and Program Testing,” Commun.
ACM, 19(7), pp. 385-394.

GODEFROID, P.;, M. Y. LEVIN, and D. MOLNAR. (2008) “Automated
Whitebox Fuzz Testing,” in Proceedings of the 15th Annual Network and
Distributed System Security Symposium (NDSS’08).

VANEGUE, J., S. HEELAN, and R. ROLLES (2012) “SMT Solvers for Soft-
ware Security,” in Proceedings of the 6th USENIX Conference on Offensive
Technologies (WOOT’12).

BouNimova, E.; P. GODEFROID, and D. MOLNAR (2013) “Billions and
Billions of Constraints: Whitebox Fuzz Testing in Production,” in Proceedings
of the International Conference on Software Engineering (ICSE’13).

CADAR, C., V. GANESH, P. PAwLowskI, D. DiLL, and D. ENGLER. (2006)
“EXE: Automatically generating inputs of death,” in Proceedings of the 2006
ACM Conference on Computer and Communications Security (CCS’06).

CADAR, C., D. DUNBAR, and D. ENGLER. (2008) “KLEE: Unassisted and
automatic generation of high-coverage tests for complex systems programs,”
in Proceedings of the 2008 USENIX Symposium on Operating Systems Design
and Implementation (OSDI’08).

SonG, D., D. BRuMLEY, H. YIN, J. CABALLERO, I. JAGER, M. G.
KaNG, Z. LiaNG, J. NEWSOME, P. POOSANKAM, and P. SAXENA (2008)
“BitBlaze: A New Approach to Computer Security via Binary Analysis,”
in 4th International Conference on Information Systems Security. Keynote
invited paper.

103

[68]

[69]

[70]

[72]

GODEFROID, P., N. KLARLUND, and K. SEN (2005) “DART: Directed
Automated Random Testing,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’05).

BrUMLEY, D., J. CABALLERO, Z. LIANG, J. NEWSOME, and D. SONG
(2007) “Towards Automatic Discovery of Deviations in Binary Implementa-
tions with Applications to Error Detection and Fingerprint Generation,” in
Proceedings of 16th USENIX Security Symposium.

BANERJEE, A., A. ROYCHOUDHURY, J. A. HARLIE, and Z. L1aANG (2010)
“Golden Implementation Driven Software Debugging,” in Proceedings of the
18th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (FSE’10).

KanG, M. G., S. McCaAaMANT, P. POOSANKAM, and D. SoNG (2011)
“DTA++: Dynamic Taint Analysis with Targeted Control-Flow Propagation,”
in Proceedings of the 18th Annual Network and Distributed System Security
Symposium (NDSS’11).

Ming, J., D. Xu, and D. WU (2015) “Memoized Semantics-Based Binary
Diffing with Application to Malware Lineage Inference,” in Proceedings of
the 30th IFIP SEC 2015 International Information Security and Privacy
Conference (IFIP SEC’15).

GAo, D., M. REITER, and D. SONG (2008) “BinHunt: Automatically finding
semantic differences in binary programs,” in Proceedings of the 10th Interna-
tional Conference on Information and Communications Security (ICICS’08).

Luo, L., J. MinG, D. Wu, P. Liu, and S. ZHU (2014) “Semantics-based
Obfuscation-resilient Binary Code Similarity Comparison with Applications
to Software Plagiarism Detection,” in Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE’14).

EGELE, M., M. Woo, P. CHAPMAN, and D. BRUMLEY (2014) “Blanket Ex-
ecution: Dynamic Similarity Testing for Program Binaries and Components,”
in 23rd USENIX Security Symposium (USENIX Security’1/).

PEwNY, J., B. GARMANY, R. GAawLIK, C. Rossow, and T. Howrz (2015)

“Cross-Architecture Bug Search in Binary Executables,” in Proceedings of the
36th IEEE Symposium on Security and Privacy (SE€/P’15).

CHANDRAMOHAN, M., Y. XUE, Z. XU, Y. Liu, C. Y. CHO, and T. H. B.
KuAaN (2016) “BinGo: Cross-Architecture Cross-OS Binary Search,” in
Proceedings of the 2016 ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE’16).

104

[78] MINnG, J., D. Xu, and D. Wu (2016) “MalwareHunt: semantics-based
malware diffing speedup by normalized basic block memoization,” Journal of
Computer Virology and Hacking Techniques.

[79] Luo, L., J. MiNG, D. Wu, P. Liu, and S. ZHU (2017) “Semantics-Based
Obfuscation-Resilient Binary Code Similarity Comparison with Applications
to Software and Algorithm Plagiarism Detection,” IFEE Transactions on
Software Engineering.

[80] MiNg, J., D. Xu, L. WANG, and D. Wu (2015) “LOOP: Logic-Oriented
Opaque Predicate Detection in Obfuscated Binary Code,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15).

[81] Liu, L., J. MING, Z. WANG, D. Gao, and C. Jia (2009) “Denial-of-
Service Attacks on Host-Based Generic Unpackers,” in Proceedings of the

11th International Conference on Information and Communications Security
(ICI1CS’09).

[82] AGRAWAL, H. and J. R. HORGAN (1990) “Dynamic Program Slicing,”
in Proceedings of the ACM SIGPLAN 1990 Conference on Programming
Language Design and Implementation, PLDI ’90, ACM, pp. 246-256.

[83] GANESH, V. and D. L. DiLL (2007) “A Decision Procedure for Bit-vectors
and Arrays,” in Proceedings of the 2007 International Conference in Computer
Aided Verification (CAV’07).

[84] MOURA, L. D. and N. BI@RNER (2008) “Z3: an efficient SMT solver,” in
Proceedings of the 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems.

[85] Luk, C.-K., R. ConN, R. MuTtH, H. PaTiL, A. KLAUSER, G. LOWNEY,
S. WALLACE, V. J. REDDI, and K. HAZELwWOOD (2005) “Pin: building
customized program analysis tools with dynamic instrumentation,” in Pro-
ceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation (PLDI’05).

[86] CoocaN, K., G. Lu, and S. DEBRAY (2011) “Deobfuscation of
Virtualization-Obfuscated Software,” in Proceedings of the 18th ACM Con-
ference on Computer and Commaunications Security (CCS’11).

[87] CorDELLA, L., P. Focaia, C. SANSONE, and M. VENTO (2004) “A
(sub)graph isomorphism algorithm for matching large graphs,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 26(10), pp. 1367-1372.

105

[38]

[89]

[90]

[91]

[92]

[93]

[94]

[98]

LinN, C. and S. DEBRAY (2003) “Obfuscation of Executable Code to Improve
Resistance to Static Disassembly,” in Proceedings of the 10th ACM Conference
on Computer and Communications Security (CCS’03).

WANG, S., P. WANG, and D. WU (2015) “Reassembleable Disassembling,” in
Proceedings of the 24th USENIX Security Symposium (USENIX Security’l5).

ZHANG, F., D. Wu, P. Liu, and S. ZHU (2014) “Program Logic Based
Software Plagiarism Detection,” in Proceedings of the 25th IEEE International
Symposium on Software Reliability Engineering (ISSRE’1}).

Xu, D., J. MING, and D. WU (2016) “Generalized Dynamic Opaque Predi-
cates: A New Control Flow Obfuscation Method,” in Proceedings of The 19th
Information Security Conference (ISC’16), pp. 323-342.

HinD, M. and A. P1or1 (2000) “Which pointer analysis should I use?” in
Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis (ISSTA "00), ACM, pp. 113-123.

CONTE, S. D., H. E. DUNSMORE, and V. Y. SHEN (1986) Software engi-
neering metrics and models, Benjamin-Cummings Publishing Co., Inc.

Ming, J., D. Xu, L. WANG, and D. Wu (2015) “LOOP: Logic-Oriented
Opaque Predicate Detection in Obfuscated Binary Code,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15).

Xu, D., J. MING, and D. Wu (2017) “Cryptographic Function Detection in
Obfuscated Binaries via Bit-Precise Symbolic Loop Mapping,” in Proceddings
of The 38th IEEE Symposium on Security and Privacy (SP’17), pp. 921-937.

MARTIGNONI, L., M. CHRISTODORESCU, and S. JHA (2007) “OmniUnpack:
Fast, Generic, and Safe Unpacking of Malware,” in Proceedings of the 2007
Annual Computer Security Applications Conference(ACSAC’07).

Necura, G. C.,; S. McPEAK, S. P. RAHUL, and W. WEIMER (2002)
“CIL: Intermediate Language and Tools for Analysis and Transformation of C
Programs,” in Proceedings of the 11th International Conference on Compiler

Construction (CC’02).

RovaL, P., M. HALPIN, D. DAGON, R. EDMONDS, and W. LEE (2006)
“Polyunpack: Automating the Hidden-Code Extraction of Unpack-Executing

Malware,” in Proceedings of 2006 Annual Computer Security Applications
Conference (ACSAC), IEEE Computer Society, pp. 289-300.

106

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

107]

[108]

[109]

[110]

111

[112]

CABALLERO, J., P. PoosankaMm, C. KREIBICH, and D. SONG (2009)
“Dispatcher: Enabling active botnet infiltration using automatic protocol
reverse-engineering,” in Proceedings of the 16th ACM Conference on Computer
and Communications Security (CCS’09).

Zuu, W., C. THOMBORSON, and F.-Y. WANG (2006) “Applications of
Homomorphic Functions to Software Obfuscation,” in Proceedings of the 2006
International Workshop on Intelligence and Security Informatics (WISI’06).

WHEELER, D. J. and R. M. NEEDHAM (1994) “TEA, a tiny encryption
algorithm,” in Fast Software Encryption, Springer, pp. 363—-366.

DAEMEN, J. and V. RIIMEN (2013) The design of Rijndael: AES-the
advanced encryption standard, Springer Science & Business Media.

RivesT, R., “The MD5 Message-Digest Algorithm,” http://www.
rfc-base.org/txt/rfc-1321.txt.

RivesT, R. L., A. SHAMIR, and L. ADLEMAN (1978) “A method for
obtaining digital signatures and public-key cryptosystems,” Communications
of the ACM, 21(2), pp. 120-126.

CHUN (2004), “x3chun’s CryptoSearcher,” http://x3chun.reteam.org/.

GuiLraNov, 1. (2015), “IDA-Pro/plugins/FindCrypt2,” https://www.
aldeid.com/wiki/IDA-Pro/plugins/FindCrypt2, aldeid.

AURIEMMA, L., “Signsrch Tool,” http://aluigi.altervista.org/
mytoolz.htm, tool for searching signatures inside files.

EAGLE, C. (2011) The IDA pro book: the unofficial guide to the world’s most
popular disassembler, No Starch Press.

ULLMANN, J. R. (1976) “An algorithm for subgraph isomorphism,” Journal
of the ACM (JACM), 23(1), pp. 31-42.

Junop, P., J. RINALDINI, J. WEHRLI, and J. MICHIELIN (2015)
“Obfuscator-LLVM — Software Protection for the Masses,” in Proceedings of the
IEEE/ACM 1st International Workshop on Software Protection (SPRO’15).

You, I. and K. Y1m (2010) “Malware obfuscation techniques: A brief survey,”
in Proceedings of the 2010 International Conference on Broadband, Wireless
Computing, Communication and Applications.

WiLLiaMms, D. (2008) “The Tiny Encryption Algorithm (TEA),” Network
Security, pp. 1-14.

107

[113]

[114]

[115]

[116]

[117]

[118]

119

[120]

[121]

[122]

[123]

Davis, M. (1973) “Hilbert’s tenth problem is unsolvable,” The American
Mathematical Monthly, 80(3), pp. 233-269.

DiNGES, P. and G. AGHA (2014) “Solving complex path conditions through
heuristic search on induced polytopes,” in Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engineering,
ACM, pp. 425-436.

L1, X., Y. LiaNG, H. Q1aN, Y.-Q. Hu, L. Bu, Y. Yu, X. CHEN, and X. L1
(2016) “Symbolic execution of complex program driven by machine learning
based constraint solving,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ACM, pp. 554-559.

Yu, Y., H. QiaN, and Y.-Q. Hu (2016) “Derivative-free optimization via
classification,” in Thirtieth AAAI Conference on Artificial Intelligence.

Lemo, K. R. M. (2012) “Automating induction with an SMT solver,”
in International Workshop on Verification, Model Checking, and Abstract
Interpretation, Springer, pp. 315-331.

REYNOLDS, A. and V. KuNcAK (2015) “Induction for SMT solvers,” in
International Workshop on Verification, Model Checking, and Abstract Inter-
pretation, Springer, pp. 80-98.

WANG, Z., J. MiING, C. J1A, and D. GAO (2011) “Linear Obfuscation to
Combat Symbolic Execution,” in Proceedings of the 2011 European Symposium
on Research in Computer Security (ESORICS’11).

MOSER, A., C. KRUEGEL, and E. KIrRDA (2007) “Exploring multiple execu-
tion paths for malware analysis,” in Proceedings of the 2007 IEEE Symposium
of Security and Privacy.

ZHAO, Q., I. CUTCUTACHE, and W.-F. WoONG (2010) “PiPA: Pipelined Pro-
filing and Analysis on Multicore Systems,” ACM Transactions on Architecture
and Code Optimization, T(3).

KIrRAT, D. and G. VIGNA (2015) “MalGene: Automatic Extraction of
Malware Analysis Evasion Signature,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security (CCS’15).

LINDORFER, M., C. KoLBITSCH, and P. M. COMPARETTI (September
2011) “Detecting Environment-Sensitive Malware,” in Proceedings of the

14th International Symposium on Recent Advances in Intrusion Detection
(RAID’11), Menlo Park, CA, USA.

108

[124] KiraT, D., G. VIGNA, and C. KRUEGEL (2014) “BareCloud: Bare-metal
Analysis-based Evasive Malware Detection,” in Proceedings of the 23rd
USENIX Conference on Security Symposium.

[125] DINABURG, A., P. RoyaL, M. SHARIF, and W. LEE (2008) “Ether: Malware
Analysis via Hardware Virtualization Extensions,” in Proceedings of the ACM
Conference on Computer and Communications Security (CCS’08).

109

Vita
Dongpeng Xu

Dongpeng Xu is currently a Ph.D. candidate in the College of Information
Sciences and Technology of the Pennsylvania State University, where he is a
member of the Software System Security Research Lab. His research interest is
software security, especially program analysis on binary code, malware analysis and
detection, software protection, software testing, program similarity analysis, and
model checking. He received the B.S. degree in Fashion Design and Engineering
from Jilin University in 2009 and the M.E. degree in Software Engineering from
University of Science and Technology of China in 2013.

