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Abstract—With the emergence of GPUs as first-class compute
engines, more concentrated focus has been put into covert and
side channel discovery in these architectures. However, most of
the covert and side channels uncovered on GPUs to date are
rooted in “GPU cores”, which include computational cores, cache
and core interconnects, but they do not consider ‘“GPU uncore”,
which include non-computational engines, GPU DRAM, host-
GPU links and inter-GPU links.

In this paper, we delve into the less-explored domains of
GPU uncore, unveiling four novel leakage sources for covert and
side channel exploitation: (1) GPU DRAM frequency scaling;
(2) NVENC utilization; (3) NVDEC utilization; (4) NVJPEG
utilization. What makes these covert and side channels interesting
is that they all take effect under the GPU MPS mode -
which fractionalizes GPU cores and GPU memory on both
desktop-scale and server-scale GPUs. Furthermore, our study
reevaluates PCI-e bandwidth allocation on GPUs. Notably, we
have engineered covert and side channel capable of bypassing
GPU MIG isolation — a mechanism implemented by NVIDIA to
physically segregate hardware resources on server-scale GPUs.
Our research showcases concrete examples of these covert and
side channels, highlighting their potency in breaching system
security, all achieved without necessitating root privileges. This
underscores the practical implications and urgency of addressing
these vulnerabilities in GPU architectures.

Index Terms—Side channel leakage, GPU, MPS, MIG, video
encoder, video decoder

I. INTRODUCTION

As a Single-Instruction-Multiple-Threads (SIMT) processor
optimized for throughput-sensitive tasks, GPUs have already
demonstrated performance superiority across numerous
application domains. In fact, from small mobile devices to
large data centers, GPUs have proven to be both essential and
irreplaceable. Originally designed for graphics processing, the
parallel architecture of a GPU enables it to simultaneously
process millions of pixels, resulting in vivid and life-like visual
experiences. GPUs have also emerged as the backbone of
modern machine learning (ML) ecosystems, particularly with
the rapid expansion of ML models, algorithms, and datasets.
In particular, deep learning algorithms rely heavily on the
massive parallel processing capabilities of GPUs to train large
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neural networks and provide speedy and accurate inference
results for users.

With the advent of GPUs, vulnerabilities on these powerful
and widely-used compute engines require more attention, so as
to prevent costly errors and faults. Among the vulnerabilities,
“side channels” and ‘“covert channels” stand out, as these
unintended information channels cannot be simply mitigated
by adding software patches. Such vulnerabilities root from
the intrinsic design patterns in architecture — sharing different
device components among different processes to maximize
device utilization and throughput. Side channels and covert
channels utilize the information such as time [23], [41],
[64], [89], temperature [61], electromagnetism [59], [90], and
acoustics [22] that are unintentionally leaked. Side channels
are built by attacker to steal secrets on victim, and they
usually rely on the “gadgets” in victim code that has secret-
dependent footprint on microarchitecture. Contrasting with
side channels, a covert channel is built by a “sender-receiver”
pair to transmit information secretly across the system. A
lot of efforts from both academia and industry have been
put into discovering [23], [40], [41], [44], [50], [54], [57],
[68], [75], [82], [83], [86], [89] and/or mitigating [24],
[55], [56], [60], [63], [71], [87] side channels and covert
channels on CPUs. Compared to CPUs, GPUs, particularly
those manufactured by NVIDIA, do not have as many
open-source documents, preventing themselves from being
studied thoroughly for potential information leakage channels.
However, with GPUs gaining popularity and widespread usage
in different application domains, the GPU-based side channels
and covert channels certainly deserve more research.

Motivated by the observations above, in this paper, we
focus on GPU covert and side channels. Previous work has
studied the insufficient isolation that gives rise to covert
channels on shared memories [47], caches [46], [64], [65] and
interconnects [20], [38] in GPUs. However, there are further
areas of concern in GPUs, especially in the “uncore” part,
which excludes the CUDA engine (with cache) but includes
GPU DRAM, video decoding/encoding engines, JPEG image



processing engines, as well as the copy engines that transfer
data via the PCle links between the GPU and the other
compute engines/memories in the system, etc.

Thus, we explore covert and side channels on the NVIDIA
“GPU uncore” and discover new sources of leakage in GPU
hardware. The covert and side channels can be built between
two processes on the same desktop GPU or even between
two isolated instances on the same server GPU with the most
strict isolation guarantee on NVIDIA GPU - MIG (Multi-
Instance GPU) mode [8]. Below are the leakage sources we
have identified:

GPU DRAM. Researchers have explored side channels and
covert channels on DRAM, which take advantage of GPU bank
conflicts [46], [85] and row buffers [68]. The threats posed
by these channels can be mitigated by partitioning DRAM
between users or employing a closed-row policy [33], [73],
[85]. While DRAM partitioning seems to be a promising
solution to covert and side channel attacks, our work leverages
“frequency scaling” to build a new covert channel via GPU
DRAM, to challenge the partition-based mitigation.

NVENC, NVDEC and NVJPEG. To the best of our
knowledge, this work is the first to explore covert and side
channels on GPU video/image encoding/decoding engines. As
custom hardware for media processing related tasks, NVENC,
NVDEC and NVIJPEG are implemented in both desktop
GPUs and server GPUs. Through our experiments, we have
surprisingly found that such encoding/decoding engines are
not partitioned even with the MPS mode [9] on. We exploit
user-mode APIs (root access is not required) from the NVML
library [14] provided by NVIDIA to study the factors that
affect the utilization of the encoder/decoder. Capitalizing on
those factors, we next build “utilization-based” covert and side
channels in NVENC, NVDEC and NVJPEG on desktop GPUs
and server GPUs when operating under the MPS mode [9].

PCIl-e Bus 1/0. A discrete GPU is installed in the
system via a PCI-e slot on a motherboard, which enables it
to communicate with CPU/memory through the PCI-e bus.
Previous works [78], [79] have studied how to build PCl-e
bus based covert channels that enable secret communication
between GPU and RDMA NIC and between GPU VMs. This
work further explores how to build a PCI-e bus based covert
channel between GPU instances under the MIG mode [8].
MIG is a mode in server-class GPUs which partitions
GPU into multiple “GPU instances”, each owning isolated
computing/memory paths and engines. By our PCI-e bus
based covert channel for GPU instances, we enable a secret
communication channel even between the MIG instances, thus
further challenging the MIG isolation guarantees [92].

Summary of Our Contributions. We explore various
characteristics of NVIDIA GPU uncore and exploit them to
establish new covert and side channels that can bypass the
MPS isolation guarantee and even the MIG isolation guarantee
in certain cases.

e We investigate GPU DRAM frequency scaling, including
how to trigger a “frequency” increase and how to lower
frequency as soon as possible. We develop a method for

exploiting the GPU DRAM frequency to build covert channels,
which can bypass the existing partition-based mitigation
strategies.

e We study various factors that affect the “utilization
rate” in GPU components such as NVENC, NVDEC, and
NVIJPEG. By controlling such factors, we then build covert
and side channels in these hardware engines. To the best of
our knowledge, this paper is the first study that explores the
potential covert and side channels in NVIDIA encoder/decoder
engines.

e We discover that PCI-e I/O that enables communication
between GPU and CPU/main memory is dynamically shared
across GPU MIG instances, which enables new covert and side
channel under the GPU MIG mode.

Responsible Disclosure. We disclosed our findings to
NVIDIA in February 2024, and they acknowledged receipt
of the information.

II. BACKGROUND
A. NVIDIA GPU Architecture
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Fig. 1: A representative NVIDIA GPU architecture.

Fig. 1 shows a typical NVIDIA GPU architecture. In terms
of functionality, a GPU can be divided into “compute units”,
“memory units”, and “special engines”’. Compute units, like
CUDA engines in NVIDIA GPUs, are composed of SMs
(Streaming Multiprocessors), and each SM supports 32 threads
that can execute in parallel. The CUDA engine works in an
SIMT (Single Instruction, Multiple Threads) fashion, which
highly benefits throughput-sensitive programs. SMs can be
grouped into GPCs (Graphics Processing Clusters), and there
are typically multiple GPCs in a CUDA engine.

Memory units consist of L2 cache banks and GPU DRAM.
Different from register files, L1 cache and shared memory
that are placed into SMs, L2 cache banks are connected to
the CUDA engine via a crossbar in the GPU. The other
side of L2 cache bank is lined to GPU DRAM. GPU
DRAM can be of different types of memory technologies:
DDR memory, usually for desktop-class GPUs, and HBM
(High Bandwidth Memory), which offers significantly higher
memory bandwidth and lower power consumption for server-
class GPUs. We want to emphasize that the DRAM in the
NVIDIA GPU does not share the same clock with the CUDA
engine; i.e., they are in different “frequency domains”.

GPUs also have special-purpose engines, including copy
engines, video decoding/encoding engines [12], and JPEG
processing engines [10]. A copy engine is used to move data
between the GPU and the main memory in the system (not the
GPU DRAM). The copy engine usually employs the DMA



(Direct Memory Access) technology without involving the
CPU for every transfer operation. Video decoding/encoding
engines (NVDEC/NVENC) are specific hardware units in
the NVIDIA GPUs tasked with decoding/encoding video.
Finallyy, NVJPEG is an engine employed to facilitate
decoding/encoding images in the JPEG format. Note that
NVIPEG hardware is currently only implemented in A100,
A30, and H100 systems.

A GPU is installed on the PCI-e slot of the motherboard
and thus communicates with the system via the PCI-e bus.

B. MPS and MIG Modes in NVIDIA GPUs

MPS (Multi-Process Service) [9] is a feature provided
by NVIDIA GPUs that allows multiple CUDA processes
to share a single GPU. This capability enhances resource
utilization and efficiency in scenarios where multiple processes
are requesting GPU concurrently. By dividing SMs (streaming
multiprocessors) and memory among the concurrent processes
uniformly or non-uniformly, MPS enables each CUDA process
to utilize a portion of the GPU’s computational capabilities.
The division is logical — as opposed to physical — in that the
same process is not necessarily pinned into the same set of
SMs and memory banks during its entire execution, as long
as the utilization of SMs and memory of that process does not
exceed its pre-set limits. Note however that, under the MPS
mode, the scheduling hardware, memory bandwidth, caches,
and engines still remain shared among the MPS clients.

MIG (Multi-Instance GPU) [8] is only supported in server-
class GPUs beginning with the Ampere generation. MIG is
a feature that enables the physical partitioning of a single
GPU into multiple independent “instances”. Each instance
has its dedicated portion of GPU resources, such as CUDA
cores, L2 cache banks, memory address bus and various
engines, including the copy engine and the video/image
encoding/decoding engine. Note that MIG highly improves
“isolation” (compared to MPS) and makes most of potential
covert channels and side channels in GPUs difficult to
implement.

To conclude, MIG provides more strict isolation than MPS
in that MIG physically partitions SMs, memory, crossbar and
engines, whereas MPS only logically divides SMs and memory
by configured percentages.

C. Dynamic Voltage and Frequency Scaling

DVES, short for dynamic voltage and frequency scaling,
is a well-known technique used in computer systems to
optimize power consumption and performance by adjusting
the voltage and frequency of the system dynamically. DVFS
is broadly used in processors to strike a balance between
energy efficiency and computational performance [49], [53].
DVES can also be used in memories and interconnects to
avoid unnecessary power consumption [32]. In GPUs, there
are separate clocks that control the frequency of compute
units (CUDA cores), system engine and DRAM separately,
and consequently, DVFS can be applied in places/locations
other than main compute units.

D. NVIDIA Video and Image Processing Engines

Images and videos of high quality usually take a
large storage space in their raw formats. Thus, image
compression and video compression techniques (codec) have
been proposed. Today’s video codecs, such as HEVC [26],
H.264 [81] and AV1 [2], leverages spatial and temporal
similarity of consecutive frames for higher compression ratios.
While there exist software libraries that enable performing
encoding and decoding in CPUs, it is more efficient to offload
these tasks to “specialized hardware units” so that the CPU is
free to respond to other operations. Following the same idea,
NVIDIA introduced a specific hardware for both image and
video coding. NVJPEG [10] is the unit for JPEG-format image
encoding/decoding, available in server-class GPUs like A100,
A30, and H100. Starting with the Kepler series, NVIDIA
GPUs are equipped with hardware NVENC for encoding
videos and NVDEC for decoding videos [12], supporting
processing up to 8K resolution 60fps videos at real-time
speed. Although the latest NVIDIA Ada series GPUs support
processing AV1 videos in both NVENC and NVDEC, AV1
codec is a very new standard and is not supported, at the
time of this writing, by other hardware encoders and decoders.
Hence, we will not consider it further in this study.

E. PCle Bus between CPU/Memory and GPU

PCle, short for Peripheral Component Interconnect Express,
is a high-speed serial computer expansion bus standard.
It serves as a crucial component in modern architectures,
facilitating the connection and communication among various
hardware components within a computer system. Specifically,
CPU/memory and discrete GPU are connected via a PCle
bus, which enables high speed communication between them.
GPUs also have copy engines that perform DMA operations
to send/receive data to/from main memory in the system, and
data is transmitted through the PCle bus.

F. Cotenants in a GPU system

The number of cotenants in GPU systems can vary widely
depending on the application and context. In high-performance
computing (HPC) and data center environments, GPUs are
often shared among multiple users or applications, with the
number of cotenants ranging from a few to several dozens,
managed by sophisticated resource allocation systems. Cloud
service providers like AWS, Google Cloud, and Azure also
enable multiple users to share GPU instances, leveraging some
scalable infrastructure to accommodate substantial cotenancy.
In virtual desktop infrastructure (VDI) setups, a single GPU
can typically support 10 to 30 users [7], [18], depending
on the workload intensity and GPU capabilities. For Al and
machine learning applications, training clusters might share
GPUs among several dozen jobs, while inference services
often support multiple models concurrently [27]. Enterprise
workstations using technologies like NVIDIA’s vGPU can
share a GPU among 4 to 16 users [11], and potentially
more, depending on the workload and GPU specifications.
These variations highlight the flexibility of GPU sharing across



different environments and applications and lay the basis for
covert channels and side channels on GPUs.

III. CHARACTERIZATION

This section presents the factors that influence GPU DRAM
frequency, utilization of encoder and decoder, and also PCle
bandwidth. Our finding in this section is the base for
establishing corresponding covert channels and side channels.

A. DRAM Frequency

Below, we discuss our discovery regarding the GPU DRAM
frequency scaling covert channels. The configuration of the
GPU used in this study is described in Table I. All our
experiments are performed under the MPS mode.

TABLE I: GPU configuration (Desktop).

NVIDIA GeForce RTX 3080
GDDR6X 10GB
530.41.03
12.1

GPU Architecture
GPU Memory
Driver Version
Cuda Version

With GPU GeForce RTX 3080 [5], there are 5 possible GPU
DRAM frequencies:

GPU DRAM frequency (MHz)
405 | 810 | 5001 | 9251 | 9501

When the GPU is idle, the GPU DRAM frequency sticks
to 405 MHz. We refer to this frequency at 405 MHz (in the
GPU DRAM) as the “idle frequency”. With the MPS mode,
GPU DRAM frequency will not go to 9501 MHz (the highest
available frequency), but to 9251 MHz. We define 9251 MHz
as “high frequency” in this paper.

To study the factors that trigger GPU DRAM frequency
changes, we launch two processes at the same time. The
first process (named ‘“caller”) executes CUDA kernels,
and the second process (called ‘“checker”) checks the
GPU DRAM frequency periodically (with a constant
interval). In the checker, we use a user-mode function
call from the NVML [14] library': nvmlReturn_t
nvmlDeviceGetClockInfo (nvmlDevice_t
device, nvmlClockType_t type, unsigned
intx clock ). By setting the second parameter to
NVML_CLOCK_MEM, the function outputs the current GPU
DRAM frequency clock.

Starting from an empty kernel, we have noticed that, even
when the kernel is empty, the GPU DRAM frequency will
increase. It will not drop back to idle frequency during the
execution of the kernel. As a result, the duration of high
frequency is dependent on the duration of kernel. However,
the ending of a kernel will not decrease the frequency
immediately. Moreover, if the interval between two kernels
is too short, there will be no observed frequency drop.

Clearly, it is important to study how to control frequency,
in order to encode “secrets” in a covert channel. As the

INVML provides an interface for monitoring and managing various states
within NVIDIA GPUs.

kernel execution time is not easily controllable, we design our
methods based on the observation that: if the interval between
kernels is too short, the frequency will not drop to the idle
frequency. Thus, we set the caller as the program below:

Listing 1: Encoding ITERS into high frequency length.

__global__ void empty_kernel(){} //EMPTY

int main () {
for (int i = 0; 1 < ITERS; ++i) {
empty_kernel<<<l,1>>>();
sleep (INTERVAL) ;

We launch experiments to determine if, given a specific
INTERVAL, the time length of high frequency is good enough
to encode ITERS. Our results are plotted in Fig. 2. In Fig. 2a,
we have INTERVAL set to be 500 ms and vary ITERS from
1 to 10. For each value of ITERS, we run the experiments
with the caller above and the frequency checker for multiple
times. We retrieve the duration of high frequency for each
trial. We then calculate the mean, median, 25%~75% percentile
range and 1%799% percentile range of high frequency time in
those trials. The same method is used to gather information
for INTERVAL = 1s (Fig. 2b), INTERVAL = 2s (Fig. 2¢)
and INTERVAL = 4s (Fig. 2d). As the value of INTERVAL
grows, it becomes easier to distinguish the high frequency
length into different ITERS groups.
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Fig. 2: The time length of high frequency with different values
of INTERVAL. Each figure shows the mean, median, 25%
~ 75% percentile, and 1% ~ 99% percentile range of high
frequency duration for ITERS set from 1 to 10.




Takeaway-1: The duration of high frequency is
controllable by launching kernels and setting a short
interval in between. High frequency time length can
be used to encode information. Further, the longer the
interval, the lower the error rate.

Apart from controlling the length of high frequency, it is
also critical to control the frequency of the GPU DRAM to
make sure that it drops to its idle frequency value. We found
that the GPU DRAM frequency will not drop immediately
when a kernel finishes, as stated earlier. However, with CUDA
API cudaDeviceReset, the waiting time for frequency
drop is shortened, that is, this API destroys all allocations and
resets all states, including frequency on the current device [3].
Note that our measuring process (“checker”) does not launch
any kernels but only checks GPU frequency, hence, will not
get terminated by cudaDeviceReset.

B. Encoder
NVIDIA GPUs have dedicated hardware support
for efficient compression — NVENC. The compute-

intensive video encoding task thus gets offloaded from
the CPU to this dedicated engine in the GPU. We use
ffmpeg to encode a video and monitor the utilization
of NVENC by the user-mode API nvmlReturn_t
nvmlDeviceGetEncoderUtilization

( nvmlDevice_t device, unsigned

intx utilization, unsigned intx
samplingPeriodUs ) from the NVML [14] library.
The NVENC utilizations of two workloads (large and small)
with two standards (H.264 and HEVC) are given in Fig. 3.
The details of the large and small workloads are shown in
Table II.

TABLE II: “Large” and “Small” workloads.

Large Small
Resolution 3840 x 2160 | 384 x 216
Original Bit Rate 5 Mbps 300 Kbps
Target Bit Rate 1 Mbps 100 Kbps
Frame Rate 25 Fps 25 Fps
NVENC Utilization over Time NVENC Utilization over Time
O Mmeteconas R M-S
(a) large (b) small

Fig. 3: NVENC utilization with two workloads (Large and
Small).

With the large workload, the H.264 and HEVC standards
both bring the utilization to 100% almost immediately
(Fig. 3a) and hold it there until the end of the encoding task.

This result means that NVENC uses its full bandwidth to
handle the tasks. With the small workload on the other hand,
the NVENC utilization does not achieve 100% and the peak
time is very short (Fig. 3b). The main reason for this behavior
is that the small workload ends very quickly, and it does not
have the chance to saturate NVENC during its processing time.

To figure out what factors influence the full utilization
duration, we modify the frame rate, video length, resolution
weight, and resolution height of the video separately. We
collect the NVENC utilization data when encoding those
modified videos. We have found that NVENC full utilization
duration is linear with the frame rate, video length, resolution
width (W), and resolution height (H).

Duration < frame_rate x video_length x W x H (1)

Takeaway-2: NVENC uses its full bandwidth to
handle encoding tasks. However, if the workload is
too small to saturate NVENC, a less than 100%
utilization can be observed. The duration of NVENC
full utilization is linear with frame rate, video length,
resolution width, and resolution height.

We next explore how multiple processes are handled in
NVENC by launching multiple encoding tasks together. In our
experiments, each task is the same with the large workload in
Table II, and we vary the count of tasks. When two tasks are
launched together, the time duration for those two tasks both
doubles, compared with only one task launched, indicating that
the tasks are being processed together. As the number of tasks
grows, the latency of each task slows down but remains close
to others. Hence, we draw the conclusion that the encoding
tasks are being processed simultaneously. There is a limit on
the number of concurrent encoding sessions [13]. When this
limit is reached, no more encoding tasks are accepted.

C. Decoder

NVDEC is a decoder embedded in NVIDIA
GPUs, responsible for executing video decoding
tasks [4]. It effectively relieves the CPU from the
burden of performing resource-intensive  decoding

computations. We use user-mode API nvmlReturn_t
nvmlDeviceGetDecoderUtilization

( nvmlDevice_t device, unsigned

intx utilization, unsigned intx
samplingPeriodUs ) from the NVML [14] library to
get utilization statistics for NVDEC. In the experiments, we
have videos played by the VLC media player [19], which is
a free and open-source cross-platform multimedia player and
framework. We monitor the utilization of NVDEC.

We have copies of the same video but with different
resolutions, encoding standards and frame rates. We have
them played, and gather NVDEC utilization. One example is
illustrated in Fig. 4.
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Fig. 4: The NVDEC utilizations are different when playing
videos of same content but with different encoding standard,
resolution and frame rate.

Takeaway-3: Encoding standards as well as video
characteristics such as resolution and frame rate
collectively contribute to the differences in NVDEC
utilization.

Apart from playing videos to trigger NVDEC into its usage,
we can also use the supported video processing APIs [1]
to make NVDEC busy. TorchAudio provides the class
torchaudio.io.StreamReader to fetch and decode
audio/video streams chunk by chunk. Method £1i11_buffer
processes packets and adds chunks to the buffers in hardware.
If the buffers are full, the pending frames are flushed. Method
pop_chunks pops one chunk from all the buffers. We use
the code in Listing 2 to study the relationship between the
NVDEC utilization and the times that a stream buffer is filled
(CHUNK_NUM in the code). To avoid frames being flushed, we
add a call to pop_chunks after each call to fi11_buffer.

Over time, the NVDEC utilization can be non-zero for a
while. We define “NVDEC usage” as the sum of all non-zero
utilization. In the experiments, we find that the NVDEC usage
is linear with CHUNK_NUM (Fig. 5a).

Listing 2: Using “torchaudio” to decode video.

s = StreamReader (src) # src is mp4 video
s.add_video_stream/()
for i in range (0, CHUNK_NUM) :
s.fill_buffer ()
(video,) = s.pop_chunks ()

Takeaway-4: The NVDEC usage over time correlates
with the number of times that a stream buffer is filled.

NVDEC Utilization Sum NVJPEG Usage

Utilization Sum (%)
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(a) NVDEC usage with varied (b) The NVIJPEG usage with
”CHUNK_NUM”. varied number of images.

Fig. 5: Fine-control of NVDEC and NVJPEG usage.
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D. NVJIPEG

In addition to the engines that provide hardware support
for video processing, NVIDIA also accommodates specific
hardware for JPEG processing — NVJPEG, in its server-class
GPUs. We performed experiments in an NVIDIA A100 [27]
with the settings in Table III, to study the utilization of this
NVIPEG engine.

TABLE III: GPU configuration (Server)

GPU Architecture | NVIDIA A100-SXM4-80GB
Driver Version 535.129.03
Cuda Version 12.2
We use the user-mode API nvmlReturn_t

nvmlDeviceGetJpgUtilization ( nvmlDevice_t
device, unsigned intx utilization,
unsigned int* samplingPeriodUs ) from the
NVML [14] library to collect the utilization data for NVJPEG
over time. Similar to the NVDEC usage, we also check
NVIJPEG every 200 ms and compute the overall usage by
summing up non-zero utilization values. We vary the number
of images being processed by NVIJPEG (the images were
identical), and gather the usage statistics of NVJPEG. Fig. 5b
reveals that the NVJPEG usage is linear with the number of
images being processed.

Takeaway-5: The NVJPEG usage is linear with the
number of images processed by NVJPEG.

E. PCIl-e Bandwidth

As stated earlier, with MIG (Multi-Instance GPU), each
instance’s processors have separate and isolated paths through
the entire memory system. The on-chip crossbar ports, L2
cache banks, memory controllers, and DRAM address buses
are all uniquely assigned to individual instances [8]. However,
the PCI-e bus that connects the GPU and CPU/memory is not
isolated among GPU instances.

To confirm the hypothesis above, we enable the MIG
mode on the GPU with the setting given in Table III and
have the GPU partitioned into 7 1g.10gb instances. In
the following experiment, we copy data from CPU to GPU
instance 0. Meanwhile, we have some of the other GPU



instances executing the same copy tasks, and time the latency
for data transfer on GPU instance 0. Fig. 6 plots the latency
in MIG instance 0 with the total number of working instances
(having the copy task) varying from 1 to 7. The figure
demonstrates that the MIG mode does not statically partition
the PCI-e bandwidth among the MIG instances. As a result,
the latency in MIG instance O is largely linear to the number
of working instances.

Data Transfer Latency

1200

1000

Time (ms)

600

400

1 6 7

2 3 4 5
Number of Working Instances

Fig. 6: Latency for data transfer from CPU to GPU.

Takeaway-6: PCI-e bandwidth is not partitioned and
statically assigned to MIG instances. Consequently,
the PCl-e traffic of one MIG instance can interfere
with that of another.

IV. COVERT CHANNELS

We now explain how to leverage the findings detailed in
Section III to build different covert channels in NVIDIA
GPUs.

Threat Models: (1) For covert channels based on GDF,
NVENC, NVDEC and NVIJPEG, sender and receiver are
processes on the same GPU that implements the corresponding
function (GPU DRAM frequency scaling) or hardware
(decoder and encoder). The GPU is in the MPS mode. (2)
For covert channels based on PCle bus, sender and receiver
are two processes on the same GPU in the MIG mode. Sender
and receiver are in different GPU MIG instances. Root access
is not required in both the cases.

A. GDF-Based Covert Channel

The GPU DRAM frequency can be used as a signal to
convey information between the sender and the receiver. The
advantage of this frequency-based covert channel is that it can
bypass any partitioning-based (time and space) mitigation.

To build a covert channel by the duration of high frequency,
the sender controls the duration by the code given in Listing 1.
In the following example, the sender tries to send the word
“cat” in ASCII format. The sender breaks the 7-bit ASCII
code into 3 bits + 4 bits; hence, each letter will be transmitted
by two high frequency peaks. In this example, the sender
sets INTERVAL = 1 second in Listing 1. The sender is
then ready to send “cat” by setting ITERS to “6, 3, 6,
I, 7, 47 in sequence and adding the cudaDeviceReset
call between every two numbers to reset the frequency. The
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receiver then observes the GPU DRAM frequency shown in
Fig. 7a. Comparing the duration of each peak with the y
values in Fig. 2b, the receiver then decodes the high frequency
duration into ITERS, which is the information transmitted by
the sender. The bit rate under this attack is 0.5 bit/s.

B. Encoder-Based Covert Channel

In our experiments, we use small NVENC task with
specification in in Table II to transmit information. The small
NVENC task is launched when it is a bit 1, otherwise simply
waits (sleeps) for a fixed period of time (2 seconds in our
example). Fig. 7b shows the NVENC utilization observed by
the receiver, when the sender is sending ASCII representation
of ”cat”. The bit rate under this attack is 0.5 bit/s.

C. Decoder-Based Covert Channel

In this case, sender can encode information either to 1
and 0 by non-zero and zero utilization separately, or encode
information into the duration of non-zero utilization. Apart
from the above mentioned methods, we can also fine-tune the
NVDEC utilization by supported video processing APIs, and
use the NVDEC usage to encode information. From Fig. 5a,
we obtain the linear function y = 1.21x + 1.47 between the
NVDEC usage (y) and CHUNK_NUM (x), with our settings.

In our example, the sender decides to send the sequence
of (6,1,6,14,6,4). The sender encodes the value of each part
into CHUNK_NUM (Listing 2). To improve accuracy, we set
CHUNK_NUM = value X 9.

The receiver checks the NVDEC utilization every 200 ms.
Fig. 8a shows the NVDEC utilization observed by the receiver.
The receiver then calculates the NVDEC usage by summing up
the utilization for each peak. Table IV shows the corresponding
x and the closest integer to x/5 when setting the NVDEC
usage for each peak as y, with the function y = 1.21z 4 1.47.
As a result, receiver decodes the signal of NVDEC usage into
“and”. The bit rate under this attack is 2 bit/s.

D. NVJPEG-Based Covert Channel

To build a covert channel via NVJPEG, we control “size
of workload”, i.e., the number of images being processed. We
get the function of y = 0.13x — 0.02 from Fig. 5b by linear
regression. Here, y represents the NVJPEG usage (summing



TABLE IV: z and closest integer to x/5 with function y =
1.21x 4 1.47 and y.
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Fig. 8: Examples of usage-based covert channel in NVDEC
and NVJPEG.

up the utilization within each peak duration; the utilization is
checked every 200 ms) and x represents the number of images.

We use the same method in Section IV-C to send
(7,1,7,5,6,14) and gather NVJPEG usage. For lower error rate,
sender processes value X 40 images for each value. The
results are plotted in Fig. 8b. The bit rate under this attack is
2 bit/s.

E. PCle-based Covert Channel

The PCle-based covert channel can be used to convey
message even under the MIG mode, which physically
partitions the compute engines and memory system into
multiple instances. Section III-E demonstrates that even when
each instance has its own copy engine, the PCle bandwidth
between CPU and GPU is not partitioned, thus giving rise
to a covert channel. The receiver can use the user-mode API
nvmlReturn_t nvmlDeviceGetPcieThroughput (
nvmlDevice_t device, nvmlPcieUtilCounter_t
counter, unsigned intx value ) to check the
PClIe throughput, like other covert channels discussed above.
This function queries a byte counter over a 20ms internal and
retrieves the PCle throughput over that interval. However, this
function cannot provide a very high covert channel bandwidth
due to the relatively low checking frequency. As a result, we
employ an approach similar to that described in [78] to build
our covert channel. To transmit ’1°, sender copies a fixed block
(S bytes) of data from host to device. To transmit *0’, sender
executes K nop operations. In the same time, receiver keeps
copying a fixed block (R bytes) of data from host to device
and measuring the latency. Fig. 9 shows an example in which
the receiver decodes the latency into sequence of 0-1.

We gather the error rates with different S/R/K settings,
shown in Table V.

V. SIDE CHANNELS

In this section, we demonstrate side channel attacks
exploiting NVDEC and NVIJPEG that are feasible under the
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Fig. 9: Example: Latency of the receiver when the sender is
sending a 0-1 sequence.

TABLE V: Error rates.

S-R-K Bandwidth | Error Rate
64MB-1MB-1e7 93bps 0.022
8MB-64KB-6¢5 1.5kbps 0.031
2MB-16KB-2e5 6.8kbps 0.033

MPS mode. We also demonstrate a side channel attack that
breaks MIG isolation, by exploiting PCI-e sharing. These
attacks do not require root access.

A. Video-Contained Website Fingerprints

Putting videos (featured embedded videos and ads videos)
on websites is becoming increasingly popular [17]. Videos
are transmitted in an encoded format, and hence they require
decoding by the user-end.

Leakage Source. Fig. 10 shows the parser-decoder-
renderer-display pipeline [4] that efficiently processes
video playback across different hardware components. The
lightweight CPU-based parser extracts the frame data and
metadata from the encoded bitstream. NVDEC then handles
the decoder work, converting compressed video streams into
raw frames. The renderer work is managed by the Streaming
Multiprocessors (SMs) on the GPU, performing tasks such
as scaling, color correction, overlay, and post-processing to
prepare the frames for display. Finally, the display stage sends
the prepared frames to the screen.

As shown in Section III-C, the utilization, over time, of
the NVIDIA hardware decoder NVDEC is dependent on
multiple video characteristics such as “resolution” and “frame
rate”. Therefore, videos on websites provide an additional
avenue for website “fingerprints”, by the NVDEC utilization
trace. Because NVDEC operates independently from SM, it
can perform video decoding tasks concurrently with other
GPU tasks, such as rendering, without directly competing
for the same compute resources. Although there is indirect
competition for resources such as GPU DRAM and PCle
bandwidth, their usage does not approach their limits during
our experiments below. This is primarily because the website-
autoplayed videos typically have low resolution and low
frame rate. Therefore, we can exclude the possibility that the
rendering stage is influencing our results.

In this attack, the victim browses a website containing auto-
played videos (ads, theme videos etc.), and the attacker aims
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Fig. 10: Video parser-decoder-renderer-display pipeline.

to determine which website victim is browsing by analyzing
the trace of the NVDEC utilization.

Attack Model. Website fingerprint attacks can be classified
into two categories, namely, web-based and app-based [30].
A web-based attack is triggered when the victim clicks on
a malicious page. Following this, a malicious code (e.g.,
JavaScript) gets executed in the sandbox environment of the
browser. Note that such web-based attack is limited by the
permissions assigned to JavaScript. An app-based attack, on
the other hand, can use a malicious program or application
that co-exists with the victim in the same system. In contrast
to a web-based attacker, an app-based attacker is not confined
to using only JavaScript. They have access to the operating
system’s API, enabling them to gather more traces. In this
work, we consider app-based attackers who have no root
access; this is similar to the attackers modeled in the previous
works [35], [43], [44], [65], [80]. The attacker uses the user-
mode API to gather the trace. Note that this attack is feasible
under the GPU MPS mode.

Method and Result. A method similar to the existing
work [44], [83] on fingerprinting can be employed on video-
autoplayed website. Firstly, after gathering the traces on the
NVDEC utilization, the attacker calls the same API from the
NVML library to check the utilization for a set of candidate
websites. Secondly, with the traces and their labels (website
urls), the attacker trains an RNN classifier. Fig. 11 shows
four examples of the collected traces. We use Google Chrome
as our browser, and the experiments are performed with
Windows 11. We gather 600 traces from 40 popular [15] video-
containing websites, and train with ATT-BLSTM (Attention-
based Bidirectional Long Short-Term Memory [94]), which
has also been employed by the previous time-series-based
fingerprint attacks [44], [83]. By leveraging the attention
mechanism and bidirectional LSTM layers, the ATT-BLSTM
model can effectively capture complex temporal dependencies
and provide accurate predictions or detections in time series
analysis tasks. Each trace is 60 seconds long, with a utilization
check every 200 ms. The entire data gathering process takes
10 hours, while the model training takes approximately 3
minutes. The classification accuracy is 89.17%, with the hyper-
parameters shown in Table VI.

TABLE VI: Hyper-parameters of ATT-BLSTM for website
fingerprinting.

input length | hidden units | dropout rate | batch size
30 | 6 | 02 | 16

Combined with other work. By adding a new
leakage resource into the attacking vectors, our work makes
fingerprinting attacks more concerning. Through ensemble
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Fig. 11: The NVDEC utilization traces captured while the
victim is accessing different websites.

multi-modal learning, which combines the trained models
together, we improve the accuracy of the website fingerprinting
attack.

We combine the work presented in [65] with our
fingerprinting attack. In this case, for each website, we
gather two kinds of traces: one is the memory allocation
size, and the other is the NVDEC utilization. We gather
traces from the same 40 websites. We visit each website
for 15 times and gather a 60-second-trace for each visit.
We apply the RandomForest model to the 600 traces of
memory allocation size and get 93.0% classification accuracy,
which is slightly higher than the figure reported in the
original paper [65], mainly owing to our smaller websites
set. We combine the results of two separately trained models
— RandomForest (memory allocation size) and ATT-BLSTM
(NVDEC utilization) — into feature vectors, and train a new
model (a meta-learner) using these combined features to
improve performance, as illustrated in Fig. 12. Our meta-
learner improves the accuracy to 98.3%.
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Fig. 12: The framework of our method that combine memory
allocation trace and NVDEC utilization trace together to
improve accuracy.

Comparison. Table VII gives a comprehensive comparison
of popular architecture and micro-architecture based website



TABLE VII: Comparison of (micro)architecture-based fingerprinting attacks.
Processor Leakage Source Attacker Style | # of Websites | Accuracy (%) | Sampling Rate (Hz)
Oren et al. [66] CPU LLC Occupancy Web-based 8 88.6 500
Shusterman et al. [76] CPU LLC Occupancy Web-based 100 87.5 345
Shusterman et al. [77] CPU LLC Occupancy Web-based 100 80.0 500
Cook et al. [29] CPU Interrupts Web-based 100 9251 10000
Gulmezoglu et al. [43] CPU Performance counters App-based 40 86.30 10000
Dipta et al. [35] CPU Core Frequency Scaling App-based 100 97.6 100
Guo et al. [44] CPU Uncore Frequency Scaling App-based 100 82.18 333
Ferguson et al. [39] iGPU LLC Occupancy Web-based 100 90.6 50
Taneja et al. [80] iGPU Core Frequency App-based 100 27 10
Naghibijouybari et al. [65] GPU GPU Memory Allocation App-based 200 90.04 16000
NVDEC-based GPU NVDEC Utilization App-based 40 89.17 5
Combined GPU Mem Alloc + NVDEC Util. App-based 40 98.33 16000
! Tested on Windows with Chrome
fingerprints attacks. Our NVDEC-.based attack exploits a brand . NVDEC Utilization over Time
new leakage source and proves itself to be among the most
accurate technique. In fact, our method of combining GPU 25 Videol
memory allocation and NVDEC utilization outperforms all the R20 Video3
other attacks tested in accuracy. 515
We also compare the sampling rates used to gather 8 o
fingerprinting traces in those works. Mitigation techniques > Video2
that limit sampling rates, such as decreasing the resolution N 15
0

in performance counters and timers [60], or limit the rate an
application can call relevant APIs [65], prevent attackers from
achieving high classification accuracy in their models. For
example, reducing timer resolution to 100 ms can decrease
accuracy by nearly 50% in some attacks [29], [77]. Our
NVDEC-based work maintains its performance even at a
very low sample rate of 5 Hz, proving robust against such
mitigations, compared to other approaches.

Variation of fingerprinting attack. In addition to
identifying which website the victim is browsing, the attacker
can also gain information such as which part of the website
victim is interested in. This is possible because, normally,
websites do not auto-play all videos at the same time. Only
when the video is displaying on the screen, transmission and
decoding will take place. In the following example (shown
in Fig. 13), a user is browsing linkedin.com/feed, which is
a mixture of text-only posts and video posts. By analyzing
the trace of the NVDEC utilization, the attacker can figure
out that the user has spent more time on the text content T3
between the second and the third videos, and the user is more
interested in that text (by comparison, little time is spent on
the text content T2 between the first video and the second
video.)

B. Model Training

The process of training machine learning models often
involves handling a large number of images. While NVIPEG
speeds up image processing, it also exposes models to side-
channel attacks. In the following examples, we show how an
attacker can learn secrets such as “model type” and “epoch
time” of the training models in victim’s process. It is to be
noted that the attacker is not required to have kernels scheduled
and launched onto the same GPU with victim, nor he needs
root access to the system, as long as the attacker is able to
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Fig. 13: The NVDEC utilization trace when a user is browsing
linkedin.com/feed. This user is interested in the text content T3
between the second video and the third video on this website.

check NVJPEG utilization over time by the user-mode API
provided by NVIDIA. The attacker, by checking the user-mode
API on a fixed frequency, shown in Section III-D, obtains the
NVIJPEG utilization stats over time. These attacks are feasible
under the MPS mode of NVIDIA GPUs.

Model Identification: In this case, the victim is training
a model on GPU. There is a set of candidate models for a
specific kind of task, e.g., the ResNet family [45] for image
classification. The attacker aims to discover which model
is being trained. By checking the NVJPEG utilization, the
attacking goal can be achieved. It is known that a training
step contains three parts: i) reading in a batch of images, ii)
forward propagation, and iii) back propagation. The first part
uses NVJIPEG to decode images in the JPEG format while
the second and third parts do not. When more computation is
spent over input data, the images are fetched and decoded at
a lower frequency. In this case, the NVIPEG utilization rate
over time on a fixed dataset is dependent on the time taken
by the forward and back propagations, which is determined
by the complexity of the models (number of layers).

We use DALI [6], NVIDIA’s data loading library, to
implement the pipeline of image decoding and training
computations. Fig. 14 plots the NVJPEG utilization rate
when using AlexNet [51], ResNet18, ResNet34 and ResNet50,
to train the same subset of ImageNet [31] dataset. The
more complexity (more layers) a model has, the lower the
NVIPEG utilization is. As a result, by observing the NVJIPEG



utilization, the attacker can gain information
model the victim is training on the GPU.
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Epoch Time: The attacker can also estimate the time spent
on each epoch of training by checking the NVJPEG utilization,
which can be further used to guess the model [36]. Here, the
behaviour of the victim is slightly different from the model
identification attack. More specifically, in this case, the victim
evaluates the current trained weights on a validation set after
each training step. It is common in model training to add
such an evaluation step after each epoch to remember the
best prediction and checkpoint. The important point is that
the NVJPEG utilization differs during training and evaluation;
this is because the evaluation step does not include back
propagation. With less computation spent on the images,
the images are fetched and decoded at a higher frequency,
thus resulting in a higher NVJPEG utilization. Therefore, the
NVIJPEG utilization is higher during evaluation (compared to
training).

Fig. 15 shows an example of evaluation step after each
training epoch with ResNet34 on a subset of ImageNet. The
peaks and bottoms in this plot show the NVJPEG utilization
of evaluation and training separately. Clearly, the attacker can
obtain the epoch time by retrieving the “time interval” between
two peaks (marked using red points).
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Fig. 15: The NVJPEG utilization with ResNet34 evaluation on
validation set after each epoch.
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about which C. Model Inference

With the widespread use of large language models
(LLMs), it is becoming increasingly important to develop
techniques to reduce memory footprints, as the cumulative
weights of an LLM normally cannot fit entirely into the
GPU memory. Among the memory management techniques,
“weight offloading” is particularly useful. Weight offloading
moves parts of the model weights between GPU and CPU
memory dynamically during inference [21], [48], [74], [93],
based on the current layer being processed.

Below, we illustrate how PCI-e leakage enables model
identification attacks under MIG settings, which is to learn
what language model the victim is running in an “isolated”
MIG instance. In this setting we have the victim running
a language model inference task in an MIG instance with
offloading of the model weights. In our example, the victim
uses the Zero-Inference [21] library, which is developed by
DeepSpeed, supports weights offloading, and enables the
inference of models with up to trillions of parameters on a
single or multiple GPUs. The attacker has a set of candidate
answers. Table VIII shows popular language models, which
serve as the candidates in our example attack. The models
differ in the sizes of their weights and how these weights are
reused and kept in the GPU memory, which result in different
patterns of PCle traffic. The attacker is on the same GPU but
on a different MIG instance, probing PCle traffic patterns.

As mentioned in Section IV-E, there are two methods
for PCle traffic probing. We exploit the API-style probing
by nvmlDeviceGetPCieThroughput to get the traffic
pattern from host to GPU, with a checking frequency of 20ms.
We run each inference model in Table VIII for 60 times and
gather 720 traces in total. We then feed these traces into an
ATT-BLSTM model, with hyperparameters being the same
as those in Table VI. With that, we achieve a classification
accuracy of 93.75%. Thus, by gathering the PCl-e traffic trace,
the attacker can guess which model the victim is using with
high precision.

TABLE VIII: Descriptions of the models.

Model Description
BERT-base General-purpose NLP model
BERT-large for various tasks [34].

RoBERTa-base

Enhanced BERT for improved
RoBERTa-large

NLP performance [58].

DistilBERT Efficient BERT with faster performance [72].
GPT2 Generative model for text generation [69].
T5-small Versatile text-to-text transformer model [70].
ALBERT-base Lfiightweight BERT for
ALBERT-large efficient processing [52].

ELECTRA-small

ELECTRA-base
XLNet

Model focusing on efficient pre-training
for token tasks tasks [28].

Model using permutation-based training [88].

VI. DISCUSSION

In this section, we compare our newly-identified covert
channels with the related work in this domain, explain the



general applicability of our covert and side channels, and
discuss the potential mitigation strategies for our newly-
discovered channels.

A. Comparison of Covert Channels

Our GPU DRAM frequency-based covert channel leverages
frequency scaling in GPU DRAM. A recent work of
frequency-based information leakage on GPUs [80] studies the
factors that cause frequency modulations in the GPU CUDA
engine. However, the contributors including Hamming distance
and Hamming weight do not take effect in NVIDIA GPUs.
Also, as pointed out in [80], as the changes in frequency
are small, sampling durations get longer, thus limiting their
leakage rate to 0.1 bit per second. Compared to that work, we
1) focus on GPU DRAM frequency, as opposed to GPU CUDA
engine frequency, ii) identify the factors that can trigger GPU
DRAM frequency modulations, and iii) develop corresponding
strategies to fine-tune the GPU DRAM frequency, e.g., by
inserting specific instructions to drop the high frequency. Apart
from encoding information into frequency peaks and valleys,
we also manage to encode information by the duration of high
GPU DRAM frequency. As a result, we improve the bandwidth
of the frequency-based information leakage channels from 0.1
bit/s to 0.5 bit/s, with high accuracy.

Our NVENC, NVDEC and NVJPEG based covert channels
exploit the fact that there is no isolation among processes
in video and image encoding/decoding engines, even when
employing the MPS mode. To the best of our knowledge,
ours is the first work that develops covert channels in such
special-purpose engines. In this context, we have developed a
new method that can encode information into engine usage.
With the method of encoding information into duration (see
the example in Section IV-B), we achieve a covert channel
bandwidth of 0.5 bit/s. Further, with the method of encoding
information into usage (see the example in Section IV-C and
Section IV-D), the bandwidth of NVDEC- and NVJPEG-based
covert channel is around 2 bits/s.

Our PCl-e based covert channel uses PCI-e congestion to
break MIG isolation. The previous work [78], [79] studies how
to utilize PCI-e congestion to build secret channels among
installed devices and even GPU non-MIG VMs. In contrast,
our work is the first one to apply PCl-e bus congestion
toward the goal of establishing a covert channel between GPU
instances under the MIG mode. We managed to build a highly
accurate covert channel with a bandwidth with over 6kbps.
This covert channel further challenges the isolation guarantees
supposed to be provided by the GPU MIG mode, along with
the work [92].

Table IX gives the comparison of GPU uncore covert
channels, with their applicability. Here, we list the uncore
hardware in GPU, excluding compute resources (core units).
Although side channels and covert channels on other GPU
uncore components (e.g., memory controller and crossbar)
have not been thoroughly researched yet, the research methods
and results on corresponding CPU uncore hardware [67], [85],
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TABLE IX: Comparison of discrete GPU uncore covert and
side channels, with our contributions highlighted in bold font.

Hardware Leakage Source Applicability
. NVLink bandwidth [91] .
Inter-GPU links remote T2 cache [38] multi-GPU sys
bank conflicts [46] non-MIG
GPU DRAM frequency scaling DVFS supported
NVENC utilization NV desktop
En/De-coders NVDEC utilization NV desktop+server
NVJPEG utilization NV server

GPU - NIC [79]

Host-GPU links PCI-e bandwidth non-MIG VMs [78]

MIG instances

Mem Ctr [85]* req queue + scheduler non-MIG
LLC cache conflicts [37] non-MIG
Crossbar [67] port contention non-MIG

* work on CPU uncore, but can be applied to GPU uncore

can potentially be applied to them as well. Instead, in our
work, we more focused on GPU-specific uncore components.

B. Generality

Our GPU DRAM frequency based covert channel relies
on frequency scaling. We want to emphasize that the GPU
DRAM frequency scaling is implemented in almost all recent
desktop-scale GPUs since the Fermi generation (launched in
2010) [25], [62], [84], as well as in some recent AMD desktop
GPUs [42].

The GPUs equipped with media engines are vulnerable
to the corresponding engine based covert and side channels
discussed in this paper. Most of the recent desktop-scale and
server-scale NVIDIA GPUs have NVENC implementation, as
well as NVDEC [16]. NVJPEG is newly supported in NVIDIA
A100, A30 and H100 [10].

Our PCI-e based covert channel is dependent on the PCI-
e bus between GPU and CPU/memory. To the best of our
knowledge, it is applicable to all discrete GPUs in the market.
Furthermore, this PCI-e covert channel is expected to draw
more attention in the context of NVIDIA GPUs that support
the MIG mode, as it breaks the most strict isolation in GPU
(i.e., the isolation between the GPU MIG instances).

C. Mitigation

For mitigating the GPU DVFS-based covert channel, one of
the potential solutions could be to disable DRAM frequency
scaling, which would bring, unfortunately, energy and power
overheads. Another solution could be to have separate DRAM
and DRAM clock domain for each and every GPU partition.
But, unfortunately, doing so would cause large area overheads.

To mitigate the covert and side channels targeting the
NVENC, NVDEC and NVJPEG engines under the MPS
mode, the designer could statically assign a part of the
bandwidth of those engines to one process. However, such
bandwidth partitioning can prevent the full throughput from
being achieved: even if other processes are not using their



shares of bandwidth, those shares cannot be allocated to the
process that is busy with encoding/decoding videos/images.

Finally, to mitigate the PCle covert channel that breaks
the isolation under the MIG mode, the bandwidth between
CPU and GPU could be statically partitioned over instances.
However, doing so will most likely hurt the overall throughput
and latency. Dynamically shaping PCI-e traffic [33], [95]
might help to strike a balance between security and
performance, which is left for our future work.

Of course, the mitigation of these newly-discovered covert
and side channels requires more effort, which is in our future
research agenda but beyond the scope of this paper.

VII. CONCLUSION

In this paper, we explore covert and side channels on
NVIDIA GPU uncore, and discover four new information
leakage sources on NVIDIA desktop- and server-class GPUs.
We develop a strategy to fine-control GPU DRAM frequency
and utilize frequency up-and-down along with high frequency
duration to build covert channels based on GPU DRAM
frequency scaling. Also, we study the factors that affect the
utilization rate in NVIDIA GPU special purpose engines:
NVENC, NVDEC and NVJPEG. To the best of our
knowledge, this paper is the first to identify covert and side
channels on such engines. Additionally, we reevaluate PCI-
e bandwidth allocation on GPU, and build new covert and
side channel between GPU instances under MIG mode, thus
challenging the isolation guarantee promised by the MIG
mode.
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