Abacus: A Tool for Precise Side-channel Analysis

Qinkun Bao*, Zihao Wang*, James R. Larus’, and Dinghao Wu*
g g
*The Pennsylvania State University
YEPFL

Abstract—Side-channel vulnerabilities can leak sensitive in-
formation unconsciously. In this paper, we introduce the usage
of Abacus. Abacus is a tool that can analyze secret-dependent
control-flow and secret-dependent data-access leakages in binary
programs. Unlike previous tools that can only identify leakages,
it can also estimate the amount of leaked information for each
leakage site. Severe vulnerabilities usually leak more information,
allowing developers to triage the patching effort for side-channel
vulnerabilities. This paper is to help users make use of Abacus
and reproduce our previous results. Abacus is available at
https://github.com/s3team/Abacus.

I. INTRODUCTION

Abacus [1] is an address-based side-channel vulnerability
analysis tool. Different from previous tools [2]-[4], it can
also give a precise estimation of the amount of the leaked
information for each leakage site. Abacus is open source
under the MIT License.

Abacus takes a binary executable as the input. It uses
dynamic binary instrumentation tools to collect execution
traces. After that, Abacus analyzes those traces and produces
the vulnerability report. While Abacus can work on the
stripped binary executable, Abacus can also read the symbol
and debugging information to give a more fine-grained (e.g.,
line numbers) report. Table I shows an example of the report.
If you are interested in how Abacus works, please refer to
the technical paper [1].

Table I: A sample leakage report

File Line No. Function # Leaked Bits Type
set_key.c 350 DES_set_key_unchecked 5.8 DA
set_key.c 350 DES_set_key_unchecked 6.6 DA
set_key.c 350 DES_set_key_unchecked 7.5 DA
set_key.c 350 DES_set_key_unchecked 6.4 DA
set_key.c 355 DES_set_key_unchecked 1.9 DA
set_key.c 355 DES_set_key_unchecked 3.1 DA

II. REQUIREMENTS

We have tested Abacus on both macOS and Ubuntu.
You can refer to the continuous integration scripts to build
Abacus on your operating system. However, we strongly
recommend you to build Abacus inside a container to avoid
any dependency problems. To simplify the illustration, we only
include the instructions of installations within the docker in
this paper.

o Supported OS: Ubuntu 18.04

e Memory: 32 GB (If you want to run experiments concur-

rently, update the size of RAM accordingly. Otherwise
the program may be terminated by the system.)

III. INSTALLATION
Abacus can be built within a docker, simply run the
following command:
$ git clone https://github.com/s3team/Abacus.git

$ cd Abacus
$./docker.sh

The “docker.sh” script creates a docker image automatically
and enters the container that includes all dependencies. After
that, run the following command to build Abacus:

$./build.sh

IV. RUN THE HELLO WORLD EXAMPLE

In this section, we walk you through the steps to test a
simple function with Abacus.

printf("Even_Number\n");
}
}

1 | #include <stdio.h>

2

3 |void is_odd(uintl6_t secret) {
4 int res = secret % 2;

5 if (res) {

6 printf("0dd_Number\n");

7 } else {

8

9

0

—_

Figure 1: A simple example

As shown in Figure 1, the function takes a 32-bit integer
as the secret input and checks the last digit of the integer.
An attacker can know the last bit of the input integer by
observing which branch is actually executed. So in the above
function, we think the code has one secret-dependent control-
flow vulnerability, and it can leak one bit of the secret
information.

A. Mark secret data as symbolic

In order to test this function with Abacus, we need to mark
the variable that representing the secret data as a symbolic
variable. We use the function abacus_make_symbolic. The
function takes three arguments: the type of the symbol, the
address of the secret, and the length of the secret input. In the
below example, the secret input is the variable secret, and its
length is two bytes. We add the main function in Figure 2 and
compile the source code into an executable.

https://github.com/s3team/Abacus

12 | int main() {

13 uintl6_t secret = 6;

14 char *type = "1";

15 abacus_make_symbolic(type, &secret, 2);
16 is_odd(secret);

17 return 0;

18 |}

Figure 2: A simple function that marks a variable secret as
symbolic

B. Build the example

Abacus analyzes vulnerabilities on the binary executable.
Here we build it into a 32-bit ELF executable. Note that while
Abacus can work on stripped binaries without the source code,
we use debug information to get a more detailed result (e.g.,
the line number in the source code) in this example.

$ cd examples
$ gcc -m32 -g examplel.c

C. Collect the trace

We use the pin tool to collect the execution trace. The tool
can automatically collect the trace and other necessary runtime
information.

$ cd /abacus/Pintools
$ make PIN_ROOT=/abacus/Intel-Pin-Archive/ TARGET=ia32
$ cd /abacus
$ /abacus/Intel-Pin-Archive/pin \
-t Pintools/obj-ia32/MyPinToolLinux.so \
- ./examples/a.out

You will get two files Function.txt and Inst_data.txt.
Inst_data.txt is the mandatory input of Abacus. Function.txt
is optional.

D. Quantify the leakage

To analyze the execution trace and generate the report, run
the below command:

$./build/App/QIF/QIF ./Inst_data.txt -f Function.txt \
-d ./examples/a.out -o result.txt

You should get the following output:

Start Computing Constraints

Total Constraints: 1

Control Transfer: 1

Data Access: 0

Information Leak for each address:

Address: 5664259b Leaked:1.0 bits Type: CF

Source code: examplel.c line number: 3

Function Name: is_odd Module Name: a.out Offset: 30

As expected, it shows that the function is_odd has one
secret-dependent control-flow vulnerability at line 5. Also,
Abacus shows the vulnerability leaks 1 bit information.

V. ANALYZE CRYPTOGRAPHY FUNCTION

We have applied Abacus on the following libraries:
e OpenSSL: 0.9.7, 1.0.2f, 1.0.2k, 1.1.0f, 1.1.1, 1.1.1g
e MbedTLS: 2.5, 2.15

e Libgcrypt: 1.8.5

e Monocyper: 3.0

The results can be reproduced by running the simple com-
mand after you build Abacus successfully inside the container.
We have prepared scripts to analyze each cryptography algo-
rithm automatically. For example, if you want to test AES in
mbedTLS 2.5, you can simply run the following command.

$ cd /abacus/script/AES_MBEDTLS_ 2.5
$./start.sh

VI. COMMAND-LINE OPTIONS

Abacus takes the trace file as the input (Inst_data.txt).
Besides the trace file, Abacus has the following command-
line options:

-d <executable file>

Read an elf executable file. Abacus can parse the debug
information inside the file. With the optional input, Abacus is
able to output which line in the original source code actually
leaks the sensitive information.

-f <function file>

Read a function file that was generated by the Pin tool. The
command is optional. With the optional input, Abacus is able
to output which function leaks the information and call sites
from the sensitive buffer to the leaked site.

-n <Monte Carlo times>

Set the times of Monte Carlo Sampling when Abacus esti-
mates the amount of leakage information. If you do not specify
the option, Abacus can automatically terminate the sampling
when the tool has 95% confidence that the error of estimated
leaked information is less than 1 bit. Please refer to the paper
if you want to learn more about the details.

-a <the address of the secret buffer>

-s <the size of the buffer>

The two input options must be used together. In the previous
example, we use abacus_make_symbolic to mark the secret
buffer. For a raw binary, we use the above two options to tell
Abacus which buffer is the secret and its length.

ACKNOWLEDGMENT

We thank anonymous reviewers for their valuable feedback.
The work was supported in part by the National Science
Foundation (NSF) under grant CNS-1652790, and the Office
of Naval Research (ONR) under grants N00014-16-1-2912,
N00014-16-1-2265, and N00014-17-1-2894.

REFERENCES

[1] Q. Bao, Z. Wang, X. Li, J. R. Larus, and D. Wu, “Abacus: Precise side-
channel analysis,” in ICSE 2021.

[2] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “CacheD: Identifying
cache-based timing channels in production software,” in USENIX Security
17.

[3] S. Wang, Y. Bao, X. Liu, P. Wang, D. Zhang, and D. Wu, “Identifying
cache-based side channels through secret-augmented abstract interpreta-
tion,” in USENIX Security 19.

[4] G. Doychev, D. Feld, B. Kopf, L. Mauborgne, and J. Reineke, “CacheAu-
dit: A tool for the static analysis of cache side channels,” in USENIX
Security 13.

	Introduction
	Requirements
	Installation
	Run the hello world example
	Mark secret data as symbolic
	Build the example
	Collect the trace
	Quantify the leakage

	Analyze Cryptography Function
	Command-line Options
	References

