BinCFP: Efficient Multi-threaded Binary Code
Control Flow Profiling

Jiang Ming and Dinghao Wu
College of Information Sciences & Technology
The Pennsylvania State University, University Park, PA 16802
{jum310, dwu} @ist.psu.edu

Abstract—In many tasks of reverse engineering and binary
code analysis (e.g., hybrid disassembly, resolving indirect jump,
and decoupled taint analysis), the knowledge of detailed dynamic
control flow can be of great value. However, the high runtime
overhead beset the complete collection of dynamic control flow.
The previous efforts on efficient path profiling cannot be directly
applied to the obfuscated binary code in which an accurate
control flow graph is typically absent. To address these challenges,
we present BinCFP, an efficient multi-threaded binary code
control flow profiling tool by taking advantage of pervasive multi-
core platforms. BinCFP relies on dynamic binary instrumentation
to work with the unmodified binary code. The key of BinCFP is
a multi-threaded fast buffering scheme that supports processing
trace buffers asynchronously. To achieve better performance
gains, we also apply a set of optimizations to reduce control flow
profile size and instrumentation overhead. Our design enables the
complete dynamic control flow collection for an obfuscated binary
execution. We have implemented BinCFP on top of Pin. The
comparative experiments on SPEC2006 and obfuscated common
utility programs show BinCFP outperforms the previous work
in several ways. In addition, BinCFP’s control flow profile sizes
are only about 49.2% that of the conventional design.

Index Terms—Control Flow Profiling, Dynamic Binary Instru-
mentation, Multi-core

I. INTRODUCTION

Dynamic control flow information is typically represented
as a sequence of basic blocks executed during run time [1].
In many applications of reverse engineering and binary code
analysis, the detailed dynamic control flow can be very handy.
For example, control flow information can resolve indirect
jump targets, which are a known challenge for binary code
static analysis [2]. In this way, we can increase the accuracy
of static disassembly [3] and reverse the effect of control
flow obfuscation [4]. Moreover, efficiently recording control
flow data can facilitate decoupled taint analysis [5]-[7] to
improve the overall taint analysis performance. However, the
significantly high runtime overhead is a major barrier to the
complete collection of dynamic control flow. The performance
penalty further slows down the related security analysis tasks.
On the other hand, the topic of efficient trace profiling has been
well studied in the code generation and optimization area [8]-
[10]. Unfortunately, these previous efforts cannot be directly
applied to the obfuscated binary code. They either require an
accurate control flow graph for path profile encoding or cannot
work when continuous control flow information is required.
Therefore, an efficient and complete binary code control flow
collection tool is necessary to reverse engineering.

In this paper, we present a novel technique, called BinCFP,
to allow efficient and complete binary code control flow
profiling on ubiquitous multi-core platforms. Based on the
logged data, we can construct a straight-line code trace for
the further offline analysis. BinCFP is built on dynamic binary
instrumentation so that it works with unmodified binary code.
The core of BinCFP is a multi-threaded fast buffering scheme,
which allows the application to continue executing while
trace buffers are processed asynchronously. We also adopt an
enhanced control flow profile structure to produce compact
profile size. In addition, we apply a set of instrumentation op-
timizations to achieve better performance gains. Furthermore,
BinCFP supports multi-threaded applications as well.

We have developed BinCFP on top of Pin [11], a dy-
namic binary instrumentation platform. BinCFP relies on very
lightweight logging of the execution control flow information
to reconstruct a straight-line code later. We have evaluated
BinCFP on a number of applications such as SPEC2006
and obfuscated common utility programs. The performance
experiments show that BinCFP imposes a small impact on
application runtime performance and a considerable speedup
over the previous approaches. Besides, BinCFP’s control flow
profile sizes are only about 49.2% that of conventional profiles.
With optimization and compression, the profile size can be fur-
ther lowered. Such experimental evidence shows that BinCFP
can be applied for various software security applications. In
summary, we make the following contributions:

1) We present BinCFP, an efficient multi-threaded binary
code control flow profiling tool. We take advantage
of pervasive multi-core platforms to greatly reduce the
program execution slowdown. The source code of our
tool is available at https://github.com/s3team/bincfp.

2) BinCFP’s control flow profile does not require fine-
grained static analysis so that BinCFP is fit for analyzing
obfuscated binary code.

3) Based on our control flow profiling data, it is straight-
forward to construct a straight-line code trace for the
further offline analysis. BinCFP has been adopted by
decoupled taint analysis work [6], [7] as a part of the
logging infrastructure.

II. EFFICIENT CONTROL FLOW PROFILING

Figure 1 illustrates the architecture of BinCFP, which
consists of three parts: online logging, multi-threaded fast
buffering, and straight-line code reconstruction. To work with

Input

Dynamic Binary Instrumentation
Basic Block 1

I
Basic Block 2

Straight-line

F—Reconstruct—|
Code

—Online Logging—
I

Basic Block 3

Thread-private
Buffer

Basic Block 4

Program Path

Multi-threaded Fast Buffering

Figure 1. The architecture of BinCFP.

unmodified program binaries, BinCFP are built based on
dynamic binary instrumentation (DBI). Application thread(s)
are executing over BinCFPThe logging tool records dynamic
control flow information by instrumenting basic blocks. Each
basic block is represented as a unique tag. BinCFP first writes
the basic block tags to a trace buffer and then store them into
disk storage when the buffer becomes full. Three design goals
guide us to achieving low execution overhead: 1) design an op-
timized trace buffer data structure to produce compact profile
size; 2) process buffers asynchronously, allowing application
code (i.e. producer) to continue executing while buffers are
being consumed; 3) avoid unnecessary application instrumen-
tation overhead. We meet the first requirement by adopting
an optimized control flow profile structure. To handle the
second challenge, we parallelize profile consumption through
an n-way fast buffering scheme based on multi-cores. At last,
we carefully design our logging tool to remove redundant
instrumentation code. The details will be discussed thoroughly
in the following subsections.

A. Control Flow Profile

A naive approach to recording dynamic control flow is to
log each basic block executed, for example, recording each
basic block’s entry address. On 32-bit machines, a basic block
can be represented as its 4-byte entry address. However, a 4-
byte tag is an excessive use. Zhao et al. [1] proposed Detailed
Execution Profile (DEP), an efficient method that only uses
2-byte tags for most basic blocks and represents special cases
with extra escape bytes. DEP divides a 4-byte address into
2 high bytes for H-tag and the left 2 low bytes for L-fag.
During online logging, if two continuing basic blocks share
the same two high bytes (i.e., H-tag), only L-tag is logged
into the profile buffer. If the H-tag varies, instead, a special
escape tag 0x0000 followed by the new H-tag will be recorded.
Furthermore, DEP’s scheme does not require control flow
graph or any fine-grained static analysis, making it suitable
for binary code analysis. Our control flow profile is based on
the DEP’s scheme and improves it in several ways.

B. Optimizations

Certain x86 instructions are related to string operations, such
as MOVS, LODS, STOS, CMPS, and SCAS. These instructions

0x8040026
rep movsd
0x8040038 0x0026
Total Basic rep movsd Oxffff
Blocks: 1024 Oxffff
""" 0x0400
0x8040201E
rep movsd

4-byte Tag Profile 2-byte Tag Profile

Figure 2. Optimization to the single basic blocks caused by REP-prefixed
instructions.

are typically combined with REP-prefix to execute repeatedly.
Dynamic binary instrumentation tools [11], [12] usually treat
REP-prefixed instructions as implicit loops. If a REP-prefixed
instruction iterates more than once, each new iteration will
cause DBI to generate a new basic block, which only contains
a single instruction. As a result, much more basic blocks than
we expect are produced. In SPEC CPU2006, we find several
cases that REP-prefixed string instructions are heavily used.
For example, as high as 13.4% of total executed instructions
of the h264ref benchmark are related to REP iterations.
BinCFP extends DEP’s profile to handle the implicit loops
introduced by the REP-prefixed instructions, which could
otherwise become a performance overkill. Particularly, we first
detect the first loop of REP-prefixed instructions. And then
two consecutive escape value Oxffff, followed by a repeat
count (stored in the ecx register) are entered into the trace
buffer to represent the entire implicit loops of REP-prefixed
instructions. Note that the maximum REP-prefixed loop count
in our evaluation comes from gcc benchmark. The loop count
is 1,770, which is far less than two-byte number limit. Figure 2
presents an example of our enhanced profile encoding. The left
part shows a total 1,024 single instruction basic blocks due
to the implicit loop unrolling. BinCFP only encodes the first
repetition and appends two consecutive Oxffff to indicate such
REP loops. After that, the number of repetitions (0x0400 in
our example) is put into the profile buffer. As a result, BinCFP
only consumes 8 bytes to represent the total 1024 basic blocks.
In contrast, the raw 4-byte profile takes up 1024 x 4 bytes
space, and DEP needs 1024 x 2 bytes.

Besides, we also configure Pin to disable unrolling REP-
prefixed instructions, because Pin otherwise inserts analysis
code into each implicit iteration, introducing additional over-
head. In our evaluation, our optimization can reduce DEP
profile space at most 55.2% and with up to 63.5% runtime
overhead reduction. Note that it is also possible to use a
single bit to log a basic block by recording the binary decision
of conditional jump [13], which leads to a much denser log
data. However, 1-bit encoding also brings several drawbacks.
First, Pin’s notion of basic blocks is not strictly the same as
compiler-level basic blocks. Pin also breaks basic blocks on
some specific instructions, such as CPUID, POPF, and REP-
prefixed instructions. 1-bit encoding will miss these special
cases. Second, encoding 1-bit does not favor Pin code inline,
which introduces more instrumentation overhead. Third, unlike
BinCFP, recovering the whole execution trace from 1-bit
profile has to walk through the control flow graph, which is
quite expensive as well.

Although our example is 2-byte tag profile on IA-32, it
is straightforward to extend to 4-byte tag profile for 64-bit
machines. Current BinCFP accommodates both 32-bit and 64-
bit binaries. It is worth mentioning that frequently checking
of H-tags during online logging can introduce additional
instrumentation overhead. We will further discuss this issue
in Section II-D.

C. Multi-threaded Fast Buffering Scheme

In this section, we discuss our concurrently buffering data
scheme design, which supports multi-threads on a multi-
core platform. The goal is to exploit underutilized computing
resources to mitigate the disk I/O bottleneck. The key to our
design is an n-way buffering thread pool, which enables ap-
plication threads (i.e., producer threads) to continue executing
and writing data to free buffers, while multiple Pin-tool inter-
nal spawned threads (i.e., worker threads) process full buffers
asynchronously. Figure 3 presents how the multi-threaded fast
buffering scheme works. Let us assume the application under
examination contains two threads. The processing steps are as
follows.

1) When a program starts running, each application thread
allocates a number of thread-private buffers (5 buffers
in our example), which means each thread can only
write data into its private buffers. Available free buffers
are formed as a free-buffer queue. Also, each free
buffer contains a thread ID, indicating the associated
application thread of the free buffer.

2) At the same time, multiple Pin-tool internal threads (i.e.,
worker threads) are spawned as well. The number of
worker threads in our example are 10. Note that different
from application threads, worker threads are not JITed
and therefore execute natively. A worker thread takes
a buffer from the full buffer queue and then writes the
data into disk storage. After that, the worker thread put
the buffer into the free buffer queue of the associated
application thread. To access a full buffer exclusively,
multiple worker threads acquire and then release the full
buffer’s lock.

3) Worker threads communicate with application threads
via counting semaphores. After being created, worker
threads are waiting for the arrival of full buffers. When a
free buffer becomes full, a callback function, BufferFull
will be called to carry out three tasks: 1) enqueue the
full buffer to a global full-buffer queue; 2) schedule one
worker thread to process the full buffer; 3) return the
thread-private free buffers to the application. If no free
buffer, the application thread has to be blocked until a
new free buffer becomes available.

It is apparent that the less time application threads spend
on waiting for free buffers, the better performance it would
achieve. Therefore, we bias our fast buffering scheme design to
favor better application runtime performance. In particular, we
create plenty of worker threads to process full buffers timely.
Also, we dynamically adjust the number of buffers and worker
threads to optimize load balancing. In Figure 3, the number
of worker threads is 10, equal to the total number of buffers

allocated by application threads. It is evident that the number
worker threads and profile buffer size are critical for the better
runtime performance. In Section IV-A, we will perform a set
of experiments to tune these two factors.

D. Instrumentation Optimization

BinCFP’s online logging tool is built on Pin. The way a Pin
tool is implemented can have great impact on the performance
of the instrumented application. Besides the optimization to the
REP-prefixed instructions, this section introduces other meth-
ods we applied to reduce BinCFP’s instrumentation overhead.

Conceptually, Pin’s instrumentation contains two major
components, namely instrumentation code and analysis code.
Instrumentation code inspects program to decide where the
analysis code should be injected. In our tool, the instrumenta-
tion granularity is on the basic block level. The instrumentation
code is executed only once for every sequence of basic blocks,
and the translated code, including original code and analysis
code, is saved in Pin’s code cache for efficiency. Analysis code
will be invoked at beginning of each basic block. In our case,
the analysis routines record dynamic control flow and manage
fast buffering scheme. As analysis routines are executed very
frequently, carefully tuning the analysis code is paramount for
better performance. Pin tends to inline the compact, branch-
less analysis routines into translated code cache; while the
analysis code with conditional branches will force Pin to emit
a function call to the respective analysis routines instead. In
our case, we have to frequently check whether the H-tag has
changed upon the execution of each basic block and write the
tag to the trace buffer accordingly. To favor Pin’s inlining, we
shift the check of H-tag to the instrumentation phrase, which
is performed only once when each basic block is translated. In
this way, the branch instructions in the analysis routines are
removed, and profile tags are updated as well. As a result,
the overhead introduced by frequently checking H-tags is
reduced. In Section III, we will introduce other Pin-specific
optimizations we adopted.

III. IMPLEMENTATION

We have implemented BinCFP based on Pin DBI frame-
work [11] (version 2.12). BinCFP works with multi-threaded
applications running on both x86-32 and x86-64 machines.
We create thread local storage (TLS) slot to store and retrieve
per-thread buffer structure. One challenge here is that Pin-tools
cannot work with either pthreads library or Win32 threading
API. We have to implement a counting semaphore using Pin’s
own binary semaphore to spawn worker threads. To fully
utilize Pin’s code cache effect, we also set the maximum
number of basic blocks per Pin trace from 3 to 8. In addition,
we use GCC’s built-in macro “__builtin_expect ()” to
facilitate compiler’s branch prediction.

To manage the per-thread free-buffer queue and the global
full-buffer queue, we leverage Pin fast buffering APIs to
perform low-overhead buffering of data. More specifically,
INS_InsertFillBuffer () inlines a call to write trace
profile tags directly to the given buffer. The callback defined in
PIN_DefineTraceBuffer () is used to process the buffer

Application Thread 1 > 1

Free Buffer Queue Writing Buffer

Application Thread 2 > 2

Free Buffer Queue Writing Buffer

|
——Enqueue—¥|

Enqueueﬁ-ﬁ

Enqueue

|

——Dequeue—» Worker Thread 11—
I
I
I

—L_Dequeue—» Worker Thread 2 ——|

I
I
I
I
JI—Dequeue—b Worker Thread 3 ——
I
I

|
—+—Dequeue—» Worker Thread 4 ——

Worker Threads
5~10

Full Buffer Queue

Processed Buffer

Figure 3. Multi-threaded fast buffering scheme.

\/.

Slowdown (normalized execution time)

2 4 8 16 32 64 128 256
Buffer size (MB)

Figure 4. Normalized slowdown when profile buffer size varies.

when the buffer becomes full or when the thread exits. More-
over, we force Pin to use fastcall calling convention to pass
arguments via registers, which avoids emitting stack access
instructions required for the call (i.e., push and pop). We also
use the GCC compile option “ —fomit—-frame-pointer”
to eliminate the instructions to save, set up and restore the
frame pointer. Another benefit of fastcall linkages optimization
is that it alleviates register spilling, which will otherwise
become a performance bottleneck in many cases [14], [15].

IV. EVALUATION

Our testbed contains a server machine, which is equipped
with two Intel Xeon E5-2690 processors (16-core with 2.9GHz
) and 128GB of RAM, running Ubuntul2.04. The data
presented throughout this section are all mean values. We
calculate them by running 5 repetitions of each experiment
case.

A. Configuration of Buffer Size and Worker Threads

In this experiment, we tune the two factors that may affect
BinCFP’s performance: 1) the trace buffer size; 2) the number
of worker threads. We first study the impact of buffer size
by varying the buffer size from 2MB to 256MB. We also
set the number of worker threads as 16 to achieve enough
parallelism. In this way, the total buffer size is 16 x single
buffer size. The training set is SPEC CINT2006 with test

workload. Figure 4 shows a downward trend that the slowdown
is reduced as the buffer size is increased. The reason is both
the number of free/full buffer switches and the synchronization
cost are reduced. However, when the buffer size is beyond
64MB, we see an increase on slowdown again. We attribute
the additional overhead to the overlarge total buffer size (e.g.,
16 x 128MB), which may affect application’s working set.
After that, we set the buffer size to 64MB and increase the
number of worker threads progressively from one to sixteen. In
summary, because of the tuned buffer size and the maximum
parallelism, the combination of 16 worker threads and 64MB
buffer size achieves an optimal result. Therefore, we set this
configuration as default in the following experiments.

B. Performance

To evaluate the application performance slowdown imposed
exclusively by BinCFP, we have developed a simple tool to
measure Pin’s environment runtime overhead, which runs a
program under Pin without any form of analysis (“nullpin”
bar). Besides, we also evaluate other three profile formats
based on our multi-threaded buffering scheme. “BB_pc” bar
refers the conventional 4-byte basic block profile, which
records the entry address of each basic block. “CF_bit”
indicate using a single bit to record the binary decision of a
conditional jump. “DEP” refers the control flow profile scheme
proposed by Zhao et al. [1].

a) SPEC CPU2006: Figure 5 shows the normalized
execution time of running SPEC CINT2006 with reference
workload. We expect these results can estimate the worst case.
On average, BinCFP imposes a 2.97X slowdown to native
execution, which is the lowest among the four profile formats.
Due to the large profile size produced, BB_pc’s application is
often blocked for available free buffers. BinCFP outperforms
DEP greatly in the test cases that use REP-prefixed instructions
intensively, such as h264ref and gcc. CF_bit introduces
as much as the 4.0X slowdown on average. The reason is
CF_bit’s instrumentation contains a number of conditional
branches, which are hard to be inlined.

b) Utilities: Then we evaluate BinCFP on four obfus-
cated common Linux utilities. These utilities represent three
kinds of workload. tar is I/O bounded, whereas bzip2

I nullpin i
El e pc
[CF_ bit
[1DEpP 7
BinCFP

Slowdown (normalized execution time)

U / i U
/00 %, '50) G}G
7 624. 079/. /{9

Oy, G,
&,./6 %

gl 2% 000

)
5

Figure 5. Slowdown on SPEC CPU2006.

[nullpin
I BB pc
4 [CF_bit
% [JDEP
BinCFP

Slowdown (normalized execution time)

1
bzip2 gzip tar

compress

. ! ra
gzip tar scp average
untar 1Gbps

bzip2

archive decompress decompress

compress

Figure 6. Slowdown on obfuscated common utilities.

and gzip are CPU intensive programs. Between these two
cases is scp. We first run tar to archive and extract GNU
Core utilities 8.13 package (~50MB). And then the archive
file of Core utilities is compressed and decompressed by
bzip2 and gzip, respectively. We use scp to copy the
archive file of Core utilities over 1Gbps link. Furthermore,
we obfuscate these four utilities by applying two obfusca-
tors: Loco [16] and Obfuscator-LLVM [17]. Loco [16] is a
link-time obfuscation tool, which is built on Diablo [18], a
link-time optimizer. The Loco’s common obfuscation options
include control flow flattening [19] and opaque predicates [20].
Obfuscator-LLVM [17] is an obfuscation extension of the
LLVM compilation suite [21]. Each obfuscation option is
implemented as an LLVM pass. Table I shows the detailed
obfuscation options we applied. Note that several options can
greatly obfuscate control flow graph, e.g., “-funroll-loops”
unrolls loops, “-mllvm -bcf” inserts opaque predicates, and
“-mllvm -fla” does control flow flattening. Therefore, the
previous efforts on efficient path profiling [8]-[10] cannot be
directly applied to these obfuscated binary code. As shown in
Figure 6, the experimental results are very similar to SPEC
CPU2006. BinCFP imposes an average 2.47X slowdown to

Table I
Different optimization or obfuscation options.

Obfuscator Options
Loco -freorder-blocks (reorder basic blocks)
-funroll-loops (unroll loops)
-finline-small-functions (inline functions)
Obf-LLVM | -mllvm -sub (instructions substitution)
-mllvm -bef (opaque predicate)
-mllvm -fla (control flow flattening)
Table II
Uncompressed trace profile size percentage (%).
Application BB_pc | CF_bit | DEP | BinCFP
Utilities 100.0 21.9 56.6 51.6
SPEC CPU2006 | 100.0 22.6 53.0 47.8
Average 100.0 22.3 54.3 49.2

native execution, with a 1.30X speed up to CF_bit. Compared
to nullpin, BinCFP only incurs a 1.36X slowdown. This
evaluation shows that BinCFP supports the complete and
efficient dynamic control flow collection of obfuscated binary
code.

c) Profile Size: We also evaluate the profile size (uncom-
pressed) introduced by the four different control flow profile
formats: BB_pc, CF_bit, DEP, and BinCFP. We take the naive
4-byte profile (BB_pc) size as the baseline. Table II shows the
average proportion related to BB_pc’s profile size. The lower
value in Table II means the size is more compact. On average,
the relative size of BinCFP is only 49.2%, less than DEP’s size
by 5 percentages. It is worth pointing out that we see a signif-
icant profile size reduction for the h264ref benchmark, from
54.9% (DEP) to 24.6% (BinCFP). That is due to the intensive
usage of REP-prefixed instructions. BinCFP optimizes this
case (discussed in Section II-B) and produces more compact
profile size. CF_bit results in a much denser profile size with
the 22.3% percentage. However, CF_bit instrumentation is
hard to be optimized, which leads to the highest overhead
in our evaluation. In summary, BinCFP represents a practical
solution that balances the runtime performance and the profile
size. Note that trace compression methods (e.g., VPC3 [22],
Sequitur [23]) are also be applied on BinCFP. We can benefit
from these new trace compression algorithms to further reduce
the profile size.

C. Instrumentation Optimization

In this experiment, we evaluate the set of optimizations
we adopted for the online instrumentation. Figure 7 shows
the impact of instrumentation optimizations when applied
cumulatively on SPEC CPU2006 with the reference workload.
We measure the logging overhead by not buffering the profile
data to disk. The “unopt” bar represents an un-optimized
version, which does not employ any optimization methods that
we discussed in Section II and Section III. The bar denoted
as Ol, captures the effect of our effort on inlining analysis
code, bringing a notable overhead step-down from average
5.69X to 3.19X. Optimization O2, which adds fast buffering
APIs and fastcall linkages, reduces running time further to
2.73X. Optimization to REP-prefixed instructions (O3) offers
an enhanced performance improvement by average 27.0%,
with a peak value 63.5% to the h264ref. We attribute this
to the fact that as high as 13.4% of total executed instructions
of the h264ref are REP instruction repetitions.

10 [T unopt
9 I o1

~ I o2
8 -] 03

Slowdown (normalized execution time)
o
T

Oy O O M O B Sy % %o 0 D & %,
S, % 0 e Y9 7 K % Y, T Ty, 3
»/60 25 e e 6@4 /))@/ % 9(,9 6‘% ,)0, X '9/)0 ’E?Q
) 2y & Y, 2e) ®
(7 <, 2),
2 "%

Figure 7. The impact of instrumentation optimization on SPEC CPU2006:
Ol (inline analysis code), O2 (O1 + fast buffering APIs and fastcall linkages),
03 (02 + optimize rep-prefixed instructions).

V. DISCUSSION AND CONCLUSION

Currently, BinCFP’s control flow profile encodes basic
block entry addresses. However, the entry address may not
uniquely identify self-modifying code blocks. To address this
issue, we can configure BinCFP to record the real executed
instructions. BinCFP lacks isolation because all worker threads
work in the same process running both Pin and the application.
One direction is to switch the worker threads to different
processes. Another interesting future work is to study efficient
memory references profiling for the obfuscated binary code.

We have presented BinCFP, an efficient multi-threaded
binary code control flow profiling tool by taking advantage of
ubiquitous multi-core platforms. Unlike previous approaches,
BinCFP does not rely on fine-grained static analysis, which
enables broad applications in speeding up binary code analysis
such as hybrid disassembly and decoupled taint analysis. The
experimental results on SPEC2006 and obfuscated common
utility programs are encouraging, which shows a considerable
speedup over the previous work. BinCFP has been adopted by
decoupled taint analysis work [6], [7] as a part of the logging
infrastructure. PoL-DFA [24] adopts a simple version of our
method, with less optimization on performance, and is built
on LLVM [21].

VI. ACKNOWLEDGMENTS

This research was supported in part by the National Science
Foundation (NSF) grants CNS-1223710 and CCF-1320605,
and the Office of Naval Research (ONR) grants N0O0014-13-
1-0175, N00014-16-1-2265, and N00014-16-1-2912.

REFERENCES

[11 Q. Zhao, J. E. Sim, L. Rudolph, and W.-F. Wong, “DEP: Detailed
execution profile,” in Proc. of the 15th International Conf. on Parallel
Architectures and Compilation Techniques (PACT’06), 2006.

[2] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
Conference on Computer and Communications Security (CCS’03), 2003.

[3] J. Caballero, N. M. Johnson, S. McCamant, and D. Song, “Binary
code extraction and interface identification for security applications,” in
Proceedings of 17th Annual Network and Distributed System Security
Symposium (NDSS’10), 2010.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: Reverse
engineering obfuscated code,” in Proceedings of the 12th Working
Conference on Reverse Engineering (WCRE’05), 2005.

K. jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis, “Shad-
owReplica: Efficient parallelization of dynamic data flow tracking,” in
Proceedings of the ACM SIGSAC conference on Computer & commu-
nications security (CCS’13), 2013.

J. Ming, D. Wu, G. Xiao, J. Wang, and P. Liu, “TaintPipe: Pipelined
symbolic taint analysis,” in Proceedings of the 24th USENIX Security
Symposium (USENIX Security’15), 2015.

J. Ming, D. Wu, J. Wang, G. Xiao, and P. Liu, “StraightTaint: Decoupled
offline symbolic taint analysis,” in Proceedings of the 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE’16),
2016.

T. Ball and J. R. Larus, “Efficient path profiling,” in Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture
(MICRO’29), 1996.

M. D. Bond and K. S. McKinley, “Practical path profiling for dynamic
optimizers,” in Proceedings of the International Symposium on Code
Generation and Optimization (CGO’05), 2005.

R. Joshi, M. D. Bond, and C. Zilles, “Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems,” in
Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-directed and Runtime Optimization (CGO’04),
2004.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in Proceedings
of the ACM SIGPLAN conference on Programming language design and
implementation (PLDI’05), 2005.

D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for
adaptive dynamic optimization,” in Proceedings of the international
symposium on code generation and optimization (CGO’03), 2003.

M. Renieris, S. Ramaprasad, and S. P. Reiss, “Arithmetic program paths,”
in Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (ESEC/FSE-13), 2005.

E. Bosman, A. Slowinska, and H. Bos, “Minemu: The world’s fastest
taint tracker,” in Proceedings of the 14th International Symposium on
Recent Advances in Intrusion Detection (RAID’11), 2011.

V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis, “libdft:
Practical dynamic data flow tracking for commodity systems,” in Pro-
ceedings of the 8th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments (VEE’12), 2012.

M. Madou, L. Van Put, and K. De Bosschere, “Loco: An interactive code
(de)obfuscation tool,” in Proceedings of ACM SIGPLAN 2006 Workshop
on Partial Evaluation and Program Manipulation (PEPM’06), 2006.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM -
software protection for the masses,” in Proceedings of the st Interna-
tional Workshop on Software Protection (SPRO’15), 2015.

“Diablo Is A Better Link-time Optimizer,” [online]. Available: http://
diablo.elis.ugent.be/.

C. Wang, J. Hill, J. C. Knight, and J. W. Davidson, “Protection
of software-based survivability mechanisms,” in Proceedings of the
2001 International Conference on Dependable Systems and Networks
(DSN’01), 2001.

J. Ming, D. Xu, L. Wang, and D. Wu, “LOOP: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security (CCS’15), 2015.

C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO’04), 2004.
M. Burtscher, “VPC3: a fast and effective trace-compression algorithm,”
in Proceedings of the joint International Conference on Measurement
and Modeling of Computer Systems, 2004.

C. G. Nevill-Manning and I. H. Witten, “Identifying hierarchical
structure in sequences: a linear-time algorithm,” Journal of Artificial
Intelligence Research, vol. 7, no. 1, pp. 67-82, 1997.

G. Xiao, J. Wang, P. Liu, J. Ming, and D. Wu, “Program-object level
data flow analysis with applications to data leakage and contamination
forensics,” in Proceedings of the 6th ACM Conference on Data and
Application Security and Privacy (CODASPY’16), 2016.

