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ABSTRACT
In its latest comparison of Android Virus Detectors (AVDs), the
independent lab AV-TEST reports that they have around 95% mal-
ware detection rate. This only indicates that current AVDs on An-
droid have good malware signature databases. When the AVDs are
deployed on the fast-evolving mobile system, their effectiveness
should also be measured on their runtime behavior. Therefore, we
perform a comprehensive analysis on the design of top 30 AVDs
tailored for Android. Our new understanding of the AVDs’ design
leads us to discover the hazards in adopting AVD solutions for An-
droid, including hazards in malware scan (malScan) mechanisms
and the engine update (engineUpdate). First, the malScan mecha-
nisms of all the analyzed AVDs lack comprehensive and continuous
scan coverage. To measure the seriousness of the identified haz-
ards, we implement targeted evasions at certain time (e.g., end of
the scan) and locations (certain folders) and find that the evasions
can work even under the assumption that the AVDs are equipped
with “complete” virus definition files. Second, we discover that,
during the engineUpdate, the Android system surprisingly nullifies
all types of protections of the AVDs and renders the system for a
period of high risk. We confirmed the presence of this vulnerable
program logic in all versions of Google Android source code and
other vendor customized system images.

Since AVDs have about 650–1070 million downloads on the Google
store, we immediately reported these hazards to AVD vendors across
16 countries. Google also confirmed our discovered hazard in the
engineUpdate procedure, so feature enhancements might be in-
cluded in later versions. Our research sheds the light on the impor-
tance of taking the secure and preventive design strategies for AVD
or other mission critical apps for fast-evolving mobile-systems.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection–Invasive
software; Access controls
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1. INTRODUCTION
The increasing popularity of mobile computing devices (e.g.,

smartphones and tablets) attracts both normal users and malware
writers. Among the popular mobile platforms, Android has not
only conquered a lion’s share of the market, but also gained 98.1%
share of mobile malware detected in 2013 [13]. Many companies,
including those reputable ones focusing on PC security as well as
some new startups, have turned their attention to mobile platform
security and tailored their antivirus detectors particularly for An-
droid [2]. Every three months, the independent antivirus test lab,
AV-TEST, generates a report [6], comparing the detection rates of
Android Virus Detectors (AVDs). The latest report indicated that
the malware signature databases (MSD) of popular AVDs under
test have achieved on average about 95% high malware detection
rate. However, since Android allows executing both ARM bina-
ries and Dalvik bytecode file (e.g., .so and .dex files) from dynami-
cally loaded payload files to better serve application (app) develop-
ers at runtime [43], it has been shown that more malware [53, 52]
based on the dynamic code loading are created and spread through
the widely used Android app repackaging techniques [26, 34, 32,
48, 49]. Therefore, besides evaluation based on the quality of the
MSDs, the success of the AVD’s design on the fast-evolving An-
droid platform must also be measured based on its efficacy in iden-
tifying malware’s dynamic behavior (e.g., dynamic malicious pay-
loads dropping/executing).

In this work, we conduct the first comprehensive analysis of top
30 AVDs (listed in Table 1), which currently has a total of 650-1070
million user downloads for the Google-Play store alone. Previous
works [44, 40] have only focused on evaluating the quality of Virus
Definition File (VDF) for virus detectors based on the well-known
AVD weaknesses (e.g., vulnerable to transformation attacks). We
take it a step further and our analysis concentrates on the scanning
mechanism of Android AVDs.

Protection Assumption I: We assume Android AVD vendors
have developed a complete MSD, which has been updated with
all the reported malicious payloads and all the possible obfuscated
versions of the payloads. Note that under this assumption, the An-
droid AVDs are immune to common transformation attacks [44,
40]. Bearing this assumption in mind, we would like to understand
if there are still deficiencies in the malware scan (malScan) mecha-
nism itself that can cause potential hazards.

Hazards in malScan. The malScan operation here means the
general malware recognition mechanism, which fingerprints the
malware based on the VDF updated from the MSD. Generally,
there are two types of malScan operations for Android: light mon-
itoring malScan and heavy sweeping malScan. Four out of the top
30 AVDs have implemented the light monitoring malScan, which
leverages the APIs from the Android FileObserver class. This en-



Table 1: Popular Android virus detectors (AVDs) in our study
ID Vendor AVD package name & version # Downloads # ID Vendor AVD package name & version # Downloads #

1 Avast com.avast.android;.........3.0.6915 50M-100M 2 AntiyAVL com.antiy.avlpro;................2.3.02 50K-100K
3 AVG com.antivirus;.........................3.6 100M-150M 4 AegisLab com.aegislab.sd3prj.av;.........2.1.5 100K-500K
5 Avira com.avira.android;..................3.1 1M-5M 6 Qihoo360 com.qihoo360.mobilesafe;....4.0.1 150M-200M
7 Bitdefender com.bitdefender.security;2.8.217 1M-5M 8 Bornaria com.bornaria.antivirus;.......1.3.60 50K-100K
9 Kaspersky com.kms (premium);.........11.2.3 5M-10M 10 F-Secure com.fsecure.ms.dc;........9.0.14504 100K-500K

11 ESET com.eset.ems2.gp;...........2.0.843 1M-5M 12 CleanMaster com.cleanmaster.security;......5.1.0 100M-150M
13 Dr. Web com.drweb.pro;................7.00.11 10M-50M 14 Ikarus com.ikarus.mobile.security 1.7.20 100K-500K
15 Lookout com.lookout;..........8.28-879ce69 50M-100M 16 Comodo com.comodo.pimsecure;.......2.4.5 100K-500K
17 McAfee com.wsandroid.suite;...4.0.0.143 5M-10M 18 CMCInfoSec com.cmcinfosec.mbsec;3.11.18/u5 100K-500K
19 Norton com.symantec.mbsec;....3.8.0.12 10M-50M 20 NetQin com.nqmobile.antivirus20;..7.0.10 150M-200M
21 TrendMicro com.trendmicro.tmmspsnl;....5.0 1M-5M 22 Sophos com.sophos.smsec;..........3.0.1244 100K-500K
23 Tencent com.tencent.qqpimsecure;.....4.6 1M-5M 24 Panda com.pandasecurity.pandaav;.....1.1 100K-500K
25 Webroot com.webroot.security;3.6.0.6579 500K-1M 26 AnGuanJia com.anguanjia.safe;...............4.5.2 100K-500K
27 G Data de.gdata.mobilesecurity;...24.5.4 500K-1M 28 Virusfighter com.virusfighter.android;.......2.1.3 500K-1M
29 TrustGo com.trustgo.mb.sec;..........1.3.13 5M-10M 30 Zoner com.zoner.android.av;............1.8.3 1M-5M

ables the AVD developers to come up with an ad-hoc design to per-
form continuous monitoring. However, our further detailed mea-
surement study shows that these four AVDs only monitor several
selected folders (e.g., the file Downloads folder) and only focus
on limited file types (e.g., Android Application Package (APK)
file). Therefore, by dropping the malicious payload onto any non-
monitored folders or simply using an archived version of a mali-
cious payload, light monitoring malScan can be evaded. This anal-
ysis indicates that the FileObserver based light monitoring malScan
lacks comprehensiveness.

On the other hand, all 30 tested AVDs have designed the heavy
sweeping malScan operation, which is a comprehensive malware
scan. However, it is just due to the comprehensiveness of this type
of scan that distinguishable system resource (e.g., CPU and mem-
ory) usage patterns are emitted when scanning. Also, we find that
Android records the per process/per thread resource usage statis-
tics in /proc/[PID]/stat and /proc/[PID]/task/[TID]/stat
respectively, thus the resource usage patterns of each AVD’s pro-
cess/threads are readily available for all unprivileged third party
apps. As a result, the scanning status of heavy sweeping malScan
can be revealed by fingerprinting the high peaks of the AVD’s re-
source usages, which makes the scanning vulnerable to targeted
evasions. Thus, adversaries can evade this scan by identifying its
scanning period and perform malicious action subsequently. So
to clearly differentiate their scanning and idle periods and provide
proof-of-concept evasions, we leverage Fast Fourier Transforma-
tion (FFT) to preprocess the per process/thread usage signals. We
design and implement a signal steganography technique to identify
the scanning locations (folders). We demonstrate that the adver-
sary can plan targeted evasions by recognizing the (sub)folders that
have just been scanned. Our analysis shed the light on the impor-
tance of developing a malware scanning mechanism that has both
the comprehensive and continuous scanning properties.

Protection Assumption II: We then further assume AVD keeps
monitor the whole file system completely and efficiently, and it can
even perform behavior-based detections efficiently. By adding such
a strong protection, we aim to find if there are still security holes in
deploying AVDs on Android system.

Hazards in engineUpdate. Our study and various sources [23,
10] also show that AVDs on the fast-evolving Android system tend
to perform engine updates (engineUpdate) fairly frequently, since
AVD engineUpdates serve for various important tasks, including
malScan mechanism enhancement, vulnerabilities [8, 20, 21, 19]
patching and other functionality improvement [7]. However, we
discover that the critical AVD engineUpdate procedure itself can

cause devastating hazards to AVD even under both Protection As-
sumption I and II. In Android, Package Manager Service (PMS)
updates the engine by removing the whole APK file and killing the
AVD processes. Various components in the system have to per-
form complicated tasks (e.g., Dalvik bytecode optimization, con-
figuration file parsing and etc.) for the newly downloaded APK
file before setting up the AVD engine and reactivating it. As any
strong defense mechanism relies on continuous running processes
of the AVDs, this seemingly safe but complicated design of An-
droid app-updating mechanism surprisingly kills the AVD process
and nullifies any perfect protections for a period of high risk, which
is called null-protection window. What’s worse, our analysis shows
that some AVD developers leave the engines inactivated after fin-
ishing its update. The lack of consideration in the AVDs’ design in-
dicates that AVD developers have not realized the potential hazard
in engineUpdate yet. Without the automatic relaunch functionality,
users can be exposed under high risk for a longer period.

The main contributions of this paper are summarized as follows:

• New Understanding and New Hazards. We reverse-engineer 30
widely-deployed Android AVDs and build a framework to conduct
the first empirical study towards a comprehensive understanding of
their design logic. Our study discover new hazards in malScan, en-
gineUpdate and other mission critical operations of Android AVDs.

• Measurements and Implementation. We fully measured vari-
ous types of malScan mechanism on Android and then design and
develop targeted evasions against antivirus based on FFT and sig-
nal steganography techniques. For the hazards in engineUpdate,
besides measuring the length of the null protection window on var-
ious hardware devices, we identify and analyze the Android AOSP
source code for the program logic that creates the vulnerable pe-
riod. We then built a model checker to automatically verify the
existence of the discovered hazard in all Google Android versions
from v1.5–v4.4.4, as well as vendor customized OS images.

• Industrial Impact. Because of the seriousness of these hazards
and the great impact of current Android AVDs (around one bil-
lion user downloads), we immediately reported our findings to the
antivirus vendors across 16 countries, and proposed mitigations de-
signs to them. Also, not only can this engineUpdate hazard hurt the
AVD apps, but it will impact other Android apps that require con-
tinuous running/monitoring (e.g. Mobile Device Management apps
(MDMs) or Intrusion Prevention Systems (IPSs)) as well. Hence,
we reported the hazard and proposed feature enhancements to the
security team at Google, and they responded immediately and con-
firmed our findings.



2. BACKGROUND

2.1 AVD Background
Android is an operating system built upon the Linux Kernel. On

top of the Linux kernel, Android is loaded with four software lay-
ers, namely System Libraries, Android Runtime, Application Frame-
work and Application. In addition to the native Linux basic ac-
cess control mechanism, Android provides a fine-grained permis-
sion mechanism for all the apps running on the Application layer,
including all the AVDs from third party vendors.

Generally, Android uses a standard template process, the Zy-
gote, for all the Dalvik Virtual Machine (DVM) processes warm-
up phase. Zygote is the parent process for all the Android DVM
processes, including all the AVDs’ main processes. Each AVD is
assigned its own unique user ID (UID) at install time, and the ac-
cess control bits for the relevant files and folders in the file system
are then set accordingly by the system. The dedicated group ID
(GID) numbers are assigned based on the requested permissions
for system resources. For instance, if an AVD wants to perform
scanning operations on the files in the sdcard, it must first request
the READ_EXTERNAL_STORAGE permission. Then, the system
adds a relevant GID number (1028) for it and the process is put
into the AID_SDCARD_R group to enable its access to the sdcard.

In the current Android system, a Binder interprocess commu-
nication (IPC) mechanism is used for more efficient Intents based
message passing. Intents can be used in different purposes. For the
app relevant usages, it can be sent to start an activity, start a service,
deliver/receive a broadcast and so on. The system delivers various
broadcast intents for system events to the apps/services that have
registered to it. An AVD app/system daemon usually listens to spe-
cific broadcast intents by registering a broadcast receiver in the file
AndroidManifest.xml or programmatically registering the relevant
receiver in the code. For example, if an AVD app wants to relaunch
automatically after the system boots up, it has to register for the
system-broadcasted intent BOOT_COMPLETED, which is issued
by the system once the boot process is completed. Some AVDs
perform scanning for newly installed apps through registering the
PACKAGE_ADDED events generated from the Package Manager
Service (PMS) component. Listening system-broadcasted intents
enables the AVD to keep track of system events of interest that are
happening and then take appropriate actions.

2.2 AVD Behavior Analyses
Table 1 lists 30 popular AVDs that we selected from Google Play

in Feb. 2014, which enjoy a total user downloads of about one bil-
lion. We pick the top 30 AVDs based on their overall protection
rankings, according to AV Test Reports [6] for the period of Jan.
2014–April. 2014. To better understand the internal design of virus
detectors on the Android platform, we further build a framework to
perform comprehensive analyses of the selected AVDs.

2.2.1 AVD Behavior Analysis Framework
Our framework, illustrated in Figure 1, includes Dynamic Tester,

Static Code Analyzer and Environment Information Collector to
collect relevant virus detectors deployment information from both
Android framework and Linux layer of the system.

The Dynamic Tester is built to interact with the AVDs, so that
we can repetitively test some interesting properties of AVDs’ run-
time behavior. We wrote python and shell scripts to glue together
the ADB tool, the Monkey-Runner tool [4], and the DDMS tool [3]
from Android Studio. Monkey-Runner is a testing program that can
send user and system events for our testing purpose. We leverage
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Figure 1: The AVD testing framework for Android platform

DDMS, a common debugger for Android developers, to collect rel-
evant execution traces for particular operations for further analysis.

In the Static Code Analyzer, we first decompile the APKs of
AVDs and then conduct analyses on the required permissions and
registered intent actions in the corresponding broadcast receiver
components. To further understand the design logic of AVDs, we
build the control flow graph (CFG) upon the Android Dalvik byte-
code disassembled from baksmali tool [16]. We adapt some of the
analysis modules from Androguard [1] to construct the CFGs. We
notice that most of the AVDs are not highly obfuscated, so the re-
verse engineering process is comparatively straightforward.

We also build an Environment Information Collector to analyze
both the Android framework layer and the underneath Linux layer
with all the AVDs installed, configured and running on the system.
The purpose is to discover some effective public information leak-
age channels, which can help any third party app infer the AVDs’
running status. For the Linux layer, we parse the information about
the files and folders (e.g., access control bits) in the file system
and the information about the running processes (e.g., the UID and
GID numbers and their forking orders). Then we focus particu-
larly on analyzing the information that is relevant to the installed
AVDs. For the Android framework layer, we analyze relevant An-
droid APIs to collect information about AVDs running status. Af-
ter several rounds of automated testing and manual result verifica-
tion, we discover several interesting information leakage channels,
shown in Table 2, which will be especially valuable in determining
the vulnerable periods of the running AVDs. Note that none of the
discovered channels are protected by any Android permission yet.

2.2.2 Intents Registered and Permissions Claimed
In Table 3, we list the types and frequencies of the registered

intent actions and claimed permissions of the 30 AVDs collected
based on our reverse engineering result. Our analysis result in-
dicates that current AVDs register lots of interesting permissions
for privileged operations; for instance, the KILL_PROCESSES per-
mission is used to kill suspicious background processes and the
ALERT_WINDOW permission is claimed to help pop up urgent
alert window from the system when suspicious status is identified.
We also see that the current AVDs emphasize a continuous run-
ning status on the Android system. For instance, all these AVDs
listen to the BOOT_COMPLETED system event to provide com-
plete protection after the system boots up. They also obtain the
WAKE_LOCK permission to periodically wake up the CPU to keep
monitoring the system status. Events like PACKAGE_ADDED and
PACKAGE_REMOVED are mostly registered to help monitor the
newly installed/updated Android application package (APK) files.
However, we still identify a loophole in its engineUpdate operation
that unexpectedly nullifies the AVDs’ protection.



Table 2: Information leakage channels used to infer AVDs’ running status
ID Probing Channels Explanation

1 ActivityManager.getRunningAppProcesses() Leaks DVM processes meta info (e.g., UID, PID, process name and etc.)
3 ActivityManager.getProcessMemoryInfo() Leaks DVM process memory info (e.g., nativePSS, dalvikPrivateDirty and etc.)
4 PackageManager.getInstalledApplications() Return a List of all the packages of installed applications
5 PackageManager.getPackagesForUid() Leaks the names of all packages that are associated with a particular UID
6 PackageManager.sendBroadcast(Pkg_add) Leaks the AVD or other apps’ installation status
7 PackageManager.sendBroadcast(Pkg_rm) Leaks the AVD or other apps’ removal status
8 PackageManager.sendBroadcast(Pkg_updt) Leaks the AVD or other apps’ update status
9 Build.MODEL (HARDWARE) Leaks device type and hardware specifications information

10 /proc/[AVD_pid]/stat Leaks the relevant CPU usage info (e.g. utime, stime and etc.
11 /proc/[AVD_pid]/task/[AVD_tid]/stat Leaks tasks CPU usage info of AVD process, used to purify the fingerprinting result
12 /proc/[AVD_pid]/statm Leaks the memory usage info (e.g. the RSS, virtual memory size, etc.)
13 /proc/[AVD_pid]/status Leaks the memory usage info (e.g., the RSS counts in pages)
14 JNI call stat() /data/data/[AVD_package]/* Leaks all the files’ meta info (e.g., size, creation date and etc.) in the subfolders
15 /system/bin/ps Leaks all the running processes info including the DVM and non-DVM processes.
16 /proc/uid_stat/[AVD_uid]/snd(rcv) Leaks the network usage info (e.g., send and received package sizes, etc.)

Table 3: Intents registered and permissions asked by AVDs
Intents Registered # Permissions Requested #
MEDIA_REMOVED 4 SUPERUSER 1
MEDIA_CHECKING 5 BATTERY_STATS 12
PWR_DISCONNECTED 5 google.c2dm.RECEIVE 17
WIFI_STATE_CHANGED 6 KILL_PROCESSES 21
DATE_CHANGED 6 COARSE_LOCATION 21
SERVICE_STATE 7 ALERT_WINDOW 22
DIAL 7 WRITE_BOOKMARKS 22
MEDIA_UNMOUNTED 8 GET_ACCOUNTS 22
POWER_CONNECTED 8 READ_SMS 23
net.wifi.STATE_CHANGE 10 READ_BOOKMARKS 23
MEDIA_EJECT 10 READ_CONTACTS 25
USER_PRESENT 10 RECEIVE_SMS 25
ACTION_SHUTDOWN 12 SEND_SMS 25
NEW_OUTGOING-CALL 15 READ_LOGS 26
PHONE_STATE 17 GET_TASKS 26
PACKAGE_REPLACED 23 WAKE_LOCK 29
PACKAGE_REMOVED 30 EXTERNAL_STORAGE 30
PACKAGE_ADDED 30 READ_PHONE_STATE 30
BOOT_COMPLETED 30 BOOT_COMPLETED 30

Road map: The remainder of the paper continues as follows:
Section 3 elaborates hazards relevant to the malScan mechanism,
followed by the algorithm designed and implemented to confirm
the hazards. Section 4 explains the exploring process of the hazard
in AVD engineUpdate procedure and a model checker is developed
to confirm the relevant vulnerable program logic. Other hazards are
discussed in Section 5, followed by proposed mitigations. Section 6
reviews related works and Section 7 concludes this paper.

3. HAZARDS IN MALWARE SCAN
In this section, we report our study on the two malware scan

(malScan) operations, namely the light monitoring malScan and
the heavy sweeping malScan, and then followed by the discovered
hazards for each type of malScan operations and their correspond-
ing measurement results.

3.1 Malware Scan Behavior
Different from previous works on antivirus security measure-

ment [44, 40] that targeting the weakness of the incomplete sig-
nature database, we assume that AVDs are all equipped with a
complete VDF, which includes all known malicious payloads and
their obfuscated counterparts. Hence, we use the easily recog-

nizable malicious payloads from the well-known Malware Gnome
Project [53] in our testing. This will force us to concentrate on an-
alyzing the malScan mechanism itself when deployed on the An-
droid platform. Similar to PC AVDs, the malScan operations are
one of the core functionalities of AVDs for malware recognition
based on up-to-date VDF.

Our analysis result shows that only four of the tested 30 AVDs
have developed light monitoring malScan, which performs short-
term scans for particular file system status changes. It leverages the
FileObserver APIs provided by the Android framework, which is
based on the inotify() system call to monitor the file system changes
(e.g., create, modify, delete files/folders and etc.). For example,
when a new file is downloaded into the /sdcard/Downloads, the
AVD will perform a very quick scan for that particular file sys-
tem status change on the folders, given that the particular folder
is specified to be monitored in one of the registered FileObserver
instances. However, our further analysis indicates that it can only
focus on a few pre-selected folders (e.g., /sdcard) and the scan is
lightweight, which means it cannot handle archive format.

On the other hand, all the 30 tested AVDs have implemented the
heavy sweeping malScan, a comprehensive scan on the file system,
which can be pre-scheduled or triggered directly by a user. It is
usually performed by one or more Android service(s) or dedicated
native process(es) (AVD # 9). This scan will consider most files,
including archive files (e.g., .apk, .tar and .zip), in the target folder
and its (sub)directories. It then fingerprints them against the VDF
diligently. For instance, when targeting the /data/app folder, it
will check all the compressed app packages, the Android Applica-
tion Package (APK) files of all installed apps, and iteratively scan
through subdirectories and files in each APK file package. If an
APK file happens to contain an archive file format, it will be un-
compressed and scanned through all files contained in the archive
file. Therefore, all of the tested AVDs rely on heavy sweeping
malScan to perform comprehensive malware detection.

3.2 Light Monitoring malScan Hazard
To discover the potential hazards in light monitoring malScans,

which leverage the FileObserver APIs, we use the Dynamic Tester
to fully measure the effectiveness of the four AVDs. Our Dynamic
Tester drops well-known malicious payloads on the /sdcard, which
are recognized directly by all the four AVDs that have implemented
this type of malScan. Then we configure the Dynamic Tester to
test different dropping folders and using various archiving formats



Table 4: Light monitoring malware scan ineffectiveness
Tested Malicious Dropping Actions Reacted AVD #
APK files (zipped) dropped on /sdcard 14
APK files (zipped) dropped on /sdcard/*/ None !!!
Native files (zipped) dropped on /sdcard 14, 15
Native files (zipped) dropped on /sdcard/*/ None !!!
APK files dropped on /sdcard/ 13, 14, 15, 22(17.2s)
APK files dropped on /sdcard/*/ 13, 15, 22
Native files dropped on /sdcard/ 13, 14, 15
Native files dropped on /sdcard/*/ 13

(e.g., zipped files). Table 4 contains the reacted AVDs for each spe-
cific measurement case. The result demonstrates that this type of
scan is not effective, especially for zipped payloads dropped in a
deeper-level folder of the targeted folder (e.g., /sdcard/ ∗ /). One
reason that current AVDs cannot implement recursively file system
monitoring due to the fact that this FileObserver APIs are not de-
signed for comprehensive file system hooking.

From the result, we can also tell that AVD #15 from Lookout
Inc., which is one of the top mobile security company targeting
Android security for years, provides the best design for the light
monitoring malScan among the tested AVDs. However, a design
vulnerability in the AVD #15 has been discovered from our de-
tailed analysis. The light monitoring malScan functionality is ac-
cidentally blocked when performing the heavy sweeping malScan.
This buggy case indicates the problematic design of light monitor-
ing malScan based on FileObserver APIs. Besides this problem,
although our measurement shows that the AVD #22 Sophos can
recognize malicious payloads in the /sdcard directory, on aver-
age it takes 22.7s to react to the observed payload dropping events
reported by the FileObserver. This vulnerability is due to an inap-
propriate way to handle the triggered events from the FileObserver
object. During such a long reaction period, the adversary can eas-
ily finish his malicious actions based on the dropped payload and
remove it before the malScan (its actual malware recognition ac-
tion). We have reported the vulnerabilities to Lookout and Sophos
respectively, and they have planned to fix them in the next versions.

Since FileObserver APIs provided by Google is not meant for
AVD scanning purposes, these APIs cannot cover the whole file
system comprehensively and efficiently. Thus, the ad-hoc design of
the light monitoring malScans based on FileObserver is proven to
be ineffective and problematic. Therefore, we are calling the need
for specific hooking APIs for AVDs light monitoring malScan from
platform designers, for instance, Samsung, Google and so on.

3.3 Heavy Sweeping malScan Hazard
Different from the light monitoring malScan, the heavy sweep-

ing malScan is comprehensive, so it is usually hard to bypass. Es-
pecially, when the AVDs are equipped with the complete VDF. The
heavy sweeping malScan is a series of expensive operations per-
formed in a period, we call the period high protection window.
Since it can be only triggered implicitly by a pre-defined schedule
or explicitly by a user, this type of malScan can be very comprehen-
sive, but lack of continuous protection. Therefore, if the adversary
can identify the high protection window, it can potentially evade
the detection by performing malicious actions after the scan.

To identify the high protection window, we want to analyze if
the malScan reveals any side-effects, which is different from other
non-scan operations. Based on the observations of malScan of the
30 AVDs, we notice that it is exactly this comprehensive scanning
strategy that produces very distinguishable CPU and memory usage
patterns. These patterns are distinct from other AVD operations
(e.g., VDF updates or other managing tasks of AVDs). The result

Table 5: Heavy-sweeping malware scan configurations
Type AVD #
Full Scan Only 5, 6, 7, 11, 15, 17, 21, 22, 25, 26, 29
Only Quick/Full 8, 9, 13, 14, 20, 24, 23, 27
App Only 1, 2, 4, 7, 12, 16, 17, 19, 20, 21, 27-30
Folder Only 1, 2, 3, 4, 9, 12, 13, 17, 18, 28, 30
Pre-scheduled 1, 2, 3, 4, 7, 9, 12, 16,

17, 19, 20, 21, 27, 29, 30

Table 6: Hardware specifications of four Android devices
Devices Name OS versions RAM CPU cores,speed
Google Nexus 4 4.3 JB 2G Quad,1.5kMHz
Asus Nexus 7 Tablet 4.1 JB 1G Quad,1.3kMHz
Samsung Note 2 4.0 ICS 2G Quad,1.6kMHz
Samsung Nexus S 2.2 Froyo .5G Single,1kMHz

from the Environment Information Collector in Table 2 shows that
one can directly access the resource usage pattern (e.g., the utime
and stime1) of AVDs from the file /proc/[AVD_pid]/stat, which
is accessible by the public. Here the AVD_pid is the process id of
the AVD and the mapping between the AVD package name and its
pid can be obtained through the probing channel #1 and #15.

Our further investigation shows that this Linux statistics file (stat),
is created for the whole AVD process. Due to the multi-threaded
programming of Android apps, the stat file for AVD process in-
cludes noise from other types of AVD operations, for example, a
user interacting with the AVD app or other process management
tasks (e.g. garbage collection) that are performed simultaneously
on the background. To precisely identify the scanning operations
and fingerprint the scanning period and locations, we discover that
one can directly leverage the task information in the subdirectory of
each /proc/[AVD_pid]/ folder, namely the /proc/[AVD_pid]/
task/[AVD_tid]/stat, #10 and #11 side channels. They reveal
the utime and stime of a particular scanning task of an AVD pro-
cess (e.g., start and end of the heavy sweeping malScan). Several
dedicated tasks (main user interface or garbage collection threads)
are assigned with fixed tid based on the pid offset. Thus, the noise
introduced from these tasks or operations can be filtered out.

Another interesting observation is that some AVDs (e.g. # 9)
use dedicated native process(es) for more efficient scanning, but
this special improvement in malScan surprisingly hurts itself, as it
simplifies the relevant high protection window fingerprinting pro-
cedure. One only has to identify the pid of the “/kav/libscan” native
process of #9 through the information leakage channels #1 and #15.
And then the relevant resource usage patterns for the comprehen-
sive scanning tasks can be further collected through channels #10
and #11 of the “/kav/libscan” process.

Testing malScans and Collecting Scanning Traces.
To further explore the feasibility of fingerprinting the heavy sweep-

ing malScan in real time and build proof-of-concept evasions from
the collected system resource (e.g., CPU and memory) usages of
the targeted AVD, we first run dynamic testing over all the AVDs’
heavy sweeping malScan. The result of our dynamic testing, in Ta-
ble 5, shows that current AVDs have three types of configurations
for this malScans: 1) only one full scan; 2) quick/full scan, where
a quick scan usually scans a subset of full scan’s content (e.g., only
the APK files); 3) flexible scan by selecting different targets (fold-
ers). In addition to the above, some AVDs also have user-scheduled
scans at a particular time of a day or in a weekly/monthly basis. To
perform one malScan, it usually takes 1-10 minutes, depending on
the number and type of files/apps to be scanned. To build a bet-
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Figure 2: 6 minutes CPU usage (utime) temporal statistics of (a) AVD
Lookout and (b) AVD Avira

ter fingerprinting algorithm, we collect the resource usage statis-
tics for various heavy sweeping malScan configurations of all the
30 tested AVDs on four devices with different hardware specifi-
cations, as shown in Table 6. For each AVD on each device, we
perform ten 30-minute tests to collect its corresponding resource
usage statistics. We name the resource (e.g., CPU and memory)
usage statistics for a particular job of an AVD as a trace. A trace
generally contains all the relevant CPU and memory information
(e.g., the utime, stime1 of CPU and the VmSize, VmRSS2 of the
memory). For a particular AVD scan trace, we name each specific
resource usage dynamics as a signal. For instance, the process’s
utime signal is a series of incremental values calculated based on
the collected user mode CPU usage time (in Jiffies), which reflects
the AVD’s real-time CPU usage. Various signals can be sampled at
adjustable rates (e.g., 1 sample/second or 5 sample/Minute).

Identify Heavy Sweeping malScans Traces.
Our first goal is to differentiate the traces of heavy sweeping

malScan with traces from all other operations (e.g., VDF file up-
dates, cloud Scan and etc.). Figure 2 contains 30-minute time se-
ries of two representative AVDs (AVD Lookout and Avira) during
which the user triggers two malScans and various other random
AVD operations. We remove part of the blank sub-period that con-
tains no system resource statistics and present a 6-minute version
in the paper. We observe that the utime pattern (stime has sim-
ilar pattern) has an extremely aggressive CPU usage pattern in a
continuous time period, which is the high-protection window, com-
pared to all other small traces introduced by non-scan operations.
Therefore, we use the average utime, stime signals in a sliding time
window (around 30 seconds) to decide if the AVD’s scan enters the
high-protection window.

Differentiate Full and Quick Scans.
Besides identifying the high-protection window, we want to fur-

ther differentiate the high-protection window of full and quick scans

1utime is the user mode jiffies and stime is the kernel mode jiffies,
which are the 14th and 15th field of the /proc/AVD_pid/stat file,
respectively. Jiffies is a time measure based on a clock main-
tained by the kernel. CPU time, which is limited by the res-
olution of the software clock and measured by clock ticks (di-
vided by sysconf(_SC_CLK_TCK). _SC_CLK_TCK is set to 100
in bionic/libc/unistd/sysconf.c for all Android OS versions.
2For an AVD process, the VmSize is the virtual memory size and
VmRSS is the portion of a process’ memory that is held in RAM,
which are the 1st and 2nd fields of the s/proc/[AVD_pid]/statm,
respectively.
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Figure 3: Comparison of full/quick scans’ stime signal of (a) AVD
Dr.Web and (b) AVD Sophos

of one particular AVD, so that the adversary can start malicious ac-
tions (e.g., dropping/executing malicious payloads) right after the
more comprehensive full scan, which is safer to evade detection.
Figure 3 contains the stime signal of representative full and quick
scans of two AVDs, from which we can tell that the quick scan
is generally shorter (quicker) than full scan, and the stime signals’
(utime is the same) peak and average values are pretty close to full
scan. Based on this general heuristic, we can differentiate full and
quick scan by collecting two malScans with very different signal
lengths as benchmarks. Therefore, when the next malScan is iden-
tified, its signal length can be compared with the previously stored
benchmarks. We also keep updating the corresponding benchmarks
with the newly classified scan traces for different categories.

Signal Steganography based Scan Location Inference.
Our study also shows that some AVDs provide multiple ways

of configuring the heavy sweeping malScans that target on vari-
ous scanning locations. On rooted devices, some AVDs [12, 14]
even enables the ability to scan most the important folders (e.g.,
/sdcard, /data/app, /data/data, /system/app and etc.). There-
fore, we seek to identify the precise location that the scanning has
just happened. Because it is less likely for the AVD to re-scan the
same location within a short period of time, one can design an eva-
sion attack based on this assumption.

The scanning location inference idea is very intuitive. The goal
is to infer if the scan is just sweeping through a particular folder of
interest. To achieve this, we leave a special file, namely a marker,
in that folder. The marker file is intentionally designed to exhibit
special patterns in terms of CPU or other resource usages during
AVD heavy sweeping malScan. Since only the marker file de-
signer knows the embedded signal and later extracts it. We call
this method, signal steganography.

Delay-of-Scan Hazard. The design of a unique marker file is
based on our observations of the normal AVD scanning process.
First, most of the AVDs have aggressive CPU usage, mainly caused
by checking the files in the target folder. The pattern of CPU utiliza-
tion during scanning varies depending on the type, size and struc-
ture of the (archive) files. Second, once encountering an archive
file, most AVDs would have to first unzip the file before finger-
prints it. The unzipping operations lead to less CPU utilization but
more memory use, which exhibits certain patterns (the shape and
frequency of CPU or memory utilization profiles). If one could
make this special pattern continue for a significant long time (e.g.,
several seconds, which is actually unnoticeable compared to the
minute-level scanning time), we can identify and extract it directly
from the whole trace and finish the discovery of the embedded sig-
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Figure 4: Stime signal (red line indicates zipTree scanning segment)
of Panda Security

nal. To leverage these observations, we create a special archive file
as the marker, which is a three-layer zip file called zipTree. Each
parent node in this zipTree entry contains 10 zip files, and each one
of the 10 zip files contains another 10 child-zip files. The inmost
leaf zip file is an empty .txt file. The crafted zipTree is about 0.7KB
in size, which can hold the malScan process for 9 seconds. We
name this Delay-of-Scan hazard, which can potentially cause de-
nial of service attack given a big enough zipTree. However, in our
signal steganography based pattern recognition approach, we only
need to delay the scan for a couple of seconds. In this way, we can
precisely identify the scanning locations based on the marker that
was dropped on the particular folder.

Figure 4(a) displays the stime signal of the scanning by Panda
Security. It is noteworthy that the stime signal during zipTree scan-
ning (as shown in a red line in the figure) exhibits patterns with
three special properties compared to other parts of the signal: (1)
the signal has a much lower mean value than other parts of the
stime signal; (2) the signal shows stable patterns; that is, the sig-
nal is periodic and has relatively deterministic frequencies; (3) the
stable pattern of the signal of zipTree file scanning lasts for con-
siderably longer time compared with the other part in the signal.
Based on these observations, we devise an efficient online algo-
rithm, Algorithm 1, to recognize/extract the stime signal segments
of zipTree. The algorithm is based on Fast Fourier Transformation
(FFT) for the classic spectrum analysis that is widely used in sig-
nal processing. FFT transforms the sample signal from the time
domain to the frequency domain, so our analysis is stable against
potential time variations in the signal. More importantly, the fre-
quency domain can still capture most part of the three properties
of the signal. The idea is to determine zipTree scanning period by
identifying a period of time that exhibits similar CPU utilization
patterns (e.g., similar means and magnitude in different frequen-
cies), or in one word, similar frequency spectrum characteristics
that appeared repetitively. Once we identify a period with lower
mean value signals (based on property (1)), we first perform FFT
(line 9 in the Algorithm 1) to multiple sliding windows of the CPU
utilization signal and generate a time series of frequency spectrum,
a presentation of a time-series signal in the frequency domain. As
is well known in signal processing, similar two frequency spec-
trum imply that the corresponding two time series sharing similar
signal components at all frequencies. We then compute the Eu-
clidean Distance of the neighboring spectrum (line 10). We deter-
mine two neighbor frequency spectrum as ”similar” by checking
if the euclidean distance between these spectrum is smaller than
a self-adapted threshold (line 11). Since the archive files produce
property (2) (3), the distance can be kept very small for an amount
of time (several seconds, controlled by causing the Delay-of-Scan
hazard), which is demonstrated in the red part of Figure 4(b). Al-
though the stime signal length caused by the Delay-of-Scan hazard
varies on different hardware devices, the repeated stable structure

in the zipTree file ensures the periodicity of the low signal pattern
regardless of hardware specifications. Note that for all the malScan
inference measurements, we reach the desired results by using only
the stime signals from the CPU patterns.

Algorithm 1 Pseudo-code for the algorithm to extract zipTree scan-
ning pattern
1: zipfilescaning← False
2: window[window_size]← empty
3: spectrogram[window_size][ ]← empty
4: k← 0, mag_thresh← α
5: dist_thresh← β, len_thresh← γ
6: while obtain new value V do
7: update_Window(window, V )
8: if mean(window) < mag_thresh then
9: spectrogram[k][]← FFT(window)

10: distance ← Euclidea_Distance(spectrogram[k],
spectrogram[k-1])

11: if distance < dist_thresh and k > len_thresh then
12: zipfilescaning← True
13: else
14: zipfilescaning← False
15: erase(spectrogram)
16: k← 0
17: end if
18: else
19: zipfilescaning← False
20: erase(spectrogram)
21: k← 0
22: end if
23: end while

3.4 Targeted Evasions
Based on the discovered hazards, various targeted attacks can

be designed. One potential attack scenario is based on repackag-
ing [49, 32, 26, 48, 34] a benign carrier (RBC app) app, which
does not contain any malicious payload for root exploiting, or pri-
vacy stealing. Therefore, the RBC app itself will not be judged
as malicious during the install-time scan. After the RBC app is
deployed on the system, it can leverage the information leakage
channel #1 in Table 2 to check the name of the installed AVD and
use the discovered hazard to infer its scanning status. Once it iden-
tifies a moment to its advantage (e.g., end of a malScan), malicious
actions can be performed under the radar of the AVD’s scans. For
example, based on the similar analysis result from Table 4, one can
drop malicious payloads to the folder that is not covered by the
light monitoring malScan, load and execute them and then remove
the evidence. Other remote evasions can also be designed. For in-
stance, one can leverage remote vulnerability exploiting (e.g., code
injection vulnerability in HTML5-based apps [37]) to hijack a run-
ning process’s control flow, and then conduct the similar evasions
to prevent the injected payloads from being identified.

4. HAZARDS IN ENGINE UPDATE
For an AVD equipped with complete VDF and perfect hooking

mechanism, we consider the best moments to evade it is when its
process(es) has not been activated yet. Our study result in Table 3
shows that all the tested AVD are listening on the BOOT_COMPLETE
intent to automatically launch itself when the system boots up. This
close a potential opportunity for evasions and indicates that AVD
developers are aware of some similar hazards. However, after fur-
ther analysis on the interaction between the AVD and the Android



system, we identify a hazard in AVD’s engine update (engineUp-
date) procedure, that unexpectedly nullifies any strong protections
an AVD provides for the system. Here we elaborate the AVD’s
engineUpdate operation in Android and analyze the hazard.

4.1 Engine Update Behavior and Hazard
The AVD engineUpdate operation provides essential updates for

AVD malScan operation improvement, bug and vulnerability patch-
ing [7, 8, 20, 21, 19], and update-to-date protection [23]. Since the
technical details of AVD’s engineUpdate mechanism on Android
have not been scrutinized before, to come up with a detailed full
picture, we leverage our analysis framework and manual analysis
based on runtime logs and related decompile Dalvik bytecode (the
smali format). The engineUpdate operation is performed whenever
an AVD developer posts an updated version of APK on Google
Play. It can be either triggered by the user, or by the old AVD
process automatically. The whole procedure is executed by the
Android system, namely the Package Manager Service (PMS), the
Activity Manager Service (AMS), installd daemon and etc. Lots of
evidence [23, 10] show that AVDs update fairly frequently. Indeed,
during a two-week period in March of 2014, we initially tested the
process of engineUpdate operations using our analysis framework
and noticed a high update ratio, 25 out of 30 tested AVD products
have version updates from Google Play.

On the traditional PC platform, during the engine update pro-
cedure, an AVD will not shut down the whole AVD program, but
only replace part of the necessary modules (e.g., DLL files or ker-
nel drivers). However, we identify that on the Android platform,
the updating procedure is different. One potential problem of this
specific procedure is that the Android system will kill the AVD
process(es) before the engineUpdate. This design is considered as
valid and effective for most third party apps and help prevent unin-
tended app update [15], but this specific design lacks detail analy-
sis on potential security implications. Especially when considering
from the perspective of AVD realtime protection and detection, this
APK update mechanism introduces a serious flaw, as its compli-
cated procedure renders the system lacking of AVD’s protection
for a period of high risk, which is called null-protection window.

In order to confirm the hazard, we further verify the existence of
the null-protection window by checking the implementation logic
in the Android AOSP code base. The relevant high-level program
logic flow is generalized and presented in Figure 5 as a Finite State
Automaton (FSA). In the device, the PMS from the Android frame-
work layer listens on update requests and performs the actual work
along with several other services. For instance, the installd dae-
mon and the AMS have to collaborate with the PMS component
to finish different tasks in the engineUpdate procedure. Based on
the complicated design of app updates on Android, the system han-
dles AVD version updates in several steps. After the new APK
is downloaded and update is confirmed, the current AVD process
is killed, and the old code directory (/data/app) and some rele-
vant data files in the /data/data/[AVD_package]/∗ subdirecto-
ries are removed. Before relaunching the new process, the newly
downloaded Android Package file (APK) of AVD is verified for the
developer’s signature, and followed by Dalvik bytecode optimiza-
tion (e.g., dex to odex), configuration file parsing (e.g., permission
registration based on the AndroidManifest.xml file) and etc. Note
that the system never helps relaunch the previously killed process,
which will expand the null-protection window. Due to this unavoid-
able null-protection window caused by the specific design for pack-
age updates of Android, the AVDs become vulnerable even under
the strong protection assumptions I and II.
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Figure 5: The constructed FSA of PMS for Android v4.4.4_r1

To leverage the exposed null-protection window, the adversary
must infer if the AVD is performing the engineUpdate operation.
During our runtime testing and code analysis, we find that PMS
will broadcast a series of intents with different action fields, in-
cluding PACKAGE_REMOVED, PACKAGE_ADDED and PACK-
AGE_REPLACED (red in Figure 5), so as to notify the other com-
ponents to perform the corresponding tasks and keep them updated
with the current app updating status. However, these broadcasted
intents unexpectedly reveal the updating status of AVD to any un-
privileged apps. So the malicious app can simply register these
broadcast intents to get notified, and then start malicious operations
during the exposed null-protection window. Our analysis frame-
work also helps us identify several other leakage channels (e.g.,
channel #1, #4 and #14 in Table 2) that can infer this vulnerable
status of AVD. This indicates simply restricting the receivers of the
broadcasted intents cannot fully eliminate the hazard.

4.2 Null-protection Window Length
Next, we quantitatively measure the length of this null-protection

window for various AVDs and devices. We conduct four groups of
experiments based on four types of real devices, whose configura-
tions are provided in Table 6 in Section 3. For each group, we try
to test all the 30 AVDs’ engine update operations and record their
null-protection window lengths. For every AVD on each device,
we test 10 times to obtain the mean value and relevant confidence
interval. Our result indicates that the window lengths are quite sta-
ble; for example, the representative Symantec AVD has an average
window length of 11.2 seconds, with a confidence interval [-0.13,
0.13] at the confidence level 95%. This is because of the routinely
PMS updating logic and the atomic nature for most of the PMS
method invocations during the execution. Due to space limits, we
only show the mean values in Figure 4.2. Here, the x-axis is the
average length of null-protection window in seconds, and the y-
axis represents each AVD. For each AVD, to clearly compare the
window lengths for four devices, we draw four horizontal bars in
different colors. Longer bars are partly covered by shorter bars.
We can see that for all AVDs, the null-protection window lengths



in Samsung Note II and Google Nexus IV (LG) are the smallest,
whereas Nexus S (Samsung) has the largest window, from about
9.2-16.8 seconds. Note that all the collected results are the theoret-
ical lower bounds for the null-protection window, because in this
test, our Dynamic Testor keeps sending launching events from adb
tool during each tested AVD updating session. This guarantees the
automatic AVD relaunch right after the AVD is updated.
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Figure 6: The Null-protection Window lengths (in seconds) for
all 30 tested AVDs on four Android devices

Since we can automate the process of AVDs’ relaunching, we
think one might provide a preventive design to relaunch the AVD
by the updated new AVD code itself immediately after the engine-
Update finishes. One interesting mitigation that we come up with
is to add a receiver component in AVD to listen to the broadcasted
action.PACKAGE_REPLACED intent, which indicates the finish-
ing of the engineUpdate. Then this receiver of the updated new
AVD engine is always triggered by this broadcasted intent right af-
ter the engineUpdate finishes. Within the registered receiver com-
ponent, we then relaunch the main monitoring process automati-
cally through Android APIs, startActivity(). Note that this mitiga-
tion does not solve the fundamental problem that the old AVD pro-
cess is killed and the vulnerable period is created, but it can only
reduce the null-protection window length to the theoretical lower
bound (caused by the complicated updating operations carried out
by the system). None of the 23 of the tested AVDs that registered
the action.PACKAGE_REPLACED (in Table 3), are actually per-
forming the preventive design for their own updates, but only use
the registered receiver to start a service to scan other apps’ updat-
ing for malware detection purpose. We report our findings to all the
AVD vendors and propose this short-term mitigation to them. They
responded to us immediately and confirmed the hazard. Similar
patches will be provided in their next release based on our sug-
gested mitigation. However, to completely eliminate the hazard,
the PMS design should be enhanced. Since this hazard can be ap-
plicable to other apps that require continuous monitoring properties
(e.g., Mobile Device Manager (MDM) [18], IPS [12, 14] and etc.),
we reported this hazard to Google and they confirmed our findings
and we are now working with them on possible feature enhance-
ments for the relevant components and services.

4.3 Model Checking the Vulnerable Logic
To automate the process of verifying the pervasiveness of the

vulnerable temporal logic in AVDs’ engine update procedure, we
leverage the model checking techniques, which have been applied
widely [25, 29, 27] to perform system bugs and vulnerabilities ex-
amination and temporal property checking for both mobile and PC
platforms. Our model checker for the Android platform is similar

to Chen et al. [27], in the sense that we both check the reachability
of certain temporal logic in the code. However, our model checker,
particularly targets the Dalvik bytecode of the PMS in Android for
the engineUpdate’s vulnerable temporal program logic.
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Figure 7: The model checking framework

Figure 7 shows the design of our model checking framework.
The inputs are the Android factory images collected from multi-
ple vendors. After the preprocessing phase, we extract the relevant
.odex file of the PMS components in the system.img. The odex
code, namely the optimized Dalvik bytecode, can be run directly
on the targeted Dalvik VM. We decompile the odex file into Dalvik
bytecode and produce the CFGs for these components. From the
constructed CFGs, we first identify the relevant execution traces
that correspond to the engineUpdate’s temporal logic. Then we
construct FSAs to describe the relevant vulnerable program logic
in PMS. Each edge in the FSA corresponds to a critical method in-
vocation that brings the system state to the next state. For instance,
Figure 5 is a simplified representation of one of the FSAs for the
relevant vulnerable code in the PMS of Android version 4.4.4_r1.
The completion of the PMS.deletePackageLI() invocation brings
the state from STATE{“Replace Non-system Package Started”} to
the STATE{“Old Package Deleted”}. Therefore, when we per-
form a model checking against the constructed CFG, whenever
the system state STATE{“Replace Non-system Package Started”}
encounters the deletePackageLI() method invocation in the PMS
class file, our model checker will bring the current system state
to the STATE{“Old Package Deleted”}. It then expects the next
critical method invocation, namely PMS.sndPkgBroadcast(). Our
model checker works in a depth-first-search manner to check the
system states along the constructed CFGs. Whenever a sequence of
method invocations is matched to a sequence of edges in the FSA
that lead to the final STATE{“PMS Service Finished”}, a trace will
be printed out for further verification. These traces help confirm the
existence of the vulnerable logic for the AVD engineUpdate oper-
ation of the PMS component. We actually use the “liveness prop-
erty” of model checking for vulnerability verification. Note that
here we are to verify if something “good” will eventually happen,
and here “good” means the identification of the exact vulnerable
temporal logic in the PMS. Whenever the newly constructed CFGs
of the PMS does not match the specified FSAs, we will check into
the relevant CFGs to manually construct a new FSA for the un-
matched PMS version. Most of the time, it is because the names of
the methods are changed slightly, or a new wrapper is provided for
an old method. It turns out that we only need to construct four FSAs
to check the temporal logic of all PMS versions of Android OSes.
The relevant mapping from FSAs to Android versions are given in
Table 7. Due to the space limitation, we skipped some versions if
our model checker reports no critical implementation variances.

Confirm the Goolge Android official factory Images.
To systematically check all Goolge Android factory images, we

have downloaded all the factory images [9], which contain im-



Table 7: Android OS versions and relevant Models for PMS
OS versions Release dates Constructed FSAs
Android v4.4.4 19 June 2014 FSA of v4.4.4_r1
Android v4.4_r1 31 October 2013 FSA of v4.4.4_r1
Android v4.3_r2.1 14 July 2013 FSA ofv4.4.4_r1
Android v4.2_r1 13 November 2012 FSA of v4.4.4_r1
Android v4.1.2_r1 22 August 2012 FSA of v4.1.2_r1
Android v4.0.3_r1 16 December 2011 FSA of v4.1.2_r1
Android v2.3.7_r1 11 September 2011 FSA of v2.3.7_r1
Android v2.2_r1.1 29 June 2010 FSA of v2.3.7_r1
Android v2.1_r2 27 January 2010 FSA of v2.1_r2
Android v2.0_r1 14 October 2009 FSA of v2.1_r2
Android v1.6_r2 15 September 2009 FSA of v2.1_r2
Android v1.5_r4 30 April 2009 FSA of v2.1_r2

ages ranging from Android version v1.5_r4–v4.4.4_r1, totally 34
versions. Our model checker has verified that the same vulnera-
ble logic in PMS appears from all the Android OS versions from
v1.5_r4 (April 2009) to very recent v4.4.4_r1 (June 2014) for all
Google official Android factory images.

Confirm the Vendor customized stock Images.
Due to the Android vendors’ fragmentation problem [22, 5], we

also download images from HTC and Samsung [17, 11] and con-
duct analysis on recently released stock images from multiple ven-
dors, including Samsung (S4, S3 and S2 with Android v4.4.2, v4.0.4
and v2.3.4), HTC (One Mini, M7 with Android v4.4.2, v4.3), Sony
(Xperia Z2 and Xperia M2 with Android v4.4 and v4.3) and LG
(LGD958 Android v4.2.2). Our analysis also confirms that the
same vulnerable PMS logic appears in all of them. It is because
most of the customized stock images directly reuse most of the
core design logic in mission critical components (e.g., PMS) from
Google AOSP codebase.

Our finding demonstrates that some seemingly benign, but com-
plicated updates in the system can cause surprising hazards to a sta-
ble system, which is similar to the takeaway message presented by
Xing et al. [46]. But the newly discovered flaw resides in the Pack-
ageManager Service for AVDs’ engineUpdate procedure, which
can unexpectedly nullify any security protection from AVDs.

5. DISCUSSIONS

5.1 Mitigations
One proposed prevention for the discovered information leak-

age channels in Table 2 is based on more fine-grained mandatory
access control. The Android system can leverage the existing SE-
Android [45] mechanism to restrict the public from accessing the
channels under certain usage scenario with high security require-
ments. One specific policy refinement is to assign a new sub-
ject domain and relevant allow rules in the SEAndroid [45] policy
database and then label a while-listed/authorized apps/services with
the new subject domain. Consequently, only controlled/authorized
accesses to different files under the /proc/∗ (sub)folders are granted.
However, this requires a solid understanding on different usage sce-
narios of various programs and the underlying Android system de-
sign specifics, so that the proposed mitigation will not block normal
legitimate usability. One can model the relevant attacks in the mo-
bile system into attack graph surface [33] and then enforce policy
to block different leakage channels accordingly.

We propose another specific mitigation for the hazards in heavy
sweeping malScan. For example, the underlying system may pro-

vide only the general usage statistics of AVDs (or other mission
critical apps) by normalizing or delaying the reporting of system
resource usage statistics (e.g., the CPU, memory and network) in
relevant public channels in Table 2. Consequently, it is harder for
an adversary to fingerprint an app’s exact running status on the fly.
The other way to reduce the risk is to introduce randomness into
pre-scheduled scans. Instead of setting up an exact time, the user
may specify a time window, in which an AVD can choose a random
time to start scanning each day. A long-term mitigation is to im-
prove the malScan operation and make scan operations continuous
and comprehensive at the same time. According to our discussion
with AVD vendors, this seems to be a future research topic, since
malScan with both properties requires lots of testing and optimiza-
tions to be finally deployed on the resource limited mobile devices.

In addition to the designed short-term mitigations to AVD ven-
dors in Section 4.2 for the engineUpdate hazard, we discuss with
the Google security team that the system designers will have to re-
architect the PMS component to close or reduce the null-protection
window in the app-updating procedure. One suggestion to Google
is to delete the old APK only after the new process has been reac-
tivated, but this might cause conflicts on app’s package names or
other app management tasks (e.g., the install verification process).
Since lots of apps have continuous monitoring requirements (e.g.,
MDMs, IPSs, and etc.), Google has to find a way to resolve those
conflicts for this feature enhancement in PMS.

5.2 Other Hazards
In our study, we find the other two potential hazards, which in-

dicate that the discovered hazards are just a tip of the iceberg. So
we discuss the other two types of hazards which can enable the
evasions of current Android AVDs.

Cloud based malScan Hazard.
During the analysis, we sense a trend of adding the cloud-based

scanning strategy for mobile platforms, including AVD # 1, 2, 3,
23 and 26. Cloud-based scanning fits resource limited mobile de-
vices, as it can offload the heavy computation to a remote server
by sending out the collected information. However, since the per
UID network usage statistics can be directly accessed through the
discovered channel # 16 in Table 2 as well, an adversary can plan
evasions and attacks against AVDs using the similar fingerprinting
strategy described in the heavy sweeping malScan hazard.

Virus definition file (VDF) update Hazard.
All the AVDs store their VDF and other files/data in the subdi-

rectories, /data/data/[AVD_package]/∗, which are strictly set
to be world-unreadable and enforced by the Linux kernel in An-
droid. Our further analysis based on Environment Information Col-
lector shows that this solid design of app data privacy protection is
not enough for VDFs’ deployment, as an adversary only needs to
know the file size or other meta-data information of relevant files
(e.g., created/updated time) in the subdirectory to infer the updating
status of the VDF or other sensitive files (e.g., scan result caching
file). We design a zero-permission app to call the stat() system call
thorugh JNI to directly probe the meta-data information of all these
files in an AVD’s data folder. The whole path parameter that leads
to different files (e.g., VDF) can be first collected via offline anal-
ysis. Knowing this status information, lots of potential targeted
evasions can be designed. For instance, we find that some AVDs
(e.g., # 21) perform a fresh heavy sweeping malScan right after the
VDF is updated, so the adversary can drop or decrypt the newly
obfuscated known malicious payloads a few minutes after the VDF
has been updated, so as to make its fresh scan useless.



6. RELATED WORK
Malware analysis and threat prevention techniques [47, 38]

have been designed and applied for offline analysis. Also, various
interesting anti-analysis techniques have been discussed [42, 28]
for both mobile and PC malware. Our proof-of-concept evasion
techniques are conceptually similar to anti-analysis techniques, but
we focus on a new angle to emphasize more on the evasion of
AVD’s online protection mechanism. Zhou et al. [53] provided a
study of Android malware, and similarly, the discovered hazards in
this paper are also based on a systematic study of 30 popular AVDs.

Android app and system hazards have been discovered in [41,
30, 46, 51, 50]. Accidental data disclosure between apps in mobile
and PC systems have been discussed in [39]. The discovered infor-
mation leakage channels for various hazards in AVD are relevant to
the unexpected data exposure from the system side. Jana et al. [36]
also take the per process memory usage and CPU scheduling statis-
tics as probing channels to leak program’s secrets. We identify that
we can even leverage per thread usages to conduct fine-grained in-
ference. Pileup attacks [46] are also based on a flaw in PMS that
targets system update. Our engineUpdate hazard is based on one
newly discovered flaw in PMS (related to the app-update mecha-
nism). Empirical studies [30] have been performed on several haz-
ards in security critical components or modules in Android apps.
Our study is performed on current AVD apps, and several hazards
have been discovered and reported to AVD vendors.

Antivirus evasion techniques [40, 24, 35] have been studied
previously. Android Dalvik bytecode polymorphic transformation
attacks have been presented by Rastogi et al. [44] to target incom-
plete signature database. However, our study concentrates on the
the malware recognition mechanism itself, and the result shows that
the quality of AVD’s malScan mechanism should be further im-
proved when deployed on the Android platform. Fedler et al. [31]
discuss the lack of on-demand file system hooking problem of An-
droid antivirus. Our study shows that some of the AVDs have al-
ready leveraged FileObserver APIs for that purpose. However, we
find that it is the lack of combination of scan comprehensiveness
and continuity that causes the ineffectiveness of the current design.
What’s more, the discovered hazards in the AVD engineUpdate are
completely orthogonal to the file system hooking problem. Because
any strong protections have to rely on an activated AVD process,
which is missing in the null-protection window.

7. CONCLUSION
Based on an analysis framework, we conduct an empirical study

of top 30 AVDs on the current Android platform. We discovered
several serious hazards related to AVD malware scan mechanism,
engine update procedure and etc. We then develop techniques to
measure the feasibility of exploiting the hazards in malScan and
confirmed the vulnerable engineUpdate program logic in the An-
droid system through static analysis and model checking techniques.
We reported the discovered vulnerabilities and hazards to AVD ven-
dors, all of them have confirmed our findings and will take some of
the mitigations suggestions in their latest versions. We also discuss
the vulnerable design in the PMS that causing the null-protection
window to the Google security team. They also admit the problem
and will consider feature enhancement on the PMS component.

As the malware and the Android system keep evolving, more se-
cure and preventive design strategies for mission critical apps (e.g.,
AVDs, IPS [12, 14], MDM [18] and etc.) should be adopted to
reduce the chance of getting unexpected failures and loopholes.
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