
ALPHAPROG: Reinforcement Generation of Valid Programs for Compiler Fuzzing

Xiaoting Li1*, Xiao Liu2*†, Lingwei Chen3†, Rupesh Prajapati1, Dinghao Wu1

1Pennsylvania State University, University Park, PA, USA
2Facebook, Inc., USA

3Wright State University, Dayton, OH, USA
xxl237@psu.edu, bamboo@fb.com, lingwei.chen@wright.edu, rxp338@psu.edu, duw12@psu.edu

Abstract

Fuzzing is a widely-used testing technique to assure software
robustness. However, automatic generation of high-quality
test suites is challenging, especially for software that takes
in highly-structured inputs, such as the compilers. Compiler
fuzzing remains difficult as generating tons of syntactically
and semantically valid programs is not trivial. Most previous
methods either depend on human-crafted grammars or heuris-
tics to learn partial language patterns. They both suffer from
the completeness issue that is a classic puzzle in software
testing. To mitigate the problem, we propose a knowledge-
guided reinforcement learning-based approach to generating
valid programs for compiler fuzzing. We first design a naive
learning model which evolves with the sequential mutation
rewards provided by a target compiler we test. By iterating the
training cycle, the model learns to generate valid programs
that can improve the testing efficacy as well. We implement
the proposed method into a tool called ALPHAPROG. We an-
alyze the framework with four different reward functions and
our study reveal the effectiveness of ALPHAPROG for com-
piler testing. We also reported two important bugs for a com-
piler production that were confirmed and addressed by the
project owner, which further demonstrates ALPHAPROG’s
applied value in practice.

Introduction
Compilers are the most critical components of computing
systems. Although vast research resources have been de-
ployed to verify production compilers, they still contain
bugs and their robustness requires improvements (Sun et al.
2016). Different from application bugs, errors in compil-
ers are usually harder to find, which are not the first place
to put breakpoints at when a developer tries to debug an
unexpected behavior during compilation. They are presum-
ably correct for most application developers; however, such
compiler-bugs can be exploited to launch attacks, resulting
in serious security threats. For example, as demonstrated by
researchers (David 2018), an attacker can enable a stealth
backdoor in Microsoft Visual Studio software with legiti-
mate code by merely exploiting a simple bug in MASM

*These authors contributed equally.
†Work done while at PSU.

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

compiler. Therefore, it is critical to enforce the validity of
compilers with more advanced techniques.

Testing is widely adopted (Chen et al. 2013; Regehr et al.
2012) to verify the correctness and robustness of compil-
ers. As a random test case generation paradigm, fuzzing
has been proven to be effective to improve testing efficacy
and detect software bugs (Miller, Fredriksen, and So 1990;
Kossatchev and Posypkin 2005; Zalewski 2014; Chen et al.
2016; Takanen et al. 2018), which can be categorized as
black-box fuzzing and white-box fuzzing. The main differ-
ence between fuzzing and testing is that, fuzzing focuses on
program crashes and hangs but testing is more general that
aims at detecting kinds of syntactical and semantic errors
with well-defined sanitizers. Although black-box fuzzing is
efficient for general software, existing techniques are not ap-
plicable in the scenario of compiler testing where highly-
structured inputs are taken in.

To generate high-quality programs in the context of com-
piler testing, researchers propose to use rigorous generation
engines that encodes formal language grammars for whole
program generation (Yang et al. 2011). Typically, they con-
form both syntactic and semantic rules for generating effec-
tive programs for compiler testing. However, it takes human
efforts and expert knowledge to construct the grammars in
generation engines where only a subset of the whole lan-
guage grammars are encoded as claimed by most of the own-
ers of fuzzing engines in this type. To reduce human labor,
researchers propose to use deep neural networks to learn
language patterns from existing programs (Cummins et al.
2018; Liu et al. 2019; Godefroid, Peleg, and Singh 2017).
Based on a sequence-to-sequence model, language patterns
in terms of production rules can be acquired and then used
for new program generations. The neural networks can au-
tomatically capture most syntactical features and generate
new tests effectively. But their success rate depends on the
chosen data used for training the model and serving as the
seeds. Without valid and diverse testsuites built by program-
mers, the proposed machine-learning-based approach usu-
ally won’t work as expected.

To address this challenge, in this study, we build a deep-
learning-based framework free from the dataset dependency.
Specifically, we propose a reinforcement learning frame-
work (Sutton, Barto et al. 1998) to bootstrap the neural net-
works that encode language patterns from scratch with the

1

oracle of returning messages and runtime information dur-
ing compilation. Reinforcement learning shows its potential
in program analysis (Bunel et al. 2018; Böttinger, Gode-
froid, and Singh 2018; Verma et al. 2018) due to its ca-
pability of achieving learning goals in uncertain and com-
plex environments. In our case, we use it to generate new
programs within a limited length. Then we ask compiler
to compile the generated program and collect both return-
ing message and runtime information, i.e., execution traces,
for calculating a designed reward to train the model. With
more programs generated, the neural network will be better
trained to craft new programs towards our anticipations. To
achieve the goal of high compiler testing efficacy, we con-
struct the coverage-guided reward functions to balance the
program validity and testing coverage improvement of the
target compilers. In such a manner, the trained neural net-
work will eventually learn to generate valid and diverse test
suites for testing.

We built the proposed framework into a prototyping tool
called ALPHAPROG. To evaluate the practicability of our
approach, we deployed ALPHAPROG on an esoteric lan-
guage called BrainFuck (Raiter 1993) (we use BF in later
context) which is a Turing-complete programming language
that only contains eight operators. We explored the effec-
tiveness of ALPHAPROG by testing an industrial-grade BF
compiler called BFC (Hughes 2019). We compared the re-
sults of ALPHAPROG under four different reward functions
for compiler fuzzing, ALPHAPROG achieves promising per-
formance in terms of validity and testing efficacy. During the
analysis, we also detected two important bugs of this target
compiler. After reporting both issues, they were actively ad-
dressed by the project owner and already fixed in the new
release (BFC 2019).

Overview
If we see a program as a string of characters of such lan-
guage, we can model program generation task as a Markov
Decision Process (MDP) (Markov 1954) process. An MDP
is a 4-tuple (S, A, Pa, Ra), where S is a finite set of states,
A is a finite set of actions and it is a transition between two
states. Given each different state s ∈ S, the probability of
taking action a ∈ A is Pa(s, s′); accordingly, it receives an
immediate rewardRa(s, s′), where s ∈ S is the current state
and s′ ∈ S is the state after action. Starting at the training
iteration t, one action at ∈ A(st) will be selected and per-
formed. Once the environment receives the current state st
and action at, it responds with a numerical reward rt+1 and
finds model a new state st+1. In our context, we choose the
best character to generate based on current program state and
append new characters iteratively to current character string
until EOF. The generation of EOF may vary and a simple
implementation is set EOF at a fixed length. The core prob-
lem of MDP is to find a policy π for making action decisions
on a specific state s. That is an update of the probability ma-
trix, Pa(s, s′), which achieves the optimal reward Ra(s, s′).
In the fuzzing task, the probability for each transition will
be learning by neural networks to achieve an optimal reward
which combines two important metrics (1) the validity of
generated programs and (2) compiler testing coverage. The

validity of generated strings will be confirmed by return-
ing messages of compilations and it demonstrates how the
policy conforms formal language production rules. And for
compiler testing coverage, it will be calculated by analyzing
the runtime information of each compilation.

Designed Framework
In this work, we propose a reinforcement learning frame-
work based on Q-learning to generate BF code for fuzzing
BF compilers. The designed generation process is illustrated
in Figure 1. In this framework, there are essentially two main
components, the fuzzing agent and the environment. The
fuzzing agent, i.e. the provided neural network, will try to
generate a new program with best practice, and the environ-
ment, i.e. the compiler, will provide a scalar reward for eval-
uating this synthesized program. To generate a new program,
the neural network will take in a base string xt for predict-
ing new characters. The generated program yt is a new string
by appending a new character to the base string. The model
will evaluate the quality of this new program and calculate
a scalar reward rt according to the message and execution
trace from the compilation to train the neural networks it-
eratively. The model will evolve and optimize gradually as
more and more strings are generated and evaluated. In this
section, we will detail the model configuration in our frame-
work and elaborate on the defined reward function.

Action-State Value
Unlike traditional Q-learning, deep Q-learning leverages
deep neural network to improve the scalability of model
for tasks with large state-action space. In our design, once
observing a current state, the trained action-state network
will predict an action that selecting a character from the BF
language to append in the next step. To deal with different
length of strings, we use a simple LSTM model for sequence
embedding. In particular, we derive a LSTM layer with 128
neurons followed by two fully-connected hidden layers with
100 and 512 neurons respectively. For each layer, we adopt
ReLU (Maas, Hannun, and Ng 2013) as the activation func-
tion. The size of the output layer is 8 (corresponding to BF’s
eight different characters) that allows to predict the character
to append with highest value.

Reward
The reward function is key to reinforcement learning frame-
works that indicates the learning direction. In the compiler
fuzzing task, there are two main goals: (a) the generated pro-
grams should be valid; (b) the generated programs should be
as diverse as possible. For validity, the generated programs
are supposed to be both syntactically and semantically valid.
There are stages during the compilation process and if the
test code is rejected during early stages, such as the syntax
analysis, the compilation will be terminated and the rest exe-
cution paths won’t be tested. Thus, the validity of generated
test programs is important for the fuzzing task. In addition
to validity, diversity is another goal from the perspective of
testing efficacy. If similar tests are generated, although they
are valid to be successfully compiled by target compilers, we

2

Environment
Action

Validity

Coverage

Bugs

Encoder Decoder

Fuzzing Agent
Embedding

Sequence-to-Sequence
Model

Figure 1: Compiler Fuzzing Process of ALPHAPROG

cannot achieve any testing coverage improvement that we
won’t be able to trigger more unknown flaws or vulnerabili-
ties in compilers. In other words, we prefer more legitimate
language patterns are explored and encoded into the neural
networks rather than synthesizing test code in vain with the
same patterns. In our design, we set up four different reward
functions for the learning process which demonstrates the
two different learning goals and how to achieve the balance
in between.

Reward 1 First, considering the syntactic and semantic
validity, we set the reward function as

R1 =

{
0, length is less than limit
−1, compilation error
1, compilation success

(1)

where for any intermediate programs during a generation
episode, we give it a reward of 0 until its length hits our
restriction. To collect the compilation feedback and verify
the validity of a synthesized program, we use a production
compiler to parse the generated program and evaluate its cor-
rectness based on the compilation messages.

Compilation Message: Usually, there are five kinds of
compilation messages: no errors or warning means that the
program is successfully compiled to an executable without
any conflict to the hard or soft rules defined by the compiler;
(2) errors represents that the program does not conform syn-
tactic or semantic checks and hits the exceptions that termi-
nate the compilation process; (3) internal errors indicates
an error (bug) of the compiler where the compiler does not
conform the pre-defined assertions during the compilation;
(4) warnings is the sign that the compilation succeeds but
there are some soft rules that have not been met, such as
the program contains some meaningless sequences; and (5)
hangs depicts the compilation falls into some infinite loops
and it cannot exit in a reasonable time. We consider three
cases among these compilation messages as the indicator for
a valid program: no errors or warning, warnings, and inter-
nal errors. Theoretically, this reward metric should guide the
model to synthesize programs that are valid with least effort
such that the same character can be repeatedly generated all
the time in a synthesized program.

Reward 2 Second, to measure the diversity of the synthe-
sized program, we use the unique tested basic blocks on the
compilation trace by the generated test suite as the testing
coverage. In compiler construction, a basic block of an exe-
cution trace is defined as a straight-line code sequence with

no branches except for the entry and exit points, which is
considered as one of the important atomic units to measure
code coverage. In this regard, we have the reward

R2 = B(Tp)/
∑
ρ∈I′

B(Tρ). (2)

In this reward function,B(Tp) is the number of unique basic
blocks of the execution trace of a program p and I ′ is all the
programs generated from this test suite where we compute
the total number of unique basic blocks created so far.

Reward 3 Third, to consider both code validity and di-
versity, we further formulate a combination of their reward
metrics as the new reward function, which is accordingly
specified as

R3 =

{
0, length is less than limit
−1, compilation error
1 +R2, compilation success

(3)

In this reward function, for all the generated programs that
are compiled successfully, we use the portion of the newly
tested basic blocks as the reward. For the other two cases,
we still return reward 0 when the program length does not
hit the limit, and −1 when the program is not compilable.

Reward 4 In the fourth scenario, we further add a control-
flow complexity of the synthesized programs into consider-
ation based on the previous reward metrics. According to
Zhang et al.’s study (Zhang, Sun, and Su 2017), the increase
of control-flow complexity of programs in the test suites
will remarkably improve the testing efficacy of the corre-
sponding compilers. The effective testing coverage can be
improved up to 40% by simply switching the positions of
variables in each program within the GCC test suite. In our
design, we add the cyclomatic complexity (Watson, Wallace,
and McCabe 1996) of the synthesized programs into our re-
ward metrics which is used to describe program control-flow
complexity. Then we have new reward function,

R4 = R3 + C(p)/max(C(ρ : ρ ∈ I ′)). (4)

In this function, C(∗) is the cyclomatic complexity of a
program. We simply add the cyclomatic complexity of a syn-
thesized program divided by the max value we get till now in
the previous reward function R3. In other words, if the syn-
thesized program does not hit the length limit, we give it a
reward of 0 and if it is not valid, we give it reward−1. Other-
wise, the reward will be a combination of program validity,
testing coverage, and program control-flow complexity.

3

Training
During the training stage, we bootstrap the deep neural net-
work for program generation that takes in a current program
x with state s, the action a that generates x to a next state s′,
the reward r that is calculated based on compilation, and an
original Q-network. For a given state, this Q-network pre-
dicts the expected rewards for all defined actions simultane-
ously. We update the Q-network to adapt the predicted value
Q(st, at) according to the target r + γmaxaQ(st+1, a) by
minimizing the loss of the deviation in between, where γ
is a discounted rate between 0 and 1. A value closer to 1
indicates a goal that is targeted on long-term reward while a
value closer to 0 means the model is more greedy. The trade-
off between the exploration and exploitation during train-
ing is a dilemma that we frequently face in reinforcement
learning. In our program generation problem, exploitation
pays more attention to take advantage of a trained model to
search new conform programs as much as possible, while
exploration means the fuzzing agent will randomly choose
a character that allows the generated sequences to vary. In
our method, we employ the ε-greedy method in the training
process to balance exploration and exploitation, where with
probability ε, our model will choose a random action and
with probability 1 − ε, it will follow the prediction from a
neural network. In the implementation, we make the value
for ε decaying, such that at earlier stages of training, the
chance to choose a random action is higher but the prob-
ability goes down proportionally to the number of predic-
tions. It indicates that we gradually rely on the trained neu-
ral network rather than random guesses to explore as model
becomes more matured.

Experiment
To evaluate our prototyping tool ALPHAPROG, we perform
studies on training the model towards the two different goals
by setting reward functions as described in Reward section.
We log the valid rate and testing coverage improvement dur-
ing the learning process. The analysis will confirm our guess
on the leading role of the different reward functions. To
demonstrate the testing ability, we compare our tool with
random fuzzing with 30,000 newly generated programs, in
terms of testing efficacy. To elaborate its effectiveness on
generating more diverse programs, we also study the gener-
ated programs to explain the evolving process of the training
model. In this section, we report the detailed implementation
of ALPHAPROG, and discuss the experiments we conducted.

Settings
We build ALPHAPROG by applying an existing framework
of binary instrumentation and neural network training. The
core framework of the deep Q-learning module is imple-
mented in Python 3.6. In our implementation, the program
execution trace is generated by Pin (Luk et al. 2005), a
widely-used dynamic binary instrumentation tool. We de-
velop a plug-in of Pin to log the executed instructions. Ad-
ditionally, we develop another coverage analysis tool based
on the execution trace to report all the basic block touched
so far. It will also report whether and the number of new

basic blocks are covered by a certain new program in the
compiler code. Additionally, our environment will also log
and report abnormal crashes, memory leaks or failing as-
sertions of compilers with the assistance of internal errors
alarms from the compiling messages.

Besides, the Q-learning network is implemented in Ten-
sorflow (Abadi et al. 2016) using a LSTM layer for se-
quence embedding that is connected with a 2-layer encoder-
decoder network. The initialized weights are randomly and
uniformly distributed within w ∈ [0, 0.1]. We choose a dis-
counted rate γ = 1 to address long-term goal and a learning
rate α = 0.0001 for the gradient descent optimizer. We as-
sign εmax = 1 and εmin = 0.01 with a decaying value of
(εmax− εmin)/100000 after each prediction. Therefore, the
model stops exploration after episode 20, 000. We will open
source our prototyping tool ALPHAPROG for public dissem-
ination after the paper is accepted.

Validity
Generating valid programs is one of our important goals.
We evaluate the valid rate of the generated programs during
the training process. Four different reward functions are de-
signed towards two different goals for program generation.
We report the number of valid program numbers per 1, 000
generated programs in Figure 2.

Reward 1: Reward 1 demonstrates the learning towards
generating only valid programs. From the Figure 2 we can
find that, with the increasing number of programs gener-
ated, the valid rate grows fast and by 20, 000 generated pro-
grams, the valid rate reaches 100%. The generation result
implies that, once the easiest pattern to generate a valid pro-
gram is found by a random generation, e.g., ,,,,,,,, or
>>>>>>>>, the network converges quickly to it and stops
learning anything new. The model trained by this reward
function achieves the highest rate of valid programs in the
synthesis procedure.

Reward 2: Reward 2 demonstrates the learning towards
generating diverse programs for improving testing coverage
for a target compiler. Without balancing with syntactic and
semantic validity, using this reward, we anticipate more di-
verse programs patterns will be generated but less of them
should be valid. The results in Figure 2 show that the valid
rate stays the lowest for most of the time which means the
generation engine has a low efficiency to learn a valid pro-
gram through the reward on pure coverage.

Reward 3: Reward 3 sets up the goal of combining va-
lidity and diversity. In a high-level, to generate valid and di-
verse programs are two conflicting goals. To generate valid
programs, the model only needs to know one simple way
that fits language grammar. For example, in the experiment
of using Reward 1, the model only learns that by append-
ing , to whatever prefix; it can generate valid programs out
of it. However, if the goal becomes generating diverse pro-
grams, different characters should be tried which makes va-
lidity easy to be violated. The model trained by this reward
function achieves the second place in the rate of valid pro-
grams in the synthesis procedure. From Figure 2, we observe
that the valid rate keeps fluctuating, but overall, it is increas-
ing and approximates to 90% at the final stage.

4

0 5 10 15 20 25 30
of Tests (K)

0

200

400

600

800

1000
V

al
id

 P
ro

gr
am

s
pe

r
1K

Reward1
Reward2
Reward3
Reward4

Figure 2: Code validity under four reward functions

Reward 4: Reward 4 sets up the goal of adding program
control-flow complexity together with the synthesis validity
and diversity. By studying related studies, we know that the
control-flow complexity of programs in test suites is one of
the most important factors that improve testing efficacy for
compilers. We anticipate the add-on of this factor into the re-
ward function will help us to improve the testing coverage of
target compilers while not compromising the program valid-
ity that much. From Figure 2 we find that the model trained
by this reward function achieves the third place in the rate of
valid programs in the synthesis procedure.

Testing Coverage
Coverage improvement is the most important metric
for software testing. Traditionally, it denotes the overall
lines/branches/paths in target software being visited with
certain test cases. In the design of ALPHAPROG, to im-
prove the performance in this end-to-end learning process,
we adopt an approximation to describe the overall testing
coverage, which is the accumulated number of unique basic
blocks being executed with the generated new programs. A
basic block of an execution trace is a straight-line code se-
quence with no branches except for the entry and exit point
in compiler constructions. To capture the overall number of
unique basic blocks, we first capture the unique basic blocks
B(Tp) with respect to each execution trace Tp, and then
calculate a store of accumulated unique basic blocks num-
ber B(I ′) by unionizing the new basic blocks on current
trace with existing ones that are visited before. In the ex-
periments, we log the accumulated testing coverage for the
four different reward functions we adopt in the framework.
We compare their coverage improvements and display the
results in Figure 3.

Reward 1: The blue line shows the accumulated compiler
testing coverage by generating programs under Reward 1.
In this reward, we find the coverage improves drastically at
the beginning of training. But it stops growing since episode
11, 000. In the corresponding figure that shows the validity
distribution, we also notice that the valid rate achieves 100%
since episode 11, 000 which is very close to the converging

0 5000 10000 15000 20000 25000 30000
of Tests

0

20000

40000

60000

80000

100000

U

ni
qu

e
B

as
ic

 B
lo

ck
s

Te
st

ed

Reward1
Reward2
Reward3
Reward4

Figure 3: Testing coverage under four reward functions

point of coverage. It is because our model finally converges
at the point that the model keeps producing , or > for ev-
ery action. Although the generated programs are 100% valid,
they do not improve the testing coverage anymore. This re-
sult confirms the analysis from the validity test experiment.

Reward 2: The red line shows the accumulated compiler
testing coverage by generating programs under Reward 2.
In this reward, we find that coverage results also increase
drastically at the beginning stages of training. It still slowly
grows after the improvement stops with Reward 1 but the
pace is not as fast as the improvement under Reward 3. In the
corresponding figure that shows the code validity, although
our model scarcely generates valid programs under Reward
2, these generated ones are inspired to be diverse to hit dif-
ferent parts inside the target compiler which eventually im-
proves the testing coverage with lower efficiency.

Reward 3: The green line shows the accumulated com-
piler testing coverage by generating programs under Reward
3. In this reward, we find that the testing coverage goes up
dramatically at early stages and it keeps increasing until the
second-highest coverage is achieved eventually. We also no-
tice that the coverage improves periodically. In the figure 2
that shows the code validity, we can observe the regularity
of increasing wave. We interpret it as that the model is al-
ways driven to generate valid programs according to the fre-
quent validity reward stimulation; meanwhile, it is periodi-
cally guided to generate new patterns towards higher reward.
In this case, the generated programs are trained to achieve a
good trade-off between validity and diversity.

Reward 4: The orange line shows the accumulated com-
piler testing coverage by generating programs under Reward
4. In this reward, we can observe that the coverage improves
as drastically as the synthesis under Reward 3 at early learn-
ing stages. The coverage keeps increasing until the highest
value is achieved among the 4 designed reward functions.
Although the final program valid rate under Reward 4 is
lower than those under Reward 1 and Reward 3, the test-
ing coverage beats both of them. The reason why Reward 4
achieves better testing coverage than Reward 1 is straight-
forward as the latter one naively depends on the validity of

5

Table 1: Synthesis Examples

Episode Cyclomatic Complexity Program
101 2 [+, <>++[>..],-+<+[,]-,[<].<-[],>,[>. <[+]]+><<]

1786 11 [>[,,[... - [<]>+, .+-,. .-.,],].]> .,+[>]>. +..+.
5096 32 <-+[. <,[.,-] +]> -.+++<++-.>-,[>.,+,] -<- --[]
10342 39 -<[>.<.<.><,]<-<[<.-.] -,[>- <>++-[],.]>>-+[,<]

codes. However, it is more complex for Reward 4 to outper-
form Reward 3. We may interpret it as the side effect learned
from the program control-flow complexity. On one hand, the
higher control-flow complexity is a more direct and instant
reward to improve the testing coverage, which enforces the
fuzzing agent to generate programs that require more op-
timizations in the compilation process. On the other hand,
it sets up the goal of synthesizing complex program in ev-
ery episode which is not considered under Reward 3. To im-
prove testing coverage under Reward 3, the fuzzing agent
needs to learn new language patterns, while Reward 4 needs
the fuzzing agent to additionally learn how to combine the
newly learned language patterns in an efficient way because
the entire sequence length is limited.

Synthesis Examples
To demonstrate how the control-flow complexity of syn-
thesized programs grows, we show four cases that gener-
ated during different episodes using the model under Re-
ward 4. The synthesized programs are displayed in Table 1.
We extract their abstracted control-flow graphs based on
the control-flow graphs generated from the LLVM machine-
independent optimizer and observe an obvious trend towards
complexity. We can also observe that, with the learning
moves forward, the fuzzing agent learns to synthesize more
complex programs which have higher cyclomatic complex-
ities. Moreover, we calculate the average cyclomatic com-
plexities of programs generated from four reward functions,
the results increase from 4 to 18 which is consistent with the
test coverage metric. It confirms that with more designed
heuristics integrated into the learning rewards, the fuzzing
agent can be potentially aware of and thus reinforce the gen-
eration goal to craft more effective code patterns.

Comparison with AFL
AFL (Zalewski 2014) is a matured fuzzing production that
has been widely used for different applications. Here we
compare ALPHAPROG with AFL in the two perspectives we
focus on: validity and coverage. We use AFL with a single
empty seed to generate 30, 000 programs for fuzzing BFC
and record the highest valid rate per 1, 000 samples, and
the accumulated coverage achieved. As a result, the high-
est valid rate for AFL is 35% and the accumulated coverage
in terms of basic blocks tested is 43, 135. It covers 162 paths
but has found no crashes or hangs (actually we ran AFL for
24 hours and no crashes or hangs were found). By contrast,
ALPHAPROG manages to achieve the valid rate around 80%
under Reward 4 which is the most efficient one for fuzzing,
where over 100,000 basic blocks are tested with 30, 000 test
samples, and two bugs were detected. With this result, we

can claim that ALPHAPROG is better than AFL in generat-
ing valid and diverse programs for compiler fuzzing.

Deployment for Bug Detection
With the improved testing efficacy, our tool has the po-
tential to be deployed for discovering more compiler bugs
compared with pure random fuzzing in practice. During
our analysis, our developed tool ALPHAPROG has already
helped to detect two important bugs for the target compiler
BFC, which is the industrial-grade BF compiler with the
most stars (207) and folks (8) on GitHub. We reported two
programs that enforce BFC to hang due to compile-time
evaluations (BFC 2019). The first program triggers the
bug during the BF IR optimization, while the second one
triggers the bug because the compiler aggressively unrolls
the loop as compile-time evaluation sends a huge amount
of IR to LLVM, and then spends ages trying to optimize
the IR. After we reported both issues, they were addressed
by the project owner and fixed in the new release. Here we
show the two bugs we found, reported and confirmed1.

1 . +
2 [[[[>.
3 [+
4 [<>
5]
6]
7] >

8]<>+ .
9]>< ,−.,,+++

10 [
11]−−−
12]

Listing 1: Bug 1

1 . + . +
2 [[[[>.
3 [+
4 [<>
5]
6]
7] >

8 \textbf{\textbf{}}]<>+ .
9]>< ,−.,,+++

10 [
11]−−−
12]

Listing 2: Bug 2

Discussion and Conclusions
In this paper, we propose a reinforcement learning-based
approach to continuously generate programs for compiler
fuzzing. We practically evaluate our method on fuzzing
BF compiler. Our study reveals the overall effectiveness of
ALPHAPROG for compiler testing and yields great applied
value of our tool. However, there are also two main limita-
tions in our current work. The scalability of ALPHAPROG
is restricted, especially for complex programming language,
e.g., C. As the C language structures are difficult to synthe-
size where the entire search space is 14120, almost 8e + 24
times of the BF language with the same length limit, it can
take days for our prototype to just find one single valid C
program. We still need more grammars to be encoded in

1https://github.com/Wilfred/bfc/issues/28

6

the generation engine to make it applicable for complex lan-
guages. The second difficulty is that it is hard to determine
the end of a training cycle. Unlike the game of Go, the learn-
ing goal for reinforcement fuzzing is hard to strictly define
only with the current reward metrics. We need more in-depth
study to overcome existing challenges and leave that as our
future work.

Acknowledgments
We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan Xp GPU used for this
research. This research was supported in part by the National
Science Foundation (NSF) grant CNS-1652790.

References
Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean,
J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al.
2016. Tensorflow: A system for large-scale machine learn-
ing. In 12th USENIX symposium on operating systems de-
sign and implementation (OSDI 16), 265–283.
BFC. 2019. bfc hangs due to compile-time evaluation.
Böttinger, K.; Godefroid, P.; and Singh, R. 2018. Deep
reinforcement fuzzing. In 2018 IEEE Security and Pri-
vacy Workshops (SPW), 116–122. IEEE, San Francisco, CA,
USA: IEEE.
Bunel, R.; Hausknecht, M.; Devlin, J.; Singh, R.; and Kohli,
P. 2018. Leveraging grammar and reinforcement learning for
neural program synthesis. arXiv preprint arXiv:1805.04276,
1: 265–283.
Chen, J.; Hu, W.; Hao, D.; Xiong, Y.; Zhang, H.; Zhang, L.;
and Xie, B. 2016. An empirical comparison of compiler test-
ing techniques. In 2016 IEEE/ACM 38th International Con-
ference on Software Engineering (ICSE), 180–190. IEEE,
Austin, TX, USA: IEEE.
Chen, Y.; Groce, A.; Zhang, C.; Wong, W.-K.; Fern, X.;
Eide, E.; and Regehr, J. 2013. Taming Compiler Fuzzers.
In Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation (PLDI),
197–208. New York, NY, USA: ACM.
Cummins, C.; Petoumenos, P.; Murray, A.; and Leather, H.
2018. Compiler fuzzing through deep learning. In Proceed-
ings of the 27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, 95–105. ACM, Amsterdam,
Netherlands: ACM.
David, B. 2018. How a simple bug in ML compiler could be
exploited for backdoors? arXiv preprint:1811.10851, 1: 1.
Godefroid, P.; Peleg, H.; and Singh, R. 2017. Learn&fuzz:
Machine learning for input fuzzing. In Proceedings of the
32nd IEEE/ACM International Conference on Automated
Software Engineering, 50–59. Piscataway, NJ, USA: IEEE
Press.
Hughes, W. 2019. BFC: An industrial-grade brainfuck com-
piler.
Kossatchev, A. S.; and Posypkin, M. A. 2005. Survey of
compiler testing methods. Programming and Computer
Software, 31(1): 10–19.

Liu, X.; Li, X.; Prajapati, R.; and Wu, D. 2019. DeepFuzz:
Automatic Generation of Syntax Valid C Programs for Fuzz
Testing. In Proceedings of the 33th AAAI Conference on
Artificial Intelligence, 1044–1051. USA: Proceedings of the
AAAI Conference on Artificial Intelligence.
Luk, C.-K.; Cohn, R.; Muth, R.; Patil, H.; Klauser, A.;
Lowney, G.; Wallace, S.; Reddi, V. J.; and Hazelwood, K.
2005. Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In Proceedings of the 2005
ACM SIGPLAN Conference on Programming Language
Design and Implementation, 190–200. Chicago, IL, USA:
ACM. ISBN 1-59593-056-6.
Maas, A. L.; Hannun, A. Y.; and Ng, A. Y. 2013. Recti-
fier nonlinearities improve neural network acoustic models.
In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML), volume 30.
Markov, A. A. 1954. The theory of algorithms. Trudy
Matematicheskogo Instituta Imeni VA Steklova, 42: 3–375.
Miller, B. P.; Fredriksen, L.; and So, B. 1990. An empirical
study of the reliability of UNIX utilities. Communications
of the ACM, 33(12): 32–44.
Raiter, B. 1993. Brainfuck: An eight-instruction turing-
complete programming language.
Regehr, J.; Chen, Y.; Cuoq, P.; Eide, E.; Ellison, C.; and
Yang, X. 2012. Test-case Reduction for C Compiler Bugs.
In Proceedings of the 33rd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI
’12, 335–346. New York, NY, USA: ACM. ISBN 978-1-
4503-1205-9.
Sun, C.; Le, V.; Zhang, Q.; and Su, Z. 2016. Toward un-
derstanding compiler bugs in GCC and LLVM. In Proceed-
ings of the 25th International Symposium on Software Test-
ing and Analysis (ISSTA), 294–305. ACM.
Sutton, R. S.; Barto, A. G.; et al. 1998. Reinforcement
Learning: An Introduction. USA: MIT Press.
Takanen, A.; Demott, J. D.; Miller, C.; and Kettunen, A.
2018. Fuzzing for software security testing and quality as-
surance. Artech House.
Verma, A.; Murali, V.; Singh, R.; Kohli, P.; and Chaud-
huri, S. 2018. Programmatically Interpretable Reinforce-
ment Learning. arXiv preprint arXiv:1804.02477.
Watson, A. H.; Wallace, D. R.; and McCabe, T. J. 1996.
Structured testing: A testing methodology using the cyclo-
matic complexity metric, volume 500. USA: US Department
of Commerce, Technology Administration.
Yang, X.; Chen, Y.; Eide, E.; and Regehr, J. 2011. Finding
and understanding bugs in C compilers. In Proceedings of
the 32nd ACM SIGPLAN conference on Programming lan-
guage design and implementation (PLDI), volume 46, 283–
294. USA: ACM.
Zalewski, M. 2014. American fuzzy lop.
Zhang, Q.; Sun, C.; and Su, Z. 2017. Skeletal Program Enu-
meration for Rigorous Compiler Testing. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, 347–361.
New York, NY, USA: ACM. ISBN 978-1-4503-4988-8.

7

