
The Pennsylvania State University
The Graduate School

College of Information Sciences and Technology

PROGRAMMING IN ELIZA

A Thesis in
Information Sciences and Technology

by
Xiao Liu

© 2016 Xiao Liu

Submitted in Partial Fulfillment
of the Requirements

for the Degree of

Master of Science

April 2016

I grant The Pennsylvania State University the non-exclusive right to use this work for the
University’s own purposes and to make single copies of the work available to the public
on a not-for-profit basis if copies are not otherwise available.

Xiao Liu

The thesis of Xiao Liu was reviewed and approved∗ by the following:

Dinghao Wu, Ph.D.
College of Information Sciences and Technology
Thesis Advisor, Chair of Committee

Mary Beth Rosson, Ph.D.
College of Information Sciences and Technology
Committee Member

John Yen, Ph.D.
College of Information Sciences and Technology
Committee Member

∗Signatures are on file in the Graduate School.

ii

Abstract

According to the technical report by Microsoft 2012, there will be a shortage of graduates
to fill available job positions in computer-related occupations till 2020. One of the
possible reasons accounts for the shortage is the challenge of mastering the skill to
code; the rigid and abstruse syntax of programming languages is the first barrier. Out
of creating an easier environment to program, this thesis proposes a system that allows
users to program in natural language, which enhances the coding experience for novices
as well as experienced programmers.

Our prototype system, called PiE (Programming in Eliza), is based on Eliza, an early
primitive AI prototype. The original Eliza was designed to be a psychotherapist. We
make it a programming robot. Using a rule-based method, PiE interprets the natural
commands into a universal intermediate language (PiE script) and programs in the
target syntax will be synthesized according to the semantics we extract with the rules.
To demonstrate the PiE system, we create PiE-LOGO, which synthesizes programs in
the LOGO programming language that helps people to draw graphs. Our experimental
results show that, on average, the success ratio is 88.4% for synthesizing LOGO programs
from simple conversations with Eliza. PiE also enables end-users with no experience to
program in LOGO with a smoother learning curve. We also build it with a voice module,
with which children can interact with PiE by voice before learning to type, and users can
play with it on mobile devices more easily. We also provide an online adaptation with
explanatory step-by-step tutorial through which feedbacks for further improvement are
collected.

iii

Table of Contents

List of Figures vii

List of Tables viii

Acknowledgments ix

Chapter 1
Introduction 2
1.1 Programming in a Natural Way . 2
1.2 Eliza: a Chatbot . 3
1.3 LOGO: a Graphic-oriented Programming Language 4
1.4 System Overview . 4
1.5 Contributions . 5
1.6 Outline of Thesis . 6

Chapter 2
Related Works 7
2.1 End-user Programming . 7

2.1.1 Education Use . 7
2.1.2 Enabling Tool . 8

2.2 End-user Software Engineering . 9
2.3 Rule-based Artificial Intelligence . 10

Chapter 3
PiE: Programming in Eliza 11
3.1 Example . 11
3.2 PiE Script . 12

3.2.1 PiE-LOGO . 12
3.2.1.1 Statement . 13
3.2.1.2 Function . 13

iv

3.2.1.3 Repeat . 14
3.2.2 Key Components . 14

3.3 Synthesis Tehniques . 14
3.3.1 Regular Expression Matching 15
3.3.2 Mapping Rules . 15

3.3.2.1 Rule Ranking . 16
3.3.2.2 Rule Prune . 17

3.3.3 Rule Adaptation . 17
3.3.4 Dialog Interaction . 18

Chapter 4
Extensions 19
4.1 Voice Module . 19

4.1.1 Voice Recognition . 19
4.1.2 Text to Speech . 20
4.1.3 Advantages and Defects . 20

4.2 Online Version . 21
4.2.1 User Interface . 21
4.2.2 Tutorial and Examples . 22

Chapter 5
Evaluation 24
5.1 Demonstration . 24
5.2 Learning Efficiency . 25
5.3 Success Rate . 27

Chapter 6
Conclusion and Future Work 30

Appendix A
Tutorial for Online PiE 31
A.1 Brief Introduction . 31
A.2 Get in a Dialog with PiE . 31

A.2.1 First Try . 31
A.2.2 Move the Turtle . 32
A.2.3 Attributes can be Modified . 32

A.3 Basics in Programming . 33
A.3.1 Loop . 33
A.3.2 Function . 33
A.3.3 Write in Scripts . 34

v

A.4 Try More . 34

Appendix B
Examples for Online PiE 35
B.1 Draw Polygon! . 35
B.2 Draw Stars! . 36
B.3 Draw Spiral LOGO! . 36

Bibliography 38
References . 38

vi

List of Figures

1.1 Flowchart of PiE . 5

3.1 The syntax of PiE-LOGO . 13

4.1 PiE with voice module . 20
4.2 Online version of PiE . 22

5.1 Output graph of demo . 25
5.2 Learning efficiency test . 27
5.3 Base unit . 27
5.4 Success rates for synthesis . 28

vii

List of Tables

1.1 Web turtle tutorial example: draw a square 4

2.1 Summary of educational programming tools/platforms 8

3.1 Regular expression matching . 15
3.2 Natural command mapped to predicate “FORWARD” 16
3.3 Mapping rules to the “FORWARD” class 17

5.1 Interaction with PiE for demo . 26
5.2 Time used in the programming with LOGO and PiE 27
5.3 Benchmarks for synthesis . 29

viii

Acknowledgments

I would like to thank my adviser Dr. Dinghao Wu for his help and invaluable advice for
my research and this thesis. I also want to thank my committee for their assistance and
my fellow graduate students for all of their help and support. Finally, I am grateful to my
family; their forbearance made the whole process possible.

ix

1

Chapter 1 |
Introduction

1.1 Programming in a Natural Way

For a long time, programming remains a dark art, especially for beginners. With great
enthusiasm, students start to learn some basic languages, e.g. JAVA or Python, in their
first CS course, but easily get disappointed by the rigid syntax and semantics. Mastering
a programming language is far more beyond their expectation which is one of the reasons
that a great number of students wandering around this area. According to the annual
technical report from Microsoft 2012, there will be a shortage of graduates to fill all of the
available job opening in computer-related occupations in 2020 with additional 1.2 million
openings in computing professions that require at least a bachelor’s degree (Microsoft,
2012). Under this circumstance, initiatives such “Teach the Hour of Code” are advocated
for every student to try coding for one hour (Code.org, 2014). It is of critical importance
to ensure beginners with a positive learning experience in order to attract them into and
retain them in the computing and information field.

Out of creating a tool that alleviating the students anxiety and enhancing their ex-
perience to program, we want to build a system that synthesizes programs for users
automatically based on their natural language descriptions. In earlier studies, researchers
propose the automatic programming based on the mechanical theorem-proving tech-
niques (Waldinger & Lee, 1969). However, this research problem is much broader than
expected as it is difficult to prove the theorems involving existential quantifiers. In this
case, some constraints have been appended to the automatic programming, which is grad-
ually considered as program synthesis (Manna & Waldinger, 1980). Program synthesis
is more likely a concept that defines the automation of programs in some specific do-

2

mains, such as robotics (Kress-Gazit, Wongpiromsarn, & Topcu, 2011; Maly, Lahijanian,
Kavraki, Kress-Gazit, & Vardi, 2013), and spreadsheet programming (Gulwani, 2011).

Because of the versatility and applicability, natural language programming has been
widely discussed as an easy way for novices to learn how to program (Ballard & Biermann,
1979; Dijkstra, 1979; Biermann, Ballard, & Sigmon, 1983). However, the realization of
natural language programming is based on “AI Complete” which means that the machine
is required to understand every natural language description. As expected, this goal has
not been achieved yet, but with advanced developments in natural language processing,
it is currently feasible for machines to partially understand people (Lieberman & Liu,
2006), especially in a specific domain. Thus, in a specific domain, programming in
natural language is viable.

Additionally, smart devices perform better with natural language as the input. Voice
input has indeed advanced gradually in recent years. However, the accuracy of recognition
for programming languages is still low (Begel, 2005). For example, “for int i equals
zero i less than ten i plus plus” which should be translated into “for (int i = 0; i < 10;
i+ +)” is sometimes recognized as “4 int eye equals 0 aye less then ten i plus plus”. In
this case, when we target at coding with smart devices, the accuracy of voice recognition
of programming language cannot meet the requirements. But things may change when
you say “Let’s start a loop with integer i from 0 to 9, add 1 in each turn”. The recognition
accuracy can be much higher.

To lower the entrance bar for fresh students to learn programming, we propose
a domain-specific program synthesis system called Programming in Eliza (PiE). PiE
interactively takes natural language conversations from users, and synthesizes programs
in target syntax. PiE-LOGO is our first implementation, with which programs in the
LOGO syntax are generated.

1.2 Eliza: a Chatbot

Eliza, a primitive prototype of natural language processing, plays the role of a psy-
chotherapist to communicate with patients (Weizenbaum, 1966). The input sentences
are processed with a pre-defined script, where there are two basic types of rules: the
decomposition rules and reassemble rules. Decomposition rules consist of different com-
binations of keywords, and for each decomposition rule there are a couple of reassemble
rules corresponding to it. When a sentence is typed in, it will be decomposed into pieces

3

English LOGO Commands
Draw with a Black Pen COLOR BLACK

DO this 4 Times: REPEAT 4 [
Move Forward 10 Paces, Drawing FORWARD 10

Turn Right 90 Degrees RIGHT 90]

Table 1.1. Web turtle tutorial example: draw a square

according to the decomposition rules and then based on one of the reassemble rules, a
response in natural language will be generated automatically. Following is an example of
how Eliza works:

Input It seems that you hate me.
Decomposition Rule (Any Words) (you) (Any Words) (me).
Decomposition (1)It seems that (2)you (3)hate (4)me.
Reassemble Rule (What makes you think I) (3) (you).
Output What makes you think I hate you?

Although Eliza belongs to the first-generation natural language processing techniques
using a rule-based method to understand users, it works quite well in specific domains.
In this paper, we extend Eliza for a novel application: program synthesis in the LOGO
programming language.

1.3 LOGO: a Graphic-oriented Programming Lan-

guage

LOGO is a graphic-oriented educational programming language (Feurzeig & Papert,
1967). The well-known application of LOGO is the Turtle Graphics (Feurzeig & Papert,
1967), in which there is a turtle on the screen and commands from users will move
the turtle in various ways and the trace left will be a specially designed graph. For
example, if a child wants the turtle to move forward 10 steps, she may use the command
FORWARD 10. Table 1.1 shows the program with four lines of commands that can draw
a square with the Turtle.

In this paper, we aim at building a system to automatically generate programs in
the LOGO programming language. To demonstrate the idea, we have implemented a
prototype called PiE (Programming in Eliza) with Python Turtle to synthesize LOGO
programs from natural language conversations with Eliza.

4

1.4 System Overview

Figure 1.1 illustrates the working flow of the PiE system. The system consists of three
parts: Eliza, PiE script and LOGO. The core lies in the PiE script which can be seen as a
connector between the other two. This script processes the natural language descriptions
from users and synthesizes programs in the LOGO programming language which will be
executed by the LOGO module. Meanwhile, it provides a feedback in natural language
to users via the Eliza module.

Figure 1.1. Flowchart of PiE

1.5 Contributions

With the proposed system, we make the following contributions:

• We propose a novel way for domain-specific program synthesis based on Eliza
and recall the importance of natural language programming with gradually mature
techniques in NLP and easy access to programming devices for end-users.

• We have realized program synthesis in the LOGO programming language from
English conversations between users and computers. Programs can be synthesized
with few constraints on the input natural language commands.

5

• We have achieved a preliminary step in natural language programming for educa-
tion use. Program logic can be learned by end-users with no experience during
the interaction with the PiE system, regardless of using complicated programming
languages like C++ or Java.

The preliminary result has been published as a paper “PiE: Programming in Eliza” (Liu
& Wu, 2014) in the Proceedings of the 29th ACM/IEEE International Conference on

Automated Software Engineering.

1.6 Outline of Thesis

The rest of this thesis is structured as follows. In Chapter 2, we first summarize the
background of the PiE system with related research results. In Chapter 3, we use
an example to illustrate a complete working flow of the PiE system. Meanwhile, we
introduce the PiE script used in this specific domain, and elaborate the key techniques
for program synthesis in our system. In Chapter 4, we extend the system with voice
module and explain the online adaptation of our original system. Chapter 5 shows the
experiments and results for system evaluation and we conclude and suggest for future
research in Chapter 6.

6

Chapter 2 |
Related Works

2.1 End-user Programming

Stemmed from a seed in early 1990s, researchers from a few institutes began to think out
how to make it easier for people to program and learn programming. Allen Cypher et
al. (Cypher & Halbert, 1993) first proposed the programming by demonstraten, taking
advantage of which simple programs can be generated according to users’ demonstratens.
Myers (Myers, 1998) wrote a proposal called “Natural Programming”. In his proposal,
the idea of creating a better programming interface for non-professional users thrives.
Later on, the field has been expanded to end-user development environments and the
very popular ones included spreadsheet development, web authoring tools, and graphical
languages, etc. The strongest motivations come from education and enabling end-user to
develop software.

2.1.1 Education Use

One of the most popular applications for end-user software engineering is for educational
use. Researchers have tried a variety of methods to make programming concepts more
accessible for novices. They either make the programming language itself more natural
or make the interaction between the system and people more fun. Alice (Conway, Audia,
Burnette, Cosgrove, & Christiansen, 2000), a 3-D Interactive Graphics Programming
Environment was brought about by Cooper et. al to make it easier for novices to develop
interesting 3-D environments and to explore the new medium of interactive 3-D graphics.
Taking advantage of this environment, students are able to see how their animated
programs run. The highly visual feedback allows them to relate the program “piece”

7

to the animation action. However, the language syntax it adopts is not as natural but
still strict; that is to say, students should still follow the manual book very carefully in
case of any warnings or errors. Scratch (Resnick et al., 2009), a visual programming
environment, is another representation for software engineering education. It is a platform
that allows users to learn through exploraten and peer sharing. However, Scratch does not
achieve all the goals that initially set: to introduce programming to those with no previous
programming experience. To be more specific, it requires students some pre-knowledge
of programming concepts, like condition, loop, before creating a Scratch project, but
does not teach them along the practice. We believe a better end-user software engineering
tool for education is expected to be natural in syntax, and interactive in the process. Here,
“natural” means that syntax should be free enough that allows any sentences without
ambiguity and the “interactivity” is supposed to be more heuristic for debugging, but not
as plain as its current look. To have a clearer sense of existing methods for people to
learn how to program, we summarized them in Table 2.1.

Tool/Platform Interaction Output
Alice1 (Cooper, Dann, & Pausch, 2000) Drag and Drop 3-D Story
Blockly2 (Marron, Weiss, & Wiener, 2012) Drag and Drop Graphics
Cubiverse3 Javascript Graphics
CodeMonkey4 (Etemadi, Kharma, & Grogono, 2013) CoffeeScript Graphics
Looking Glass5 (Powers, Ecott, & Hirshfield, 2007) Drag and Drop 3-D Story
Logo6 (Feurzeig & Papert, 1967) LOGO syntax Turtle Graphics
RoboMind7 (Yuana, Faisal, Pangestu, & Putri, 2015) Scripting Robot simulation
KidSim8 (Smith, Cypher, & Spohrer, 1994) Natural Langugage Graphics
Scratch9 (Resnick et al., 2009) Drag and Drop Graphics

Table 2.1. Summary of educational programming tools/platforms

1http://www.alice.org/index.php
2https://code.google.com/p/blockly/
3http://wiki.cubiverse.net/?title=Main_Page
4https://www.playcodemonkey.com/
5http://lookingglass.wustl.edu/
6https://turtleacademy.com/
7http://www.robomind.net/en/index.html
8http://www.robomind.net/en/index.html
9https://scratch.mit.edu/

8

2.1.2 Enabling Tool

Other than educational use, researchers are seeking for tools that enable non-professionals
to program in a few common development environments. Spreadsheet is one of the most
popular end-user development environments. Gulwani et al. developed Flashfill that
synthesizes string manipulation programs from input-output examples. From the end-user
developers’ perspective, programs for specific use is generated with a few input and output
pairs that they provide and it is quite convenient when the operatens are complicated.
Similar research was conducted on the synthesis of different programming languages,
including string manipulation (Gulwani, 2011), smart phone automation scripts (Le,
Gulwani, & Su, 2013), geometry constructions (Gulwani, Korthikanti, & Tiwari, 2011),
web data extraction queries (Polozov & Gulwani, 2014), and programming assignment
feedback scripts (Singh, Gulwani, & Solar-Lezama, 2013). The core techniques behind
all the research are the SAT/SMT constraint solver which is borrowed from formal
method community (Gulwani, 2012) and some global search strategies. The name for
the approach is called Programming by Example (PbE) and it is a branch of program
synthesis. With tools like these, end-users are able to synthesize code for target platforms,
but the capability in most cases is limited. The operatens synthesized in the program are
restricted to a domain-specific set that was defined by the developer and the synthesis
method is not wise enough to deal with ambiguities that exist in the examples. In addition,
the challenge in end-user software engineering still remains with this mechanism: it does
not provide people the chance to debug if the synthesized code has bugs. In their studies,
what is the unprofessional user supposed to do when they find the synthesized code does
not provide the expected results turns out to be the biggest issue.

2.2 End-user Software Engineering

We are introducing a new framework that not only assists people to program, but also
makes the developing environment easy to learn, more efficient, and less error-prone in
the software development. From a broader perspective, our research lies in the field of
end-user software engineering, which not only concerns on how end-user development
goes, but also focuses on the whole software maintenance cycle, including testing,
debugging, etc.

One of the main tasks in software engineering is software debugging. Ko and Myers

9

created a tool called “Whyline” (Ko & Myers, 2008) to assist people to find bugs by asking
why and why-not questions about program behaviors. The idea is simple: rather than
requiring people to translate their questions to code queries, Whyline allows developers
to choose a why-did or why-didn’t question about program outputs and then Whyline
generates an answer to the question using program analysis. This tool makes it possible
for people who possess limited programming skills to learn how to find bugs even sooner
than professionals with traditional programming environment. We can adopt a similar
mechanism in our framework and make it consistent with the program synthesis module
as stated.

The other track in software engineering is software testing. Groce et al. (Groce,
Kulesza, Zhang, Shamasunder, & Burnett, 2014) brought forward an interactive testing
framework for end-users to test the machine learning systems. They proposed and
formally defined three test selection methods for machine learning domain which provide
very good failure rates even for small test suites. With assistance of this tool, end-users
with no expertise in software testing can perform such tasks which helps to lower the
cost for testing engineer training. The method is heuristic and its application scope can
be broadened if we can abstract a higher level methodology that can be applied to other
domains.

2.3 Rule-based Artificial Intelligence

Since we are proposing a tool that can synthesize programs from natural language
descriptions, the first task of the system is to understand users’ descriptions. In recent
studies, researchers are prone to adopt statistic-based methods when there are adequate
data to train and test. However, because of the lack of raw data, we adopted the rule-based
natural language processing method in our study. Rule-based systems are alternative to
statistic-based ones, to store and manipulate knowledge. The rules are usually based on
the linguistic theories. Rule-based method is more efficient in specific domains since it
does not require many computational resources; and error analysis is easier to perform.

Many researchers utilized the rule-based methods for their study into the natural
language. Bill adopted the rules for automatic tag speeches and it works as well as
the stochastic tagger as proved by the author (Brill, 1992). Vlas developed a rule-
based natural language technique for classification of open-source software according
to the informal documents (Vlas & Robinson, 2011). Le et al. proposed a synthesis

10

method using the rule-based relation detection algorithm to map the natural language
descriptions to the relationship between incidents for windows phone commands (Le
et al., 2013). Compared with the statistical-based methods, the data “training" in the
rule-based methods are often more efficient. In this thesis, the rule-based method as Eliza
does to synthesize programs performs quite well in the specific domain of interest.

11

Chapter 3 |
PiE: Programming in Eliza

3.1 Example

In this section, we motivate our system with the same example from a web turtle tutorial
(Kendrick, 1997) as described in Table 1.1. The objective is to generate LOGO programs
when the input are sentences in natural language with few constraints.

As described in Table 1.1, the user would like to draw a square in black with the
turtle, but it is her first time to program with LOGO. However, she knows that if she
wants to draw a square in black, she needs to pick up a black pen to draw four straight
lines and make a 90 degree turn after each line. Thus, if she is allowed to manipulate the
turtle in a natural language, one possible description is:

1.Draw with a Black Pen

2.Do this 4 times:

>>1.Move Forward 10 Paces, Drawing

>>2.Turn Right 90 Degrees

Every time a command in natural language is received by PiE, it will be decomposed
word by word into text chunks, denoted w1, w2, ..., wn [Step 1]. In the next step [Step
2], the lexical analysis will be conducted with the assistance of the PiE script. Each of
these text chunks will be tagged with a pre-defined Token in the PiE script, for example,
the Predicate Token or the Number Token, by adopting regular expression matching.
Then, the analyzed sentence will be easily parsed into a structure. For instance, if all the
descriptive sentences in the example are analyzed, the structure of each sentence will be
like this:

12

Draw with a Black Pen

(PredicateTok)+(RedundantTok)+(NumberTok)

Do this 4 times:

(PredicateTok)+(RedundantTok)+(NumberTok)+(KeywordTok)

Move Forward 10 Paces, Drawing

(RedundantTok)+(PredicateTok)+(NumberTok)+(RedundantTok)

Turn Right 90 Degrees

(PredicateTok)+(KeywordTok)+(NumberTok)+(RedundantTok)

In the following step [Step 3], the LOGO program will be synthesized based on the
structure. It is a many to one mapping from the natural language structures to a particular
predicate in LOGO. For each Predicate Token , which can be treated as the key function
words, we can select the class of mapping rules. Mapping rules in one class contain the
same predicate.

However, there are more than one LOGO command for each predicate. To synthesize
the correct LOGO command for the input natural language instruction, the structure of
the sentence then plays a part. The last step [Step 4] for the LOGO program synthesis
is the substitution of parameters in the incomplete programs from [Step 3]. In this step,
incomplete programs will be parsed by rule sequence, and meanwhile, the parameters in
these commands will be substitute with the tokens from the input sentences.

3.2 PiE Script

We have designed the PiE Script from an extensive study of the descriptions in natural
language for each command in the Web Turtle from various online LOGO language
tutorials. Note a script is a set of decomposition and reassemble rules defined in Eliza.

3.2.1 PiE-LOGO

PiE-LOGO is a domain-specific language that can be ported to other platforms via
syntax-directed translation. PiE-LOGO maintains the context-free feature of the LOGO
programming language. The syntax of PiE-LOGO is shown in Figure 3.1. In PiE-LOGO,
we use S to denote a complete statement which consists of two parts: Predicate π and
Parameter I. The Parameter can be numbers, directors or color names extracted from the
natural language. It can be “Omit" when users forget to include some parameters in their
descriptions. Such as “Draw a line" with no mention of the length or “Make a right turn"

13

Statement S ::= (π|T)(I|T)
Parameter I ::= number|direction|color

| Ω
Omission Ω ::= number|direction|color
Predicate π ::= Predicate (a1, a2,..., an)
Repeat R ::= S

| foreach x ∈ a,
do S1; S2;...; Sn; od

Transform T ::= t1; t2; ...; tn
t ::= transform(a)|transform(I)

Argument a ::= input(a1, a2,..., an)

Figure 3.1. The syntax of PiE-LOGO

without a concrete degree. The Transformer T , a part of the Eliza mechanism, transforms
predicates or parameters with the same meaning into a regular expression. The Repeat R
denotes loops in PiE-LOGO and a denotes input arguments.

The following examples describe the natural language commands and their corre-
sponding synthesized scripts, according to which we can achieve a better understanding
of the PiE script that we defined.

3.2.1.1 Statement

[Color of the Pen]
>Use a blue pen!

S := pencolor blue
transform(blue) := [0,0,255]

3.2.1.2 Function

[Define Functions]
>Go forward 200 steps, turtle!

>Then turn left.

>Let STEP1 include the last two commands!

S1 := forward number
number := 200
S2 := turn direction
direction := left
STEP := last[number]

14

number := 2
last[2] := foreach n in number , STEP = STEP1 + last[n]

3.2.1.3 Repeat

[Start Loops]
>repeat STEP1 four times

S := foreach n in number , do STEP1
number := 4

3.2.2 Key Components

Normally, in each statement, there are three key components: Predicate, Parameter, and
Transform.

Predicate: The predicate is one of the most important components in the script
and it represents the predicates in the LOGO programming language. These predicates
correspond with verbs in natural language commands, for instance,“Move ahead” will
be translated to “FORWARD”; “Let the color of the pen be” will be translated to “PEN-
COLOR”. These predicates in the PiE script are later mapped into the operators in the
target languages using pre-defined rules.

Parameter: The parameter represents the object of the related predicate or the status
of the object. For example, “100” in “FORWARD 100”; or “blue” in “PENCOLOR
blue”. Parameters are identified using regular expression matching.

Transform: This component comes from the Eliza mechanism as it categorizes pred-
icates or parameters with the same meaning into a dedicated one. For example, “Move
ahead” “Go forward” “Move on” will all be translated to “FORWARD”. This component
plays an important role in the semantic analysis of natural language commands.

3.3 Synthesis Tehniques

Our goal is to map commands in natural language into PiE-LOGO, which means (1) after
the decomposition of each sentence in natural language, every chunk can be mapped into
a token in our script; (2) when we parse the sequence of tokens, which is the result from
the syntax analysis, PiE script is capable of handling all the possible syntax structures.

15

Token Regular Expression
Number Token (\d)*
Color Token ((\d)* \s){3}

Direction Token (left|right)
Predicate Token (forward|backward|repeat|...)

Table 3.1. Regular expression matching

Both tasks are quite complicated to be tackled. This section elaborates on the techniques
adopted in the PiE system and the design of the PiE script.

3.3.1 Regular Expression Matching

To perform lexical analysis, we adopt Regular Expression Matching. Taking advantage
of regular expressions, we are able to extract tokens like Predicate Token or Parameter

Token in each command in English. A set of regular expressions are designed manually
to match all the structures consist of tokens. In Eliza, the system recognize a sentence
by using keywords, but our system adopts regular expressions. The regular expression
matching in PiE assists the system to analyze the syntax of the natural language and then
each chunk of the natural commands is mapped into a token in the PiE-LOGO. To some
extent, keywords matching can be seen as a special regular expression matching; however,
Eliza does not parse the input natural sentences into structures. Another advantage of
regular expression matching in PiE is that, without a strictly designed ranking of the
rules, the matching process can be completed in linear time with respect to the size of the
input sentence. Some examples of regular expressions and their corresponding tokens
are shown in Table 3.1.

3.3.2 Mapping Rules

We have designed a set of rules to map natural language commands into PiE-LOGO. As
we described in the example, programs in PiE-LOGO can be synthesized based on the
parsed structure.

We generate a group of natural language commands by ourselves for each predicate.
Table 3.2 shows some specific examples of the natural commands that can be mapped
into the “FORWARD” function class. As far as the contents in this table are considered,
it indicates that there are many expressions in natural language which have the same
semantic meaning because of synonyms. Different verbs in natural language are used in

16

Move forward 100 steps!
Please go forward 100 steps!
Can you go straight on for 100 steps!
Move ahead 100 steps little turtle!
Turtle, go ahead for 100 steps!
Move forth 100 steps!
Let’s go forth 100 steps!
Move to the front 100 steps!
Go up for 100 steps!

Table 3.2. Natural command mapped to predicate “FORWARD”

these sentences but the structures are similar. Under this circumstance, we adopt transform
T which is borrowed from the Eliza system to categorize predicates or parameters with
the same meaning into a dedicated one. Take the “FORWARD” class as an example,
Move forward, Go forward, Move ahead, Go ahead, Go forth, Move to the front, and
Go up are of the same semantic meanings. Thus, they can be categorized into the same
“FORWARD” class and they can be replaced by the predicate“forward”.

Based on the 1987 Penguin edition of Rogers Thesaurus of English Words and Phrases
(Roget, 1982), we maintain a dictionary of words that can be transformed to tackle the
challenge from synonyms. The design enables PiE to process flexible natural language
syntax.

3.3.2.1 Rule Ranking

Since the number of the rules for the mapping function is large, it is desirable to apply
some ranking in the rule sequence to improve the effectiveness of the PiE system. We
rank the rules in two steps: (1) by Predicate Order; (2) by Complex Order.

Predicate Order: Rules with the same predicate will be categorized into a class and
then, we sort the classes according to the frequency of the predicate occurrence. We
collected 484 real LOGO commands from 20 different LOGO programs among the
most popular ones from Web-Turtle and count the frequencies of each predicate. For
example, by frequency order, “forward” stays ahead of “pencolor”, and thus, the rule
“Move forward (\d)* (\.)*” stays before the rule “(\.)* color of the pen (\.)*(\.)*”.

Complexity Order: Rules in the same class are sorted by the complexity order. The
rule with more tokens or Redundant Tokens are of more Complexity. For example, for
the “FORWARD” class, “Move forward (\d)* (\.)*” stays before “((\.)* forward (\d)*

17

(\.∗) forward a line of (\d∗) (\.∗) in length
(\.∗) forward a line of (\d∗) (\.∗) long
(\.∗) (\d∗) (\.∗) forward(\.∗)
(\.∗)forward(\.∗) (\d∗) (\.∗)
(\.∗) (\d∗) forward(\.∗)
(\.∗) (\d∗) (\.∗) forward
(\.∗)forward (\.∗) (\d∗)
(\.∗)forward (\d∗) (\.∗)

Table 3.3. Mapping rules to the “FORWARD” class

(\.)*)”. This ranking algorithm not only helps shorten the time, but also improves the
accuracy of mapping.

3.3.2.2 Rule Prune

At the very beginning, we used the descriptions of online LOGO tutorials as the data set,
together with our own experience, according to which we designed the first set of rules.
However, there are many redundant rules in this set. For example, “Move forward (\d)*
(\.)*” and “Go forward (\d)* (\.)*” are two rules at the very beginning. After the Rule
Prune, these two can be merged into one: “(\.)* forward (\d)* (\.)*”.

To prune the rules, we firstly sort the rules in a predicate class by Complexity. Here,
the rules with more Tokens or Redundant Tokens are of more complexity. In this case,
the “FORWARD” class is arranged as shown in Table 3.3.

Then, we test if there exists any rule of less complexity that can replace the one of
more complexity. For example: any sentence that can be matched with the rule “(\.∗)
forward a line of (\d∗) (\.∗) in length” and “(\.∗) forward a line of (\d∗) (\.∗) long”
can also be matched with “(\.∗)forward(\.∗) (\d∗) (\.∗)”. Since this meets the prune
requirement, the former two can be pruned.

3.3.3 Rule Adaptation

There are in total 87 rules in the original library which are self- generated. However, to
handle all the possible descriptions to manipulate the turtle, the library should be made
adaptable. We realize this function by making the Transform Table adjustable. The
system will collect the natural language descriptions that cannot be matched up with
any rule. Based on these left-behind descriptions, new words will be appended to the
Transform Table which possess equal meaning as the words in the original table. Thus,

18

we can make new rules as an extension to improve the success rate. Meanwhile, in
addition to maintaining the rule library, users can add words in any predicate class via
communicating with PiE’s function definition. Thus, the rules in PiE are extensible.

In the future, with the increasing number of people that play with PiE, we would like
to use crowd sourcing to improve the rule set. Whenever the system cannot understand
the user, it will ask the user to say in another way. Typically, the user would change some
words but not the whole sentence structure. Under this premise, we may find out the
transformable tokens in our rules and adaptively complete the library using this crowd
sourcing method. However, there is still a chance when the sentence structure is changed.
To solve these problems, PiE will pop up with several words belong to different predicate
classes. The user will be asked whether or not adding a new word to one of these classes.

3.3.4 Dialog Interaction

To make the interface more interesting, we also present a rule-based natural language
response as the feedback to each input sentence. For each synthesized PiE-LOGO
command, there is one and only natural language feedback corresponding to it. This
feedback serves as the confirmation of program synthesized as well as the reminder of
the mistakes, if any. In some cases, when PiE fails to respond to the user’s command, the
interaction system will request an alternative description.The interaction between users
and PiE system makes this interface more user–friendly.

19

Chapter 4 |
Extensions

We extend the original PiE-LOGO system with voice input so that users can use our
tool in a more natural way. Start with any requests, PiE responds to users in English
which make the system accessible to even children who have not learnt typing or spelling.
In addition, we believe that with the assistance of the voice module, the system can be
implemented on mobile devices where typing is not as convenient as voice input. Thus,
we build an adaptation of the original system with voice module. Meanwhile, we also
develop an online version with tutorials and examples. In this section, we introduce the
newly included voice module and the online version.

4.1 Voice Module

To add the voice function, two parts are built into the previous PiE system: the voice
recognition and the text to speech as shown in Figure 4.1 . Originally, PiE takes in natural
language in plain text; however, with the voice recognition function, voice can be first
translated to plain text and then be processed in the same way. With the text to speech
function, after the synthesis of natural language in plain text, voice is generated and
output to users. By keeping the modulated core of the entire system, we can make the
system more robust and scalable.

4.1.1 Voice Recognition

The voice recognition is performed with the Google speech recognition API which is
widely used as it supports developments using various programming languages and it
enjoys high reputation for its accuracy. Nevertheless, a problem with the recognition is

20

Figure 4.1. PiE with voice module

about the number generation. The return value of number recognitions are in the text
format, e.g. 150 will be “one hundred and fifty", which brings difficulty to our original
system design.

To overcome the challenge from number recognition, that is to translate the literal
saying of each number into the Arabic numerals. To parse the text format of numbers,
regular expression is utilized for token matching. We enumerate the basic unit tokens
including one to nineteen, tens tokens including twenty to ninety and scale tokens
including hundred to trillion, and build syntax tree for each number. The function
interprets the literal number into digit.

4.1.2 Text to Speech

Original PiE outputs the plain text sentences to communicate with users. To enhance the
experience when playing with PiE, we import the text to speech package to generate the
speech and communicate with users in English from sentence in text format. With the
new appended function, PiE is more like a programming assistant that communicates
with users rather than a tool that just synthesizes programs with instructions.

4.1.3 Advantages and Defects

We incorporate the voice recognition and text to speech functions into our original PiE
system to make it accessible for children use and mobile use. The extended part has
brought a few benefits to the original system:

21

1. PiE demonstrate the idea that we can build a tool that translates humans’commands
into machine instructions and Voice Module makes it possible that people can use
it naturally and smoothly;

2. Voice module enlarge the audience of PiE, including the children who do not learn
spelling and typing who are part of the main target people;

3. With the voice module, we can transport the PiE system to mobile devices where
voice commands will occupy a dominant than typing input thanks to the efficient
and convenient.

However, compared with the previous PiE, the voice module also brings some defects.
Since the voice module is internet-based, the users must have access to the internet and
the overall experience of using the system highly depends on the quality of the internet
service.

4.2 Online Version

We also build an online version for attracting more audience. Figure 4.2 shows the
interface of the online adaptation of PiE. To introduce PiE to users step by step without
face-to-face demonstration, we write a tutorial which is included in the appendix. In
addition, we also provide some examples to demonstrate PiE and one of which is shown
in Figure 4.2. To further get users attracted and also to test the effectiveness of PiE,
some challenges are set up after the examples to test how well people understand the
basic concepts in programming. In this section, we show the detailed design of the online
version.

4.2.1 User Interface

The user interface is separated into two main parts: left part consists of the main canvas
and the dialog boxes; right part consists of the navigator and the instructions. Users can
first select the tutorial from the navigator to go through the basics in PiE: to interact
with PiE using the dialog boxes and see how the turtle moves on the canvas. After
learning how to use PiE, users will go the examples to get some real practice and try
some challenges that we designed.

22

Figure 4.2. Online version of PiE

We keep the interface simple for users to play with and it highlights the main function
of the turtle graphics, that is to draw graphs and meanwhile, it makes LOGO an interactive
programming language. The concept of “What you see is what you get" is adopted in our
design as it is intuitionistic for new programmers.

4.2.2 Tutorial and Examples

There are four sections in the tutorial. We begin with a brief introduction and let users
have a first trial via a simple example: to draw a square. This is a common example in
LOGO tutorials, but which is more intuitive when playing with PiE. Then we detailed
the attributes of the trace that can be adjusted including the width, color, etc., after which
users will know what can be done with PiE step by step. Although, users can draw with
PiE easily with the current knowledge, they are not learning “real" programming. In
the second section, we introduce the basic concept in programming, including, basic
statements, looping, function and write scripts. With these advanced knowledge, users
can draw more complex graphs with a few very efficient and powerful commands. The
last section is to try some examples to review the knowledge that they just learned.

We show some very classic examples like to draw polygons and draw repeat shapes.
After each set of example, users are required to take some challenge by revising the

23

code. Our previous design was to let users draw some shapes themselves, however,
it is time-consuming for newbies and not efficient to test their understanding of the
programming concept we introduced. Then, we changed the task to code revising, e.g.,
tell users how to draw a triangle, a square, a hexagon and ask them to draw an octagon.
These tasks are designed for testing their understanding of loop and how to change the
loop controls and the values in the loop body. We believe that with these examples and
challenges, users will get a deeper understanding of PiE and the programming concepts.

24

Chapter 5 |
Evaluation

In this section, we first provide an demonstraten to show the process and result when
playing with PiE. We then present evaluation in terms of (1) Learning Efficiency for
non-programmers, novices and experienced users in learning to program with PiE-LOGO
and (2) Success rate for synthesized programs. We have implemented our system using
the Python Turtle, which is a standard library embedded in Python 2.7. Each command
in PiE-LOGO is implemented in Python to move the turtle.

5.1 Demonstration

We choose a popular example: the Koch Curve among many latest drawings from users
who draw with Turtle on the website, papertlogo in your browser (http://logo.twentygototen.org/).
The input natural language is not case-sensitive and by using regular expression matching,
the system can tolerate some spelling mistakes as well. This demonstraten is designed to
show how complex tasks that PiE can handle. The program goes a little bit further than a
beginner can understand, but with a designed algorithm in hand, she could make simple
conversations with PiE and draw a Koch Curve without much difficulty.

The interaction between the user and the PiE system is shown in Figure 5.1 and the
output graph is Figure 5.1. This demonstraten shows a normal pattern of using recursion
in drawing. Consider the education use of the PiE system, when using this system to learn
how to program, the non-experienced learners, especially for children, may experience
a better interaction than coding directly on their own. The users enjoy the flexibility
of natural languages without being required to memorize the strict and rigid syntax of
programming languages.

25

Figure 5.1. Output graph of demo

5.2 Learning Efficiency

Back to the original intention of the PiE system: in addition to the purpose to simplify
the process of learning to code, we are aiming at describing a novel way for program
synthesis. Nevertheless, there is no benchmark for evaluation of the easiness to master
a programming language. We develop a notion called Learning Efficiency for learning
how to program. Here, we define Learning Efficiency as, the extent to which time is well
used for the intended programming task using a new programming language. We provide
users equal time to learn both the LOGO programming language and PiE-LOGO and
test the time they spent on a certain task. The less time they spent on programming, the
higher Learning Efficiency of a specific language.

Six volunteers participated in our experiment. Among them, two are non-programmers
(graduate students who have learned logic in the previous math studies), two are novices
(first-year learners of the Java programming language) and the remaining two are experi-
enced programmers (with four and five years of programming experiences, respectively).
All of them are not involved in the system design and they have not learned the LOGO
programming language before. Before the experiment, we start with six examples as the
tutorial, which include simply drawing an “L-shape", defining a function, and drawing
repeated patterns. It takes five minutes on average for them to go through the tutorial.
Then, equal time is provided to go through the tutorial of the LOGO programming
language provided by the online tutorial as introduced in Chapter 3.

After reviewing both the tutorials of our PiE system and the LOGO programming
language, the six participants are asked to draw a target shape as shown in Figure 5.2.
They need to draw a base unit recursively and the base unit is a diamond as shown in
Figure 5.3. The edge length of the diamond is 100 steps and the two different angles are

26

User Descriptions PiE Responses LOGO Program
[PiE Start] Thanks for trying PiE. How can I help you?
> Let’s first draw a line Okay, what is the length of that line?
> Oh, I mean, to define a function
called line

I see, what are the arguments of the function Line?

> They are count and n Okay, I have designed a function called Line with input
arguments called count and n. Then?

to line :count :n

> let the turtle move ahead n steps
when the count equals to one

Okay, if the Count is 1, turtle will forward N steps ifelse :count = 1 [fd :n]

> In other cases, do the following
things:

I see. do what else?

> let count decrease by one Okay, Count equals to Count -1 make "count :count - 1
> repeat the line function with new
count

I see. Function Line is called with the new argument
count

line :count :n

> turn left 60 degrees Okay, the turtle turns 60 degrees to the left lt 60
> repeat the function line Okay, Function Line is called line :count :n
> turn right 120 degree and repeat
function line

I see, the turtle turns 120 degrees to the right. Function
Line is called.

rt 120 line :count :n

> Again turn but left 60 degrees
and repeat the function line

Okay, the turtle turns 60 degrees to the left. Function
Line is called

lt 60 line :count :n

> That is all for the function I see, Function Line is end. end
> Start another function called
Koch

I see, what are the arguments of the function Koch?

> still count and n Okay, I have designed a function called Koch with input
arguments called count and n. Then?

to koch :count :n

> first turn right 30 degrees and ex-
ecute the function line

I see. The turtle turns 30 degrees to the right. Function
Line is called.

rt 30 line :count :n

> turn right 120 degrees and exe-
cute the function line

I see. The turtle turns 120 degrees to the right. Function
Line is called.

rt 120 line :count :n

> repeat the last command I see. The turtle turns 120 degrees to the right. Function
Line is called.

rt 30 line :count :n

> Let’s call it Koch I see, Function Koch is end. end
> Clear everything Okay, the canvas is clean. clear
> let the turtle start from point
(45,370)

I see, turtle is moved to point (45,370). setxy 45 370

> Begin the function Koch Okay, but what are the arguments?
> count is 5 and n is 5 Okay, function Koch is called with the argument

Count=5 and n=5.
koch 5 5

> Quit Okay, Done! Done

Table 5.1. Interaction with PiE for demo

of 60 and 120 degrees, respectively. The angle between the two dash lines is 10 degrees.
Given these indications on how to draw a graph in Figure 5.2, the testers are asked

to use both PiE-LOGO and LOGO to complete the task. Testers are separated into two
groups, one does PiE-LOGO first and the other does LOGO first. The average time
consumed is shown in Table 5.2. PiE saves 43.8%, 21.8% and 22.4% of time, respectively,
for non-programmers, novices and experienced programmers to draw the same graph.

27

Figure 5.2. Learning efficiency test Figure 5.3. Base unit

Experienced Novices Non-programmer
Original LOGO 67s 69s 130s

PiE 52s 54s 73s
Time Saving 22.39% 21.74% 43.85%

Table 5.2. Time used in the programming with LOGO and PiE

The preliminary results indicate that PiE creates a platform for them to program in a new
language with a smoother learning curve. In addition, we may find that, PiE saves the
most time for the non-programmers, in which case, we could say that PiE performs well
as an introduction tutorial for those who want to learn basic programming skills.

Another interesting fact in the experiment is that, every experienced programmer
checked the tutorial of the original LOGO during the programming task but that does not
happen when using PiE. As a result, PiE relieves the burden of memorizing strict syntax
and checking language references and tutorials to some extent.

5.3 Success Rate

We further evaluate the PiE system in terms of Success rate for the synthesized program.
Success Rate is defined as the ratio of the descriptions that successfully accepted by our
system and the corresponding LOGO commands are correctly generated. We collected
877 descriptions when the six participants use our system to go through the example-
oriented tasks and the test as presented in §5.2, and to just play with the turtle. The
collection includes 19 types of commands as shown in Table 5.3 and we set these 19
types as the benchmark. We ask the users to describe these types of commands in their
own way and collect another 1,000 pieces of descriptions. Thus in total, we have 1,877
natural command descriptions, about 100 for each type.

28

Figure 5.4. Success rates for synthesis

In total, we have constructed 96 rules in the PiE script, including 87 from the original
library and 9 adapted, to understand the natural language descriptions. Typically, we
make rules for the system without ranking. To test the effectiveness of the ranking
algorithm described in §3.3.2.1, we first test our system with unranked rules to get the
Success rate. Then, after applying our ranking algorithm with the rules, we test the
system again to get another set of Success rate and compare with the previous unranked
results.

In Figure 5.4, we show the Success rate in two cases when the rules are ranked or not,
to synthesize the benchmark commands from the natural expressions. From the figure we
can see that with ranked rules, higher Success rates are achieved. Our system performs
well as it achieves average success rate of 88.4% in most of the commands that supported
by the LOGO language. PiE works in most cases but there are still some exceptions.
For example, descriptions which are too oral, such as “how about 40 steps" or “move!
turtle!", cannot be understood by our system. The former requires a context which we
will address in the future; the latter is a partial command which needs a length parameter.
It is our goal to improve further in the future.

29

Benchmarks Natural Descriptions
1 Clear the screen
2 The turtle move forward a few steps and a line is drawn
3 The turtle move backward a few steps and a line is drawn
4 The turtle rotate a degree clockwise
5 The turtle rotate a degree anti-clockwise
6 The turtle move directly to a pointed place
7 The turtle’s color is changed and the line is in the decided color
8 Put up the turtle and no trace will be left when move the turtle
9 Put the turtle back to the paper
10 Undo several previous commands
11 Change the width of the pen to a decided value
12 Let the turtle face a decided direction
13 Define a function with a name that includes several commands
14 Repeat several previous commands or a function
15 Draw a circle with a certain radius
16 Draw a triangle with certain lengths of the edges
17 Draw a square with certain lengths of the edges
18 Draw a diamond with a certain length of the edge
19 Quit the system

Table 5.3. Benchmarks for synthesis

30

Chapter 6 |
Conclusion and Future Work

In this thesis, we developed a system called Programming in Eliza (PiE) to synthesize
LOGO programs from natural language conversations between users and computer. We
adopted Eliza for a novel application on program synthesis. Our preliminary experience
showed that PiE can assist and enhance programming experience of novices as well as
experiences programmers. We also developed the voice module and made it an online
adaptation. With the new extension, the programming tool is accessible to children
before they learn to type and spell. We also got more feedbacks from users from different
countries and backgrounds since the release of the online version.

We will focus on making PiE some other adaptations in the future to realize our
original objective, that is to use one syntax to program for various platforms. This applies
to the Spreadsheet engineering, Shell programming, etc. Further, we can build multi-
lingual models such as the Chinese version of PiE that children from other countries can
learn programming when play with PiE.

31

Appendix A|
Tutorial for Online PiE

A.1 Brief Introduction

PiE (Programming in Eliza/English) is a tool that helps beginners to learn how to
program. By interacting in natural language, currently we only can handle English, user
can manipulate the “Turtle" (which is represented as an triangle in this design) on the
canvas. The turtle will leave the trace wherever it goes and these traces will be a beautiful
pattern.

A.2 Get in a Dialog with PiE

A.2.1 First Try

• Type in “Can you forward 150 steps?” and Click the “Talk”. See what happen?

• Great! The turtle just moved forward 150 steps! And PiE confirmed your command
in the response box.

• Then Type in “Turn left 90 degrees!” and Click the “Talk”. You can also type the
“Enter” on the keyboard instead of the Click.

• You will then see the turtle turn left 90 degrees!

• Next, let’s try move the turtle quicker and more fluently by using repeat.

• Type in “Repeat last 2 commands for 3 times!”

• Yeah! You got a square! Right?

32

• You can clear the screen by “Clear the screen!”

A.2.2 Move the Turtle

• Basically, the turtle can move forward and backward. Try “Go forward 150 steps!”
and “Get back 150 Steps”.

• Besides, straight move, the turtle can turn clockwise(right) or anti- clockwise(left).
Try “Turn left 90 degrees and Turn right 90 degrees”. You can name any degree
between 0 to 360. In addition, try “Turn left” and “Turn right”. The turtle will by
default turn 90 degrees.

• If you do not want the pattern any more, just “Clear the screen!”

A.2.3 Attributes can be Modified

• The turtle can draw with its movements. If you want to change how the trace looks
like, please go on with this section.

• First, let’s try to make the line bolder. Type in “Can you use a bolder pen?” and
then try “Go forward 100 steps!” How it look?

• Then, let’s make the line lighter. Type in Use a lighter pen and try again “Go
forward 100 steps!” See the difference?

• You can also change the color of the line by “Can you change to color red?” You
can change to any other colors like: grey, purple, green, yellow, black, blue, red.

• Test with “Forward 100 steps.” Your turtle might hit the wall if you continued three
100 step forward. After it hit the wall, it will appear from the other side.

• Sometimes, you just want to move the turtle but not leave any traces. In this case,
let’s suspend the turtle.

• Suspend the turtle by “Get up!” and the turtle will be off the canvas. There will
be no trace left when the turtle is off the paper. You can try “Can you forward 50
steps?” to double check.

• Put down the turtle by “Get down!”

33

• Test with “Forward 100 steps”.

A.3 Basics in Programming

In this section, we will tell you some basics in programming.

A.3.1 Loop

• Loop is a faster way to get things done if you want to repeat several commands
over and over again. Let’s see how to use it.

• First, let’s try these commands one by one. “Forward 150 steps, Turn left 90
degrees, Forward 150 steps, Turn left 90 degrees, Forward 150 steps, Turn left 90
degrees, Forward 150 steps, Turn left 90 degrees,” What do you get? A square!
But how to use less commands to realize the same thing? Try these commands one
by one: “Go forward 100 steps.” “Turn left.” “can you repeat last 2 commands for
3 times? ”

• You see. We use 3 commands to draw a square instead of 8 commands.

A.3.2 Function

You can read this part after the next section “Write in Scripts". Function helps to reuse
some encapsulated commands. Try the following commands:

Let’s define a function called Square

Repeat the following commands for 4 times

Go forward 100 Steps

Turn left 90 degrees

End the Repeat

End the function

Then Clear the screen

Call the function square

To experience the benefit from Function, you can go on with

Turn right 60 degrees

Again, Call the function square

34

A.3.3 Write in Scripts

You can write down a few sentences to manipulate the turtle at a time instead of being
involved in the tedious dialog. Take the square as an example. Try copy-paste the
following commands in the Multi-line Mode by clicking on the arrow beside the Talk
button.

Use a red pen

Let the pen be bolder

Repeat the following commands for 4 times

Go forward 100 Steps

Turn left 90 degrees

End the Repeat

After the copy-paste, click on the Talk button. What do you get? You can revise the script
in the Multi-line mode by adding or deleting in the box. Try add Repeat the following
commands for 36 times after Let the pen be bolder and Turn left 10 degrees and End the
repeat after the original End the Repeat. What do you get?

Use a red pen

Let the pen be bolder

Repeat the following commands for 36 times

Repeat the following commands for 4 times

Go forward 100 Steps

Turn left 90 degrees

End the first Repeat

Turn left 10 degrees

End the second repeat

What? Did not see it clearly. Let’s try it step by step. In the third command, change “36"
into 1, 2, 4, 8, 12, 16 respectively. Do you understand now?

A.4 Try More

Till Now, you are good with basics in programming and You can handle most cases in
LOGO to draw any graphs. Don’t believe it? Try the Examples!

35

Appendix B|
Examples for Online PiE

B.1 Draw Polygon!

Try the following commands first: You can click on the block of commands!

clear the screen

Repeat the following for 4 times:

Go forward 150 steps

turn right

end the repeat

clear the screen

Repeat the following for 5 times:

Go forward 150 steps

turn right 72 degrees

end the repeat

clear the screen

Repeat the following for 6 times:

Go forward 150 steps

turn right 60 degrees

end the repeat

Task1: (1) Now, can you draw an octagon (8 sides)? Try modifying the code! Save
the figure by Clicking on “Download Image". How about (2) decagon(10 sides)?

36

B.2 Draw Stars!

Try the following commands first: You can click on the block of commands!

clear the screen

Use a red pen!

repeat the following commands for 5 times:

Can you forward 150 steps?

turn right 144 degrees please!

end the repeat

clear the screen

Use a red pen!

repeat the following commands for 7 times:

Can you forward 150 steps?

turn right 154 degrees please!

end the repeat

Task2: Now, can you draw a (4) Nine-pointed star? How about (5) Twelve-pointed
star? Save the Image. Hint: The angle turned in each round has relationship with how
many points and 180.

B.3 Draw Spiral LOGO!

Try the following commands first: You can click on the block of commands!

clear the screen

repeat the following for 90 times

let the label height be the same as the repeat count

put the pen off the paper

move forward repcount * repcount / 30 steps

put the label Logo here

move back repcount * repcount / 30 steps

put the pen down

turn right 10 degrees

end the repeat

37

Task3: Now, (6) can you use color green and draw these LOGOs again? Save the
Image. Then, (7) if I have already implemented a function called set randomcolor, can
you call the function and make the LOGO’s color changed in each round?

38

References

Ballard, B. W., & Biermann, A. W. (1979). Programming in natural language: “NLC” as
a prototype. In Proceedings of the 1979 Annual Conference (ACM ’79).

Begel, A. (2005). Programming by voice: A domain-specific application of speech
recognition. In Proceedings of the AVIOS Speech Tech. Symposium—SpeechTek
West.

Biermann, A. W., Ballard, B. W., & Sigmon, A. H. (1983). An experimental study of
natural language programming. International Journal of Man-machine Studies,
18(1), 71–87.

Brill, E. (1992). A simple rule-based part of speech tagger. In Proceedings of the
Workshop on Speech and Natural Language.

Code.org. (2014). The hour of code. Retrieved from http://code.org/
Conway, M., Audia, S., Burnette, T., Cosgrove, D., & Christiansen, K. (2000). Alice:

Lessons learned from building a 3D system for novices. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems (pp. 486–493).

Cooper, S., Dann, W., & Pausch, R. (2000). Alice: A 3-D tool for introductory
programming concepts. Journal of Computing Sciences in Colleges, 15(5), 107–
116.

Cypher, A., & Halbert, D. C. (1993). Watch What I do: Programming by Demonstration.
MIT press.

Dijkstra, E. W. (1979). On the foolishness of “natural language programming”. In Pro-
gram Construction: International Summer School (pp. 51–53). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Etemadi, R., Kharma, N., & Grogono, P. (2013). CodeMonkey: a GUI Driven Platform
for Swift Synthesis of Evolutionary Algorithms in Java. In Proceedings of 16th
European Conference on Applications of Evolutionary Computation (pp. 439–
448).

Feurzeig, W., & Papert, S. (1967). The LOGO programming language. ODP-Open
Directory Project.

Groce, A., Kulesza, T., Zhang, C., Shamasunder, S., & Burnett, M. (2014). You are the
only possible oracle: Effective test selection for end users of interactive machine
learning systems. IEEE Transactions on Software Engineering, 40(3), 307–323.

Gulwani, S. (2011). Automating string processing in spreadsheets using input-output
examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (pp. 317–330). New York, NY, USA:
ACM.

Gulwani, S. (2012). Synthesis from examples: Interaction models and algorithms.
In Proceedings of the 14th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (pp. 8–14).

Gulwani, S., Korthikanti, V. A., & Tiwari, A. (2011). Synthesizing geometry construc-
tions. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming

39

Language Design and Implementation (pp. 50–61). New York, NY, USA: ACM.
Kendrick, B. (1997). Web turtle. (sonic.net/˜nbs/webturtle)
Ko, A. J., & Myers, B. A. (2008). Debugging reinvented: Asking and answering

why and why not questions about program behavior. In Proceedings of the 30th
International Conference on Software Engineering (pp. 301–310). New York, NY,
USA: ACM.

Kress-Gazit, H., Wongpiromsarn, T., & Topcu, U. (2011). Correct, reactive, high-level
robot control. Robotics & Automation Magazine, IEEE, 18(3), 65-74.

Le, V., Gulwani, S., & Su, Z. (2013). Smartsynth: Synthesizing smartphone automation
scripts from natural language. In Proceeding of the 11th Annual International
Conference on Mobile Systems, Applications, and Services (pp. 193–206). New
York, NY, USA: ACM.

Lieberman, H., & Liu, H. (2006). Feasibility studies for programming in natural language.
In End User Development (pp. 459–473). Springer Netherlands.

Liu, X., & Wu, D. (2014). PiE: Programming in Eliza. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineering (pp.
695–700). New York, NY, USA: ACM.

Maly, M. R., Lahijanian, M., Kavraki, L. E., Kress-Gazit, H., & Vardi, M. Y. (2013).
Iterative temporal motion planning for hybrid systems in partially unknown envi-
ronments. In Proceedings of the 16th International Conference on Hybrid Systems:
Computation and Control (pp. 353–362). New York, NY, USA: ACM.

Manna, Z., & Waldinger, R. (1980). A deductive approach to program synthesis. ACM
Transactions on Programming Language System, 2(1), 90–121.

Marron, A., Weiss, G., & Wiener, G. (2012). A decentralized approach for programming
interactive applications with JavaScript and Blockly. In Proceedings of the 2nd
Edition on Programming Systems, Languages and Applications Based on Actors,
Agents, and Decentralized Control Abstractions (pp. 59–70). New York, NY, USA:
ACM.

Microsoft. (2012). A National Talent Strategy. https://news.microsoft.com/
download/presskits/citizenship/msnts.pdf.

Myers, B. A. (1998). Natural programming: Project overview and proposal (Tech. Rep.
No. CMU-CS-98-101). Pittsburgh, PA, USA: Carnegie-Mellon University.

Polozov, O., & Gulwani, S. (2014). Laseweb: Automating search strategies over semi-
structured web data. In Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (pp. 741–750).

Powers, K., Ecott, S., & Hirshfield, L. M. (2007). Through the looking glass: Teaching
CS0 with Alice. ACM SIGCSE Bulletin, 39(1), 213–217.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., & Brennan.
(2009). Scratch: Programming for all. Communications of the ACM, 52(11),
60–67.

Roget. (1982). Roget’s Thesaurus. Longman Group.
Singh, R., Gulwani, S., & Solar-Lezama, A. (2013). Automated feedback generation for

40

introductory programming assignments. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation (pp. 15–26).
New York, NY, USA: ACM.

Smith, D. C., Cypher, A., & Spohrer, J. (1994, July). KidSim: Programming agents
without a programming language. Communications of the ACM, 37(7), 54–67.

Vlas, R. E., & Robinson, W. N. (2011). A rule-based natural language technique for
requirements discovery and classification in open-source software development
projects. In Proceedings of the 44th Hawaii International Conference on System
Sciences (HICSS) (pp. 1–10). IEEE Computer Society.

Waldinger, R. J., & Lee, R. C. T. (1969). PROW: a step toward automatic program writing.
In D. E. Walker & L. M. Norton (Eds.), Proceedings of the 1st International Joint
Conference on Artificial Intelligence, IJCAI (pp. 241–252). Morgan Kaufmann.

Weizenbaum, J. (1966). ELIZA—A computer program for the study of natural language
communication between man and machine. Communications of the ACM.

Yuana, R. A., Faisal, M., Pangestu, D., & Putri, Y. R. L. (2015). Math thematic learning
through the introduction of basic science-based programming games virtual robot
for high school students. Advanced Science Letters, 21(7), 2235–2238.

41

