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ABSTRACT
The popularization of social media generates a large amount of user-
oriented data, where text data especially attracts researchers and
speculators to infer user attributes (e.g., age, gender) for fulfilling
their intents. Generally, this line of work casts attribute inference
as a text classification problem, and starts to leverage graph neural
networks for higher-level text representations. However, these text
graphs are constructed on words, suffering from high memory con-
sumption and ineffectiveness on few labeled texts. To address this
challenge, we design a text-graph-based few-shot learning model
for social media attribute inferences. Our model builds a text graph
with texts as nodes and edges learned from current text represen-
tations via manifold learning and message passing. To further use
unlabeled texts to improve few-shot performance, a knowledge
distillation is devised to optimize the problem. This offers a trade-
off between expressiveness and complexity. Experiments on social
media datasets demonstrate the state-of-the-art performance of our
model on attribute inferences with considerably fewer labeled texts.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
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1 INTRODUCTION
Social media allows billions of people to conveniently interact with
others, and express personal ideas for social engagements [13]. Such
a vibrant environment generates a large amount of user-oriented
data. Among them, text data undoubtedly maintains the most ba-
sic social media content yet the most important user information,
which, more importantly, often embeds intrinsic user attributes,
such as age, gender, location, and political view. It has thus attracted
different parties to disclose user attributes from their text data and
study individual behaviors. For example, researchers leverage user
posts for pandemic risk assessment [28], social surveillance [21],
and social reaction analysis [17]. Speculators infer users’ attributes,
especially sensitive and private ones, to deliberately fulfill the eco-
nomic or political goals, such as promoting advertisements, tracking
users, and influencing opinions and votes [13, 16, 30].

While the intents of user attribute inferences on social media
vary, the methods used to infer such information from text data are
consistent. Information retrieval techniques can be considered as
the first attempts, which suggest the personal attributes by search-
ing for words and learning their relevance to attributes [22, 25].
These approaches are immensely limited as users’ attributes are
usually sparse on words. This naturally leads attribute inferences to
text classification problems using either machine learning models
over feature engineering (e.g., TF-IDF [6], and LSI [31]), or more
advanced natural language processing (NLP) for higher-level text
representations (e.g., long short-termmemory [10], and transformer
[3]). Though with the promising performance, NLP models provide
the successful principles to solve the issues raised in feature en-
gineering [9, 14], their inputs are inherently self-contained, and
struggle to leverage structural interactions with other texts.

Graph neural networks (GNNs) have recently emerged as one of
the most powerful techniques for graph understanding and mining
[1, 15, 29]. Therefore, a surge of effective research works utilize
GNNs to reveal user attributes on social media [2, 20] or simply
perform text classification [5, 12, 18, 26, 27, 32]. For example, Yao
et al. customized a GNN model to analyze texts by converting the
corpus to a heterogeneous graph with words/documents as nodes
and word co-occurrence as edges, which requires high memory con-
sumption yet delivers low expressive power. Huang et al. [12] used
global shared word representations to reduce the computational
cost, and Ding et al. [5] defined hyperedges to capture high-order
interactions between words. Similar refinements can be also found
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in this line of work [18, 26, 32]. However, different from siamese or
matching networks, these GNN-based models construct text graphs
simply using local/global word relations, which may improve text
representations to some extent, but barely take effect on application
scenarios when labeled texts are few.

Due to privacy concerns, most social media sites/apps limit the
access to some personal information; thus, user attribute labels,
especially for those private attributes, may only be available on few
texts. In other words, when we reduce user attribute inference on
social media to a text classification problem, we face the challenge
that our model needs to have the ability to learn from few text
examples. To address this challenge, we propose a text-graph-based
few-shot learning model that implements attribute inferences on
social media text data. Given a text corpus (e.g., tweets, blogs) and
an attribute to infer, our model starts by mapping each text to an
initial representation; based on these representations, a text graph is
constructed where each node is associated with one text, and edges
are learned from the current text representations (either initial
ones concatenated with one-hot encoding of attribute label at the
input, or hidden representations) via manifold learning. This differs
from those static text graphs built upon massive words, and offers a
better trade-off between expressive power and complexity. The task-
driven message passing is then conducted directly between labeled
and unlabeled text pairs, which copes better with labeled data
scarcity issue as well. To further leverage unlabeled texts to improve
few-shot performance, a knowledge distillation operation is devised
to optimize our graph-based model for attribute inferences.

2 PROBLEM STATEMENT
The text data posted by users on social media brings attribute
inferences to the forefront. In this paper, we put aside the intents of
user attribute inferences, and focus on the investigation of how we
can generalize the attribute inferencemodel into amore challenging
setting with sparse information on words and few labels on texts,
which is more realistic for social media environment.

Without loss of generality, we represent social media text data as
X = {(𝑥𝑖 , 𝑦𝑖 )}𝑚𝑖=1∪{𝑥𝑖 }

𝑛
𝑖=1 consisting of𝑚+𝑛 sample texts, where𝑚

is the number of the labeled texts and 𝑛 is the number of unlabeled
texts. Unlike existing works [5, 12, 18, 26, 27, 32] that use sufficient
labeled texts for model training, we practically consider only few
of the texts collected from social media have attribute labels. As
such, among X,𝑚 is much smaller than 𝑛. Each text 𝑥 with label
is annotated with a ground truth 𝑦 ∈ Y for a specific attribute.
Taking location attribute (main four U.S. regions) as an example:Y
can be specified as Y = {0:Northeast, 1:Midwest, 2:South, 3:West}.
We deal with discrete text data by mapping each text 𝑥 into a
𝑘-dimensional feature vector x = 𝜙 (𝑥) where 𝜙 is a feature repre-
sentation function 𝜙 : X → X ⊆ R(𝑚+𝑛)×𝑘 . Resting on text repre-
sentations, we aim to learn a text classification model 𝑓 : X → Y
which can take advantage of few labeled texts and large unlabeled
texts to perform our attribute inference task. Thus, the attribute
label of a given text x can be inferred using the following formula:

𝑦∗ = argmax
𝑦∈Y

𝑓𝑦 (x) (1)

where 𝑓𝑦 (x) is the confidence score of predicting text x as attribute
label 𝑦 using the text classification model 𝑓 .
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Figure 1: The overview of our proposed model.

3 PROPOSED MODEL
In this section, we present our proposed attribute inference model,
the overview of which is illustrated in Figure 1.

3.1 Text Representations
To proceed with graph construction in text granularity, the first
step is to initialize each text 𝑥 into 𝑘-dimensional feature vector x
with good expressive quality. As BERT [4] provides a context-aware
word embedding space and boosts state-of-the-art performance on
downstream NLP tasks, we use it to formulate our text representa-
tions. More specifically, we leverage SBERT [23] with fine-tuned
semantic relations that adds a pooling operation to the output of
BERT to derive a fixed-size embedding 𝜙1 (𝑥) for the input text.

In addition, to facilitate label information propagation among
labeled and unlabeled nodes via task-driven message passing, we
further map the label of each text into a one-hot encoding 𝜙2 (𝑥),
and concatenate it with SBERT embedding 𝜙1 (𝑥) as the final text
representation at the input of text graph construction:

x = 𝜙 (𝑥) = [𝜙1 (𝑥);𝜙2 (𝑥)], x ∈ R𝑘 (2)

Let 𝜙1 (𝑥) ∈ R𝑘1 and 𝜙2 (𝑥) ∈ R𝑘2 (𝑘2 = |Y|); then the dimension of
our text representation is 𝑘 = 𝑘1 +𝑘2. For those texts without labels,
we replace the one-hot encoding with the uniform distribution
over the 𝑘2-simplex, and accordingly get 𝜙2 (𝑥) = 1𝑘2/𝑘2. This
formulation is helpful for our text-graph-based few-shot learning
model to infer the potential attribute similarity between texts.

3.2 Text Graph Construction and Refinement
The goal of our attribute inferencemodel is to learn from few labeled
texts and propagate attribute label information from the labeled
texts to the unlabeled ones through their relatedness. Recent re-
searches have demonstrated that message passing with graph-based
neural networks can effectively work on such label propagation
[7, 8, 19]. In this paper, we extend this paradigm to cast attribute
inference using task-driven message passing and infer a text’s at-
tribute label over the text graph. There are three reasons behind our
graph construction over texts rather than word co-occurrences: (1)
label propagation can be easily performed as a posterior inference
between labeled and unlabeled text pairs, enabling our model to
better address labeled data scarcity issue; (2) update on text repre-
sentations can be immediately used to refine graph structure and
improve its expressive power; and (3) the number of graph nodes
can be significantly reduced to save the computational cost.
Graph construction viamanifold learning.Given a social media
text corpus X, we construct a fully-connected graph𝐺X = (𝑉 , 𝐸)



to associate X, where 𝑉 denotes the set of texts (both labeled and
unlabeled), and 𝐸 = 𝑉 ×𝑉 denotes the set of edges that connect text
pairs. Manifold learning [19] is non-linear dimensionality reduction
process which reveals the low-dimensional manifold embedded in
the high-dimensional space, which can be feasibly exploited to build
up the intrinsic neighborhood among text representations. Thus,
we initialize each edge 𝑒𝑖 𝑗 between 𝑣𝑖 and 𝑣 𝑗 in 𝐺X by a layerwise
non-linear combination of distance between x𝑖 and x𝑗 as

𝑒𝑖 𝑗 = 𝑔
𝚯
(x𝑖 , x𝑗 ) = 𝜎 (· · ·𝜎 ( |x𝑖 − x𝑗 |𝚯(0) ) · · ·𝚯(𝑙−1) )𝚯(𝑙) (3)

where 𝜎 (·) is a non-linear activation function (e.g., ReLU), and 𝚯 is
learnable weight matrix for each layer. As the constructed structure
behaves differently regarding different text representations, the
learned edges do not specify a fixed text graph, suggesting the graph
can be refined when the neighborhood information is updated.
Graph refinement via message passing. To refine text graph, we
apply iterative message passing through neighborhood structure
using a graph convolutional network (GCN) [15] to propagate text
features and labels along the labeled and unlabeled nodes, and
enhance text representations. Specifically, we build the adjacency
matrix 𝐴(ℎ) by normalizing edge matrix using a softmax at each
row, where each 𝑒𝑖 𝑗 is computed on the current text representations:

𝐴
(ℎ)
𝑖, 𝑗

= softmax(𝑔
𝚯
(x(ℎ)

𝑖
, x(ℎ)

𝑗
)) (4)

Each message passing iteration can be formalized as multi-layer
neighborhood information aggregation, which receives an input
X(ℎ) and produces X(ℎ+1) as follows:

X(ℎ+1) = 𝜎 (𝐴(ℎ)X(ℎ)W(ℎ) ) (5)

where at layerℎ,W is weight matrix, Ã = D− 1
2 ÂD− 1

2 , Â = A+I, and
D is the diagonal degree matrix defined on Â, i.e., D𝑖𝑖 =

∑𝑛
𝑗=1 Â𝑖 𝑗 .

The text graph 𝐺X is reconstructed after every message passing
iteration using the refined text representations, giving our attribute
inference model more expressive power.

3.3 Knowledge Distillation
Our constructed and refined text graph can be used directly to
perform posterior inference and propagate the attribute labels from
few labeled texts to the target texts, and deliver promising attribute
inference performance. To further leverage unlabeled texts to im-
prove few-shot learning performance, we devise a knowledge distil-
lation operation over text graph to enrich the optimization problem
for attribute inferences. The knowledge distillation technique was
designed for model compression, which was then generalized to
transfer soft knowledge along teacher neural network to student
neural network in a simple way [11].

As such, we divide the labeled texts into two categories: teacher
texts X𝑇 and student texts X𝑆 . A teacher model is first trained on
X𝑇 , which is then used to perform attribute inference on X𝑆 . The
knowledge distilled by the teacher model can be defined as the
inference probability of attribute label for text x𝑆 in X𝑆 :

𝑝 (x𝑆 |X𝑇 ) =
exp

(
𝑓𝑦 (x𝑆/𝜏)

)∑
𝑦∈Y exp

(
𝑓𝑦 (x𝑆/𝜏)

) (6)

where 𝜏 is distillation temperature, x𝑆 is the representation of the
text from X𝑆 , and 𝑓𝑦 (x𝑆/𝜏) is the confidence score of predicting

Table 1: Comparing statistics of the two datasets

Dataset Attribute #Post #Class #Vocabulary
Twitter Gender 13,926 2 21k
Blog Gender, Age 25,176 2 30k

text x𝑆 as attribute label 𝑦 after iterative message passing over text
graph. Similarly, a student model is trained on X𝑆 , which generates
inference probability of attribute label for text x𝑆 as 𝑝 (x𝑆 |X𝑆 ). Ac-
cordingly, the studentmodel may learn the distilled knowledge from
the teacher model by optimizing the cross-entropy loss function:

L𝑇 = − 1
|X𝑆 |

∑︁
x𝑆 ∈X𝑆

𝑝 (x𝑆 |X𝑇 ) log 𝑝 (x𝑆 |X𝑆 ) (7)

Here, 𝑝 (x𝑆 |X𝑇 ) is predicted by teacher model on student texts,
which are unlabeled data to the teacher. It can be considered soft
attribute label with the same distribution as 𝑝 (x𝑆 |X𝑆 ) from student
model. This formulation significantly advances the model to learn
from unlabeled texts.

3.4 Loss Generation for Transductive Training
The student model itself computes training loss between predictions
and ground truth (hard attribute label), which is defined as:

L𝑆 = − 1
|X𝑆 |

∑︁
x𝑆 ∈X𝑆

𝑦 log𝑝 (x𝑆 |X𝑆 ) (8)

In this respect, the final objective loss function of our learning
model can be formalized as:

L = (1 − 𝜆)L𝑆 + 𝜆L𝑇 (9)

where 𝜆 is a balance parameter to trade off L𝑆 and L𝑇 . We train
our text-graph-based few-shot learning model in a transductive (or
semi-supervised) manner, where all texts (labeled and unlabeled)
are accessible during training.

4 EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Experimental Setup
Datasets.We test ourmodel on two real-world social media datasets:
Twitter dataset1 and Blog dataset [24]. The Twitter dataset contains
13,926 tweets for gender attribute inference, and the blog dataset
contains 25,176 blogs for two attribute inference settings: gender
and age. The statistics of the dataset are shown in the Table 1.
Baselines. In our study, we choose five state-of-the-art GNN-based
models on texts classification tasks to be our baselines:
• TL-GNN [12]: It constructs graph by using global shared word
representations and uses message passing for text classification.

• HyperGAT [5]: It defines hyperedge to connect all words and
designs dual-attention method for text classification.

• TextGCN [27]: It builds graph with word nodes and document
nodes, and uses GCN for text classification.

• TextING [32]: It builds individual graph for each text and utilizes
gated GNN to learn embedding of word nodes.

1https://www.kaggle.com/crowdflower/twitter-user-gender-classification



Table 2: Comparisons of different graph-based baselines (2 × 15)

Inference TL-GNN HyperGAT TextGCN TextING HGAT Our model

ACC(%) F1 ACC(%) F1 ACC(%) F1 ACC(%) F1 ACC(%) F1 ACC(%) F1

Twitter-gender 50.49 0.3616 50.76 0.4755 49.36 0.4314 51.36 0.4898 52.41 0.3439 61.16 0.5816
Blog-gender 51.26 0.3636 51.88 0.3487 53.43 0.5302 52.76 0.5110 51.69 0.3407 59.80 0.5655
Blog-age 56.10 0.4282 47.43 0.4666 52.30 0.5209 58.28 0.5696 58.56 0.4770 69.06 0.6845

• HGAT [18]: It constructs heterogeneous information network
(HIN) for texts and applies dual-level attention mechanism to
learn importance of nodes and update the representations.

Parameter setting. We select 15 labeled instances per class as
training data and randomly select 20% instances from the remaining
as test data for each inference task.We set the knowledge distillation
temperature 𝜏 = 3 and the balance parameter 𝜆 = 0.3 for the
training loss. We also evaluate the impacts of different training
sizes and distillation temperatures in Section 4.2.

4.2 Evaluation of Our Model
Effectiveness. In this section, we evaluate the effectiveness of our
model over three inference settings under different parameters.
In particular, we test the inference accuracy of our model with
training size𝑚 ∈ {2 × 1, 2 × 5, 2 × 10, 2 × 15, 2 × 20} respectively,
while the knowledge distillation temperatures 𝜏 ∈ {2, 3, 5, 7, 10}
when𝑚 = 2 × 15. The experimental results are shown in Figure 2.
As we can see, though different parameters contribute to different
test results, which will be discussed later, our model achieves the
state-of-the-art results of inferring attributes on social media texts
when only few labeled texts are available. When “1-shot” (2 × 1) is
set, the inference accuracy is 55.40%, 53.19%, and 60.70% for Twitter-
gender, Blog-gender, and Blog-age respectively, which are much
better than most of the baselines trained on (2×15); averagely, their
inference accuracies are 59.63%, 57.93%, and 66.51%.
Impact of training size and distillation temperature. As il-
lustrated in Figure 2(a), when “higher-shot” is applied in training,
the performance of our model generally continues to improve, but
the improvements of few-shot learning in [2 × 10, 2 × 20] are less
significant (or more stable) than that of [2×1, 2×10]. With the train-
ing size increases, the advantage of our few-shot model narrows
since more labeled texts are used and the inference performance
is closer to the upper bound. As for the distillation temperature,
Figure 2(b) indicates that when we enlarge 𝜏 , the attribute inference
accuracy first significantly increases, rises to a stable high level at
𝜏 ∈ [3, 7], and then drastically drops when 𝜏 changes from 7 to 10.
It’s not difficult to understand this trend: when 𝜏 is relatively small,
the soft attribute label probabilities distilled from teacher model
are informative and helpful to facilitate optimizing student model;
when 𝜏 is large, the distilled knowledge is ambiguous, which may
in turn smooth the student model’s inference ability.

4.3 Comparisons with Baselines
In this section, we compare our model with five baselines that work
on text classification over graph structure, including TL-GNN [12],
HyperGAT [5], TextGCN [27], TextING [32], and HGAT [18]. The

Table 3: Evaluation on model components (accuracy %)

Method Twitter-gender Blog-gender Blog-age

SBERT 51.20 50.93 54.59
SBERT+Graph 58.04 55.35 64.64
SBERT+Graph+KD 61.16 59.80 69.06
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Figure 2: Evaluation on different model parameters.

comparative results are illustrated in Table 2 with𝑚 = 2 × 15. We
can observe that among baselines, HGAT, TextGCN, and TextING
slightly take the lead in Twitter-gender, Blog-gender, and Blog-age
respectively with respect to accuracy and F1-score. Obviously, our
model completely outperforms baselines with a large margin in
lower-shot (i.e., the improvement margin of accuracy is (6.3, 21.7)%,
and the improvement margin of F1-score is (0.04, 0.26)). Another
observation from Table 2 and Figure 2(a) is that our model with only
1-shot is either outperforming or comparable to baselines with 15-
shot. This confirms that (1) graphs built upon word co-occurrence
can improve text representations, but hardly learn from few labeled
texts; (2) the text-level graph with neighborhood refinement con-
tributes better to few-shot learning than the word-level graph, and
(3) our model offers a better trade-off between expressive power
and complexity in terms of node number, and thus provides a better
solution for social media attribute inferences.

4.4 Ablation Study
In this section, we conduct the ablation study to further investigate
how different components contribute to the performance of our
model. Our model proceeds with text representations, graph con-
struction and refinement, and knowledge distillation. We gradually
add these components one by one and formulate three attribute
inference models: (1) SBERT: directly feed SBERT representations
to fully-connected and softmax layers for text classification; (2)
SBERT+Graph: construct and refine a text graph using SBERT rep-
resentations and perform posterior inference by transductive learn-
ing; (3) SBERT+Graph+KD: the complete design of our model. The
results are reported in table 3.



From the results, we can see that SBERT representations provide
good expressive quality for texts, which deliver comparable perfor-
mances to some baselines over world-level graphs. The constructed
and refined text graph has the greatest contribution to our model,
which significantly improves the inference results by (4.0, 11.0)%
of accuracy. Knowledge distillation is able to further advance the
state-of-the-art performance to a higher level, which implies that
this operation yields an additional advantage for few-shot learning.
These observations reaffirm the effectiveness of our design to infer
user attributes on social media when labeled texts are few.

5 CONCLUSION
In this paper, we generalize attribute inferences over social media
text data into the more challenging yet more realistic setting with
sparse information on words and few labels on texts, and design
a text-graph few-shot learning model to address this challenge.
To evaluate the performance of our model, we conduct extensive
experiments over two real-world social media datasets and three
inference settings. The state-of-the-art results validate its attribute
inference effectiveness, its superiority to baselines, and its signifi-
cance and helpfulness to cope with few-shot learning in practice.
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