
Automated Synthesis of Access Control Lists

Xiao Liu, Brett Holden, and Dinghao Wu
College of Information Sciences and Technology

The Pennsylvania State University, University Park, PA 16802, USA

{xvl5190, bah5423, dwu}@ist.psu.edu

Abstract—Network configuration remains time-consuming and
error-prone with the current configuration command system.
To create access control lists (ACLs) with commands containing
many options is still considered as a difficult task. In light of
this, we aim to develop a comprehensible way to the ACL con-
struction. Based on Eliza, a prototype of Artificial Intelligence,
we propose a new design called EASYACL that synthesizes
ACL rules automatically from natural language descriptions.
EASYACL demonstrates the effectiveness of domain-specific
program synthesis. Through the use of natural language, ACL
rules can be constructed without using an excessive number of
options or rigid syntax. By introducing the batch processing, we
make it possible for users to apply configurations to a range
of IP addresses rather than tediously repeating commands.
EASYACL supports multi-platform by an intermediate repre-
sentation which may be ported to the commands for both
Cisco and Juniper devices. The comprehensible commands
are friendly for encapsulation as well as reuse. EASYACL
enables end-users with no prior programming experience to
construct ACL in a natural way which lowers the bar for
security management training and also reduces the errors in
network administration.

1. Introduction

An Access Control List (ACL), with respect to the
network system, is a list of permissions attached to a certain
network [1]. Configuration mistakes can cause network out-
ages, degradation in performance, and security vulnerabili-
ties. For example, installing the wrong packet filter, filtering
valid routes, advertising an incorrect block of IP addresses,
or assigning the same IP address to multiple pieces of
equipment, can all lead to reachability problems [2].

With an empirical analysis of the configuration process
plus a thorough survey with network administrators in our
department, a few complications are the main troublemakers.
The misuse of configuration options is one of the most issues
that were brought up. For ACL configuration commands,
options are critical which enlarge the semantic sets with
succinct syntax. However, the large number of abbreviated
options are disturbing for network administrators, especially
those who are not apprenticed. Take the IP permit command
as an example, there are in total six options that it would
accept. To permit the network flows of a specific type needs
a few options filled out by the administrator who is required
to read the specification carefully to avoid possible mistakes.
Listing 1 demonstrates the IP permit command syntax [3]
and the details of each option is described in Table 1. To

write a correct permit commands are difficult with these
complex options to consider. Additionally, the command
is case-sensitive. Therefore, it is very likely for a careless
administrator to misuse an option or two.

permit {gre | icmp | tcp | udp | ip | proto−num} {
source−ip [wildcard] | host source−ip | any} {dest−ip
[wildcard] | host dest−ip | any}

On the other hand, the platform dependency of syntax
makes the case more complicated. Network companies hold
their own operating systems and with the design of platform-
directed syntaxes, the ACL configurations are entirely differ-
ent. Cisco and Juniper are two main network device man-
ufacturers and they have their own configuration syntaxes
respectively. If one wants to permit HTTP traffic from IP
172.21.1.1 to IP 172.21.1.15, the Cisco configuration and
Juniper configuration are as follows:

1 # Cisco command
2 permit tcp host 172.21.1.1 host 172.21.1.15 eq 443
3
4 # Juniper command
5 filter 1 {
6 term T1 {
7 from {
8 source−address {
9 172.21.1.1/32; }

10 destination−address {
11 172.21.1.15/32; }
12 protocol tcp; destination−port 443;
13 } then {
14 accept; }
15 }
16 }

As demonstrated in this example, the syntax of Cisco
ACL configuration commands is distinct from what Juniper
system adopts. While Cisco commands are designed to be
imperative, Juniper’s are object-oriented [4]. Because of
these distinctions, people have to learn different syntaxes
when they change platforms which brings more hurdles to
networking engineering training process.

Formal language synthesis is discussed over a few
applications, including spreadsheet commands [5], SQL
queries [6], and even input grammars [7]. In this study, to
lower the bar of entry for network administration training
and reduce the configuration complexity, we propose EASY-
ACL, a tool that synthesizes ACL configuration commands
for different platforms directly from natural language de-
scriptions. To overcome the challenge from option specifica-
tions, we introduce a natural language interpretation system
which accepts descriptions in a considerable flexibility and

TABLE 1: Details for IP permit command syntax

Keywords Details

host Matches the following IP address.
any Matches any IP address.
gre Matches packets using the Generic Routing Encapsulation protocol.
ip Matches all IP packets.
tcp Matches packets using the TCP protocol.
udp Matches packets using the UDP protocol.
dest-ip Destination IP address.
icmp Matches ICMP packets.
proto-num (Optional) IP protocol number.
icmp-type (Optional) Matches by ICMP message type (0255).
code (Optional) Used with icmp-type to further match by ICMP code type(0255).
operator (Optional) Operator to use with specified ports.
port (Optional) Port, using a number (065535) or a keyword.
established (Optional) Matches TCP packets with the acknowledgment or reset bits set.
icmp-msg (Optional) Matches by a combination of ICMP message type and code types.

synthesize the target commands directly by extracting the
semantics with a rule-based natural language processing
method. To avoid redundant training process, EASYACL
can port the synthesized commands to different platforms,
namely, Cisco and Juniper, for the current stage. We also
demonstrate the practical usage of troubleshooting existing
ACL configuration errors through a common mistake among
network engineers. Our tool is the first that synthesizes ACL
rules from natural language descriptions and proposes a
unified interpretation system that connects different plat-
forms. We also provide a rangelist function that allows users
to perform batch updates for the network configuration.
This function remarkably reduced the workload when same
configurations for a range IP addresses are performed.

The rest of this paper is organized as follows. We
describe the overview with a clear problem statement and
our basic idea in Section 2. We also provide a running
example for demonstrating the basic idea. We detail the
designs of each module in our method and explain the
rationales together with how we implement in practice in
Section 4. Then, we discuss the usefulness and usability of
the proposed tool with real-world use cases in Section 5.
We conduct discussions over the current implementation in
Section 6 and we draw the conclusion in Section 7.

2. Overview

We are proposing a tool that synthesizes commands P

in the ACL configuration syntaxes from natural language
descriptions N . Essentially, our goal is to 1) extract the se-
mantics of natural language described commands and inter-
pret them into an abstracted intermediate language; 2) port
the intermediate representation to a specific platform with
a target syntax. By design, there are two main challenges:
natural language processing and semantic abstraction.

To be more specific, the first step of the proposed
tool is to understand natural language descriptions. Natural
Language Processing is widely discussed by researchers
with kinds of solutions, either statistical-based [8], or rule-
based [9], [10]. Recently, researchers are prone to adopt
statistic-based methods when there are adequate data to
train and test. However, the rule-based method is more
efficient in specific domains since it does not require many
computational resources, and error analysis is more natural

to perform. In our scenario, it requires the system to under-
stand human descriptions over a specific domain. Therefore,
the variations of descriptions are limited. Due to the lack
of training data and targeting on boosting a fast solution,
we initialize our idea with a rule-based natural language
processing system. The extracted semantics will be marked
with an IR (intermediate representation) and then ported to
commands in the target syntax specified by the user. We will
use a running example to show the entire working flow.

3. A Running Example

We have proposed a tool that synthesizes ACL con-
figuration commands from natural language descriptions.
Additionally, the synthesized commands should be actively
ported to different platforms with a corresponding syntax.
For example, if we want to create a list of ACL rules:
Permit the RDP traffic for port 80 from IP address
192.168.0.11 to all the others.

In the first step, our tool should understand that, this
is a permit rule and the kind of traffic it wants to permit
is RDP traffic. The permission is performed over port 80
and the source IP address is 192.168.0.11. All the other IP
addresses are specified as the destination. Therefore, our tool
will generate the commands, such that:

1 type: permit
2 traffic: RDP
3 port: 80
4 source: 192.168.0.11
5 destination: Others

We need a sound and complete interpretation of the natural
language description which can later be precisely ported to
a specific platform, either Cisco or Juniper in our current
design. Thus, we have

1 # Cisco
2 permit tcp 192.168.0.11 any eq 80
3 #Juniper
4 filter 1 {
5 term T1 {
6 from {
7 protocol rdp;
8 destination−port 80;
9 }

10 then {
11 permit;
12 }
13 }
14 }

If there is an ambiguity in the natural language descrip-
tion, our tool will actively inquire for confirmation before
generating the target commands. By providing a simple way
that network engineers to configure access control lists, we
lower the entry bar for the training process and create a
method for cross-platform configurations. It will potentially
reduce the error rate for network security engineering.

4. Design

EASYACL is simply a system for creating network
access control lists. EASYACL operates by receiving natural
language inputs, interpreting such inputs, and responding
with two sequential and distinct outputs: a natural language
response which indicates understanding and initiation of the
end-user’s desired action, and the synthesis of the correctly
formatted command for such action. In this section, we will
detail the techniques leveraged in building EASYACL. As
demonstrated in the running example, EASYACL extracts
the semantics from commands in natural language and in-
terprets into system commands for different platforms. To
better support different platforms, we incorporated an IR
(Intermediate Representation) into the system. In addition,
we also leverage a rangelist for batch updates which makes
the system more user-friendly.

4.1. Natural Language Processing

To extract the semantics from natural language
descriptions, EASYACL utilizes a rule-based method
originated from Eliza [11], a primitive AI prototype. The
system is built upon the assumption that structures of
natural language descriptions in a specific domain are
limited. We leverage this heuristic for constructing rules
that can extract the intrinsic semantics of sentences. There
are two types of rules in Eliza, the decomposition rules
and the reassemble rules. As shown in the following
example, the decomposition rules are used to decompose
the complete sentences into tokens. We defined four
kinds of tokens: Number Token, Predicate Token, Option
Token, and Redundant Token to match different parts in
a sentence. We in total construct 73 decomposition rules
for EASYACL which accepts most descriptions that one
network engineer may say when configuring the access
control list. In addition to the decomposition rules, we also
adopt the reassemble rules for interaction purpose. Eliza
leverages the reassemble rules in its system for composing
interactive responses. Essentially, the reassemble rules
are some incorporated templates that can be based on to
synthesize the natural language feedbacks. There are some
dynamic changing parts in the templates which can be
replaced by extracted tokens from the input sentences. For
instance, if Eliza heard “I love dogs” from a user, it will
apply the reassemble rule “What are (Token)” together
with the extracted token “dog” and synthesize the response
“What are dogs”. To generate interactive feedbacks for
command confirmation, we incorporate 73 reassemble rules
in the system. To make things simpler, we build such rules

TABLE 2: Context-free Grammar for ACL language

command := command—command command
command := type option source destination

type := permit—deny
option := port|protocol
source := ip|range|any

destination := ip|range|any
port := number

protocol := TCP|IP|ICMP|...
ip := [0-255].[0-255].[0-255].[0-255] [wildcard]

range := ip-ip
any := [0.0.0.0-255.255.255.255]

one-to-one corresponding to the decomposition rules which
is different from the original Eliza framework.

Decomposition Rules
Permit the RDP traffic for port 80
(Predicate)(Redundant)(Option)(Redundant)(Option)+(Number)
from IP address 192.168.0.11 to all the others.
(Predicate)(Option)(Number)(Predicate)(Number)

4.2. Intermediate Representation

As described, we adopt a rule-based method to extract
the semantics from the natural language descriptions. An
important feature which sets distinguishes EASYACL is
the generation of cross-platform output; this being both
the Cisco IOS and Juniper Junos syntaxes for the current
system. This enables users who are using a very wide range
of networking devices, and helps users who may need to
convert from one syntax to another. This includes helping a
user to utilize his or her preexisting knowledge of a syntax
to learn another syntax or to adapt their existing ACL rules.

We incorporate an IR (Intermediate Representation) in
EASYACL, which is a context-free language as shown in
Table 2. It is a superset of the complete sets of Cisco
and Juniper commands which include in total two predicate
types (permit, deny). We first extract the semantics from
the natural language descriptions and then synthesize the
IR commands. The IR commands are then ported to specific
platforms requested by the user.

4.3. Rangelist

In practice, engineers commonly complain that router
interfaces do not support network ranges. A crucial fea-
ture of EASYACL is its ability to handle ranges of IP
addresses, network summarizations and using them in ACL
configuration generation. The depending size of the network
range and its specific summarization, often results in the
output of several lines of rules. The capability of EASYACL
to handle ranges of IP addresses in its interpretation of
natural language is hugely beneficial to the user. This feature
empowers end-users who have limited computer networking
knowledge and would otherwise be thwarted by the need to
create summaries.

A concise representation of an IP address refers to the
number of groups used to list addresses. For example, while
the program could simply produce one line or rather one

ACL configuration rule for each address listed in the range,
this is inefficient for the program, and tedious for the end-
user if he or she needs to add the rules to an access control
list. Furthermore, it is important for ACLs to be as concise
as possible in order to remain efficient and not exceed the
maximum allowed length.

The range handling of EASYACL is contained within
the rangelist function. This component takes a range of
end-user inputted IP addresses and converts them into appro-
priately grouped and formatted networks for the synthesis
of access control lists. Ranges of IP addresses can be most
appropriately represented by being both precise and concise.
It is important that IP address ranges are precise so that
only the specified addresses are included in the synthesized
output. In simple terms, this means that if a user enters the
address range “192.168.1.0 - 192.168.1.10”, this must only
include those addresses, not for instance, another address in
that networks subnet such as “192.168.1.15”.

The rangelist function accomplishes the necessary
precision and conciseness using Variable Length Subnet
Masking (VLSM). The result in the above example would
be the summarization of “192.168.1.0 - 192.168.1.10” as
“192.168.1.0/29, 192.168.1.8/31, 192.138.1.10/32”. In addi-
tion to calculating the VLSM summarization of the end-user
inputted IP address range, it also calculates the inverse of the
subnet mask, and converts the CIDR notation to an ordinary
four-byte mask, as required by IOS syntax for access control
lists. The result of the “rangelist” function is an IP address
range in a usable format for ACL synthesis. This component
can be used to implement many abstract actions in a batch
across the desired range of IP addresses.

5. Case Study

Normally, Access Control Lists allow or deny packets
according to the source address, destination address, type
of packet, or any combination of these requirements. In
this section, we perform a case study over practical ACL
configurations. To demonstrate the ability to synthesize stan-
dard ACL rules and conduct rangelist summary, we have
collected two practical Access Control Lists from the CCNA
Lab materials [12]. In addition, we also demonstrate the
ability to troubleshoot ACL errors with a practical imple-
mentation error.

5.1. Commands Synthesis

We propose EASYACL, a tool that synthesizes ACL
rules from natural language descriptions, to lower the en-
trance bar for the network engineering training process. In
this section, we perform the case studies over two exam-
ples from CCNA practice. The first example is a standard
network permit and the second one has a rangelist.

Example 1. The networks 172.16.0.0/16 and 172.17.0.0/16
should be permitted access, with all others denied.

This example is a standard Access Control List with two
permit commands. By providing EASYACL with this natural

language described commands, our tool will understand that
only packets from two sources are permitted. Therefore, it
will synthesize the IR,

1 type: permit
2 traffic: ANY
3 port: ANY
4 source: 172.16.0.0/16 172.17.0.0/16
5 destination: ANY.

By specifying the Cisco syntax as the target, EASYACL
will first interpret the subnet mask as 0.0.255.255 and then
generates the commands in Juniper syntax,

1 filter 1 {
2 term T1 {
3 from {
4 destination 172.16.0.0 0.0.255.255;
5 }
6 then {
7 permit;
8 }
9 from {

10 destination 172.17.0.0 0.0.255.255;
11 }
12 then {
13 permit;
14 }
15 }
16 }

Example 2. All hosts within the network 192.168.50.0/23
should be denied access, except for hosts 192.168.50.128–
255. All other hosts should be permitted access.

This example shows the case of interpreting range-
list. EASYACL will first extract the semantics from the
natural language descriptions including (1) permit the
hosts 192.168.50.128-192.168.50.255; (2) deny the hosts
192.168.50.0/23; (3) permit all others. Therefore, three com-
mands are synthesized,

1 # command 1
2 type: permit
3 traffic: ANY
4 port: ANY
5 source: 192.168.50.128−192.168.50.255
6 destination: ANY
7 # command 2
8 type: permit
9 traffic: ANY

10 port: ANY
11 source: 192.168.50.0/23
12 destination: ANY
13 # command 3
14 type: permit
15 traffic: ANY
16 port: ANY
17 source: ANY
18 destination: ANY.

Since there is a rangelist specified by the user in the first
command, our system will perform the summary calcula-
tion over it. After the calculation, it outputs the following
commands in the Cisco syntax:

1 access−list 2 permit 192.168.50.128 0.0.1.127
2 access−list 2 deny 192.168.50.0 0.0.1.255
3 access−list 2 permit any.

5.2. Troubleshooting

Troubleshooting is another main motivation we propose
EASYACL. This tool will handle natural language descrip-
tions with no ambiguity and then make interpretations.

PC
192.168.3.6

PC
192.168.1.4

R1

R2

R3

192.168.1.0/24 192.168.3.0/24

Can you show the
configured access lists?
Extended IP access list
1 deny tcp 192.168.1.0
 0.0.0.255 any
2 permit tcp 192.168.1.0
 0.0.0.255 any eq telnet
3 permit ip any any

R3 Access Control Lists

Figure 1: Troubleshooting network errors

Therefore, we can leverage this feature for troubleshooting.
To be more specific, when we find any errors in the network,
such as no connectivity, we can describe the requirements
in natural language and re-implement an access control
list quickly. Problems should be resolved if it is simply
an implementation error; otherwise, it should be a design
problem. In this section, we present an analysis of a practical
implementation error [13].

Example 3. The configuration requires: any tcp traffic from
hosts 192.168.1.0/8 should be permited through the telnet
port; all ip traffic are permited.

As shown in Figure 1, there is an error in the access
control list implementation: Host 192.168.1.4 has no telnet
connectivity with 192.168.3.6. It is a common mistake that
many network engineers may encounter, because the router
processes ACLs from the top down, statement 1 denies host
192.168.1.4, so statement 20 does not get processed. To
troubleshoot this problem, we asked a network administrator
to try with our proposed method.

He tried with feeding our system with the natural lan-
guage descriptions one sentence after the other. And EASY-
ACL synthesized the commands:

1 1 permit tcp 192.168.1.0
2 0.0.0.255 any eq telnet
3 2 deny tcp 192.168.1.0
4 0.0.0.255 any
5 3 permit ip any any

Comparing the synthesized commands and the original
implementation, statement 1 and 2 are reversed. The last line
allows all other non-TCP traffic that falls under IP (ICMP,
UDP, and so on). The network administrator corrected the
implementation right away and claimed it a helpful tool for
network troubleshooting.

6. Discussion

Although tutorial style training software for network
configuration, such as Cisco Packet Tracer [14] and Graph-
ical Network Simulator-3 (GNS3) [15], and the natural

language programming of EASYACL are similar, EASYACL
has some key advantages. The use of a natural language
system is advantageous over training software because it
conveys the meaning of concepts in plain language. Alter-
natively, tutorials lead the end-user to mimic patterns which
provide desired results, which can be an important interme-
diate step for learning. However, the end-user cannot learn
a programming language if they cannot assign semantics
to commands. Without such an understanding end-users are
less able to remember syntax or make adaptations.

In addition to ensuring that the end-user understands the
meaning of tasks in a programming language, the use of
natural language translation also reduces the time it takes
to learn. The casual and conversational dialogue included in
EASYACL allows the end-user to transition from English
to programming syntax at his or her own pace. Further-
more, because EASYACL responses in natural language and
program syntax, the end-user is always able to easily refer
between the two, should they become confused.

Synthesizing programming language from natural lan-
guage descriptions has been discussed widely. Applica-
tions are constructed by researchers for different purposes.
PiE [16] is a framework that automatically generates pro-
grams from natural language descriptions using a rule-based
method. Similar approaches are also presented in Natural
Shell [17], both of which are targeting for tutoring purposes.
While natural language translation is largely advantageous
over tutorial or training software as a method of program-
ming education, there are some drawbacks of natural trans-
lation, as well as some instances where a tutorial-model
is more effective. If an end-user is not sufficiently atten-
tive, a natural language translation and program synthesis
system, such as EASYACL, has the potential to be too
overly flexible, such that it prohibits learning. For example,
if an end-user can use a wide range of natural language
commands to synthesize a target program, and he or she
is not attentive to recognize the associated program syntax,
this may inhibit their learning by not directly forcing them
to learn the syntax. Because tutorial software most often
attempts to mimic real programming scenario, it does not
typically have this issue.

7. Conclusion

In this paper, we developed a system called EASYACL
in order to synthesize access control lists from natural
language inputs. EASYACL has a simple system architecture
in which the user provides a natural language description to
Eliza, who replies with an accurate ACL rule and natural
language response to maintain a conversation. EASYACL
operates on a rule-based intelligent system, which is capable
of receiving ranges of IP addresses, and supports multi-
platform outputs, i.e., Cisco and Juniper. We demonstrated
the functionalities of EASYACL through three case studies.
It was shown that the code can be conveniently modified
by even novice programmers to expand functionality, in-
crease the flexibility of users’ natural language inputs, or
troubleshoot a problematic configuration.

References

[1] R. Shirey, “Internet Security Glossary, Version 2,” Internet Requests
for Comments, RFC Editor, RFC 4949, 2007. [Online]. Available:
https://www.rfc-editor.org/info/rfc4949

[2] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg, G. Hjalmtysson,
and J. Rexford, “The cutting EDGE of IP router configuration,” ACM

SIGCOMM Computer Communication Review, vol. 34, no. 1, pp. 21–
26, 2004.

[3] Y. Bhaiji, Network Security Technologies and Solutions (CCIE Pro-

fessional Development Series). Pearson Education, 2008.

[4] J. Davies, P. Comerford, V. Grout, N. Rvachova, and O. Korkh,
“An investigation into the effect of rule complexity in access
control list,” 2012. [Online]. Available: https://www.khai.edu/csp/
nauchportal/Arhiv/REKS/2012/REKS512/Davies.pdf

[5] S. Gulwani, “Automating string processing in spreadsheets using
input-output examples,” in Proceedings of the 38th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, ser. POPL ’11. New York, NY, USA: ACM, 2011, pp.
317–330.

[6] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive
SQL queries from input-output examples,” in Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and

Implementation. ACM, 2017, pp. 452–466.

[7] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing pro-
gram input grammars,” in Proceedings of the 38th ACM SIGPLAN

Conference on Programming Language Design and Implementation.
ACM, 2017, pp. 95–110.

[8] C. D. Manning and H. Schütze, Foundations of Statistical Natural

Language Processing. MIT Press, 1999.

[9] R. Vlas and W. N. Robinson, “A rule-based natural language tech-
nique for requirements discovery and classification in open-source
software development projects,” in Proceedings of the 44th Hawaii

Int’l Conf. on System Sciences (HICSS), 2011.

[10] A. Ranta, “A multilingual natural-language interface to regular ex-
pressions,” in Proceedings of the International Workshop on Finite

State Methods in Natural Language Processing. Association for
Computational Linguistics, 1998, pp. 79–90.

[11] J. Weizenbaum, “ELIZA—a computer program for the study of
natural language communication between man and machine,” Com-

munications of the ACM, vol. 9, no. 1, pp. 36–45, Jan. 1966.

[12] C. Practice, “Standard ACLs Access Control Lists,” 2014. [Online].
Available: http://www.ccnapractice.com/acls/standard-acls

[13] Orbitco, “What is ACLs Error ? Solutions to ACLs errors Examples,”
2015. [Online]. Available: http://www.orbit-computer-solutions.com/
network-troubleshooting-access-control-lists-errors/

[14] J. Janitor, F. Jakab, and K. Kniewald, “Visual learning tools for
teaching/learning computer networks: Cisco networking academy and
packet tracer,” in Proceedings of the Sixth International Conference

on Networking and Services (ICNS). IEEE, 2010, pp. 351–355.

[15] C. Welsh, GNS3 Network Simulation Guide. Packt Publishing, 2013.

[16] X. Liu and D. Wu, “PiE: Programming in Eliza,” in Proceedings of

the 29th ACM/IEEE International Conference on Automated Software

Engineering. ACM, 2014, pp. 695–700.

[17] X. Liu, Y. Jiang, L. Wu, and D. Wu, “Natural Shell: An assistant
for end-user scripting,” International Journal of People-Oriented

Programming (IJPOP), vol. 5, no. 1, pp. 1–18, 2016.

