
Uncovering the Dilemmas on Antivirus Software Design
in Modern Mobile Platforms

Heqing Huang†, Kai Chen†,‡, Peng Liu†, Sencun Zhu†, and Dinghao Wu†

†The Pennsylvania State University, University Park, PA 16802, USA
‡Institute of Information Engineering, Chinese Academy of Sciences, China

hhuang@cse.psu.edu,chenkai@iscas.ac.cn,
{pliu@ist,szhu@cse,dwu@ist}.psu.edu

Abstract. With the rapid increase in Android device popularity, a new evolv-
ing arms-race is happening between the malware writers and AntiVirus Detectors
(AVDs) on the popular mobile system. In its latest comparison of AVDs, inde-
pendent test lab AV-TEST reported that AVDs have around 95% malware recog-
nition rate. However, as mobile systems are specially designed, we consider that
the power of AVDs’ should also be evaluated based on their runtime malware
detection capabilities. In this work, we performed a comprehensive study on ten
popular Android AVDs to evaluate the effectiveness of their scanning operations.
During our analysis, we identified the design dilemmas related to two types of
malware scanning operations, namely local malware scan and cloud-based mal-
ware scan. Our work opens a new research direction in designing more effective
and efficient malware scan mechanisms for current antivirus software on mobile
devices.

1 Introduction

The increasingly popularity of mobile computing devices (e.g., smartphones and tablets)
attracts both normal users and malware writers. Among the popular mobile platforms,
Android has not only conquered a lion’s share of the market, but also gained the 98.1%
share of detected mobile malware in 2013 [13]. Therefore, being aware of the notorious
fact of mobile malware shares, many reputable companies on PC security as well as new
startups have turned their attention to mobile-platform security and released their an-
tivirus detectors (AVDs) particularly for Android [2]. Here, an AVD generically refers
to the signature-based antivirus detector that is deployed on mobile devices.

For AVDs on desktop and server systems, earlier work has studied the impact of
polymorphic attacks [14] or file format confusion based attacks [12] on the malware
scanning operation. Recently, the real world polymorphic attacks have also been re-
ported [22] and further studied [20] for Android AVD evasion. In the era of mobile
computing, a new evolving arms-race is going on between the malware writers and the
AVDs. The AVD based on dynamic behavior or other dynamic heuristics are compar-
atively hard to be deployed on the battery constrained mobile devices. Also, because
of the centralized software distribution on Google Play, static signature based malware
fingerprinting scheme gains great values, since the potential malware spreading sources
are very limited (users are not suggested to install apps from untrusted sources).

Every three months, the independent AVD test lab AV-TEST generates a report [4],
comparing the detection rate and usability of Android AVDs. The latest report indicates
that the popular AVDs under test achieve an average detection rate of around 95% for
known malicious app samples. However, since apps are allowed to dynamically load
code from external sources at runtime [19], when combined with repackaging tech-
niques [5,11,28], malware writers demonstrates [31,30] that more advanced malware
can be easily created to perform targeted attacks. Therefore, the success of the AVD’s
malware scan should also be measured based on its real-time detection of advanced
malware.

Hence, we conduct an empirical study of ten Android AVDs on two types of mal-
ware scan operations, namely the Local-malScan and the Cloud-malScan. Our analy-
sis result indicates that both malScan operations have fundamental design deficiencies.
Therefore, AVD vendors should consider the design of malware scanner on Android
more thoroughly.

2 Antivirus Detectors on Android Platform

In this section, we first briefly introduce some necessary background on Android An-
tivirus Detectors (AVDs), and then explain how we conduct the empirical study towards
further understanding of the design characteristics of the current AVDs. Our analysis,
particularly focuses on the real-time detection capability of the AVDs deployed on An-
droid. More comprehensive discussions on Android security mechanisms can be found
in Yan and Yin [25] and Enck et al. [9]

Android is an operating system based on the Linux Kernel, with new features such
as the Binder IPC mechanism, Power Manager and Ashmem mechanism and etc. On
top of the Linux kernel, Android is loaded with four software layers, namely System
Libraries, Android Runtime, Application Framework and Application. In addition to
the native Linux basic discretionary access control mechanism and the SEAndroid [23]
mechanism based on Linux Security Module, Android provides a fine-grained permis-
sion mechanism for all the apps running on the Application layer, including all the
AVDs from third party vendors. Table 1 lists ten popular AVDs in Google Play as of
Feb. 2014. The popularity of these AVDs is reflected by their overall protection rank-
ings, according to AV Test Reports [4] for the period of Sept. 2013–Jan. 2014.

Generally, Android uses a standard template process called Zygote, which is the
parent process for all the Android DVM processes, including all the AVDs’ main pro-
cesses. Each AVD is assigned its own unique user ID (UID) at the install time, and
the access control bits for the relevant files and folders in the file system are then set
accordingly by the system. The dedicated group ID (GID) numbers are assigned based
on the requested permissions for the Android system resources. Also, various system
daemons and apps are classified into different access control domains in the SEAndroid
policy rules, in order to provide better isolation and security.

An AVD registers itself to specific broadcast intents by programmatically register-
ing a broadcast receiver in the code or claiming the relevant receivers in the file An-
droidManifest.xml. For example, an AVD may register for the system generated intents
BOOT COMPLETED, which is fired by the system once the boot process is completed.

Table 1. Popular Antivirus Detectors (AVDs) in Our Study

ID Vendor AVD package name & version # Downloads #
1 Avast com.avast.android..........3.0.6915 50M-100M
2 AVG com.antivirus..........................3.6 100M-150M
3 Avira com.avira.android...................3.1 1M-5M
4 Bitdefender com.bitdefender.security.2.8.217 1M-5M
5 Kaspersky com.kms (premium)..........11.2.3 5M-10M
6 ESET com.eset.ems2.gp............2.0.843 1M-5M
7 Dr. Web com.drweb.pro.................7.00.11 10M-50M
8 Lookout com.lookout...........8.28-879ce69 50M-100M
9 McAfee com.wsandroid.suite.....4.0.0.143 5M-10M

10 Norton com.symantec.mbsec.....3.8.0.12 10M-50M

Table 2. Intents Registered and Permissions Asked by AVDs

Intents Registered # Permissions Requested #
intent.action.MEDIA REMOVED 1 android.permission.SUPERUSER 2
intent.action.MEDIA CHECKING 3 android.permission.BATTERY STATS 3
intent.action.PWR DISCONNECTED 3 android.permission.google.c2dm.RECEIVE 3
intent.action.WIFI STATE CHANGED 4 android.permission.KILL PROCESSES 4
intent.action.DATE CHANGED 4 android.permission.COARSE LOCATION 4
intent.action.SERVICE STATE 4 android.permission.ALERT WINDOW 5
intent.action.DIAL 5 android.permission.WRITE BOOKMARKS 5
intent.action.MEDIA UNMOUNTED 6 android.permission.GET ACCOUNTS 6
intent.action.POWER CONNECTED 6 android.permission.READ SMS 7
intent.action.net.wifi.STATE CHANGE 7 android.permission.READ BOOKMARKS 7
intent.action.MEDIA EJECT 7 android.permission.READ CONTACTS 8
intent.action.USER PRESENT 7 android.permission.RECEIVE SMS 8
intent.action.ACTION SHUTDOWN 7 android.permission.SEND SMS 8
intent.action.NEW OUTGOING CALL 9 android.permission.READ LOGS 9
intent.action.PHONE STATE 10 android.permission.GET TASKS 10
intent.action.PACKAGE REPLACED 10 android.permission.WAKE LOCK 10
intent.action.PACKAGE REMOVED 10 android.permission.EXTERNAL STORAGE 10
intent.action.PACKAGE ADDED 10 android.permission.READ PHONE STATE 10
intent.action.BOOT COMPLETED 10 android.permission.BOOT COMPLETED 10

This enables the AVD to keep track of some system events of interest that are happening
and then take appropriate actions.

In Table 2, the left two columns list the types of Intent actions and how frequently
they are registered by the ten AVDs in our study, and the right two columns list the
types of permissions and how frequently they are requested by these AVDs. From the
table, it seems that the current AVDs can provide a very good real-time protection.
For instance, all these AVDs listen to BOOT COMPLETED system event to provide
complete protection after the system boots up and obtain the WAKE LOCK permission
to periodically wake up the CPU to keep monitoring the system status. Also, events
like PACKAGE ADDED and PACKAGE REMOVED are mostly registered to help
monitor the newly installed or updated Android application package (APK) files.

3 Dilemmas for Malware Scan Design

3.1 Local Malware Scan Dilemma

Scan the Archived Files or Not? Our study shows that current Android AVDs have
designed a comprehensive local malware scan (local-malScan), which is a thorough
scan carried out on the pre-selected (sub)directories, which usually includes operations
like file preprocessing and malware signature fingerprinting. Due to the power or other
resource constraints, the local-malScan usually does not perform thorough file prepro-
cessing on the files with specific formats (e.g, the archived files). Therefore, the mali-
cious payload can be simply zipped and dropped on the file system without being iden-
tified. While some AVDs perform comprehensive scan by uncompressing the archived
format files, we discover that one can construct a multi-layered archive file to conduct
denial of service attacks and drain the device battery, since the scanner will keep unzip-
ping every inner zip file in the multi-layered archive file diligently. As such, whether to
preprocess or scan the special formatted files is a dilemma on current resource restricted
AVD on mobile platforms.

Update the Virus Definition File or Not? During our comprehensive analysis, we dis-
cover an interesting probing channel. Almost all the AVDs will have the VDF file and
other permanent data or cached files stored in the subdirectory at /data/[AVD package]/*.
These files are set to be “world unreadable” and enforced by Linux kernel in Android
using access control policies. We find that this solid design of app data privacy protec-
tion is not enough for AVD deployment, since an adversary only needs to know the file
sizes or other meta-data information of relevant files (e.g., creation and update time)
in the subdirectory to infer the updating status of these files. During our analysis, we
discover that by using the /system/bin/ls program, or writing a dynamic library which
calls the stat() system call, one can directly probe the meta-data information of all these
“world unreadable” files in an AVD’s data folder. This design deficiency can poten-
tially be leveraged to design on-demand malware polymorphism. Basically, whenever
the anti-AVD app detects a VDF-update, which might contain the signature to finger-
print its current malicious payloads, it can update its payloads using a new polymorphic
strategy. Therefore, the adversary will enjoy this on-demand VDF-update feature and

is always one-step ahead of the AVD’s static fingerprinting. Hence, whether to perform
the VDF update is another dilemma for current AVD Local-malScan.

3.2 Cloud Malware Scan Dilemma

To Offload or Not to Offload? Due to the limitation of the on the Local-malScan, we
sense a trend of adding the cloud-based scanning strategy for mobile platform dur-
ing our analysis. Cloud-based scan (Cloud-malScan) is generally believed to be suit-
able for resource limited mobile devices, as it can offload the heavy computation to
a remote server by sending out the collected information, including the file hashing
value, the meta-data of a file etc. However, since the per UID network usage statis-
tics can also be probed in “/proc/uid stat/[AVD uid]/snd(rcv)” an adversary can plan
evasions against AVDs by identifying the network sending and receiving statistic pat-
tern of Cloud-malScan. So we find that the implicit dilemma in the Cloud-malScan
is whether to send enough file information to the remote server for further signature
mapping and scanning. If the Cloud-malScan on the local device tries to collect less
information to send out (e.g., only the file hash value or the file meta-data), then the
malware scan/detection performed on the server can merely based on simple signature
fingerprinting. However, if the Cloud-malScan collects more information (e.g., execu-
tion traces) to offload to remote server for deep (behavior based) analysis, its network
statistics become more identifiable and is vulnerable to targeted evasions (e.g., the ma-
licious payload will be loaded only after the Cloud-malScan performed on the device).

4 Related Work

Antivirus evasion techniques [14] [1] [12] have been studied previously. Oberheide et
al. [16] has also generally discussed challenges in deploying antivirus detectors (AVDs)
on mobile platforms. Android Dalvik Bytecode polymorphic transformation attacks
have been presented by Rastogi et al. [20]. Our new evasion techniques exploit the
cloud-based malware scanning behavior of the AVDs, and they are complementary to
obfuscation-based or other evasion techniques.

Malware and intrusion analysis techniques [8] [9] [25] [10] have been designed
and applied for offline analysis. Also, various interesting anti-analysis technique have
been discussed [17] [7] for malware on both mobile and PC. Our anti-AVD app design is
conceptually similar to anti-analysis techniques, but we emphasize more on the evasion
of AVD’s online protection mechanism. Zhou et al. [31] provide a survey of Android
malware, and similarly, the discovered design dilemmas in this paper are based on a
systematic survey of ten popular Android AVDs.

Side/timing channel issue [15] [24] [29] [6] [21] is also an active research aspect
in both mobile and PC era. The network based probing and fingerprinting based attacks
for the AVD deployed on the mail server side have been explored by Oberheide, Bailey,
and Jahanian [15], also including the reconnaissance and action phases. Information
hiding techniques have been discussed by Petitcolas, Anderson, and Kuhn [18]. Side
channel/timing channel preventions have been discussed in several papers [3] [26] [27].
Generally, it is one of the toughest challenges in computer security. Zhang et al. [27]
provides the language-based control and mitigation for the timing channels.

5 Conclusion

Through an empirical study of ten top AVDs on the current Android platform, we iden-
tified several design dilemmas in the malware scan operations, including the local mal-
ware scan and the cloud-based malware scan. These dilemmas are related to the mal-
ware scan of the archived or other special formatted file, the virus definition file update,
and the offloading file sizes of the cloud-based malware scan, and pose challenges in
antivirus software design in the current Android platform. Through this study, we open
a new research topic on how to improve the effectiveness and efficiency of current mal-
ware scan and detection on current mobile platforms.

References

1. M. I. Al-Saleh and J. R. Crandall. Application-level reconnaissance: Timing channel attacks
against antivirus software. In Proceedings of the 4th USENIX Workshop on LEET ’11, 2011.

2. Android antivirus companies. http://www.zdnet.com/android-antivirus-
comparison-review-malware-symantec-mcafee-kaspersky-sophos-
norton-7000019189/.

3. A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation of timing channels.
In CCS’10, 2010.

4. AV TEST report, Jan 2014. http://www.av-test.org/en/tests/mobile-
devices/android/jan-2014/.

5. K. Chen, P. Liu, and Y. Zhang. Achieving accuracy and scalability simultaneously in detect-
ing application clones on android markets. In ICSE, pages 175–186, 2014.

6. S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in web applications: A reality
today, a challenge tomorrow. In S&P ’10, 2011.

7. X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and J. Nazario. Towards an understanding of
anti-virtualization and anti-debugging behavior in modern malware. In DSN’ 08, 2008.

8. M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant. Semantics-aware mal-
ware detection. In Security and Privacy, 2005 IEEE Symposium on. IEEE, 2005.

9. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth. TaintDroid:
An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In
OSDI, volume 10, pages 1–6, 2010.

10. H. Huang, S. Zhang, X. Ou, A. Prakash, and K. Sakallah. Distilling critical attack graph
surface iteratively through minimum-cost sat solving. In Proceedings of the 27th Annual
Computer Security Applications Conference, pages 31–40. ACM, 2011.

11. H. Huang, S. Zhu, P. Liu, and D. Wu. A Framework for Evaluating Mobile App Repackaging
Detection Algorithms. In Trust and Trustworthy Computing. Springer, 2013.

12. S. Jana and V. Shmatikov. Abusing file processing in malware detectors for fun and profit.
In Security and Privacy (S&P), 2012 IEEE Symposium on, pages 80–94. IEEE, 2012.

13. Kaspersky lab reports mobile malware in 2013. http://usa.kaspersky.com/
about-us/press-center/press-releases/kaspersky-lab-reports-
mobile-malware-2013-more-doubles-previous.

14. J. Oberheide, M. Bailey, and F. Jahanian. PolyPack: An automated online packing service
for optimal antivirus evasion. In 3rd USENIX on Offensive technologies, 2009.

15. J. Oberheide and F. Jahanian. Remote fingerprinting and exploitation of mail server antivirus
engines. Technical Report CSE-TR-552-09, University of Michigan, Ann Arbor, MI, June
2009.

http://www.zdnet.com/android-antivirus-comparison-review-malware-symantec-mcafee-kaspersky-sophos-norton-7000019189/
http://www.zdnet.com/android-antivirus-comparison-review-malware-symantec-mcafee-kaspersky-sophos-norton-7000019189/
http://www.zdnet.com/android-antivirus-comparison-review-malware-symantec-mcafee-kaspersky-sophos-norton-7000019189/
http://www.av-test.org/en/tests/mobile-devices/android/jan-2014/
http://www.av-test.org/en/tests/mobile-devices/android/jan-2014/
http://usa.kaspersky.com/about-us/press-center/press-releases/kaspersky-lab-reports-mobile-malware-2013-more-doubles-previous
http://usa.kaspersky.com/about-us/press-center/press-releases/kaspersky-lab-reports-mobile-malware-2013-more-doubles-previous
http://usa.kaspersky.com/about-us/press-center/press-releases/kaspersky-lab-reports-mobile-malware-2013-more-doubles-previous

16. J. Oberheide and F. Jahanian. When Mobile is Harder Than Fixed (and Vice Versa): Demys-
tifying Security Challenges in Mobile Environments. In HotMobile ’10. ACM, 2010.

17. G. Pék, B. Bencsáth, and L. Buttyán. nEther: In-guest Detection of Out-of-the-guest Malware
Analyzers. In Proceedings of the Fourth European Workshop on System Security, EUROSEC
’11. ACM, 2011.

18. F. A. Petitcolas, R. J. Anderson, and M. G. Kuhn. Information hiding-a survey. Proceedings
of the IEEE, Special Issue on Protection of Multimedia Content, 87(7), 1999.

19. S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna. Execute This! Analyzing
Unsafe and Malicious Dynamic Code Loading in Android Applications. In NDSS’14, 2014.

20. V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating android anti-malware against
transformation attacks. In AsiaCCS’13. ACM, 2013.

21. R. Schlegel, K. Zhang, X.-y. Zhou, M. Intwala, A. Kapadia, and X. Wang. Soundcomber: A
Stealthy and Context-Aware Sound Trojan for Smartphones. In NDSS, 2011.

22. Server-side Polymorphic Android Applications. http://www.symantec.com/
connect/blogs/server-side-polymorphic-android-applications.

23. S. Smalley and R. Craig. Security enhanced (se) android: Bringing flexible mac to android.
In NDSS, 2013.

24. A. Studer, T. Passaro, and L. Bauer. Don’t bump, shake on it: The exploitation of a popular
accelerometer-based smart phone exchange and its secure replacement. In ACSAC ’11, 2011.

25. L. K. Yan and H. Yin. Droidscope: seamlessly reconstructing the os and dalvik semantic
views for dynamic android malware analysis. In USENIX Security ’12, 2012.

26. D. Zhang, A. Askarov, and A. C. Myers. Predictive mitigation of timing channels in interac-
tive systems. In CCS’11, pages 563–574. ACM, 2011.

27. D. Zhang, A. Askarov, and A. C. Myers. Language-based control and mitigation of timing
channels. In Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’12, pages 99–110, New York, NY, USA, 2012. ACM.

28. F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu. View-Droid: Towards obfuscation-resilient
mobile application repackaging detection. In Proceedings of the 7th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, 2014.

29. X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A. Gunter, and K. Nahrstedt.
Identity, location, disease and more: inferring your secrets from android public resources. In
CCS’13. ACM, 2013.

30. Y. Zhou and X. Jiang. An analysis of the anserverbot trojan. http://www.csc.ncsu.
edu/faculty/jiang/pubs/AnserverBotAnalysis.pdf.

31. Y. Zhou and X. Jiang. Dissecting Android malware: Characterization and evolution. In
Proceedings of the 33rd IEEE Symposium on Security and Privacy (S&P ’12). IEEE, 2012.

http://www.symantec.com/connect/blogs/server-side-polymorphic-android-applications
http://www.symantec.com/connect/blogs/server-side-polymorphic-android-applications
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBotAnalysis.pdf
http://www.csc.ncsu.edu/faculty/jiang/pubs/AnserverBotAnalysis.pdf

	Uncovering the Dilemmas on Antivirus Software Design in Modern Mobile Platforms

