
Composite Software Diversification
Shuai Wang, Pei Wang, and Dinghao Wu

College of Information Sciences and Technology
The Pennsylvania State University
University Park, PA 16802, USA
{szw175, pxw172, dwu}@ist.psu.edu

Abstract—Many techniques of software vulnerability exploita-
tion rely on deep and comprehensive analysis of vulnerable
program binaries. If a copy of the vulnerable software is available
to attackers, they can compose their attack scripts and payloads
by studying the sample copy and launch attacks on other copies
of the same software in deployment. By transforming software
into different forms before deployment, software diversification
is considered as an effective mitigation of attacks originated from
malicious binary analyses.

Essentially, developing a software diversification transforma-
tion is nontrivial because it has to preserve the original func-
tionality, provide strong enough unpredictability, and introduce
negligible cost. Enlightened by research in other areas, we seek
to apply different diversification transformations to the same
program for a synergy effect such that the resulting hybrid
transformations can have boosted diversification effects with
modest cost. We name this approach the composite software
diversification.

Although the concept is straightforward, it becomes challeng-
ing when searching for satisfactory compositions of primitive
transformations that maximize the synergy effect and make
a balance between effectiveness and cost. In this work, we
undertake an in-depth study and develop a reasonably well
working selection strategy to find a transformation composition
that performs better than any single transformation used in
the composition. We believe our work can provide guidelines
for practitioners who would like to improve the design of
diversification tools in the future.

Index Terms—software diversification; reverse engineering;
binary instrumentation;

I. INTRODUCTION

With the rapid development of software reverse engineering
and analysis, attackers have gained a certain level of advan-
tages in the arms race. Code-reuse attack analyzes the victim
programs to identify sequences of reusable code snippets and
direct the control flow through these snippets to construct mali-
cious operations [1], [2], [3]. Patch-based exploitation analyzes
the post-patch binary code to expose hidden vulnerabilities
(fixed by the patch) and construct attacks towards the pre-
patch binary [4].

Software diversification produces different variants of a
program, altering software syntax but retaining the semantic
equivalence. After diversification, each copy of the software
has a different structure. Therefore, knowledge obtained by
reverse engineering one copy of the software is not applicable
to other copies, making attacks depending on such knowledge
(e.g., code-reuse attack and patch-based exploitation) lose
generality or not feasible at all.

There has been many great work on software diversification
and a large portion of them focus on the transformation
algorithm side [5], [6], [7], [8], [9]. A good transformation

algorithm can vastly mutate the binary form of a program
with a considerable amount of randomness. Meanwhile, the
transformation preserves the original semantics and keeps the
incurred cost as modest as possible. Typical penalties of di-
versification transformations include binary size expansion and
execution slowdown. As more and more transformation algo-
rithms have been proposed, it becomes more and more difficult
to develop new algorithms that provide reliable diversification
effects with low cost. We have noticed that recent progress on
software diversification is more about building frameworks and
providing support for upstream techniques (binary rewriting,
for instance) which enable software diversification in different
scenarios [10], [11].

In this research, we propose composite software diver-
sification which combines existing methods together for a
synergy effect. The basic idea is that by applying different
diversification transformations to the same program, we can
make the binary more efficiently diversified compared to
applying a single transformation; meanwhile, the cost of the
composite transformation is kept low enough for practical
deployment. The composite diversification, if feasible, can
extract the hidden value of past research results and greatly
enrich the choices of software diversification algorithms.

The idea of combining different program transformations of
the same kind for greater benefits is not merely an intuition
but has been proven reasonable and feasible by previous work
on compiler optimization [12]. Although optimization and
diversification have different goals and are evaluated with
entirely different metrics, we do believe that the success of
the idea in one area gives a strong hint that similar methods
can work in another field.

Given a set of primitive program transformation algorithms,
the search space for an optimal or a close-to-optimal com-
position is considerably large. To investigate the feasibility
and effectiveness of composite software diversification, we
propose a methodology that comprehensively evaluates a
diversification transformation, either primitive or composite.
With this methodology, we further develop a strategy to prune
the search space so that our study can be done in an empirical
way; this strategy itself has a reference to the data mining
research. To the best of our knowledge, despite the growing
need for deploying diversified real-world applications, no
systematic study has focused on comprehensively evaluating
the performance of software diversification transformations
when they are composed together.

In summary, we make the following contributions:

B1

B2

(a) Original CFG

B1

B3

B4

B5B2

(b) CFG after opaque predicate inser-
tion

B1

B3

B4a

B4b

B5B2

(c) CFG after basic block splitting

B1

B3

B6

B4b B2B4a B5

(d) CFG after control flow flattening

Fig. 1: Program diversification in multiple iterations.

• We propose a new concept of software diversification
called composite software diversification. By composing
different diversification transformations in a certain way
we can boost the effectiveness of the previously proposed
methods while keeping the cost of diversification under
control.

• By referring to data mining research, we develop a fairly
well-performing search strategy. This strategy effectively
selects the satisfactory composition of transformations
which diversifies a program without incurring much cost.

• We justify our research idea and methodology with ex-
tensive empirical experiments on the C programs of the
SPEC2006 benchmark suite. The results show that com-
posite diversification is a promising technique that should
be appealing to software developers and distributors.

• We developed a tool called AMOEBA, which deliv-
ers composite software diversification to binary code
(it is publicly available for download at https://goo.gl/
UaMRzS). To our best knowledge, there is no publicly
available diversification tool on binary code, and we
contribute to filling the gap.

II. COMPOSITE SOFTWARE DIVERSIFICATION

In this section, we first present a motivating example that
demonstrates the synergy effect of composite software diver-
sification. We then formalize the problem that our research is
to solve.

A. Motivating Example
The key observation is that a program can become more

diversified, by composing multiple transformations on the
processed binaries. We use a simple two block control flow
graph to illustrate our observation. As shown in Figure 1a,
the two blocks are connected by a direct jmp instruction.
The original control structure is firstly transformed through
an opaque predicate [13]. As shown in Figure 1b, B1 will
have to invoke function B3 to get the predicate. A conditional
jmp is implemented in B4 to check the predicate, and if
it fails, hlt instruction will be executed in B5. The B4 is

then transformed by splitting itself into B4a and B4b via a
inserted jmp instruction, as shown in Figure 1c. Finally, the
output CFG is transformed by control flow flatten.
As shown in Figure 1d, intra-procedural control flow graph is
flattened (the graph in Figure 1d is simplified). Instructions are
inserted to update each control flow transfer destination to a
global variable, and the control transfers are redirected to B6.
An indirect jmp in B6 uses the address in the global variable
to transfer the execution flow. Note that after three transforma-
tions, the 2-block graph is extended to a 7-block graph with
a more complex structure. In summary, by reprocessing the
output with different transformations, the diversified code can
become progressively complex.

B. Problem

A program transformation could be formalized as a function
T : P → P where P is the universe of all programs. In
software diversification, T may be probabilistic, meaning the
output of applying T to the same input is not unique but
follows a distribution specific to T . In the rest of the text,
we always consider diversification transformations.

Given two transformations T1 and T2, a mixture of them
could be the composition T2 ◦ T1, namely we first apply T1

to a program and then apply T2 to the output of T1. Just like
the expectation we have for any hybrid method, it would be
ideal if T2 ◦ T1 outperforms both T1 and T2 applied alone,
concerning the given criterion for measuring the performance
of software diversification. If T2 ◦ T1 indeed has the better
performance, we say there is a synergy effect between T1 and
T2. The same study can be done with T1 ◦T2 which is another
way to compose T1 and T2.

In this research, we would like to investigate if such synergy
effect generally exists, especially when there are more than
two primitive transformations to compose. If the synergy exists
indeed, we want to develop a method that can effectively and
efficiently achieve it. Since the synergy may manifest only
if the transformations are composed in a particular way, this
problem grows beyond trivial as the number of applicable
primitive transformations increases. Therefore, the first step
is to make a clear definition of the problem by generalizing
the previously made example.

Suppose we have a set T containing k diversification
transformations T1, · · · , Tk, we can construct the set of all
possible compositions in the following way.

Cn = {Tin ◦ · · · ◦ Ti1 | ∀l ∈ {1, · · · , n}, Til ∈ T }
C∗ =

∞⋃
n=1

Cn

Therefore, the objective of our research is to develop a
searching strategy which can find a subset of C∗ such that
the composed diversification transformations in this subset
have the optimal or close-to-optimal performance under certain
evaluation criteria.

III. EXPERIMENT SETUP

Since there are very few mature formal theories on program
diversification, we try to solve the problem in an empirical
way. That is, by actually implementing a set of composite

https://goo.gl/UaMRzS
https://goo.gl/UaMRzS

diversification transformations and developing a set of mea-
surements we compare the performance of different compo-
sitions with field experiments. We believe that with carefully
designed experiments and evaluation metrics, empirical results
can still have a certain level of generality even without strong
theoretical foundations.

From the construction of the problem space it can be seen
that the choice of three factors decides a composition, which
are 1) the length of the composition (“length” refers to the
number of iterations), 2) the subset of primitive transforma-
tions to use, and 3) the order in which these transformations
are composed. Apparently, enumerating all choices for the
three factors is not feasible, so the major challenge of this
research is how to reasonably prune the problem space so that
the empirical evaluation can be done with limited resources.

In this research, we focus on the first two factors. Given the
choices of the first two factors, we randomly decide the third
factor to construct a composition. There are two reasons be-
hind this decision. The first is that among all three factors, the
third one expands the problem space most vastly. The second
reason is that randomizing the sequence of composition poten-
tially makes the diversification more unpredictable, which is
a significant benefit in practice. Nevertheless, heuristic-based
approaches, or perhaps machine learning-based approaches
could facilitate the study of the third factor effectively. We
leave it as one future work to investigate the third factor in
boosting composite diversification.

Note that software diversification can be performed at
different stages, e.g., at the pre-compile time, compile time,
or at the post-link time (i.e., binary retrofitting). Although
composite diversification in general is applicable at any of
these stages, we choose to implement AMOEBA and demon-
strate it with post-link time diversification because security
hardening through binary retrofitting does not require source
code and therefore has a broader application scope. We leave
it to software developers to decide at what stage to perform
composite diversification in the real-world scenarios.

The underlying reverse engineering facility AMOEBA relies
on is an open-source disassembler called UROBOROS [14],
[15]. Starting from the assembly code of the original binary,
we iteratively apply different diversification transformations
to the program, producing a unique variant each time. All
transformations we use in UROBOROS are from existing
software diversification research that are relatively simple and
straightforward. The overlay of different simple transforma-
tions eventually leads to a synergy effect after a particular
number of iterations, making the produced variants resilient
to certain security threats and binary similarity detection.

A. Diversification Passes

We intuitively choose ten “classic” binary diversification
methods proposed by existing research as the transformation
candidates. In the rest of the paper, we name each transfor-
mation as a diversification pass applied to input programs.
Most of these transformations have also been indexed by an
influencing literature review on software diversification [5].
The roster of these transformations is in Table I. Note that we
use these simple transformations in our study, but more ad-

TABLE I: Diversification pass candidates.

Class Methods

Instruction Level instruction replace [6]
instruction insert [6]

Basic Block Level

basic block reorder [7]
basic block merge [5]
basic block split [5]
opaque predicate insert [13]
control flow flatten [13]
branch function insert [8]

Function Level function reorder [9]
function inline [5]

vanced and sophisticated transformations can be implemented
as well. There are three levels of assembly transformations—
instruction level, basic block level, and function level. At this
point, it is still unknown whether each pass in Table I will be
used in composite diversification or not. An in-depth selection
process is required to decide an appropriate combination of
passes for effective diversification. Pass selection will be
discussed later in Section IV. We now elaborate on each pass.
Basic Block Reorder. This diversification rearranges the
relative positions of basic blocks. In particular, two basic
blocks are randomly selected as candidates to reorder, with
necessary control transfer instructions and labels inserted in
the context to preserve the correct semantics. For each pass,
we reorder one pair of basic blocks from each function.
Basic Block Split. This diversification splits one basic block
into two by inserting a jmp instruction in an arbitrary position
and set its destination to the associated next instruction. We
randomly select one basic block to transform from each
function.
Basic Block Merge. This transformation searches for merge-
able basic blocks. A basic block is defined as mergeable if
it has only one predecessor, and its predecessor has only one
successor. For each pass, we randomly select one pair from
all the mergeable basic block pairs and merge them together.
Instruction Insert. This diversification inserts meaningless
code sequences into the program. For each function, we
randomly select one basic block and insert a sequence
of garbage instructions with a random length (3–5). The
insertion candidates are nop, mov %esp, %esp, lea
0x0(%esi),%esi, and xchg %esp, %esp.
Instruction Replace. This strategy searches for typical in-
structions and replaces the targets with its semantic equivalent
substitutions. We adopt two substitution strategies to transform
call and ret instructions. When replacing call instruc-
tions, jmp instructions are used to transfer the control, and
the return address is explicitly saved on the stack by a push.
Ret instructions are replaced in a similar way, with a pop
instruction to obtain the return address on the stack.
Control Flow Flatten. As shown in Figure 1d, this transfor-
mation flattens the control flow graph. Given a target control
structure, control flow transfers are redirected to a dispatcher
block inserted by this transformation. The dispatcher leverages
a global variable to decide which block to jump, and instruc-
tions are inserted at the end of each basic block to update
the global variable with control destinations. For each pass,

we randomly select one function and flatten its control flow
graph for each iteration.
Opaque Predicate Insert. As shown in Figure 1c, a basic
block B can be guarded with a conditional branch to B and
another (garbage code) block B’ using an arbitrary predicate.
A call instruction to the predicate function and a conditional
jump instruction are inserted at the beginning of target block.
For each pass, we insert one opaque predicate for each
function.
Branch Function Insert. This transformation substitutes jmp
instructions with call instructions to the branch routine and
the jmp destinations are updated into an artificial global vari-
able. The branch function utilizes an indirect jmp, transferring
to the destination stored in a global variable. We transform all
the identified candidates.
Function Inline. This transformation inlines functions into
their call-sites. Direct call instructions to the target function
are found and the target function is inserted after these call-
sites. The call instructions are changed into push and jmp
instructions to simulate the original semantics. Ret instruc-
tions in the target are also rewritten into jmp instructions. As
destinations of an indirect function call are hard to analyze, we
conservatively leave the target function in its original place.
In the implementation, one function is randomly selected to
transform as long as its size is less than a predefined threshold
(the threshold is set as 500 bytes in this paper).
Function Reorder. Same as basic block reorder, this transfor-
mation rearranges the relative positions of two functions. In
case the execution flow falls through the function boundaries,
we insert jmp instructions and corresponding labels in the pre-
decessors and successors of the reordered pair, thus delivering
the equivalent semantics. For each pass, we reorder one pair
of functions.

B. Measurement
The goal of composite diversification is to provide produc-

tion of low cost and well-diversified software variants. To as-
sess our fulfillment of this objective, we need to quantitatively
measure cost and diversity.

1) Cost: We assess cost with two metrics—size expansion
and execution slowdown of diversified binaries. The cost is a
concern in composite diversification because most passes in
Table I insert new instructions or new control flow transfers
into the binary, which will inevitably affect the size and speed
of the products. We leverage bzip (§IV and §V-A) and
SPEC2006 programs (§V-B) in our experiments. The execution
speed (i.e., slowdown) of diversified variants are measured
through the test cases shipped with the programs. The size is
calculated using the stat program from GNU Coreutils. Our
experiments are launched on a machine with Intel E5-2690
2.90GHz with 128GB memory running Ubuntu 12.04 LTS.

2) Diversity: Another aspect of the assessment is to mea-
sure the diversity of the variants produced by composite
diversification. We present our quantitative evaluations on
diversity regarding two typical threats that software diver-
sification can hinder, i.e., code reuse attack [3] and patch-
based exploitation [4]. The security strength of a diversification
method can be well reflected by its resilience to these two
adversaries.

Resilience to code reuse attacks can be evaluated by the
elimination rate of return-oriented programming (ROP) gad-
gets. ROP attack is one state-of-the-art program exploitation
which manipulates program call stacks and chains sequences
of victim program’s own code snippets (named ROP gadgets)
to perform arbitrary operations [3], [16]. A general assumption
made by related work is that attackers need to know the
memory addresses of ROP gadgets in order to tamper the call
stack [11], [5], [10], [17], [18], and if a ROP gadget changes its
location or no longer exists in the diversified binary, attackers
will have difficulty in reusing the existing attack payloads. We
use the ROP gadget harvesting tool ROPGadget [19] to search
for gadgets in binaries. Gadget elimination rate between two
binaries is defined as

1− |A ∩B|
min{|A|, |B|}

where A and B are the sets of gadgets found in two binaries.
Two gadgets are considered equal if they have the same
instruction sequence and starting address. Note that recent
research work has proposed advanced methods to launch
ROP attacks without the pre-knowledge of ROP gadgets (i.e.,
Just-In-Time ROP attack [20], [21]). We present our further
discussions regarding this topic in §VI.

Resilience to patch-based exploitation can be evaluated by
investigating how well the diversified binaries can mislead
binary diffing tools [22], which can be used to locate the
vulnerability by comparing the semantics of the original binary
and the patched one. We use BinDiff (version 4.0.1) [23],
the de facto industrial standard binary diffing tool available
on the market, to calculate the similarity between two bi-
naries. Given two binaries, BinDiff provides the number
of matched functions, basic blocks, and instructions. Since
function and basic block can be “partially” matched, e.g., 30%
of the instructions in a function are matched with another
function, counting the number of matched functions or basic
blocks could be tricky. Therefore, we only adopt instruction
matching rate. The rate is calculated by

|A ∩B|
min{|A|, |B|}

where A and B are the sets of instructions in two binaries.
Two instructions are considered equal if they are matched by
BinDiff, so |A∩B| is the number of matched instructions.
It should be noted that being semantic equivalent does not
necessarily make two instructions a match; BinDiff also
takes the contexts of the instructions into account [24], [25].
BinDiff does provide an overall similarity score to summa-
rize the comparison. However, it is unclear how this score is
computed. To make our results more interpretable, we do not
use it in our evaluation.

Unlike cost assessment which only compares every diversi-
fied binary with the original one, evaluation on the diversity
of composite diversification needs an additional step. Since
attackers are usually not limited to only chose the original
binary to analyze, the diversity of variants should reach the
pairwise granularity. That means, every pair of the generated
variants should be different enough so that attackers cannot
exploit any other variant by reverse engineering one of them.

 0

 200

 400

 600

 800

 1000

0 200 400

N
or

m
al

iz
ed

 O
ve

rh
ea

d
(%

)

Iteration

ins-replace
bb-reoder

ins-garbage
bb-flatten

bb-split

 0

 200

 400

 600

 800

 1000

0 200 400

N
or

m
al

iz
ed

 O
ve

rh
ea

d
(%

)

Iteration

bb-merge
func-inline

func-reorder
bb-opaque

branch-insert

Fig. 2: Execution slowdown by single-pass diversification.

IV. PASS SELECTION

Given the candidate passes in Table I, we want to find
an applicable subset of them as the primitive diversification
transformations to employ in composite diversification.

A. Selection Methodology
Having decided the metrics used for assessing the perfor-

mance of composite diversification, we can start searching for
the subset of diversification passes that can be employed by our
implementation of composite diversification. Given 10 passes,
there are a total of 1023 different non-empty combinations of
them if we do not fix the number of passes to pick. Assessing
all possible combinations is unlikely to be feasible.

To address this issue, we propose a two-stage pass selection
method. In the first stage, we evaluate the cost of every single
pass when they are repeatedly applied to a binary for many
times. After this first-stage selection, passes that are too costly
in the context of composite diversification will be ruled out
for further consideration. Hopefully, the first-stage selection
can reduce the total number of passes we need to consider in
the second stage.

We leverage program bzip2 (version 1.0.3), a widely-
used data compressor as the experiment object in the selection
process. For each diversification combination, we iterate it for
500 times, which we believe is significant enough for an in-
depth study. These 500 iterations lead to 500 variants, each of
which is based on the previous one instead of the the original.
Before launching selection steps below, we first verify the
functional correctness of these diversified outputs using the
test cases shipped with bzip2. We report all the outputs can
pass these shipped test cases.While the adopted algorithms are
supposed to produce equivalent code, we test the functional
correctness to confirm the faithful implementations of these
algorithms in AMOEBA.

When comparing the diversified binaries with the original
one, we do a 1-in-50 sampling on the 500 variants, leading
to a sample size of 10. For pairwise comparison on diversity-
related metrics, we randomly pick 50 pairs of variants.

B. First-Stage Selection
The first-stage selection measures the singular cost of each

diversification pass. We consider a pass to be too costly if
the size expansion grows super-linearly, or the execution slow-
down does not grow sub-linearly with respect to iteration times
because users are usually much more sensitive to execution
speed than binary size increases.

Figure 2 and Figure 3 show the size expansion and execution
slowdown of diversified bzip2 variants over 500 iterations,

 0

 200

 400

 600

 800

 1000

0 200 400N
or

m
al

iz
ed

 S
iz

e
In

cr
ea

si
ng

 (
%

)

Iteration

ins-replace
bb-reoder

ins-garbage
bb-flatten

bb-split

 0

 200

 400

 600

 800

 1000

0 200 400N
or

m
al

iz
ed

 S
iz

e
In

cr
ea

si
ng

 (
%

)

Iteration

bb-merge
func-inline

func-reorder
bb-opaque

branch-insert

Fig. 3: Size expansion by single-pass diversification.
TABLE II: Candidate diversification pass combinations generated by
backward-stepwise selection (shaded column indicates the best of all).

mix0 mix1 mix2 mix3 mix4 mix5
Instruction replace
Basic block reorder
Basic block merge
Basic block split
Branch function insert
Function reorder
Function inline

for all 10 diversification passes. While most of the transforma-
tions only introduce negligible runtime overhead, the impact
of basic block flatten, instruction insert, and opaque predicate
insert is out of the scope of our tolerance for execution
slowdown. As for size expansion, the increasing trends of
most passes are linear, except basic block flatten. According
to our definition of costly transformations, basic block flatten,
instruction insert, and opaque predicate insert will be excluded
from further consideration by our composite diversification
framework, reducing the number of candidate passes from 10
to 7.

C. Second-Stage Selection
Although the first-stage selection has pruned a few passes,

the remaining search space is still too large for us to enumer-
ate. Therefore, we need a strategy to further compress the pass
selection process in the second-stage.

After referring to previous research and related disciplines,
we decide to borrow a selection method from data mining.
There is a classic problem in data mining called regression
which seeks to estimate the relationship between a response
variable and a set of predictor variables. In regression, a
mathematical model with configurable parameters is assumed,
from which the response can be computed based on the
values of predictors. However, it is common that only a
subset of the predictors are actually related to the response, so
regression has to decide which predictors should be selected
for fitting the model. Similar to our situation, enumerating all
possible combinations of predictors usually needs unaffordable
resources. Therefore, data mining researchers have developed
numerous predictor selection methods to avoid brutal-force
search for an optimal model.

In this research, we employ the backward-stepwise method
[26], [27] for pass selection. In backward-stepwise selection,
the baseline is first set as the model containing all candidates
(predictors in data mining and diversification passes in our
case). Starting from this baseline, the selection process gener-
ates a set of new models by removing one candidate from the

baseline model. Among all newly generated models, the one
with the best performance is picked as the new baseline. The
selection process repeats in this way until the latest baseline
model consists of only one candidate. For our problem, we
stop when the baseline model has only two passes, because we
have already assessed the performance of every single pass.
When the selection process is over, each baseline model is
considered as the best model among all models with the same
number of candidates. The final step would be comparing all
baseline models.

There is a similar method called forward-stepwise selection.
The difference is that instead of eliminating candidates from
the baseline model one by one, forward-stepwise gradually
adds new candidate starting from the empty model. Compared
to backward selection, forward selection tends to generate a
model with fewer candidates. Note that in composite diversifi-
cation, we want to maximize the diversity of the passes we use
in the framework, so we choose to build the model backward
instead of forward.

Apparently, there is no guarantee that stepwise selection
gives the globally optimal combination; however, the method
remains one of the most widely used because of its simplicity
and fairly good performance in practice.

When comparing two diversification plans for large iter-
ations, it is hard to give a particular criterion that will be
universally applicable. Depending on the characteristics of the
program to protect and the demand of users, the comparison
result could be different. We do not try to develop a versatile
comparator for evaluating diversification plans. Instead, we
only propose a reasonable comparator to illustrate the fea-
sibility of our proposed framework.

In this work, we assume users care about execution slow-
down most, so it will be the decisive factor when deciding the
best diversification plan. On the other hand, we do not want a
winning plan that suffers from some obvious drawbacks. For
that purpose, we design the comparison method in a filter-
oriented manner. A plan is discarded if it does too badly with
respect to any one of the metrics mentioned in Section III-B.
After the filtering is over, we pick the best plan based on the
metric we care about most, which is execution slowdown in
our illustration.

A plan is considered to be too poor at a metric if its score
on that metric is an outlier in the undesirable direction among
the scores of all plans. In statistics, a data point is called an
outlier if it is greater than Q3 + (Q3 −Q1) × 1.5 or smaller
than Q1 − (Q3 − Q1) × 1.5, where Q1 and Q3 are the first
and third quartile. For example, if the execution slowdown of
some plan is an outlier at the high end, we will filter out that
plan because high execution slowdown is unwanted. On the
other hand, if the gadget elimination rate of some plan is an
outlier at the low end, we will also filter it out because low
gadget elimination rate indicates poor diversity.

Note that the filter-based selection may result in a situation
where all candidate plans are pruned. That would mean every
plan has at least one weakness. Any of such situations hap-
pening would threaten the rationality of our selection method.
Nevertheless, none has manifested in our experiments.

TABLE III: Mean of metrics used for plan selection (shaded cells
are outliers).

mix1 mix2 mix3 mix4 mix5 Norm. Range
Slowdown (%) 3.42 -0.81 0.45 -0.31 3.20 [-5.59, 8.47]
Matching (%) 16.08 16.04 14.96 14.90 86.89 [13.28, 17.76]
Pair.Match. (%) 47.25 35.72 34.88 34.70 38.84 [28.94, 44.78]
Elim. (%) 98.21 98.21 98.22 98.22 98.22 [98.20, 98.24]
Pair.Elim. (%) 98.01 97.97 98.12 98.29 98.46 [97.59, 98.71]

Due to limited space, we are unable to show the analysis
result of all combinations that have appeared in the selection
process. We only present the final selection, i.e., selecting
the best baseline model. Recall that the baseline models are
the best-performing combinations in each round of backward-
stepwise selection. We list these combinations in Table II.

To illustrate the selection process, we first present the
performance data of the diversification plans. We measure
all metrics for mix1 to mix5. mix0 only has data reflecting
execution slowdown. Since its runtime overhead is clearly
unacceptable for composite diversification (up to 462% after
500 iterations), there is no need to consider it in subsequent
selection.

Figure 4 shows the execution slowdown of each combina-
tion. As can be seen, the overhead of mix0 is significantly
higher than the rest, while overheads of other plans are con-
sidered sub-linear (satisfying for further study). Figure 5 shows
the size expansion evaluation. All the plans show roughly
linear expansion, which is quite consistent with the size evalua-
tion in the first-stage selection (§IV-B). For diversity between
the generated variants and the original binary, Figure 6 and
Figure 7 show the ROP gadget elimination rate and instruction
matching rate from BinDiff, respectively. As shown in
Figure 6, almost all the ROP gadgets are eliminated after
transformations; we report on average 98.2% gadgets become
un-reusable. Binary diffing evaluation also shows promising
results. Actually besides mix5 (which will be filtered out due
to the high remaining similarity), all the plans show notable
decrease in the instruction matching rate. We also present
the pairwise diversity evaluation in Figure 8 and Figure 9.
Pairwise ROP gadget elimination rate shows promising results;
we observe stable high elimination rates for all the compared
pairs. As for the pairwise instruction matching, we report
mix1 has relatively high remaining similarity (47.3%), while
the other four plans show much better results (on average
36.0%).

Table III summarizes the experiment data by computing the
average of each metric. As previously described, we pick the
plan with the lowest runtime overhead, after filtering out plans
with salient weaknesses. The normality range of each metric
is computed, also listed in the table. As can be seen, mix1 is
pruned due to lack of pairwise diversity; mix5 is filtered out
because of high similarity between the variants and the original
binary. mix2 is selected as the best diversification plan because
it has the lowest execution slowdown and does not suffer from
any significant weakness.

D. Multi-Pass Versus Single-Pass

After the two-stage pass selection, we have chosen mix2 as
the winner combination of transformation passes for composite

-5

 0

 5

 10

 15

0 200 400

N
or

m
al

iz
ed

 O
ve

rh
ea

d
(%

)

Iteration

mix1
mix2

mix3
mix4

mix5
mix0

Fig. 4: Execution slowdown by
multi-pass diversification.

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 200 400

N
or

m
al

iz
ed

 S
iz

e
In

cr
ea

si
ng

 (
%

)

Iteration

mix1
mix2
mix3
mix4
mix5

Fig. 5: Size expansion by multi-
pass diversification.

 0

 20

 40

 60

 80

 100

0 200 400

G
ag

de
t E

lim
in

at
io

n
R

at
e

(%
)

Iteration

mix1
mix2
mix3
mix4
mix5

Fig. 6: ROP gadget elimination by
multi-pass diversification.

 0

 20

 40

 60

 80

 100

0 200 400

In
st

ru
ct

io
n

M
at

ch
in

g
R

at
e

(%
)

Iteration

mix1
mix2
mix3
mix4
mix5

Fig. 7: Binary diffing by multi-
pass diversification.

 90

 92

 94

 96

 98

 100

mix1 mix2 mix3 mix4 mix5

G
ag

de
t E

lim
in

at
io

n
R

at
e

(%
)

Fig. 8: Pairwise ROP gadget elim-
ination by multi-pass diversifica-
tion.

 0

 20

 40

 60

 80

 100

mix1 mix2 mix3 mix4 mix5

In
st

ru
ct

io
n

M
at

ch
in

g
R

at
e

(%
)

Fig. 9: Pairwise binary diffing by
multi-pass diversification.

 0

 20

 40

 60

 80

 100

0 200 400

G
ag

de
t E

lim
in

at
io

n
R

at
e

(%
)

Iteration

ins-replace
bb-reoder

bb-split
bb-merge

func-inline
func-reorder

branch-insert

Fig. 10: ROP gadget elimination
by single-pass diversification.

 0

 20

 40

 60

 80

 100

0 200 400

In
st

ru
ct

io
n

M
at

ch
in

g
R

at
e

(%
)

Iteration

ins-replace
bb-split

func-reorder
bb-reorder

bb-opaque
branch-insert

func-inline

Fig. 11: Binary diffing by single-
pass diversification.

diversification. However, we have not yet showed that mix2
can outperform single-pass diversification in terms of diversity.
To prove that the synergy effect we have discussed in Sec-
tion II does exist, we launch a competition between multi-pass
and single-pass diversification. Measurement on the diversity
of single-pass generated variants is illustrated in Figure 10,
11, 13, and 12.

We first make a comparison between single-pass diversi-
fication and multi-pass diversification on their resilience to
ROP attacks. Figure 10 and Figure 6 suggests that there is

 0

 20

 40

 60

 80

 100

bb-reorder

bb-split

func-reorder

ins-replace

bb-m
erge

func-inline

branch-insert

G
ag

de
t E

lim
in

at
io

n
R

at
e

(%
)

Fig. 12: Pairwise ROP gadget
eliminate by single-pass diversifi-
cation.

 0

 20

 40

 60

 80

 100

bb-reorder

bb-split

func-reorder

ins-replace

bb-m
erge

func-inline

branch-insert

In
st

ru
ct

io
n

M
at

ch
in

g
R

at
e

(%
)

Fig. 13: Pairwise binary diffing by
single-pass diversification.

no significant difference between single-pass and multi-pass
plans on ROP gadget eliminate rates when comparing the
variants with the original binary. In the pairwise comparison
showed in Figure 12 and 8, however, the performance of some
single-pass plans is clearly inferior to multi-pass plans. For
example, instruction replace has nearly zero pairwise diversity.
The reason is that after the first round of diversification, there
are no suitable instructions for this pass to replace, making
it an idempotent transformation. Differently in multi-pass
diversification, the collaborating passes (basic block reorder,
for instance) keep inserting instructions that can be replaced,
making instruction replace an efficient pass throughout the
iteration.

In the competition on resilience to patch-based exploitation
generation, the advantage of multi-pass diversification is even
more significant. When matching the diversified binaries with
the original (Figure 11 and 7), most multi-pass plans can re-
duce instruction matching rate to about 20% after 50 iterations.
In contrast, matching scores from most single-pass plans stay
above 45% even after 500 iterations. The only exception is
instruction replace, which can achieve nearly 0% matching
score. Our guess is that replacing call and ret with jmp
causes exceptional hardship for BinDiff when it tries to
recover the control flow, which is the crux of its matching
algorithm. Nevertheless, instruction replace is an idempotent
pass, meaning it will surely have poor performance on pairwise
matching. Actually, Figure 13 and 9 show that all multi-pass
plans provide much more pairwise diversity than single-pass
plans. At this point, we have enough evidence to conclude that
multi-pass diversification is more effective than single-pass
diversification. This conclusion further justifies the election
of mix2.

V. VALIDATION

In this section, we validate our approach in two aspects.
We first compare our backward stepwise selection against
a baseline approach, i.e., random selection (§V-A). We also
validate our optimal combination with multiple large size
programs from the SPEC2006 test set (§V-B).

A. Comparison with the Baseline Method

In our pass selection step (§IV), we initialize our selection
from ten widely-used program diversification methods. Since
the ordering between different techniques are not considered

(§III), ten methods lead to 1023 non-empty combinations.
After the first phase, 3 of the methods are eliminated, resulting
in 127 different possible combinations. Our tentative tests
show that it takes a non-trivial time to apply transformations
for hundreds of iterations. Thus, running diversification for all
127 combinations and pick the best available option cannot be
done in a reasonable amount of time. As presented in §IV-C,
by using stepwise selection to find the optimal combination,
we have to test 27 different candidates (7+6+5+4+3+2). In
this section, we study whether a random selection approach
(i.e., the baseline method) can find a better combination in 27
different runs.

We randomly select 27 combinations from 120 possible
combinations which contain at least two methods. Our study
on the bzip2 program has shown that after 100 times, there is
no significant benefit for most of the methods regarding binary
similarity (Figure 7). Thus, the process is iterated for 100 times
for each combination. We evaluate the performance and cost
of the 100th diversified output; we also compare the 100th
and the 50th diversified outputs for the pairwise metrics (in
this step, experiment results of mix2 are acquired in the same
way). The optimal combination from 27 candidates is selected
regarding the same filter-based selection strategy employed in
§IV-C.

We launch this 27-round random process for 20 times,
resulting in 20 control groups.1 We now report the key
observations. In general, all 20 control groups show compa-
rable execution slow and size expansion with mix2. On the
other hand, while binaries from control groups has acceptable
(pairwise) ROP gadget elimination rate and low similarity
rate, we observe 18 control groups suffer from unsatisfying
pairwise similarity rate. In particular, test on mix2 reports a
low pairwise similarity rate (around 40%), while 18 control
groups have over 95% pairwise similarity rate. There are only
two well-performing control groups, i.e., group6 and group10.
We report that group6 has the exact same combination with
mix2, while group10 has a combination of three methods, i.e.,
instruction replacement, basic block reorder and basic block
split. Overall, our study shows that for these 20 control groups,
only two of them show comparable performance with mix2,
and there is no control group can notably outperform mix2.
We interpret this as promising results to show our stepwise
selection can quickly construct optimal combinations with
reasonable amount of effort.

B. Test on SPEC Programs
In Section IV we have selected a set of diversification

passes as the primitive transformations to use in composite
diversification, based on experiment data on a single program
bzip2. In this section, we validate our winning diversification
plan mix2 on a larger set of programs, i.e., all C programs
in SPEC2006. For validating the cost and effectiveness of
the diversification plan, the experiment setting and metrics
to measure are same as the selection process. Although our
experiments on bzip2 indicate that there may not be obvious
benefit after 100 iterations, the SPEC programs are still con-
servatively processed for 500 iterations. We hope this extreme

1The full comparison can be viewed at https://goo.gl/3XbtVR.

 0

 100

 200

 300

 400

 500

 600

 700

0 200 400

N
or

m
al

iz
ed

 S
iz

e
In

cr
ea

si
ng

 (
%

)

Iteration

bzip2
mcf

sjeng
libquantum

milc
lbm

 0

 100

 200

 300

 400

 500

 600

 700

0 200 400

N
or

m
al

iz
ed

 S
iz

e
In

cr
ea

si
ng

 (
%

)

Iteration

sphinx3
perlbench

gcc
gobmk
hmmer

h264ref

Fig. 14: Size increase for SPEC binaries.

 0

 50

 100

 150

 200

0 200 400

N
or

m
al

iz
ed

 O
ve

rh
ea

d
(%

)

Iteration

bzip2
mcf

sjeng
libquantum

milc
lbm

 0

 50

 100

 150

 200

0 200 400

N
or

m
al

iz
ed

 O
ve

rh
ea

d
(%

)

Iteration

sphinx3
perlbench

gcc
gobmk
hmmer

h264ref

Fig. 15: Runtime overhead for SPEC binaries.

setting can better reveal the advantage and limitations of
our technique and facilitate software developers with detailed
information regarding real-world deployments, while a user
can choose the needed number of iterations in practice. Same
as §IV-A, before launching experiments below, we first verify
the functional correctness of all the diversified outputs. We
report all the outputs can pass the test cases shipped in
SPEC2006.

The size expansion of binaries used for validation is given
in Figure 14. The data shows that the augment of binary size
is bounded by 700% in 500 iterations, for all tested programs.
Moreover, the trend of size expansion is linear with respect to
original binary size and number of iterations. We believe this
amount of cost is acceptable, at least for desktop and server
computing environments.

The execution slowdown of the diversified binaries is proba-
bly more of a concern for composite diversification. The trend
of runtime overhead increase over iterations is presented in
Figure 15. According to the graph, overhead of all programs
grows sublinearly, which fits our objective.

For diversity validation, Figure 16 presents evaluation on the
ROP gadget elimination. Almost all the ROP gadgets become
unavailable after transformation. We also report besides three
test cases which have a relatively high instruction matching
rate (bzip2, lbm, mcf), average matching rate of all the
other test cases are less than 15% (Figure 17).

Figure 18 and 19 present the pairwise diversity. While all the
pairwise gadget elimination tests show promising results (on
average 97.51% gadgets are eliminated), we observe one out-
lier (perlbench) in the pairwise binary diffing evaluation.
Its relatively large size of program code section is probably
the main reason for the low diffing rate. On the other hand,
we report the average diffing rate of other cases is 43.87%,
which is promising.

Table IV presents a summary of the performance data
gathered from the validation process, showing the same set
of metrics as we do pass selection in Section IV-C. While

https://goo.gl/3XbtVR

TABLE IV: Mean of performance metrics for C programs in SPEC2006.

bzip2 mcf sjeng libquantum milc lbm sphinx3 perlbench gcc gobmk hmmer h264ref Mean
Slowdown (%) 7.16 7.50 52.52 9.05 12.13 -2.30 2.61 75.48 107.90 37.70 2.82 10.73 26.94
Matching (%) 32.66 24.88 1.60 10.49 11.63 23.58 5.89 13.73 6.56 7.09 9.85 6.18 12.84
Pair.Match. (%) 44.89 33.51 37.80 52.70 43.01 31.88 38.34 88.82 38.98 45.37 51.87 60.73 47.32
Elim. (%) 99.05 96.42 100.00 99.21 99.64 97.26 99.71 100.00 99.98 100.00 99.82 100.00 99.26
Pair.Elim. (%) 96.47 90.69 98.27 97.12 98.46 92.46 98.93 99.76 99.90 99.80 98.99 99.27 97.51

 0

 20

 40

 60

 80

 100

0 200 400

G
ag

de
t E

lim
in

at
io

n
R

at
e

(%
)

Iteration

bzip2
mcf

sjeng

libquantum
milc
lbm

 0

 20

 40

 60

 80

 100

0 200 400

G
ag

de
t E

lim
in

at
io

n
R

at
e

(%
)

Iteration

sphinx3
perlbench

gcc

gobmk
hmmer
h264ref

Fig. 16: ROP gadget elimination for SPEC binaries.

 0

 20

 40

 60

 80

 100

0 200 400

In
st

ru
ct

io
n

M
at

ch
in

g
R

at
e

(%
)

Iteration

bzip2
mcf

sjeng

libquantum
milc
lbm

 0

 20

 40

 60

 80

 100

0 200 400

In
st

ru
ct

io
n

M
at

ch
in

g
R

at
e

(%
)

Iteration

sphinx3
perlbench

gcc

gobmk
hmmer

h264ref

Fig. 17: Binary diffing for SPEC binaries.

 85

 90

 95

 100

 105

bzip2
m

cf
sjeng

libquantum

m
ilc

lbm sphinx3

perlbench

gcc
gobm

k

hm
m

er

h264ref

G
ag

de
t E

lim
in

at
io

n
R

at
e

(%
)

Fig. 18: Pairwise ROP gadget
elimination for SPEC binaries.

 0

 20

 40

 60

 80

 100

bzip2
m

cf
sjeng

libquantum

m
ilc

lbm sphinx3

hm
m

er

h264ref

gobm
k

perlbench

gcc

In
st

ru
ct

io
n

M
at

ch
in

g
R

at
e

(%
)

Fig. 19: Pairwise binary diffing
for SPEC binaries.

on most metrics, the validation result is consistent with the
selection process, there may be some concern about execution
slowdown. For 8 out of 12 programs, composite diversifica-
tion introduces less than 15% runtime overhead on average.
However, the impact on the other 4 programs is much more
significant, leading to an average slowdown from 37.70%
to 107.90%. Our observation is that, programs with more
complicated control flows tend to be penalized more by our
diversification plan. This is under intuition since many passes
in mix2 focus on disturbing the control flow.

Apart from metrics that have been used for pass selection,
the processing time needed for generating diversified copies
is also an important factor affecting the deployment of our
framework. We report on average, it takes 248.1 seconds to
process a binary in one iteration of diversification. The time
is measured on the same machine to evaluate the runtime
overhead, whose specification is posted in Section III-B. We
also measure the relationship between the average processing
time for one iteration and the original binary code size. We fit
processing time with code size by a linear function with zero
intercept. The regression test shows that the linear relation
(with the slope as 0.695) is significant at the confidence level
of 99%. Note that the processing time is the average of an
extreme setting with 500 iterations. That means, as the average
processing time increases almost linearly regarding the code
size, we can expect a notable decrease in processing time when
binaries are diversified with a smaller number iterations in the
real-world usage.

VI. DISCUSSION

Application Scope. A sample security application of software
diversification is to mitigate the ROP attack. A number of
defense techniques towards the ROP attack share similar idea
to diversify the programs being protected to thwart attackers
from easily guessing the addresses of ROP gadgets [28],
[18], [11], [10], [17], [29]. However, some recent work has
demonstrated that by leveraging memory disclosure vulnera-
bilities or even injecting gadgets through JIT compilers, it is
still possible to construct ROP attacks on-the-fly [20], [21].
In other words, this so called Just-In-Time ROP (JIT-ROP)
attacks can undermine the strength of existing static software
diversification techniques.

Some recent works propose to harden the process runtime
environment in order to defeat JIT-ROP attacks [30], [31], [32],
[33], [34], [21]. Some of these mechanisms still require the
software to be diversified before running. Thus, we can expect
to boost existing advanced defenses through our proposed
technique.

On the other hand, although in this paper we use the
ROP gadget elimination rates to quantitatively evaluate our
technique, software diversification indeed plays a critical role
in many other program hardening techniques to defeat code
tampering, memory corruption attacks, JIT compiler attacks,
and reverse engineering [5]. Existing techniques in these
categories can be complemented and enhanced by composite
diversification.
Iterative Transformation. Our study shows that not all the
variants can become more diversified when they are repro-
cessed for iterations. On the other hand, no significant cost
increase is observed with more iterations. In our current im-
plementation, we randomly select transformable candidates to
process, and one lesson we learned is that composite transfor-
mation can consider taking the already transformed program
units in priority, e.g., flattening a function’s CFG which has
already been flattened. Moreover, we consider the best practice
to select transforming targets should be the combination of
random selection from all the transformable candidates and
intentional selection from the already transformed candidates.

There exist some diversifying methods which have finite
transformable candidates, and the similarity rate would not de-

 0

 20

 40

 60

 80

 100

0 4 8 12 16 20 24 28 32 36 40 44 48

In
st

ru
ct

io
n

M
at

ch
in

g
R

at
e

(%
)

Iteration

mix1
mix2
mix3
mix4
mix5

Fig. 20: Diffing results for 1-50
binaries.

 0

 20

 40

 60

 80

 100

0 40 80 120

In
st

ru
nc

tio
n

M
at

ch
in

g
R

at
e

(%
)

Iteration

process1
process2
process3
process4
process5

stabilization point

Fig. 21: Usage scenario: collect
variants at the stabilization point.

crease after consuming all the candidates. A feasible improve-
ment is to set a threshold of similarity decreasing rate in one
iteration; if the similarity decreasing become insignificant, we
can stop the iterations. Some kinds of transformations increase
the execution cost with more iterations, and we refer readers
to an orthogonal research, profile-guided diversification [35],
to reduce the overhead. Besides, we can decrease the per-
formance penalty by composing certain in-place diversifying
transformations which have negligible cost [11]. We encourage
software developers to adopt these optimization methods when
deploying composite diversification frameworks in real-world
scenarios.
Composition of Transformations. Many transformations can
generate transformable targets for other methods, and by
composing multiple methods, our experiments show that the
performance of diversification is boosted noticeably. Also,
even though we rule out three transformations at the first-
stage selection because they do not perform well after a
large number of iterations (§IV-B), iterating them for a large
number of times might not be the only intended way of
usage. For example, they can be applied only once at the
end of each iteration to harvest their power in increasing
diversity without incurring a high overhead. We encourage
practitioners to leverage heuristics like this to refine the design
of diversification frameworks.
Convergence of Iterative Transformations. Our pass selec-
tion has shown that composing different transformations leads
to a synergy effect in composite diversification. One may be
interested to know the convergence rate of the iteration, i.e.,
how many iterations are required to stabilize the diversity of
generated variants. To preliminarily investigate the problem,
we measure the binary diffing scores between the original
bzip2 and the first 50 variants produced by mix1 to mix5.
The results are displayed in Figure 20. By bridging the data
in Figure 20 and Figure 7, we find that the diversity stabilizes
after about 40 iterations.

Finding the stabilization point can be helpful to improve the
deployment strategy of composite diversification. According
to our validation data, in some cases the cost of composite
diversification has a non-negligible trend of growth as the
rounds of iterations increase. For applications that are sensitive
to such cost, the overhead may become unacceptable after
a certain number of iterations. As shown in Figure 21, a
possible solution is that users can start over the iteration
from the original binary, and adopt the new variants generated
after the point of stabilization. Since composite diversification

randomly picks a transformation in each round, one can expect
that variants produced after starting over would be different,
whereas the cost will be controlled because of fewer iterations.

VII. RELATED WORK

The idea of software diversification has been studied for
decades. Diversifying approaches are presented with various
scopes from a single instruction to the whole program. Fine-
grained approaches such as instruction and basic block-level
diversification aim at diversifying instructions within one basic
block or sequences of basic blocks. Typical transformations
include dead code insertion, instruction substitution, and basic
block reordering [6], [7], [5]. These transformations have
been adopted by both malware triage evasion [36], [37] and
program randomization [11], [10]. Coarse-grained approaches
are essentially deployed in the program runtime environment,
hardening the program context from being exploited. Stack-
layout randomization [9] and address space layout randomiza-
tion (ASLR) [38] can deploy probabilistic defense, say, the
unpredictable memory addresses can effectively impede code
reuse attacks. However, attacks are still feasible due to limited
randomization space of these coarse-grained approaches [39].

Other related work propose to randomize the encoding of
program instructions [40]. Program encoding leverages one
reversible encoding method to statically translate program
text into encoded data. Usually a decoding routine and the
decoding key is distributed inside the program, which can
decode the data later. The encoded program can defeat a large
number of static analyses. Improved techniques like virtual
machine packer have been utilized to construct more secure
binaries [41], [42], [43], [44].

Even though a few research work have touched the process
of “composite diversification” [6], [22], [13], they are limited
to some primary ideas or the proposed approaches only
transform input program with very limited iterations. To our
best knowledge, there are not existing work undertake an in-
depth study on the composite transformation synergy.

VIII. CONCLUSION

Software diversification produces different variants of a
program, which can effectively defeat code reuse attack and
patch-based exploit generation. In this work, we initiate a new
focus on this area, i.e., composite software diversification.
Our in-depth study shows that composite diversification can
outperform single-pass diversification in terms of better per-
formance. We believe our study can provide useful guidelines
for practitioners to design diversification tools in the future.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-
back. This research was supported in part by the National
Science Foundation (NSF) under grant CNS-1652790, and the
Office of Naval Research (ONR) under grants N00014-13-1-
0175, N00014-16-1-2265, and N00014-16-1-2912.

REFERENCES

[1] S. Designer, “Getting around non-executable stack (and fix).” 1997.
[Online]. Available: http://seclists.org/bugtraq/1997/Aug/63

[2] R. Wojtczuk, “The advanced return-into-lib (C) exploits: PaX case
study,” Phrack Magazine, Volume 0x0b, Issue 0x3a, Phile# 0x04 of 0x0e.

[3] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM Conference on Computer and Communications Security, ser. CCS
’07, 2007, pp. 552–561.

[4] D. Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-
based exploit generation is possible: Techniques and implications,” in
Proceedings of the 2008 IEEE Symposium on Security and Privacy, ser.
SP ’08, 2008, pp. 143–157.

[5] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated
software diversity,” in Proceedings of the 2014 IEEE Symposium on
Security and Privacy, ser. SP ’14, 2014, pp. 276–291.

[6] F. B. Cohen, “Operating system protection through program evolution,”
Comput. Secur., vol. 12, no. 6, pp. 565–584, Oct. 1993.

[7] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer sys-
tems,” in Proceedings of the 6th Workshop on Hot Topics in Operating
Systems (HotOS-VI), ser. HOTOS ’97, 1997, pp. 67–75.

[8] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security, ser. CCS ’03,
2003, pp. 290–299.

[9] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space ran-
domization,” in Proceedings of the 21st USENIX Conference on Security
Symposium, ser. Security ’12, 2012, pp. 40–50.

[10] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM Conference on Computer and Communi-
cations Security, ser. CCS ’12, 2012, pp. 157–168.

[11] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Proceedings of the 2012 IEEE Symposium on Security
and Privacy, ser. SP ’12, 2012, pp. 601–615.

[12] S. Triantafyllis, M. J. Bridges, E. Raman, G. Ottoni, and D. I. August, “A
framework for unrestricted whole-program optimization,” in Proceedings
of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI ’06, 2006, pp. 61–71.

[13] C. Collberg, S. Martin, J. Myers, and J. Nagra, “Distributed application
tamper detection via continuous software updates,” in Proceedings of the
28th Annual Computer Security Applications Conference, ser. ACSAC
’12, 2012, pp. 319–328.

[14] S. Wang, P. Wang, and D. Wu, “Reassembleable disassembling,” in
Proceedings of the 24th USENIX Conference on Security Symposium,
ser. USENIX Security ’15, 2015, pp. 627–642.

[15] ——, “Uroboros: Instrumenting stripped binaries with static reassem-
bling,” in Proceedings of the 23rd IEEE International Conference on
Software Analysis, Evolution, and Reengineering, ser. SANER ’16, 2016,
pp. 236–247.

[16] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: Generalizing return-oriented programming to risc,”
in Proceedings of the 15th ACM Conference on Computer and Commu-
nications Security, ser. CCS ’08, 2008, pp. 27–38.

[17] C. Kil, J. Jim, C. Bookholt, J. Xu, and P. Ning, “Address space layout
permutation (ASLP): Towards fine-grained randomization of commodity
software,” in Computer Security Applications Conference, 2006. ACSAC
’06. 22nd Annual, Dec 2006, pp. 339–348.

[18] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi, “Gadge
me if you can: Secure and efficient ad-hoc instruction-level random-
ization for x86 and arm,” in Proceedings of the 8th ACM SIGSAC
Symposium on Information, Computer and Communications Security,
ser. ASIA CCS ’13. ACM, 2013, pp. 299–310.

[19] “ROPgadget,” http://shell-storm.org/project/ROPgadget.
[20] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and

A.-R. Sadeghi, “Just-In-Time Code Reuse: On the effectiveness of fine-
grained address space layout randomization,” in Proceedings of the 2013
IEEE Symposium on Security and Privacy, ser. SP ’13. IEEE Computer
Society, 2013, pp. 574–588.

[21] G. Maisuradze, M. Backes, and C. Rossow, “What cannot be read,
cannot be leveraged? revisiting assumptions of JIT-ROP defenses,” in

Proceedings of 2016 USENIX Conference on Security Symposium, ser.
USENIX Security ’16, 2016, pp. 139–156.

[22] B. Coppens, B. De Sutter, and J. Maebe, “Feedback-driven binary code
diversification,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, pp.
24:1–24:26, Jan. 2013.

[23] “BinDiff,” http://www.zynamics.com/bindiff.html.
[24] T. Dullien and R. Rolles, “Graph-based comparison of executable

objects,” in Symposium sur la securite des Technologies de lı́nformation
et des Communications, ser. SSTIC ’05, 2005.

[25] H. Flake, “Structural comparison of executable objects,” in Proceedings
of the IEEE Conference on Detection of Intrusions, Malware, and
Vulnerability Assessment, ser. DIMVA ’05, 2005.

[26] E. W. Steyerberg, M. J. Eijkemans, and J. F. Habbema, “Stepwise
selection in small data sets: A simulation study of bias in logistic
regression analysis,” Journal of Clinical Epidemiology, vol. 52, no. 10,
pp. 935 – 942, 1999.

[27] J. M. Wagner and D. G. Shimshak, “Stepwise selection of variables
in data envelopment analysis: Procedures and managerial perspectives,”
European Journal of Operational Research, vol. 180, no. 1, pp. 57 –
67, 2007.

[28] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:
Where’d My Gadgets Go?” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy (S&P). IEEE, 2012, pp. 571–585.

[29] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient techniques for
comprehensive protection from memory error exploits,” in Proceedings
of the 14th Conference on USENIX Security Symposium, 2005.

[30] M. Backes and S. Nürnberger, “Oxymoron: Making fine-grained mem-
ory randomization practical by allowing code sharing,” in 23rd USENIX
Security Symposium (USENIX Security 14), 2014, pp. 433–447.

[31] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z.Snow, and F. Monrose, “Iso-
meron: Code randomization resilient to (Just-In-Time) Return-Oriented
Programming,” in 22nd Annual Network & Distributed System Security
Symposium (NDSS), 2015.

[32] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’14. ACM, 2014,
pp. 1342–1353.

[33] K. Lu, S. Nürnberger, M. Backes, and W. Lee, “How to make ASLR
win the clone wars: Runtime re-randomization,” in Proceedings of
Symposium on Network and Distributed System Security, ser. NDSS’
16, 2016.

[34] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A. R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in Proceedings of 2015 IEEE Sympo-
sium on Security and Privacy (S&P), ser. IEEE S&P ’15, 2015, pp.
763–780.

[35] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” in Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO ’13, 2013, pp. 1–11.

[36] A. Balakrishnan and C. Schulze, “Code obfuscation literature survey,”
CS701 Construction of Compilers, 2005.

[37] E. Konstantinou and S. Wolthusen, “Metamorphic virus: Analysis and
detection,” Technical Report RHUL-MA-2008-02, vol. 15, 2008.

[38] P. Team, “PaX address space layout randomization (ASLR).”
[39] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,

“On the effectiveness of address-space randomization,” in Proceedings of
the 11th ACM Conference on Computer and Communications Security,
ser. CCS ’04, 2004, pp. 298–307.

[40] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in Proceedings of
the 10th ACM conference on Computer and Communications Security.
ACM, 2003, pp. 272–280.

[41] O. Technologies, “Code Virtualizer,” http://goo.gl/JLreyQ, 2003.
[42] VMPSofe, “Vmprotect,” http://goo.gl/vXlYgy, 2004.
[43] M. Sharif, A. Lanzi, J. Giffin, and W. Lee, “Automatic reverse engineer-

ing of malware emulators,” in Proceedings of 2010 IEEE Symposium on
Security and Privacy (S&P), 2009.

[44] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of virtualization-
obfuscated software: a semantics-based approach,” in Proceedings of
the 18th ACM conference on Computer and Communications Security.
ACM, 2011, pp. 275–284.

http://seclists.org/bugtraq/1997/Aug/63
http://shell-storm.org/project/ROPgadget
http://www.zynamics.com/bindiff.html
http://goo.gl/JLreyQ
http://goo.gl/vXlYgy

