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Abstract—Existing code similarity comparison methods, whether source or binary code based, are mostly not resilient to obfuscations.
Identifying similar or identical code fragments among programs is very important in some applications. For example, one application is to
detect illegal code reuse. In the code theft cases, emerging obfuscation techniques have made automated detection increasingly difficult.
Another application is to identify cryptographic algorithms which are widely employed by modern malware to circumvent detection, hide
network communications, and protect payloads among other purposes. Due to diverse coding styles and high programming flexibility,
different implementation of the same algorithm may appear very distinct, causing automatic detection to be very hard, let alone code
obfuscations are sometimes applied. In this paper, we propose a binary-oriented, obfuscation-resilient binary code similarity comparison
method based on a new concept, longest common subsequence of semantically equivalent basic blocks, which combines rigorous
program semantics with longest common subsequence based fuzzy matching. We model the semantics of a basic block by a set of
symbolic formulas representing the input-output relations of the block. This way, the semantic equivalence (and similarity) of two blocks
can be checked by a theorem prover. We then model the semantic similarity of two paths using the longest common subsequence with
basic blocks as elements. This novel combination has resulted in strong resiliency to code obfuscation. We have developed a prototype.
The experimental results show that our method can be applied to software plagiarism and algorithm detection, and is effective and
practical to analyze real-world software.

Index Terms—Software plagiarism detection, algorithm detection, binary code similarity comparison, obfuscation, symbolic execution,
constraint solving.
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1 INTRODUCTION

IDentifying similar or identical code fragments among
programs has many important applications. For example,

one application is to detect illegal code reuse. With the rapid
growth of open-source projects, software plagiarism has
become a serious threat to maintaining a healthy and trust-
worthy environment in the software industry. In 2005 there
was an intellectual property lawsuit filed by Compuware
against IBM [19]. As a result, IBM paid $140 million in fines
to license Compuware’s software and an additional $260
million to purchase Compuware’s services. In the case of
software plagiarism, determining the sameness of two code
fragments is faced with an increasing challenge caused by
emerging, readily available code obfuscation techniques [17],
[18], by which a software plagiarist transforms the stolen
code in various ways to hide its appearance and logic, not to
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mention that often the plaintiff is not allowed to access the
source code of the suspicious program.

Another application is to identify a given algorithm
present in a binary program [34]. For instance, when an algo-
rithm is protected by patent right, the owner of the algorithm
needs to defend their proprietary status by determining the
presence of this algorithm in other products [78]. For another
example, cryptographic algorithms are widely employed
by modern malware to circumvent detection, hide network
communications, and protect payloads, among many other
purposes [14], which need to be identified for further security
investigation. However, due to diverse coding styles and
high programming flexibility, different implementations of
the same algorithms may appear very distinct (e.g., many
implementations of cryptographic algorithms adopt loop
unwinding for optimization and yet change the code syntax),
causing automatic detection to be very hard, let alone code
obfuscations are sometimes applied.

The basic research problem for code similarity measure-
ment techniques is to detect whether a component in one
program is similar to a component in another program and
quantitatively measure their similarity. A component can
be a set of functions or a whole program. Existing code
similarity measurement methods include clone detection,
binary similarity detection, and software plagiarism detec-
tion. While these approaches have been proven to be very
useful, each of them has its shortcomings. Clone detection
(e.g., MOSS [28]) assumes the availability of source code
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and minimal code obfuscation. Binary similarity detection
(e.g., Bdiff [9]) is binary code-based, but it does not consider
obfuscation in general and hence is not obfuscation resilient.
Software plagiarism detection approaches based on dynamic
system call birthmarks [72] have also been proposed, but
in practice, they incur false negatives when system calls are
insufficient in number or when system call replacement
obfuscation is applied [75]. Another approach based on
core value analysis [40] requires the plaintiff and suspicious
programs be fed with the same inputs, which is often
infeasible. Consequently, most of the existing methods are
not effective in the presence of obfuscation techniques.

In this paper, we propose a binary-oriented, obfuscation-
resilient method named CoP. CoP is based on a new con-
cept, longest common subsequence of semantically equivalent
basic blocks, which combines rigorous program semantics
with longest common subsequence based fuzzy matching.
Specifically, we model program semantics at three different
levels: basic block, path, and whole program. To model the
semantics of a basic block, we adopt the symbolic execution
technique to obtain a set of symbolic formulas that represent
the input-output relations of the basic block in consideration.
To compare the similarity or equivalence of two basic blocks,
we check via a theorem prover the pair-wise equivalence of
the symbolic formulas representing the output variables, or
registers and memory cells. We then calculate the percentage
of the output variables of the plaintiff block that have a
semantically equivalent counterpart in the suspicious block.
We set a threshold for this percentage to allow some noises
to be injected into the suspicious block. At the path level, we
utilize the Longest Common Subsequence (LCS) algorithm to
compare the semantic similarity of two paths, one from the
plaintiff and the other from the suspicious, constructed based
on the LCS dynamic programming algorithm, with basic
blocks as the sequence elements. By trying more than one
path, we use the path similarity scores from LCS collectively
to model program semantic similarity. Note that LCS is differ-
ent from the longest common substring. Because LCS allows
skipping non-matching nodes, it naturally tolerates noises
inserted by obfuscation techniques. This novel combination of
rigorous program semantics with longest common subsequence
based fuzzy matching results in strong resiliency to obfuscation.

We have developed a prototype of CoP using the above
method. We evaluated CoP with several different experi-
ments to measure its obfuscation resiliency, precision, and
scalability. Benchmark programs, ranging from small to large
real-world production software, were applied with differ-
ent code obfuscation techniques and semantics-preserving
transformations, including different compilers and compiler
optimization levels. We also compared our results with four
state-of-the-art detection systems, MOSS [28], JPLag [61],
Bdiff [9] and DarunGrim2 [24], where MOSS and JPLag are
source code based, and Bdiff and DarunGrim2 are binary
code based. Our experimental results show that CoP has
stronger resiliency to the latest code obfuscation techniques
as well as other semantics-preserving transformations; it can
be applied to software plagiarism and algorithm detection,
and is effective and practical to analyze real-world software.

In summary, we make the following contributions.

• We propose CoP, a binary-oriented, obfuscation-

resilient binary code similarity comparison method,
which can be applied to software plagiarism and
algorithm detection.

• We propose a novel combination of rigorous pro-
gram semantics with the flexible longest common
subsequence resulting in strong resiliency to code
obfuscation. We call this new concept the Longest
Common Subsequence of Semantically Equivalent Basic
Blocks.

• Our basic block semantic similarity comparison is
new in the sense that it can tolerate certain noise
injection or obfuscation, which is in sharp contrast
to the rigorous verification condition or weakest
precondition equivalence that does not permit any
errors.

The rest of the paper is organized as follows. Section 2
presents an overview of our method and the system architec-
ture. Section 3 introduces our basic block semantic similarity
and equivalence comparison method. Section 4 presents how
we explore paths in the plaintiff and suspicious programs and
calculate the LCS scores between corresponding paths. We
introduce the function and program similarity comparison
method in Section 5. The implementation is presented in
Section 6. Section 7 and Section 8 present the application to
software plagiarism detection and algorithm detection, re-
spectively. We analyze the obfuscation resiliency and discuss
the limitations in Section 9. The related work is discussed in
Section 10 and the conclusion follows in Section 11.

2 OVERVIEW

2.1 Methodology

Given a plaintiff program (or component) and a suspicious
program, we are interested in detecting components in the
suspicious program that are similar to the plaintiff with
respect to program behavior. Program behavior can be
modeled at different levels using different methods. For
example, one can model program behavior as program
syntax [28]. Obviously, if two programs have identical or
similar syntax, they behave similarly, but not vice verse. As
program syntax can be easily made different with semantics
preserved, this syntax-based modeling is not robust in the
presence of code obfuscation. Another example to model
program behavior uses system call dependency graphs and
then measure program behavior similarity with subgraph
isomorphism [72]. This method is also not very robust against
obfuscations as an adversary can replace system calls.

Instead, we propose to use formal program semantics to
capture program behavior. If two programs have the same
semantics, they behave similarly. However, formal semantics
is rigorous, represented as formulas or judgements in formal
logic, with little room to accommodate similarity instead of
the equivalence relation. If two programs, or components,
have the same formal semantics, their logical representations
are equivalent. If they are similar in terms of behavior,
their formal semantics in a logical representation may be
nonequivalent. That is, it is hard to judge similarity of two
logical representations of program semantics.

To address this problem, we combine two techniques and
model code semantics at four different levels: basic block,
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path, function, and program. The first technique is to model
semantics formally at the binary code basic block level. We
not only model basic block semantic equivalence, but also
model similarity semantically. The second one is to model
semantics at the path level. Based on the basic block semantic
equivalence or similarity, we compute the longest common
subsequence of semantically equivalent basic blocks between two
paths, one from the plaintiff (component) and the other from
the suspicious.1 The length of this common subsequence is
then compared to the length of the plaintiff path. The ratio
calculated indicates the semantic similarity of the plaintiff
path as embedded in the suspicious path. Note that the
common subsequence is not compared to the suspicious
path since noise could be easily injected by an adversary. By
trying more than one path, we can collectively calculate a
similarity score that indicates the semantics from the plaintiff
(component) embedded in the suspicious, potentially with
code obfuscation or other semantics preserving program
transformations applied.

In other words, the program semantics is modeled
collectively as path semantics based on basic block semantics,
and we compute a ratio of path semantic similarity between
the plaintiff (component) and the suspicious. Note that we
are actually not intended to discover what the semantics are
of the plaintiff and suspicious programs, but rather to use the
semantics to measure the basic block and path similarity, and
thus report a similarity score indicating the likelihood that
the plaintiff code is reused, with obfuscation or not, legally
or illegally.

2.2 Architecture
The architecture of CoP is shown in Fig. 1. The inputs are
the binary code of the plaintiff (component) and suspicious
program. CoP consists of the following four components:
front-end, basic block similarity comparison, path similarity com-
parison, as well as function and program similarity comparison.

To begin, the front-end disassembles the binary code,
builds an intermediate representation, and constructs control-
flow graphs and call graphs. The path similarity comparison
component computes the longest common subsequence
(LCS) of semantically equivalent basic blocks (SEBB) between
two paths (one from the plaintiff and another from the
suspicious). It explores multiple path pairs to collectively
calculate a similarity score, indicating the likelihood of the
plaintiff code being reused in the suspicious program. To
compute the LCS of SEBB of two given paths, we must be
able to compute the semantic equivalence of two basic blocks.
The basic block similarity computation component in Fig. 1
is for this purpose. It relies on symbolic execution to get
symbolic formulas representing the input-output relation of
a basic block. Specifically, it computes a symbolic function
for each output variable (a register or memory cell) based
on the input variables (registers and memory cells). As a
result, a basic block is represented as a set of symbolic
formulas. The semantic equivalence of two basic blocks are
then checked by a theorem prover on their corresponding sets
of symbolic formulas. Since obfuscations or noise injection

1. Here we refer semantically “equivalent” basic blocks to the blocks
that are semantically similar with a score above a threshold which will
be presented in the next section.

can cause deviations on semantics leading to nonequivalent
formulas, we accommodate small deviations by collectively
checking whether an output formula in one basic block has
an equivalent one in the other, with possible permutations
of input variables. We then set a threshold to indicate how
semantically similar two basic blocks are. When the score is
above the threshold, we regard them as “equivalent” during
the LCS calculation. The details of basic block semantic
similarity and equivalence computation are presented in
the next section.

3 BLOCK SIMILARITY COMPARISON

Given two basic blocks, we want to find how semantically
similar they are. We do not compute their strict semantic
equivalence since noise can be injected by an adversary.

3.1 Strictly Semantic Equivalence
Here we describe how to compute the strictly semantic
equivalence of two basic blocks. Take the following code
snippet as an example:

p = a+b; s = x+y;
q = a-b; t = x-y;

For the sake of presentation, we do not use assembly code.
At the binary code level, these variables are represented as
registers and memory cells. These two code segments are
semantically equivalent. The only difference is the variable
names. At binary code level, different registers can be used.

Via symbolic execution, we get two symbolic formulas
representing the input-output relations of the left “basic
block.”

p = f1(a, b) = a+ b
q = f2(a, b) = a− b

Similarly, for the right “basic block” we have

s = f3(x, y) = x+ y
t = f4(x, y) = x− y

We then check their equivalence by pair-wise comparison
via a theorem prover and find that

a = x ∧ b = y =⇒ p = s

and similarly for q and t.
Strictly semantic equivalence checking asserts that there

are equal number of input and output variables of two
code segments and that there is a permutation of input
and output variables that makes all the output formulas
equivalent pair-wise between two segments. That is, when
one of the following formulas is true, the two code segments
are regarded as semantically equivalent.

a = x ∧ b = y =⇒ p = s ∧ q = t
a = x ∧ b = y =⇒ p = t ∧ q = s
a = y ∧ b = x =⇒ p = s ∧ q = t
a = y ∧ b = x =⇒ p = t ∧ q = s

A similar method is used in BinHunt [31] to find code
similarity between two revisions of the same program. This
can handle some semantics-preserving transformations. For
example, the following code segment can be detected as
semantically equivalent to the above ones.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2017 4

Plaintiff 
Binary

Front-end Path similarity comparison

Symbolic 

execution

Score

Theorem 

prover

Suspicious 
Binary

Basic block similarity comparison

Function and program similarity 

comparison

Fig. 1. Architecture

s = x+10;
t = y-10;
s = s+t;
t = x-y;

However, this method is not effective in general when
code obfuscation can be applied, for example, noise can
be easily injected to make two code segments not strictly
semantic equivalent.

3.2 Semantic Similarity
Instead of the above black-or-white method, we try to
accommodate noise, but still detect semantic equivalence
of basic blocks. Consider the following block of code.

u = x+10;
v = y-10;
s = u+v;
t = x-y;
r = x+1;

Two temporary variables u and v, and a noise output
variable r are injected. Strictly checking semantic equivalence
will fail to detect its equivalence to the other block.

Instead, we check each output variable of the plaintiff
block independently to find whether it has an equivalent
counterpart in the suspicious block. In this way, we get

a = x ∧ b = y =⇒ p = s
a = x ∧ b = y =⇒ q = t

which are valid, and conclude a similarity score of 100% since
there are only two output variables in the plaintiff block and
both of them are asserted to be equivalent to some output
variables in the suspicious block.

3.3 Formalization
Since we do not know in general which input variable in one
block corresponds to which input variable in the other block,
we need to try different combinations of input variables. We
define a pair-wise equivalence formula for the input variable
combinations as follows.
Definition 1. (Pair-wise Equivalence Formulas of Input

Variables) Given two lists of variables: X = [x0, . . . , xn],
and Y = [y0, . . . , ym], n ≤ m. Let π(Y ) be a permutation
of the variables in Y . A pair-wise equivalence formula on
X and Y is defined as

p(X,π(Y )) =
n∧
i=0

(Xi = πi(Y ))

where Xi and πi(Y ) are the ith variables in X and the
permutation π(Y ), respectively.

For each output variable in the plaintiff block, we check
whether there exists an equivalent output variable in the
suspicious block with some combination of input variables
pair-wise equivalence.

Definition 2. (Output Equivalence) Given two basic blocks,
let X1 and X2 be the lists of inputs and Y1 and Y2 be
the lists of output variables, respectively; if |X1| ≤ |X2|.
Assume the first block is the plaintiff block and the second
the suspicious block. Formally, we check

∀y1 ∈ Y1. ∃y2 ∈ Y2, p(X1, π(X2)).

p(X1, π(X2)) =⇒ y1 = y2.

Each output equivalence formula is checked by a theorem
prover.2 Based on whether there is an equivalent output vari-
able in the suspicious block for each plaintiff output variable,
we compute a semantic similarity score that indicates how
much semantics of the plaintiff block has been manifested in
the suspicious block.

3.4 Basic Block Similarity Score

Definition 3 describes how to compute a basic block similarity
score.

Definition 3. (Basic Block Similarity Score) Given a plaintiff
bock B1 and a suspicious block B2, let n and m be the
number of output variables of B1 and B2, respectively.
Assume there are k output variables in B1 that have
semantically equivalent counterparts in B2; then the basic
block similarity score between B1 and B2 is defined as

ψ(B1, B2) =
k

n
.
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/* push  ebp */

r_esp_1 = r_esp_1-0x4;

mem[r_esp_1] = r_ebp_1;

/* mov  ebp, esp */

r_ebp_1 = r_esp_1

/* sub  esp, 0x40 */

r_esp_1 = r_esp_1-0x40

/* mov  ebx, eax */

r_ebx_1 = r_eax_1

/* and  eax, 0 */

r_eax_1 = r_eax_1&0x0

/* lea  ecx, [ebx] */

r_ecx_1 = r_ebx_1

/* sub  esp, 0x4 */

r_esp_2 = r_esp_2-0x4

/* mov  [esp], ebp */

mem[r_esp_2] = r_esp_2

/* mov  ebp, esp */

r_ebp_2 = r_esp_2

/* sub  esp, 0x40 */

r_esp_2 = r_esp_2-0x40

/* xchg  eax, ebx */

r_temp = r_ebx_2

r_ebx_2 = r_eax_2

r_eax_2 = r_temp

/* xor  eax, eax */

r_eax_2 = 0x0

/* mov  ecx, ebx */

r_ecx_2 = r_ebx_2

Symbolic inputs block 1: 

r_ebp_1 = i0; 

r_esp_1 = i1; 

r_eax_1 = i2;

Symbolic inputs block 2:

r_ebp_2 = j0;

r_esp_2 = j1;

r_eax_2 = j2;

Outputs

r_ecx_1 = i2; 

r_eax_1 = 0x0;

 r_ebx_1 = i2; 

r_esp_1 = i1-0x44; 

r_ebp_1 = i1-0x4;

mem[i1-0x4] = i0;

Outputs

r_ecx_2 = j2; 

r_eax_2 = 0;

 r_ebx_2 = j2; 

r_esp_2 = j1-0x44; 

r_ebp_2 = j1-0x4;

mem[j1-0x4] = j0;

Fig. 2. Basic block symbolic execution

3.5 Example

Our tool works on binary code. Fig. 2 shows the binary code
and its symbolic execution of two semantically equivalent
basic blocks: the left one is the original basic block; the
right one is the corresponding obfuscated basic block. The
assembly instructions are in bold font.

Due to the noise from syntax differences caused by code
obfuscation, most state-of-the-art binary diffing tools, such as
DarunGrim2 [24] and Bdiff [9], are unable to identify whether
or not the two basic blocks are semantically equivalent.
Based on our basic block comparison method, CoP is able
to detect that the semantics of the original block has been
mostly embedded in the obfuscated block. In addition, it
identifies different instructions that have the same semantics.
For example, and eax, 0 is semantically the same as xor eax,
eax, and lea ecx, [ebx] is semantically the same as mov ecx, ebx.

4 PATH SIMILARITY COMPARISON

Based on the basic block semantic equivalence checking
(i.e., similarity score above a threshold), we calculate a path
embedding score for each linearly independent path [53] of

2. Assume there are X1 and X2 input variables, and Y1 and Y2 output
variables in the plaintiff and suspicious basic blocks, respectively. Let
k and l be the smaller and bigger of X1 and X2, and s and t be the
smaller and bigger of Y1 and Y2. respectively. There are k!Pk

l number of
pair-wise equivalence formulas as defined in Definition 1. For the output
variables, there are Y1Y2 number of output equivalence formulas as
defined in Definition 2. Thus, the total number of formulas is Y1Y2k!Pk

l .
The computational complexity is quite high, but in practice there are
usually small numbers of input and output variables. For cases there are
large number of variables, we simple time out with negative answer.

the plaintiff against the suspicious program using the longest
common subsequence of semantically equivalent basic blocks.
How to find the linearly independent paths is presented in
Section 5.2.

4.1 Longest Common Subsequence of Semantically
Equivalent Basic Blocks
The longest common subsequence between two sequences
can be computed with dynamic programming algorithms
[21]. However, we need to find the highest LCS score between
a plaintiff linearly independent path and many paths from
the suspicious. Our longest common subsequence of semantically
equivalent basic blocks computation is essentially the longest
path problem, with the incremental LCS scores as the edge
weights. The longest path problem is NP-complete. As we
have removed all back edges in order to only consider
linearly independent paths, the plaintiff and suspicious
programs are represented as directed acyclic graphs (DAGs).
In such case, the longest path problem of a DAG G can
be converted to the shortest path problem of −G, derived
from G by changing every weight to its negation. Since
the resulted weight graphs contain “negative” weights, the
Dijkstra’s shortest path algorithm is not applicable, but still
the problem is tractable as other shortest path algorithms
such as Bellman-Ford [8] can be applied.

Instead, we adopt breadth-first search, with interactive
deepening, combined with the LCS dynamic programming to
compute the highest score of longest common subsequence
of semantically equivalent basic blocks. For each step in the
breath-first dynamic programming algorithm, the LCS is
kept as the “longest path” computed so far for a basic block
in the plaintiff program.

4.2 Algoroithm
Algorithm 1 shows the pseudo-code for the Longest Common
Subsequence of Semantically Equivalent Basic Blocks com-
putation. The inputs are a linearly independent path ρ of the
plaintiff program, the suspicious program G, and a starting
point s (presented in Section 5.1) of the suspicious program.
Our algorithm uses the breadth-first dynamic programming
LCS to explore the suspicious program. The intermediate LCS
scores are stored in a memoization table δ. An intermediate
LCS score of a node n is the length of the longest common
subsequence of semantically equivalent basic blocks between
ρ and the suspicious path segment beginning at s and ending
at the node n. An index r points to the current row of
the memoization table. The table δ is different from the
conventional dynamic programming memoization table in
that δ is a dynamic table. Each time, we encounter a new
node, or a node with higher LCS scores, a new row is created
in the table. The table γ is used to store the directions of the
computed LCS [21, p. 395, Fig. 15.8]. The vector σ is used to
store the intermediate highest LCS scores for each node.

The inputs of the function LCS() are a node µ of the
suspicious program and the linearly independent path ρ.
Function LCS() calculates the LCS of two paths, where the
first path is denoted by a node in the suspicious program.
The LCS path computed so far at its parent node (current
node in the algorithm) is augmented with this node to
form the suspicious path. The function SEBB() tells whether
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Algorithm 1 Longest Common Subsequence of Semantically
Equivalent Basic Blocks

δ: the LCS dynamic programming memoization table
r: the current row of the δ table
γ: the direction table for the LCS search
σ: the array stores the intermediate LCS scores
n: the length of the plaintiff path ρ

1: function PATHSIMILARITYCOMPARISON(ρ,G,s)
2: enq(s,Q) // Insert s into queue Q
3: Initialize the LCS table δ
4: Initialize the σ array to all zero
5: r ← 0 // set the current row of table δ
6: while Q is not empty do
7: currNode← deq(Q)
8: for each neighbor µ of currNode do
9: LCS(µ,ρ)

10: end for
11: end while
12: ~ = maxr

i=0(δ(i, n)) // get the the highest score
13: if ~ > θ then // higher than the threshold
14: RefineLCS()
15: ~ = maxr

i=0(δ(i, n))
16: end if
17: return ~
18: end function

19: function LCS(µ,ρ)
20: δ(µ, 0) = 0
21: for each node ν of ρ do
22: if SEBB(µ,ν) then // semantically eq. blocks
23: δ(µ, ν) = δ(parent(u),parent(ν)) + 1
24: γ(µ, ν) =↖
25: if σ(µ) < δ(r, ν) then
26: r++
27: end if
28: else
29: δ(µ, ν) = max(δ(parent(µ), ν), δ(µ,parent(ν)))
30: γ(µ, ν) =← or ↑
31: end if
32: if σ(µ) < δ(r, ν) then
33: σ(µ) = δ(r, ν)
34: enq(µ,Q)
35: end if
36: end for
37: end function

two basic blocks are semantically equivalent or not. The
RefineLCS() function refines the computed LCS so far by
merging potential split or obfuscated basic blocks (see the
next subsection for the LCS refinement).

The detailed process works as follows, using Fig. 3 as
a running example. The intermediate LCS scores (stored in
δ) and the directions of the computed LCS (stored in γ) are
showed in Fig. 4. We first set s as the current node and insert
it into the working queue Q (Line 2); then we initialize δ
with one row in which each element equals to 0 (the first row
in Fig. 4), and initialize the scores (stored in σ) of all nodes
in the suspicious to 0 (Line 4). For its neighbor node 1, we
found a node of ρ semantically equivalent to it and its new
score calculated by the function LCS (Line 22 and Line 23)
is higher than its original one; thus, a new row is created in
δ (Line 26; the second row in Fig. 4). Next, we update the
score of node 1 and insert it into the working queue (Line 33
and Line 34). During the second iteration (Line 6), for node

1

N
a

b c

d

6

3a

4

Plaintiff linearly 

independent path P
Suspicious CFG

1

2

5

3

4

6

M

5

sp

s

P

3b

2

Fig. 3. An example for path similarity calculation. The black blocks are
inserted bogus blocks. There is an opaque predicate inserted in M that
always evaluates to true at runtime which makes the direct flow to the
node 5 infeasible.

Fig. 4. The δ and γ tables store the intermediate LCS scores and the
directions of the computed LCS, respectively. The three arrows on the left
indicate the parent-child relationship between two nodes in the suspicious
program during the LCS computation. For example, in the computed LCS,
the parent node of node 2 is node 1, instead of node 5.

1, we cannot find a node in ρ that is semantically equivalent
to either of its neighbors node M or node a; no new row
is added to δ. Both their new scores are higher than their
original ones; hence, their scores are updated and both them
are inserted into the working queue (Line 33 and Line 34).
The third iteration have two current nodes: node M and
node a. For node M , its neighbor node N does not have
a semantically equivalent node in ρ; hence, no new row is
added to δ and node N is inserted into the working queue
after its score is updated. Another neighbor node 5 has a
semantically equivalent node in ρ; hence, a new row is added
to δ (Line 26; see the third row in Fig. 4) and it is inserted
into the working queue after updating its score. For node a,
we cannot find a node in ρ that is semantically equivalent
to either of its neighbors node b or node c; hence, no new
row is added to δ, and the scores of both node b and node c
are updated and both nodes are inserted into the working
queue. During the forth iteration, node N has a neighbor
node 2 which has a semantically equivalent node in ρ and
it gets a new score higher than its original one; thus, a new
row is added into δ (see the forth row in Fig. 4). To calculate
its new score, the function LCS needs first to find its parent
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node which is node 1 and uses the cell value of the row with
respect to nodes 1 to calculate each cell value of a new row
(shown in Fig. 4). Then the right-most cell value of this new
row is the new score for node 2. The process repeats until the
working queue is empty. When the working queue is empty,
we obtain the highest score from the right-most column of δ
(Line 12), and compare it with a threshold (Line 13). If it is
higher than the threshold, the RefineLCS() will update the
δ table (see the next subsection), and a new highest score
will be obtained (Line 15); otherwise, the LCS computation
is completed.

Here we use the example in Fig. 3 to illustrate a few
interesting points. The first is how to deal with opaque
predicate insertion. The node M is such an example. Since
our path exploration considers both branches, we do not need
to solve the opaque predicate statically. Our approach does
not need to consider path feasibility, but focuses on shared
semantically equivalent basic blocks. The second interesting
scenario is when some basic blocks are obfuscated. For
example, node 3 in ρ is split into two blocks and embedded
into G as node 3a and node 3b. In this case, the basic block
similarity comparison method determines neither node 3a
nor node 3b is semantically equivalent to node 3 in ρ. To
address this, the LCS refinement which tentatively merges
unmatched blocks has been developed.

4.3 Refinement

Here we discuss some optimization techniques we developed
to improve the obfuscation resiliency, which are implemented
in the LCS Refinement.

Basic block splitting and merging. The LCS and basic
block similarity comparison algorithms we presented so far
cannot handle basic block splitting and merging in general.
We solve this problem by the LCS refinement. First, CoP
finds the consecutive basic block sequences which do not
have semantically equivalent counterparts from both the
suspicious and plaintiff paths, through backtracking on
the LCS dynamic programming memoization table and the
direction table (an example of them is showed in Fig. 4);
then for each such sequence or list, CoP merges all basic
blocks into one code trunk. After that, it adopts a method
similar to the basic block comparison method to determine
whether or not two corresponding merged code trunks (one
from the plaintiff and the other from the suspicious) are
semantically equivalent or similar. If the two merged code
segments are semantically equivalent, the current longest
common subsequence of semantically equivalent basic blocks
is extended with the code segment in consideration. This
method can handle basic block reordering and noise injection
as well. Note that as we consider both memory cells and
registers as input and output variables of basic blocks to
detect the semantically equivalence between two merged
blocks, the intermediate effects stored on the stack are not
missed.

Consider the following complex example. An linearly
independent path contains three basic blocks: A→ B → C.
In the suspicious program, they are first split in half, and
filled up with bogus operations; then an arbitrary amount
of bogus blocks are inserted between each split block. The
modified path will be: A1 → X → A2 → B1 → Y → Z →

B2 → C → W → C2; the similarity between A1 and A (as
well as between A2 and A, B1 and B, etc.) is about 0.5. In
this case, CoP merges A → B → C into one block, and
A1 → X → A2 → B1 → Y → Z → B2 → C → W → C2

into another block. CoP then compares the two merged
blocks and determine that they are semantically equivalent.

Conditional obfuscation. Conditionals are specified by
the flags state in the FLAGS registers (i.e., CF, PF, AF, ZF,
SF, and OF). These flags are part of the output state of a
basic block. However, they can be obfuscated. We handle
this by merging blocks during our LCS computation. No
matter what obfuscation is applied, eventually a semantically
equivalent path condition must be followed to execute a
semantically equivalent path. Thus, when obfuscated blocks
are combined, we will be able to detect the similarity.

4.4 Path Similarity Score

After exploring the suspicious program and computing the
longest common subsequence of semantically equivalent ba-
sic blocks, we can calculate a path similarity score indicating
the semantics of a plaintiff linearly independent path as
manifested in the suspicious program. Definition 4 gives a
high-level description of a path similarity score.

Definition 4. (Path Similarity Score) Given a plaintiff linearly
independent path ρ, and a suspicious program G. Let
Γ = {γ1, . . . , γn} be all of the linearly independent
paths of G, and |LCS(ρ, γi)| be the length of the longest
common subsequence of semantically equivalent basic
blocks between ρ and γi, γi ∈ Γ. Then, the path similarity
score for ρ is defined as

ψ(ρ,G) =
maxγi∈Γ |LCS(ρ, γi)|

|ρ|
.

5 FUNCTION AND PROGRAM SIMILARITY COMPAR-
ISON

This section presents how to compare a plaintiff function to
the suspicious program, and how to calculate the function
and program similarity scores.

Given a plaintiff program (or component) and a sus-
picious program, our goal is to detect components in the
suspicious program that are similar to the plaintiff. To this
end, if an investigator has pre-knowledge on the plaintiff
program, he can select a set of functions purposefully; if
not, a set of functions can be randomly picked, or all of the
functions can be simply chose for testing. CoP then tests each
of them to find similar code in the suspicious program.

Because we will build the inter-procedural control flow
graph for analysis (see Section 5.2), it may cause redundant
checking of some functions. For example, if a function A calls
another functionB and both them are selected, thenB will be
checked twice. However, this can be avoided by leveraging
the call graph. For instance, we can carefully select those
functions that do not have the same descendant within the
maximum depth (in our experiments, the maximum depth
for inlining functions is set to 3, which is configurable), or
those that cannot be reached by any other selected functions
within the maximum depth.
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5.1 Starting Blocks

The LCS of semantically equivalent basic blocks computation
is based on the modified longest path algorithm to explore
paths beginning at the starting points from the plaintiff
function and suspicious program. It is important to choose
the starting points so that the path exploration is not
misled to irrelevant code parts of the plaintiff function and
suspicious program.

We first look for the starting block inside the plaintiff
function. To avoid routine code such as calling convention
code inserted by compilers, we pick the first branching basic
block (a block ends with a conditional jump instruction) as
the starting block. We simply use this heuristic to skip the
calling convention code at the beginning of the function. We
then check whether we can find a semantically equivalent
basic block from the suspicious program. This process
can take as long as the size of the suspicious in terms
of the number of basic blocks. If we find one or several
semantically equivalent basic blocks, we proceed with the
longest common subsequence of semantically equivalent
basic blocks calculation. Otherwise, we choose another block
as the starting block from the plaintiff function, and the
process is repeated until the last block of the plaintiff function
is checked.

5.2 Linearly Independent Paths

Once the starting blocks are identified, we select a set of
linearly independent paths beginning at the starting block from
the inter-procedural control flow graph of the plaintiff func-
tion. A linearly independent path is a path that introduces
at least one new edge or node that is not included by other
linearly independent paths [53]. We then adopt the Depth
First Search algorithm to find a set of linearly independent
paths from the plaintiff function. Because our goal is to
measure the similarity between the plaintiff and suspicious
programs, each basic block is examined only once.

For each selected path, we compare it against the suspi-
cious program beginning at the starting block to calculate a
path embedding score by computing the LCS of semantically
equivalent basic blocks (see Section 4). Note that sometimes
we may find several starting blocks in the suspicious pro-
gram; in that case, we will test each of them and iterate the
whole process.

5.3 Function and Program Similarity Scores

Once we have computed the path similarity scores (the
lengths of the resulted LCS) for each selected plaintiff linearly
independent path, we calculate the function similarity score
for the plaintiff function. We assign a weight to each
calculated LCS according to the plaintiff path length, and the
function similarity score is the weighted average score. For
each selected function in the plaintiff program, we compare
it to a set of function in the suspicious program identified
by the potential starting blocks, and the similarity score of
this function is the highest one among those. We define the
function similarity score in Definition 5.
Definition 5. (Function Similarity Score) Given a plaintiff

function F , and a set of functions in the suspicious pro-
gram identified by its starting blocks, Λ = {D0, . . . , Dm}.

F

D1

D2

St

S

P
Sa

Fig. 5. An example of function similarity calculation. P and S are the
plaintiff and suspicious programs, respectively. P has a function F ,
semantically equivalent to the shadow area of S; the shadow area is
contained in two functions, D1 and D2, of S.

Let Ω = {ρ0, . . . , ρn} be a set of linearly independent
paths of F . Given a function Dt ∈ Λ, the similarity score
between F and Dt is defined as

ψ(F,Dt) =
n∑
i=0

wiψ(ρi, Dt)

n
,

where wi = |ρi|/
∑
ρj∈Ω |ρj | is the weight for ρi ∈ Ω,

and ψ(ρi, Dt) is the path similarity score as defined in
Definition 4.
The function similarity score for F is then defined as

ψ(F ) = maxDt∈Λ ψ(F,Dt).

After we calculate the similarity scores for each selected
plaintiff function, we output their weighted average score as
the similarity score of the plaintiff and suspicious programs.
The weights are assigned according to the corresponding
plaintiff function size.
Definition 6. (Program Similarity Score) Given a plaintiff

program P , and a suspicious program S. Let ζ =
{F0, . . . , Fm} be a set of functions of P . Then the program
similarity score between P and S is defined as

ψ(P, S) =
∑m

i=0

wiψ(Fi)

m
,

where wi = |Fi|/
∑
Fj∈ζ |Fj | is the weight for Fi ∈ ζ ,

and ψ(Fi) is the function similarity score as defined in
Definition 5.

5.4 Resiliency
Because the plaintiff code can be transformed in various
ways to hide the appearance and logic, the transformed
(suspicious) code may have different function abstractions
and different path segments. Therefore, our approach should
be able to address this. Here, we show how our approach
handles this using Fig. 5 as an example.

In Fig. 5, we want to detect the similarity between
the plaintiff program P and the suspicious program S. To
achieve it, we test each function of P to measure its similarity
with S; all of these function similarities can collectively detect
the program similarity. Consider a function F of P as an
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example. To measure its similarity with S, we first find the
starting blocks Sa and St, in P and S, respectively. Note
that it is possible that St is inside of a function (D1) of S.
We then select a set of linearly independent paths from F
based on the inter-procedural control flow graph of P ; thus,
these paths include the paths from the callee functions of
F . We compare each linearly independent path against S
to measure how much semantics of each path is manifested
in S, using the path similarity computation technique (see
Section 4). Assume we want to compare ρ (one of the linearly
independent paths) against S. We explore S (beginning at St)
based on its inter-procedural control flow graph, to compute
the longest common subsequence of semantically equivalent
basic blocks. The exploration not only compares the function
D1 identified by the starting block St, but also compares
its callee function D2. Because of semantic transformation
techniques, the transformed (suspicious) code may contain
different path segments that have the same functionality with
the plaintiff. Detection of the semantics between these path
segments is handled by our path similarity computation,
which is based on the LCS computation and the merging
basic blocks (see Section 4). Then, we can identify a path
from S (the bold path) that is semantically equivalent to ρ
(or has similar functionality as ρ). After testing all of the
linearly independent paths of F , we can collectively detect
the semantics of F as manifested in S. Once all functions
of P are compared against S, we are able to determine the
similarity between P and S.

6 IMPLEMENTATION

Our prototype implementation consists of 4,312 lines of
C++ code measured with CLOC [16]. The front-end of CoP
disassembles the plaintiff and suspicious binary code based
on IDA Pro. The assembly code is then passed to BAP [6] to
build an intermediate representation the same as that used in
BinHunt [31], and to construct CFGs and call graphs, which
are used to produce the inter-procedural control flow graph.
The symbolic execution of each basic block and the LCS
algorithm with path exploration are implemented in the BAP
framework. We use the constraint solver STP [30] for the
equivalence checking of symbolic formulas representing the
basic block semantics.

7 SOFTWARE PLAGIARISM DETECTION

7.1 Experimental Settings
We first evaluated our tool on its application to software
plagiarism detection. The evaluation on its application to
algorithm detection is presented in Section 8. We evaluated
CoP on a set of benchmark programs to measure its obfus-
cation resiliency and scalability. We conducted experiments
on basic block semantics comparison, small programs as
well as large real-world production software. We compared
the detection effectiveness and resiliency between our tools
and four existing detection systems, MOSS [28], JPLag [61],
Bdiff [9] and DarunGrim2 [24], where MOSS and JPLag are
source code based, while Bdiff and DarunGrim2 are binary
code based. Moss is a system for determining the similarity
of programs based on the winnowing algorithm [63] for doc-
ument fingerprinting. JPlag is a system that finds similarities

TABLE 1
Examples of semantically equivalent basic blocks with very different

instructions

Pair 1 Pair 2
lea ecx, [eax] lea edx, [ebx] mov eax, [ebp+8] mov eax, [ebp+8]
mov edx, 1 add edx, edx shl dword ptr [eax], 1 mov eax, [eax]
add ecx, edx lea ecx, [eax] mov eax, [eax+4] lea edx,[eax+eax]
mov edx, ebx mov eax, 1 mov [ebp+8], eax mov eax, [ebp+8]
add edx, edx add ecx, eax mov [eax], edx
cmp ecx, edx cmp ecx, edx mov eax, [ebp+8]
jnz target jnz target mov eax, [eax+4]

mov [ebp+8], eax
Pair 3 Pair 4

setg al mov eax, 0 add eax, 0x2 add eax, 0x1
movzx eax, al cmovg esi, eax sub eax, 0x1 and eax, 0x7fffffff
dec eax shl eax, 0x1
and esi, eax shr eax, 0x1

among multiple sets of source code files. These two systems
are mainly syntax-based and the main purpose has been to
detect plagiarism in programming classes. Bdiff is a binary
diffing tool similar to diff for text. DarunGrim2 [24] is a
state-of-the-art patch analysis and binary diffing tool. Our
experiments were performed on a Linux machine with a
Core2 Duo CPU and 4GB RAM. In our experiments, we set
the basic block similarity threshold to 0.7 and required the
selected linearly independent paths cover at least 80% of the
plaintiff program. There is a trade-off between the basic block
similarity threshold, efficiency, and accuracy. Based on our
experiments, a 0.7 threshold achieved both good efficiency
and accuracy. In practice, this can also be adjusted based on
different scenarios.

7.2 Basic Block Similarity Comparison

The basic block semantic similarity measure is a crucial part
of our work. We evaluated the basic block semantic similarity
measure on a set of basic block pairs in which each consists of
an original basic block and a semantically equivalent version
with very different instructions. We generate equivalent code
sequences using the methods proposed in superdiversifier [38]
including: (F1) substitution; (F2) instruction reordering; (F3)
operand reordering; (F4) junk code injection; and (F5) register
renaming.

In total, the set has 17 pairs of basic blocks, including 10
pairs created using the superdiversifier methods [38] and 7
pairs found in real world. We are limited to 17 pairs because
we do not have access to tools such as superdiversifier [38].
Although the set is small, the pairs included are quite
different with respect to semantic equivalence comparison.
Note that basic block semantic equivalence will also be
evaluated through our software plagiarism and code reuse
experiments in the later sections.

Table 1 shows four pairs of semantically equivalent basic
blocks with very different instructions. The first pair shows
the effect of F1 and F5; the second shows the effect of F1, F2,
and F5; the third pair shows the effect of substitution F1; and
the fourth pair shows the effect of F1. Our tool reported the
similarity scores higher than 0.9 for all 17 pairs, more than
half of which have score 1.0. Overall, our tool is effective in
measuring basic block semantic similarity.
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7.3 Thttpd
The purpose of the experiments of thttpd, openssl (see
Section 7.4), and gzip (see Section 7.5) is to measure the
obfuscation resiliency of our tool. In our first experiment,
we evaluated thttpd-2.25b and sthttpd-2.26.4, where sthttpd is
forked from thttpd for maintenance. Thus, their codebases
are similar, with many patches and new building systems
added to sthttpd. To measure false positives, we tested our
tool on several independent program, some of which have
similar functionalities. These programs include thttpd-2.25b,
atphttpd-0.4b, boa-0.94.13 and lighttpd-1.4.30. We summarize
the sizes (only include C/C++ source files, C/C++ header
files, and assembly code) of the benchmark programs below,
counted by CLOC.

Program Size (LOC)
atphttpd-0.4b 641
boa-0.94.13 5,116
thttpd-2.25b 8,137
sthttpd-2.26.4 8,392
lighttpd-1.4.30 39,939

In all of our experiments, we select 10% of the functions
in the plaintiff program randomly, and test each of them
to find similar code in the suspicious program. For each
function selected, we identify the starting blocks both in the
plaintiff function and the suspicious program (see Section 4).
We selected 13 functions from thttpd-2.25b.

7.3.1 Resilience to Transformation via Different Compiler
Optimization Levels
Different compiler optimizations may result in different
binary code from the same source code, but preserve the
program semantics. We generated different executables of
thttpd-2.25b and sthttpd-2.26.4 by compiling the source code
using GCC/G++ with different optimization options (-O0,
-O1, -O2, -O3, and -Os). This has produced 10 executables. We
cross checked each pair of the 10 executables on code reuse
detection and compared the results with DarunGrim2 [24], a
state-of-the-art patch analysis and binary diffing tool. Fig. 6
shows the results with respect to four of the ten executables
compiled by optimization levels -O0 and -O2. Results with
other optimization levels are similar and we do not include
them here due to the space limitation.

From Fig. 6, we can see our tool CoP is quite effective
compared to DarunGrim2. Both CoP and DarunGrim2
have good results when the same level of optimizations is
applied (see the left half of Fig. 6). However, when different
optimization levels (-O0 and -O2) are applied, the average
similarity score from DarunGrim2 is only about 13%, while
CoP is able to achieve an average score of 88%.

To understand the factors that caused the differences, we
examined the assembly codes of the executables, and found
these differences were mainly caused by different register
allocation, instruction replacement, basic block splitting and
combination, and function inline and outline. Due to the
syntax differences caused by different register allocation and
instruction replacement, DarunGrim2 is unable to determine
the semantic equivalence of these basic blocks; while CoP is
able to identify these blocks as very similar or identical.

Two interesting cases are worth mentioning. The first case
is the basic block splitting and combination. One example
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Fig. 6. Code similarity scores resulting from different compiler optimiza-
tion levels. Higher is better since these two programs share codebase.
(Legend: Ti and Si stand for thttpd and sthttpd compiled with -Oi,
respectively.)

is the use of conditional move instruction (e.g., cmovs).
We found that when thttpd-2.25b was compiled with -O2,
there was only one basic block using the cmovs instruction;
when it was compiled with -O0, there were two basic blocks.
CoP addresses this by merging neighboring blocks through
the LCS Refinement. As a result, CoP found the two basic
blocks compiled by -O0, when merged, were semantically
equivalent to the one block compiled by -O2.

Another interesting case is function inline and out-
line. There are two basic scenarios. One is that the in-
lined/outlined function is a user-defined or statically-linked
library function; another is that the inlined/outlined function
is from a dynamically linked library function or other
unresolved function. Let us take de_dotdot(), a user-
defined function in thttpd-2.25b, as an example. The function
is inlined in httpd_parse_request() when it is compiled
with -O2, but not inlined with -O0. It is similar for sthttpd-
2.26.4. CoP handles this by “inlining” the callee function,
since its code is available, during the LCS computation. Note
that the maximum depth for inlining functions is set to 3,
which is configurable. In the second scenario, where the
inlined/outlined function is a dynamically linked library
function (e.g., strspn()), CoP will simply not inline the
function. As we handle the plaintiff and suspicious programs
in the same way, we believe it won’t cause serious issues.
However, inlining some function here and there does not
significantly affect the overall detection result of CoP since
we can test all the functions. One may wonder whether
an adversary can hide stolen code in a dynamically linked
library. Our assumption is that the source or binary code
of the plaintiff program and at least binary code of the
suspicious program is available for analysis. Although CoP,
relying on static analysis, has some difficulty to resolve
dynamically linked library calls, it is able to analyze the
dynamically linked library as long as it is available, and
identify the stolen code if exists.

7.3.2 Resilience to Transformation via Different Compilers
We also tested CoP on code compiled with different compilers
and compared with DarunGrim2. We generated different
executables of thttpd-2.25b and sthttpd-2.26.4 using different
compilers, GCC and ICC, with the same optimization option
(-O2). Fig. 7 shows the detection results. With different
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compilers, the differences between the resulted code are
not only caused by different compilation and optimization
algorithms, but also by using different C libraries. GCC uses
glibc, while ICC uses its own implementation. The evaluation
results show that CoP still reports good similarity scores
(although a little bit lower than those of using the same
compiler), but DarunGrim2 failed to recognize the similarity.

7.3.3 Resilience to Code Obfuscations
To evaluate the obfuscation resiliency, we used two com-
mercial products, Semantic Designs Inc.’s C obfuscator
[65] and Stunnix’s CXX-obfuscator [67], as the source code
obfuscation tools, and two open-source products, Diablo [26]
and Loco [51], as the binary code obfuscation tools. We
also utilized CIL [58] as another source code obfuscation
tool. CIL possesses many useful source code transformation
techniques, such as converting multiple returns to one return,
changing switch/case to if/else, and replacing logical
operators (&&, ?:, etc.) with if/else.

Component vs. Suspicious. In the previous tests, we
evaluated the similarity between two programs. In this
test, we evaluated whether a component from the plaintiff
program is reused by a suspicious program. The experiments
we conducted with different compilers and optimizations
between thttpd and sthttpd can be viewed as a special case of
the component vs. suspicious scheme. The motivation is that,
for software plagiarism or code reuse scenarios, the original
software developers often have insights on the plaintiff
program and can point to the critical component. Therefore,
we can test critical components to see whether they are
reused in the suspicious program. In this experiment, we test
on a small component, function httpd_parse_request()
vs. thttpd and MD5 vs. openssl. In our subsequent experiment,
we test in large program components: the Gecko rendering
engine vs. the Firefox browser.

The obfuscation techniques can be divided into three cat-
egories: layout, control-flow, and data-flow obfuscation [17].
Each category contains different obfuscation transformations.
We chose 13 typical obfuscation transformations [17] from all
the three categories to obfuscate thttpd, and then compiled the
obfuscated code to generate the executables. We compared
the detection results of CoP with those of four state-of-
the-art plagiarism detection systems including MOSS [28],

JPLag [61], DarunGrim2 [24] and Bdiff [9]. We evaluated on
code with a single and multiple obfuscations applied. The
single and multiple obfuscation results are shown in Table 2
and Table 3, respectively.

We analyzed how CoP addresses these obfuscation tech-
niques. The layout obfuscations do not affect binary code,
but impair the source code based detection systems. The data
obfuscations also do not affect CoP because its basic block
comparison method is capable of addressing noise input and
output, and is insensitive to data layout changes.

Control-flow obfuscations reduce quite a bit the scores
reported by MOSS, JPLag, DarunGrim2, and Bdiff, but have
little impact on CoP. We analyzed the obfuscation that
changes the switch/case statements to if/else state-
ments. This obfuscation is done by CIL as source-to-source
transformation in our experiment. GCC applied an optimiza-
tion on the switch/case statements. It generated either a
balanced binary search tree or a jump table depending on
the number of the case branches. We then conducted further
experiments on this case. When GCC generated a balanced
binary search tree code, the similarity scores between two
code segments (one contains switch/case statements and
the other contains the corresponding if/else statements)
reported by MOSS, JPLag, DarunGrim2, Bdiff, and CoP
are 0%, 34%, 38%, 36%, and 90%, respectively. When GCC
generated a jump table, the similarity scores are 0%, 31%,
19%, 16%, and 92%, respectively. The result shows our
method is quite resilient to advanced code obfuscations.

We especially note that existing tools are not resilient to
the control flow flattening obfuscation [17], which transforms
the original control flow with a dispatch code that jumps
to other code blocks. Control flow flattening has been used
in real world for software software protection. For example,
Apple’s FairPlay code has been obfuscated with control flow
flattening. Clearly this defeats syntax-based methods. CoP is
able to get good score against control flow flattening because
of our symbolic execution based path exploration and basic
block semantics LCS similarity calculation method.

7.3.4 Independent Programs
To measure false positives, we also tested CoP against four
independently developed programs: thttpd-2.25b, atphttpd-
0.4b, boa-0.94.13, and lighttpd-1.4.30. Very low similarity scores
(below 2%) were reported.

Because some basic blocks in the plaintiff program may
happen to be semantically equivalent to some blocks in the
suspicious program, there may be a low similarity score
between them. For example, both programs may contain a
code snippet that has the same functionality of summing
up a sequence of numbers using a for-loop. Then the loop
bodies from the two programs happen to be semantically
equivalent. However, considering the low similarity, they
should not be regarded as the case of software plagiarism.

7.4 Openssl

This experiment also aims to measure the obfuscation re-
siliency. We first evaluated openssl-1.0.1f, openssh-6.5p1, cyrus-
sasl-2.1.26, and libgcrypt-1.6.1, where openssh-6.5p1, cyrus-sasl-
2.1.26, and libgcrypt-1.6.1 use the library libcrypto.a from
openssl-1.0.1f. We tested our tool on completely irrelevant
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TABLE 2
Detection results (resilience to single code obfuscation)

Obfuscation Similarity score (%)

Source code based Binary code based
MOSS JPLag DarunGrim2 Bdiff CoP

Layout Remove comments, space, and tabs 47 62 100 100 100
Replace symbol names, number, and strings 22 90 100 100 100

Control

Insert opaque predicates – – 47 43 95
Inline method – – 32 34 91

Outline method – – 38 33 90
Interleave method 45 40 32 19 89

Convert multiple returns to one return 75 91 98 86 97
Control-flow flattening – – 5 3 86
Swap if/else bodies 72 78 81 73 98

Change switch/case to if/else 74 51 69 51 94
Replace logical operators (&&, ?:, etc.) with if/else 79 95 97 88 96

Data Split structure object 83 87 93 82 100
Insert bogus variables 93 88 86 75 100

TABLE 3
Detection results (resilience to multiple code obfuscation)

Obfuscation
Similarity score (%)

Source code based Binary code based
MOSS JPLag DarunGrim2 Bdiff CoP

Insert opaque predicates, convert multiple returns to one return – – 33 29 89
Inline method, outline method – – 25 20 87

Interleave method, insert bogus variables 29 27 30 15 88
Swap if/else bodies; Split structure object 38 51 53 39 91

programs to measure false positives. These programs include
attr-2.4.47 and acl-2.2.52. We summarize the sizes (only in-
clude C/C++ source files, C/C++ header files, and assembly
code) of the benchmark programs below, counted by CLOC.

Program Size (LOC)
attr-2.4.47 2,360
acl-2.2.52 5,524
cyrus-sasl-2.1.26 57,851
openssh-6.5p1 81,997
libgcrypt-1.6.1 89,383
openssl-1.0.1f 278,612

In this experiment, we test whether the suspicious
programs contain an MD5 component from the plaintiff
program openssl-1.0.1f. There are four functions in the MD5
component from openssl-1.0.1f : MD5_Init, MD5_Update,
MD5_Transform, and MD5_Final. The MD5 plaintiff com-
ponent was compiled by GCC with the -O2 optimization
level. To measure obfuscation resiliency, we conducted the
similar experiments as on thttpd. Fig. 8 shows the similarity
scores when different kinds of obfuscations were applied. The
detection results showed that openssh-6.5p1 which is based on
openssl-1.0.1f contains the MD5 component of openssl-1.0.1f.
Their similarity scores were between 82% and 100%, with
obfuscations applied. We especially noted that the scores
for openssl-1.0.1f vs. libgcrypt-1.6.1 and cyrus-sasl-2.1.26, with
obfuscations applied, are between 12% and 30%. With further
investigation, we confirmed that although both libgcrypt-
1.6.1 and cyrus-sasl-2.1.26 are based on openssl-1.0.1f, their
MD5 components are re-implemented independently. For
the completely irrelevant programs acl-2.2.52 and attr-2.4.47,
very low similarity scores (below 4%) were reported.
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Suspicious programs

Fig. 8. Code similarity scores when different kinds of obfuscations
were applied. The plaintiff component is the MD5 component from
openssl-1.0.1f. (Legend: GCC-Oi and ICC-Oi stand for GCC and
ICC compiled with -Oi, respectively. Multi-Obf-j stands for the j th multiple
code obfuscation in Table 3.)

7.5 Gzip

In our third experiment, we first evaluated our tool on gzip-
1.6 against its different versions including gzip-1.5, gzip-1.4,
gzip-1.3.13, and gzip-1.2.4. We also tested gzip-1.6 against
two independent programs with some similar functionalities,
bzip2-1.0.6 and advanceCOMP-1.18, to measure false positives.
The following is a summary of their sizes (only include
C/C++ source files and C/C++ header files).
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Suspicious programs

Fig. 9. Code similarity scores when different kinds of obfuscations were
applied. The plaintiff program is gzip-1.6. (Legend: GCC-Oi and ICC-
Oi stand for GCC and ICC compiled with -Oi, respectively. Multi-Obf-j
stands for the j th multiple code obfuscation in Table 3.)

Program Size (LOC)
bzip2-1.0.6 5,823
advanceCOMP-1.18 17,087
gzip-1.2.4 5,809
gzip-1.3.13 21,265
gzip-1.4 24,262
gzip-1.5 31,957
gzip-1.6 32,079

The plaintiff program gzip-1.6 was compiled by GCC
with the -O2 optimization level. We selected 10% functions
in gzip-1.6, which were 17 functions. To measure obfuscation
resiliency, we conducted the similar experiments as on thttpd
and openssl, and show the results in Fig. 9. The results showed
that the similarity scores between gzip-1.6 and gzip-1.5, gzip-
1.6 and gzip-1.4, gzip-1.6 and gzip-1.3.13, and gzip-1.6 and
gzip-1.2.4, are 99%, 86%, 79%, and 42%, respectively, when
compiled by GCC with -O2. Moreover, when various obfusca-
tion were applied, the average similarity score only reduced
around 12%, indicating that our tool is resilient to obfuscation.
From the results, we can see that the closer the versions, the
higher the similarity scores. For the independent programs
bzip2-1.0.6 and advanceCOMP-1.18, very low similarity scores
(below 3%) were reported. As we have presented a detailed
analysis on how our tool addresses various obfuscation
techniques for the experiment of thttpd, due to the space
limit, we do not include the similar analysis here.

7.6 Gecko

To measure the scalability of detecting large real-world
production software, we chose the Gecko layout engine
as the plaintiff component, and evaluated it against the
Firefox web browser. We selected 8 versions of Firefox, each
of which includes a different version of Gecko. Thus, we have
8 plaintiff components (8 Gecko versions) and 8 suspicious
programs. For each Gecko version, we selected 10% functions
for analysis, which were from 3726 to 6193 functions. We
cross checked each pair of Gecko and Firefox, and the results
are shown in Fig. 10. The line graph contains 8 lines. The
results showed that the closer two versions are the more similar
their code is. Especially. the highest score of each line is the
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Fig. 10. Gecko vs. Firefox (%)

case where the Gecko version is included in that Firefox
version. To measure false positives, we also checked CoP
on Gecko vs. 4 versions of Opera (11.00, 11.50, 12.00, and
12.16) and 3 versions of Google Chrome (28.0, 29.0, and 30.0),
which do not use Gecko as layout engine. CoP reported
scores below 3% for all cases.

8 ALGORITHM DETECTION

8.1 Experimental Settings
We evaluated the effectiveness of CoP on six cryptographic
algorithms, two sort algorithms, and one search algorithm
against a set of benchmark programs ranging from small to
large real-world software.

To detect an algorithm present in a given program, we
chose a representative set of programs as the reference imple-
mentations (a special situation in which only one reference
implementation is chosen) to represent the algorithm. We
conducted the following two categories of experiments: (1)
pair-wise comparison of the reference implementations, and
(2) cross-checking the reference implementations against
the benchmark programs. In addition, different compilers,
different compiler optimization levels, as well as code
obfuscation techniques were applied. For the second category,
we compared each reference implementation of the algorithm
to the suspicious program, to compute their similarity scores,
and output the highest one among those as the algorithm
similarity score, detecting whether the algorithm is present
in the suspicious program.
Definition 7. (Algorithm Similarity Score) Given a set of refer-

ence implementations of an algorithm, A = {A0, . . . , An},
and a suspicious program S. The algorithm similarity
score for A is defined as

ψ(A, S) = maxAi∈A ψ(Ai, S),

where ψ(Ai, S) is the program similarity score between
Ai and S as defined in Definition 6.

To measure the similarity between a reference imple-
mentation and the suspicious program, unlike the software
plagiarism detection cases which randomly picked 10% of the
functions from the plaintiff, we selected core functions from
the reference implementation based on pre-knowledge; if we
did not have access to the source code, we simply tested all
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Fig. 11. Code similarity scores for the five implementations of MD5 (%).
Higher is better since they are from the same algorithm. (Legend: ri stand
for the i th implementation.)

the functions (there are usually limited functions in reference
implementations). A core function refers to a function that
implements the core functionality of an algorithm. For
example, the functionality for MD5 includes initializing
hash digests, compressing messages, and updating hash
digests. Thus, we selected these core functions, and skiped
other unrelated ones (e.g., a function obtaining inputs from
keyboard or from a file).

We set the basic block similarity threshold to 0.7, and
selected a set of linearly independent paths covering at
least 80% of the algorithm reference implementations. The
detection result threshold was set to 60%. In general, a 60%
threshold is good enough to recognize an algorithm based
on our experience.

8.2 MD5

Our first experiment evaluated MD5. MD5 is a cryptographic
hash function that produces a 128-bit hash value. The input
message is broken up into 512-bit chunks that are then
processed in an iterative fashion.

8.2.1 Evaluation on Standalone Implementations
We found five independent implementations of MD5 from
the open source code. To confirm their independence, we
used four detection systems (MOSS, JPLag, Bdiff and Darun-
Grim2) to measure their pair-wise similarities, and showed
the results in Fig. 11.3 Note that for all the other experiments,
we did the same confirmation. A low similarity would
suggest independence. Fig. 11 shows that the similarity
scores from MOSS and JPLag are very low (below 10%),
suggesting the five implementations are independent. The
similarity scores from CoP (between 66% and 86%) are high
enough to identify MD5, even though the binary codes
are quite different according to the results from Bdiff and
DarunGrim2.

To understand the factors that caused the binary code
differences, we examined the source code of the five im-
plementations. All five are independently implemented in

3. We use MOSS and JPLag to compare the source codes of the
reference implementations, and use Bdiff and DarunGrim2 to compare
the binary codes of the reference implementations.

different ways by different programmers; this generates
many variations in the resulting code, such as different
function and variable names, different procedure (function)
abstractions, conditional transformation, loops rolling and
unrolling, etc.

Because CoP is based on symbolic execution, different
function and variable names do not affect the result. With
respect to different procedure (function) abstractions, CoP is
able to address it. For example, some implementations inline
the functions of decode (changes an array with the char type
to an array with the uint4 type) and encode (changes an
array with the uint4 type to an array with the char type), while
others outline them as two separated functions. Because CoP
inlines the callee functions during the LCS of semantically
equivalent basic blocks calculation, CoP is able to handle
this problem. However, in another scenario in which the
inlined/outlined function is a dynamically linked library
function, CoP cannot locate the callee function, which may
result in a lower similarity score. For example, three of our
five implementations call the library functions of memcpy
and memset, while the other two do not; instead, they
implement their own functions substituting for the library
calls. Although CoP relying on static analysis, has some
difficulty resolving this problem, it is able to analyze the dy-
namically linked library as long as it is available. In addition,
an examination of the algorithms listed in the “Algorithm
Design” book [43] reveals that few algorithms involve library
calls, indicating this problem has little impact on algorithm
detection. However, if some algorithm implementations do
invoke library functions whose code is not available for
analysis, a lower similarity score may incur as CoP is not
able to inline the callee function.

CoP can also handle conditional transformation. For
example, the following are two code segments (upper and
lower) from two of the MD5 implementations, respectively.

padn=(last<56)?(56-last):(120-last);
pad=(bytes>=56)?(120-bytes):(56-bytes);

In the two code segments, the branching conditionals are
implemented in opposite ways. It is handled by merg-
ing blocks during the LCS calculation. We consider the
upper code segment from the reference implementation,
and the lower one from the target program. We select a
linearly independent path from the reference implementa-
tion containing the branch block (last<56) and the block
(56-last) that follows the true conditional. Next we use
the selected path to explore the target program, and find
a block (56-bytes) semantically equivalent to (56-last)
in the reference implementation, but we cannot find a
block semantically equivalent to (last<56). However, after
merging blocks, we are able to detect that the path segment
of (last<56) and (56-last) in the reference program is
semantically equivalent to the path segment of (56-bytes)
and (bytes>=56) in the target program. Thus, no matter
how a branch is implemented, as long as the corresponding
blocks are merged, we are able to detect the similarity.

Resilience to transformation via semantic transfor-
mation techniques. We also tested CoP on its resilience
to semantic transformation techniques, including different
compiler, different compiler optimization levels, and code
obfuscation techniques.
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Fig. 12. Similarity scores for different compiler optimization levels (%).
Higher is better since they are from the same algorithm. (Legend: ri-j
stand for the i th implementation compiled with -Oj.)
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Fig. 13. Similarity scores for different compilers (%). Higher is better
since they are from the same algorithm. (Legend: ri-j stands for the i th
implementation compiled by j, where j is either G for GCC or I for ICC.)

We first generated different executables of each reference
implementation using GCC/G++ with different optimization
levels (-O0, -O1, -O2, -O3, and -Os). This produced 25
executables. We then pair-wise compared the executables
and show the results in Fig. 12. Due to space limitation, we
show only the results related to the executables compiled by -
O0 and -O2; results with other optimization levels are similar.
Next, we generated different executables using different
compilers, GCC and ICC, with the same optimization level
(-O2), and show the results in Fig. 13. Furthermore, we
used code obfuscation techniques, such as insert opaque
predicates, inline method, outline method, swap if/else
bodies, and change switch/case to if/else, etc., to
obfuscate each implementation and generate executables.
The results indicate that CoP can successfully identify MD5.

8.2.2 Evaluation on Production Software
We tested CoP on a set of benchmark programs, includ-
ing cryptlib-3.4.2, openssl-1.0.1f, openssh-6.5p1, libgcrypt-1.6.1,
truecrypt-7.1a, berkeley DB-6.0.30, MySQL-5.6.17, git-1.9.0,
glibc-2.19, p7zip-9.20.1, cmake-2.8.12.2,thttpd-2.25b, and sthttpd-
2.26.4. We cross-checked all the reference implementations
against each benchmark, and reported the highest similarity
scores. The results show that cryptlib-3.4.2, openssl-1.0.1f,
openssh-6.5p1, libgcrypt-1.6.1, MySQL-5.6.17, glibc-2.19, and
cmake-2.8.12.2 implement MD5 with the highest similarity
scores between 74% and 83%; thttpd-2.25b and sthttpd-2.26.4
do not implement MD5 with quite low similarity scores
(around 1%). We investigated the source code and confirmed
the results.

We especially noted that the highest similarity scores for
p7zip-9.20.1, truecrypt-7.1a, berkeley DB-6.0.30, and git-1.9.0
were between 19% and 24%. Upon further investigation, we
found that the similarity was related to the implementation
of SHA1. When we checked MD5, some parts of SHA1 were
found to be similar to MD5. However, such a score is not
high enough to identify an algorithm.

8.3 SHA1
Our second experiment tested SHA1. SHA1 produces a 160-
bit hash value, typically rendered as a hex number with 40
digits long.

8.3.1 Evaluation on Standalone Implementations
We found six independent implementations. We used CoP
to pair-wise compare them. Their similarity scores were
between 46% and 87%.

To verify the results, we examined the source code of the
six implementations, and found that three implementations
use loops to implement the compression function, while the
others unroll the corresponding loops. Moreover, the loops
of the compression function are divided into four parts with
four different loop body calculations, and none of the four
parts is semantically equivalent to the unrolled block. Thus,
the similarity score between two implementations (one with
loop and another without loop) was a little lower. As we use
the highest similarity score to identify an algorithm present
in a program, this does not affect the detection results.

8.3.2 Evaluation on Production Software
We next tested CoP on the same set of the benchmark
programs. We cross-checked the reference implementations
and the benchmark programs, and found that except for glibc-
2.19, thttpd-2.25b, and sthttpd-2.26.4, all other benchmarks got
highest similarity scores between 77% and 89%, indicating
that they have implemented SHA1. For glibc-2.19, the sim-
ilarity score was 24%. From investigation, we found that
the similarity was related to the implementation of MD5.
However, such a score is not high enough to identify SHA1.

8.4 SHA2
Our third experiment tested SHA2. SHA2 is a set of
cryptographic hash functions, including SHA224, SHA256,
SHA384, and SHA512. SHA224 is simply a truncated version
of SHA256, with the only difference being that they are
computed with different initial values; hence, we consider
them to be the same algorithm. The same is true for SHA384
and SHA512. Thus, SHA2 is represented as two algorithms:
SHA256 (or SHA224) and SHA512 (or SHA384).

8.4.1 Evaluation on Standalone Implementations
We had five independent implementations of SHA256 and
four independent implementations of SHA512. We used CoP
to pair-wise compare them and show results in Table 4.

From Table 4, we can see that CoP can successfully
identify SHA256 and SHA512 within their corresponding
implementations with the average similarity score of 74%
and 71%, respectively. However, the average cross-checking
similarity score of SHA256 and SHA512 was only 16%,
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TABLE 4
The similarity scores in SHA2 experiment

SHA256 vs. SHA256 SHA512 vs. SHA512 SHA256 vs. SHA512
Min 0.64 0.62 0.15
Max 0.87 0.83 0.19
Avg 0.74 0.71 0.16

which surprised us as they are from the same cryptographic
family SHA2. We analyzed their code and found two main
reasons. First, they operate on different sizes of variables.
SHA256 operates on 32-bit variables, while SHA512 on 64-bit
variables. Because the implementations were compiled in
32-bit, each 64-bit variable was split into two parts stored
in two different memory cells; these two parts were con-
sidered as the outputs of basic blocks. Second, SHA256 and
SHA512 have different hashing computations (e.g., their right
rotations are different), resulting in different input-output
relations of basic blocks. Therefore, we verified that SHA256
and SHA512 are not similar and confirmed our results. We
further applied semantic transformation techniques on each
reference implementation. CoP also successfully identified
and distinguished SHA256 and SHA512.

8.4.2 Evaluation on Production Software

We cross-checked the reference implementations and the
benchmark and got the following results: cryptlib-3.4.2,
openssl-1.0.1f, openssh-6.5p1, libgcrypt-1.6.1, truecrypt-7.1a,
MySQL-5.6.17, glibc-2.19, and cmake-2.8.12.2 contain both
SHA256 (or SHA224) and SHA512 (or SHA384), while p7zip-
9.20.1 only implements SHA256. The other programs of
berkeley DB-6.0.30, git-1.9.0, thttpd-2.25b, and sthttpd-2.26.4
contain neither SHA256 nor SHA512. We then examined the
source code and verified the results.

8.5 AES

Our fourth experiment was on AES. AES is a 16-byte block
cipher with a key of either 128, 256, or 512 bits. It processes
input data through a substitution-permutation network in
which each iteration (round) employs a round key derived
from the input key.

8.5.1 Evaluation on Standalone Implementations.

We found three independent implementations. We used
CoP to pair-wise compare them, and obtained the similarity
scores between 14% and 88%. Upon further investigation,
we found the reason for the lower similarity scores to be
that one implementation uses a lookup table to optimize
AES and, hence, the logic operations are implied (or hidden)
in the lookup table. In this case, CoP has some difficulty
in detecting the semantic similarity. However, this kind of
optimization can be only applied to the algorithms that
involve a sufficient number of matrix operations; thus, it has
limited impact. Worth mentioning here is the splitting and
merging of variables. Take the following two code segments
from two implementations, respectively, as an example.

cipher[0]=(unsigned long)(x0&0xffff)|
((unsigned long)(x1&0xffff)�16L);

cipher[1]=(unsigned long)(x2&0xffff)|
((unsigned long)(x3&0xffff)�16L);

cipher[0]=(unsigned char)x10;
cipher[1]=(unsigned char)(x10�8);
cipher[2]=(unsigned char)x32;
cipher[3]=(unsigned char)(x32�8);
cipher[4]=(unsigned char)x54;
cipher[5]=(unsigned char)(x54�8);
cipher[6]=(unsigned char)x76;
cipher[7]=(unsigned char)(x76�8);

The upper code segment has two 32-bit outputs
(cipher[0] and cipher[1]). The lower code segment
has eight 8-bit outputs (cipher[i], where 0 ≤ i ≤ 7).
Because the outputs have different lengths, CoP cannot
compare them to detect whether they are equivalent given
the corresponding inputs are the same, and hence determines
that the two code segments are not semantically equivalent.
However, in general, the splitting and merging of variables
usually occurs at the beginning/end of encryption and
decryption, unless programmers adopt complicated methods
to convert all operations on variables of the original type
to those on variables of the new type, which usually is not
practical. Thus, this has limited impact on the detection
results.

8.5.2 Evaluation on Production Software
We also compared the AES implementations against the
benchmark programs, and found that cryptlib-3.4.2, openssl-
1.0.1f, openssh-6.5p1, libgcrypt-1.6.1, truecrypt-7.1a, berkeley DB-
6.0.30, and MySQL-5.6.17 contain AES, and the others do not.
In addition, their implementations of AES are very similar
to that implementation utilizing a lookup table, with the
highest similarity scores approximately 86%. To verify it, we
checked the source code and obtained consistent results.

8.6 RC4, Blowfish, Bubble Sort, Binary Tree Sort, and
Redblack Tree
We then evaluated RC4 and Blowfish. CoP precisely iden-
tified them in their corresponding implementations and
the benchmark. We further evaluated two sort algorithms
(Bubble sort and Binary tree sort), and one search algorithm
(Redblack tree) on their corresponding reference implementa-
tions. CoP also successfully identified them with the average
similarity score of 82%. Due to the space limit, we do not
include the analysis here.

8.7 Performance
We reported the average execution time of CoP for detecting
the six cryptographic algorithms from the thirteen bench-
mark programs in Table 5. The second row shows the size of
these benchmarks (only include C/C++ source files, C/C++
header files, and assembly code). The third to the eighth rows
show the execution time. In our experiments, most of the
execution time was spent on finding the starting blocks for
the algorithm reference implementation and the suspicious
program. In our current prototype, we perform brute-force
search in this step and have not optimized for performance
yet. In practice, it is often possible to develop heuristics to
locate starting blocks and improve the performance.
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TABLE 5
Execution time (hr).

thttpd sthttpd openssh truecrypt libgcrypt p7zip git cryptlib openssl cmake berkeley DB glibc MySQL
Size (LOC) 8,137 8,392 81,997 87,196 89,383 120,730 148,046 241,274 278,612 324,252 547,448 917,589 1,600,471

MD5 4.02 4.13 2.11 3.15 2.21 4.27 3.40 2.83 3.00 3.30 6.35 7.94 10.13
SHA1 4.60 4.23 1.98 2.01 2.16 2.37 2.39 2.72 2.89 3.64 4.83 7.24 10.00
SHA2 4.13 4.24 1.94 1.97 2.02 2.33 8.48 2.66 2.91 3.81 9.77 10.39 9.88
AES 4.83 5.26 2.46 2.49 2.57 10.84 11.47 3.62 4.37 10.13 6.21 13.32 11.48
RC4 1.13 1.16 1.38 4.00 4.12 5.36 4.62 2.43 2.84 5.54 8.93 7.24 9.40

Blowfish 3.48 3.73 1.93 2.12 2.39 7.82 8.14 3.32 3.46 9.87 10.98 10.37 9.44

8.8 Algorithm Detection Result Summary
We summarize the detection results for the six cryptographic
algorithms in Table 6. We verified these detection results via
investigating the source code of the benchmark programs.
CoP reported no false positive or false negative.

9 DISCUSSION

9.1 Obfuscation Resiliency Analysis
The combination of the rigorous program semantics and the
flexibility in terms of noise tolerance of LCS is powerful. Here
we briefly analyze its obfuscation resiliency. Obfuscation can
be classified into three categories: layout, control-flow, and
data-flow obfuscations [17].

9.1.1 Layout Obfuscation
Because CoP is a semantic-based plagiarism detection ap-
proach, layout obfuscation (e.g., comments, space and tabs
removal, identifier replacement, etc.) does not have any
effect.

9.1.2 Control-flow Obfuscation
CoP deals with basic block splitting and combination by merg-
ing blocks. Basic block reordering can also be handled by
merging blocks. After merging, the order does not matter
to the symbolic execution used in the basic block similarity
comparison if there is no dependency between two blocks
or instructions. Instruction reordering is also taken care by the
symbolic execution. Function inline and outline is handled by
inter-procedural path exploration in the LCS computation.
It is virtually impossible to solve opaque predicates; however,
CoP can tolerate unsolvable conditions since it explores
multiple possible paths in the suspicious program for the
LCS computation. CoP also has no difficulty on control-flow
flattening, branch swapping, and switch-case to if-else conversion
obfuscation since it is based on the path semantics modeling
which naturally takes control-flow into consideration (these
are also analyzed and illustrated in our evaluation section).
It is similar for the obfuscation that converts multiple returns
to one return. The obfuscation that replaces logical operators
can be handled by symbolic execution and path semantics
modeling with LCS.

Loop rolling and unrolling can be handled to some extent
(see Section 8.2.1). Loop reversing is also a possible counter-
attack. However, automatic loop reversing is difficult as it
may result in semantically different programs. So far, we
are not aware of such tools to our best knowledge. One
might manually reverse a loop, but its impact could be very
limited in a large program; moreover, it requires a plagiarist
understands the loop and involves a lot of manual work,

which is laborious and error-prone and violates the initial
purpose of plagiarism.

9.1.3 Data-flow Obfuscation
There are two scenarios. The first scenario is that the
obfuscation is applied inside a basic block, e.g., bogus
variables insertion in a basic block. Since our basic block
semantic similarity comparison can tolerate variations in
the suspicious block, it has no effect no matter how many
bogus variables are inserted in the suspicious block except for
increased computation cost. Note the block from the plaintiff
is not obfuscated, and the base of block comparison is the
plaintiff block. Another possible counterattack is splitting and
merging variables (see Section 8.5.1). Because CoP does not
combine variables during basic block similarity computation,
it fails to detect these variables are equivalent. However,
this usually occurs at the beginning/end of programs,
unless developers adopt complicated methods to convert
all operations on variables of the original type to those on
variables of the new type, which is usually not practical; thus,
it has little impact on detection results.

In the other scenario, obfuscation is applied in a inter-
block manner. An example is splitting variables and dispers-
ing each part into several basic blocks. Since we compare
semantics at the machine code level and merge multiple block
when it is necessary, this attack can be dealt with unless an
object is split into two basic blocks far away enough that
they are not merged in CoP.

9.1.4 Block Similarity Matching “Error”
To tolerate obfuscation, program transformation, and opti-
mizations, exact matching of block semantics does lead to
good result. Thus block matching “error” can be interpreted
as a way to accommodate some flexibility in the process
due to obfuscation or transformation. Although in theory
“error” might accumulate, but in experiment we haven’t
encountered any problem. It is interesting to investigate in
the future whether we can use taint analysis to verify to some
extent if an “error” is relevant and filter it out if not.

9.2 Limitations
CoP bears the following limitations. First, CoP is static with
symbolic execution and theorem proving. It bears the same
limitations as static analysis in general. For example, static
analysis has difficulty in handling indirect branches (also
known as computed jumps, indirect jumps, and register-
indirect jumps). This problem can be addressed to some
extent by Value-Set Analysis (VSA) [5]. Moreover, CoP relies
on the assumption that the binary code of the plaintiff and
suspicious programs can be disassembled. If the binary
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TABLE 6
Detection results for six cryptographic algorithms.

√
indicates we detect the algorithm in the benchmark. × indicates we do not detect the algorithm

in the benchmark. No false positive or false negative is reported.

cryptlib openssl openssh libgcrypt truecrypt berkeley DB MySQL git glibc p7zip cmake thttpd sthttpd
MD5

√ √ √ √
× ×

√
×

√
×

√
× ×

SHA1
√ √ √ √ √ √ √ √

×
√ √

× ×
SHA2

√ √ √ √ √
×

√
×

√ √ √
× ×

AES
√ √ √ √ √ √ √

× × × × × ×
RC4

√ √ √
× × ×

√
× × × × × ×

Blowfish
√ √ √ √ √

×
√

× × × × × ×

code cannot be disassembled, CoP cannot analyze them.
In addition, a plagiarist can pack or encrypt the original code
(e.g., VMProtect [71] and Code Virtualizer [59]); our current
tool does not handle such cases. Some dynamic execution
tool (e.g., Anubis [7], CWSandbox [74], Renovo [42], PolyUn-
pack [62], OmniUnpack [52], etc.) can be used to partially
address this by capturing unpacked or decrypted code when
dynamically executing programs.

Symbolic execution combined with automated theorem
proving is powerful, but has its own limitations. For example,
for theorem proving, it cannot solve the opaque predicates or
unsolved conjectures (e.g., the Collatz conjecture [20], [44]),
but the impact could be very limited in large programs. Also,
its computational overhead is high. In our experiment with
thttpd and sthttpd, it took as long as an hour to complete,
and in our Gecko vs. Firefox experiment, it took half a day.
Currently we perform brute-force search to find pairs of
semantically equivalent basic blocks with which to start the
path exploration and LCS computation. We plan to develop
heuristics and optimizations to minimize the calls to the
symbolic execution engine and theorem prover in the future.

The detection result of our tool depends on the basic
block similarity threshold. There is a trade-off between the
basic block similarity threshold, efficiency, and accuracy. It is
likely to increase false negative with a higher threshold; in
contrast, reducing the threshold may increase false positive.
For the efficiency, it depends on the repeating time of the
process of finding starting blocks in the suspicious program
and the number of starting blocks found in the suspicious
program (as we will explore the suspicious program based on
each starting block). Unfortunately, without many real-world
plagiarism samples, we are unable to show concrete results
on the selection of threshold. As such, rather than applying
our tool to “prove” software plagiarism, in practice one
may use it to collect initial evidences before taking further
investigations, which often involve nontechnical actions.

10 RELATED WORK

There is a substantial amount of work on the problem of find-
ing similarity and differences of two files either text or binary.
The classic Unix diff and diff3, and its Windows derivation
Windiff, compare text files. We discuss the work focusing on
finding software semantic difference or similarity.

10.1 Code Similarity Detection
SymDiff [45] is a language-agnostic semantic diff tool for
imperative programs. It presents differential symbolic execu-
tion that analyzes behavioral differences between different
versions of a program. To facilitate regression analysis,

Hoffman et al. compared execution traces using LCS [36]. Our
work is mainly motivated with obfuscation in the context
of plagiarism detection, while these works do not consider
obfuscation. Our work is also different from binary diffing
tools based mainly on syntax (e.g., bsdiff, bspatch, xdelta,
JDiff, etc.). Purely syntax-based methods are not effective
in the presence of obfuscation. Some latest binary diffing
techniques locate semantic differences by comparing intra-
procedural control flow structure [24], [27], [31]. Although
such tools have the advantage of being more resistant
to instruction obfuscation techniques, they rely heavily
on function boundary information from the binary. As a
result, binary diffing tools based on control flow structure
can be attacked by simple function obfuscation. The tool
iBinHunt [54] overcomes this problem by finding semantic
differences in inter-procedural control flows. CoP adopts
similar basic block similarity comparison method, but goes a
step further in this direction by combining block comparison
with LCS.

10.2 Software Plagiarism Detection

Static plagiarism detection or clone detection. The existing
static analysis techniques except for the birthmark-based
techniques are closely related to the clone detection [4],
[29], [41], which is a technique to find duplicate code and
then decrease code size and facilitate maintenance. While
possessing common interests with the clone detection, the
plagiarism detection is different in that (1) we must deal with
code obfuscation techniques which are often employed with a
malicious intention; (2) source code analysis of the suspicious
program is less applicable in practice since the source code
is often not available for analysis. Static analysis techniques
for software plagiarism detection includes string-based [4],
AST-based [76], token-based [28], [61], PDG-based [29], [47],
and birthmark-based [56], [69]. The methods based on source
code are not possible in most cases. In general, this category
is not effective when obfuscation can be applied.

Dynamic birthmark based plagiarism detection. Sev-
eral dynamic birthmarks can be used for plagiarism detection,
including API birthmark, system call birthmark, function
call birthmark, and core-value birthmark. Tamada et al. [70]
proposed an API birthmark for Windows application. Schuler
et al. [64] proposed a dynamic birthmark for Java. Wang
et al. [72] introduced two system call based birthmarks,
which are suitable for programs invoking many different
system calls. Jhi et al. [39], [40] proposed a core-value based
birthmark for detecting plagiarism. Core-values of a program
are constructed from runtime values that are pivotal for the
program to transform its input to desired output. A limitation
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of core-value based birthmark is that it requires both the
plaintiff program and suspicious program to be fed with the
same inputs, which sometimes is difficult to meet, especially
when only a component of a program is stolen. Thus, core-
value approach is not applicable when only partial code is
reused.

Dynamic whole program path based plagiarism detec-
tion. Myles and Collberg [57] proposed a whole program
path (WPP) to detect plagiarism. Although WPP is robust
to some semantic-preserving transformations, it is still vul-
nerable to many obfuscations, e.g., control flow flattening
and loop unwinding. Zhang et al. [55], [79] presented a pro-
gram logic based approach which searches for dissimilarity
between two programs by finding path deviations. They
used symbolic execution and theorem proving to find certain
inputs that will cause the two programs in consideration to
behave differently. Our work also captures path semantics,
but can tolerate certain deviations caused by obfuscation,
resulting more robust obfuscation resiliency.

10.3 Cryptographic Primitives Detection
Previous study on cryptographic primitives detection can
be categorized as two approaches. Static detection ap-
proaches like DRACA [2], KANAL [1] and Signsrch [3],
are based on recognition of syntactic signature (e.g., magic
constants, instruction segments). The main drawback is
that an attacker can use code obfuscation techniques to
impede signature identification. Dynamic detection methods
disclose cryptographic primitives by analyzing the execution
traces. Lutz [50] proposed to detect cryptographic code by
measuring three heuristics in execution traces—existence
of loops, large number of bitwise arithmetic operations
and entropy variation of tainted data when decrypting.
ReFormat [73] relied on the observation that processing
ciphertext and plaintext is different; thus it attempts to
locate turning point between two phases of traces. However,
ReFormat’s idea may break down if cryptographic programs
do not contain two easily distinguishable phases. Caballero
et al. [10] applied similar detection heuristics to extract
encrypted protocol messages. With the knowledge of the well
known cryptographic algorithms, Gröbert [34] developed
several refined search heuristics to improve the detection
accuracy. Aligot [14] observed an essential evidence that
input-output relationship of cryptographic functions holds
even in the presence of obfuscated code. Aligot leveraged
this fact to identify cryptographic functions and retrieve their
parameters.

10.4 Algorithm Plagiarism Detection
Compared with software plagiarism detection which has
been thoroughly discussed in open literature, very little
attention has been applied to algorithm plagiarism detection.
Building on the core-value based birthmark proposed by
Jhi et al. [40], Zhang et al. [78] proposed the methods
of n-version programming and annotation to extract the
core-value birthmarks for detecting algorithm plagiarism.
Zhang’s approach is limited to specific algorithms. It relies
on extracting runtime values from tainted value-updating
instructions, and cannot be applied on some algorithms, e.g.,
sorting algorithms, algorithms that find a min/max value in
an array.

10.5 Mobile App Repackaging Detection

Mobile app repackaging refers to the problem of reverse
engineering others’ app code and repackage it as a new
app, often with injected malicious payload. DroidMOSS [81]
detects app repackaging using fuzzy hash. DNADroid [22]
uses program dependence graphs to detect repackaging. The
efficiency of program dependence graph similarity compari-
son is further improved in AnDarwin [23]. Juxtapp [35] uses
k-grams of opcode sequences to build hash features and then
applies a sliding window to detect repackaging. Chen et
al. [15] proposes a geometry encoding of control flow graph
to detect mobile app clone. Zhou et al. [80] proposes a module
decoupling method to partition app code into primary and
non-primary modules to identify the malicious payloads
reside in the benign apps. Androguard [25] uses Normal
Compression Distance for repackaging detection. In general,
these methods are not very resilient to code obfuscation
techniques. ViewDroid [77] uses the unique mobile app UI
features to detect app repacking and makes the method
more resilient to general code obfuscation techniques. In
addition, Huang et al. [37] proposes a framework for mobile
app repackaging evaluation. A recent work by Luo et al. [48]
proposes an app repackage-proofing method to protect apps
from repackaging.

10.6 Others

Code Obfuscation. Collberg et al. [17] proposed function
transformation obfuscation (e.g., function inline and outline)
to prevent binary reverse engineering. Linn et al. [46] demon-
strated static disassembly is difficult on the Intel x86 platform.
This difficulty is further exacerbated by code packing and
encryption [68]. Popov et al. [60] obfuscated disassembler by
replacing control transfers with exceptions. Sharif et al. [66]
encrypted equality conditions that are dependent on inputs
with one-way hash functions. All these obfuscation methods
improve resistance to syntactic and sometimes semantics
based binary code similarity comparison.

Symbolic Path Exploration. Symbolic path explo-
ration [11], [12], [13], [32], [33] combined with test generation
and execution is powerful to find software bugs. In our LCS
computation, the path exploration has a similar fashion, but
we only discover linearly independent paths to cover more
blocks with few paths.

11 CONCLUSION

Identifying similar or identical code fragments among pro-
grams is very important in some applications, such as code
theft detection. Prior code similarity comparison techniques
have limited applicability because they either require source
code analysis or cannot handle automated obfuscation tools.
In this paper, we introduce a binary-oriented, obfuscation-
resilient binary code similarity comparison approach, named
CoP, based on a new concept, longest common subsequence
of semantically equivalent basic blocks, which combines the
rigorous program semantics with the flexible longest com-
mon subsequence. This novel combination has resulted in
more resiliency to code obfuscation. We have developed a
prototype. We have analyzed a number of real world pro-
gram, including thttpd, openssl, gzip, Gecko, cryptlib, openssh,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. X, NO. X, JANUARY 2017 20

libgcrypt, truecrypt, berkeley DB, MySQL, git, glibc, p7zip,
cmake, etc., along with a comprehensive set of obfuscation
techniques Semantic Designs Inc.’s C obfuscator, Stunnix’s
CXX-obfuscator, Diablo, Loco, and CIL. Our experimental
results show that CoP can be applied to software plagiarism
detection and algorithm detection, and is effective and
practical to analyze real-world software.
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