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Abstract

Program analysis plays an essential role in software and system security, supporting a
wide spectrum of techniques. However, a fundamental challenge persists: highly precise
analyses often incur prohibitive cost while efficient analyses often sacrifice accuracy.
This dissertation proposes an insight of addressing this challenge through two projects
respectively targeting indirect call resolution and memory safety enforcement.

The first project focuses on resolving indirect call targets. Existing solutions are either
imprecise (using type-based analysis) or inefficient (using data-tracking analysis), while
Multi-Layer Type Analysis (MLTA) provides a balance by leveraging the data structure
hierarchies commonly adopted in C/C++. However, it fails to accurately track the data
flow among multi-layer types, introducing false positives. To overcome this limitation, we
propose Strong Multi-Layer Type Analysis (SMLTA) and implement it in DeepType. It
addresses the challenges in multi-layer type matching, avoiding type information loss and
further improving precision without losing efficiency. Evaluation on the Linux kernel, 5
web servers, and 14 user applications shows that DeepType refines indirect call targets
by 43.11% on average compared to MLTA’s prototype TypeDive, while reducing runtime
overhead by 5.45%–72.95%, achieving improvements in both precision and scalability.

The second project enforces memory safety in Rust. Although Rust provides strong
safety guarantees, it allows unsafe code to bypass compiler checks, which reintroduces
memory vulnerabilities. The widely used AddressSanitizer (ASan) and its Rust-specific
successors, ERASan and RustSan, suffer from high overheads and limited bug coverage
due to inherent limitations of ASan’s red zone and shadow memory mechanisms. We
present LiteRSan, a novel memory safety sanitizer that addresses the limitations of prior
approaches. By aligning with Rust’s ownership model, LiteRSan performs Rust-specific
static analysis aware of pointer lifetimes to identify risky pointers. It then selectively
instruments them to enforce only the necessary spatial or temporal checks. LiteRSan
introduces significantly lower runtime overhead (18.84%) and negligible memory overhead
(0.81%) compared with existing ASan-based sanitizers while detecting memory safety
bugs that prior techniques missed.

Altogether, DeepType and LiteRSan illustrate a common insight: language and
semantics specific characteristics enable program analysis to reduce overhead while
improving precision, achieving a balance that general language-agnostic approaches fail
to reach. This insight motivates future advances in program analysis to further strengthen
the security of modern software systems.

iii



Table of Contents

List of Figures vii

List of Tables ix

Acknowledgments xii

Chapter 1
Introduction 1
1.1 Program Analysis in Software and System Security . . . . . . . . . . . . 1
1.2 Precision and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Research Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Dissertation Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2
Background and Related Work 7
2.1 Indirect Call Target Resolution . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Rust Memory Safety Enforcement . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Takeaways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 3
DeepType: Indirect Call Target Resolution 25
3.1 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Overview and Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Design of Phase 1: Information Collection . . . . . . . . . . . . . . . . . 33

3.3.1 Type-Function Confinements . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Multi-Layer Type Organization . . . . . . . . . . . . . . . . . . . 35
3.3.3 Type Relationship Resolving . . . . . . . . . . . . . . . . . . . . . 36

3.4 Design of Phase 2: Target Identification . . . . . . . . . . . . . . . . . . 38

iv



3.4.1 Friend Type Discovery . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4.2 Type Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.1 Special Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.2 Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.2 Effectiveness of DeepType . . . . . . . . . . . . . . . . . . . . . . 44
3.6.3 Performance of DeepType . . . . . . . . . . . . . . . . . . . . . . 49
3.6.4 Contribution of SMLTA . . . . . . . . . . . . . . . . . . . . . . . 52
3.6.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.1 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 4
LiteRSan: Rust Memory Safety Enforcement 60
4.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 LiteRSan Overview and Workflow . . . . . . . . . . . . . . . . . . . . . . 67
4.4 Rust-Specific Static Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.1 Static Analysis Scope Restriction . . . . . . . . . . . . . . . . . . 69
4.4.2 Risky Pointer Definition . . . . . . . . . . . . . . . . . . . . . . . 69
4.4.3 Spatially Risky Pointer Identification . . . . . . . . . . . . . . . . 70
4.4.4 Temporally Risky Pointer Identification . . . . . . . . . . . . . . . 71
4.4.5 Soundness and Precision . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Lightweight Runtime Checks . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.5.1 Metadata Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.2 Metadata Inference . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.3 Selective Instrumentation . . . . . . . . . . . . . . . . . . . . . . 83
4.5.4 Runtime Check Mechanism . . . . . . . . . . . . . . . . . . . . . 86

4.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.7.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.7.2 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7.3 Memory Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7.4 Compilation Overhead . . . . . . . . . . . . . . . . . . . . . . . . 93
4.7.5 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.8.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

v



4.8.2 Toward Full Coverage of Rust Memory Safety . . . . . . . . . . . 100
4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Chapter 5
Conclusion and Future Work 103
5.1 Key Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Extensions and Future Directions . . . . . . . . . . . . . . . . . . . . . . 104

Bibliography 106

vi



List of Figures

3.1 Workflow of DeepType. DeepType contains two working phases. In
phase 1, it collects and records type information in three data structures.
In phase 2, it refers to the recorded type information to discover friend
types, gather associated functions, and identify targets. . . . . . . . . . . 32

3.2 Outline of Type Lookup Maps with two example types stored.
Type Lookup Maps use multi-layer mappings to archive multi-layer types.
The First Map records the first-layer types and corresponding second-layer
types; The Second Map records the first-two-layer types and correspond-
ing third-layer types; So on so forth. 1⃝ void (int)* | struct.A |
struct.X and 2⃝ void (int)* | struct.B | struct.Y | struct.P
are archived as examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Ordered tree of the instructions in Listing 3.5. The root node
represents the composite instruction store. Its child nodes at level
1 denote the instruction’s operands. The second operand is another
composite instruction bitcast. The child nodes at level 2 correspond to
the operands of bitcast, among which the first one is a getelementptr
instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Distribution of indirect calls with different sizes of target sets in
linux. The y-axis on the left shows number of indirect calls. The y-axis
on the right shows cumulative number of indirect calls. The x-axis shows
indirect call target sets’ sizes ranging from 1 to infinite divided into 9
intervals. DeepType and TypeDive respectively represents the number
of indirect calls reported by DeepType and TypeDive. DeepType-Cumu
and TypeDive-Cumu respectively represents the cumulative number of
indirect calls reported by two tools. . . . . . . . . . . . . . . . . . . . . . 47

vii



3.5 Execution time of DeepType, DT-nocache and TypeDive. DT-
nocache represents DeepType without caches deployed. For each bench-
mark, we plot a bar chart to depict the execution times of DeepType,
DT-nocache, and TypeDive, and the y-axis scale of which is adjusted to
encompass the full data range without excessive magnification, allowing
for clear differentiation in execution times. Specifically, the binutils chart
illustrates the average execution times across all assessed binutils programs. 50

3.6 Runtime overhead distribution of DeepType, DT-nocache and
TypeDive. DeepType and TypeDive follow the same general workflow
that contains two phases: 1) collect information and record it in data
structures, 2) analyze indirect call sites and recorded information to
identify targets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Number of multi-layer types with different layer counts. The
y-axis on the right shows the number of multi-layer types in linux while
the y-axis on the left shows the number of multi-layer types in other
benchmakrs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 Memory overhead of DeepType and TypeDive. The scales from
150 to 4250 on y-axis are cut out because there is a gap between the
memory overheads of linux and other benchmarks. DeepType always
has lower memory overhead than TypeDive while the difference between
two tools is consistently subtle. . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Memory safety bug patterns. Memory safety bugs within scope include
spatial errors (i.e., use-before-initialization, out-of-bound accesses), null
pointer dereferences, and temporal errors (i.e., use-after-free, double free). 63

4.2 LiteRSan overview. LiteRSan consists of three stages. Each addresses
one of the primary challenges in enabling efficient and comprehensive
sanitizer checks. The output of each stage serves as the input to the next. 67

viii



List of Tables

3.1 Mappings between types and functions in MLTA for Listing 3.1.
MLTA splits multi-layer types into two-layer types and maintains mappings
between these types and associated functions. The two-layer types are
presented by a composite type along with an index, which indicates the
member type at a specific position. For example, struct.Write with
index 0 represents the two-layer type void (char*)* | struct.Write.
The numbers in parenthesis indicate the line numbers where the functions
are confined to the types. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Mappings between types and functions in SMLTA for Listing 3.1
program. SMLTA treats each multi-layer type as a whole and uses the
entire multi-layer type as a basic unit in storage-purposed data structures.
In this table, the structs are abbreviated as "s". The index of each member
in a composite type is denoted as "#N" where N is a number. For instance,
s.Write#0 represents struct.Write with index 0. . . . . . . . . . . . . . 31

3.3 Number of multi-layer types with different layer counts. 311*
presents the average of binutils programs. . . . . . . . . . . . . . . . . . . 36

3.4 A table recording the fragments of multi-layer type A|B|C. A
multi-layer type A|B|C with 3 layers has 6 possible fragments, including
single-layer fragments, two-layer fragments, and three-layer fragments. . . 39

3.5 Average number of inidrect call targets. This table shows the
average number of indirect call targets, and the reduction rate produced
by DeepType over TypeDive. binutils shows the average of the 13
programs in binutils. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Average number of indirect call targets for binutils. Detailed
results for the programs in binutils collection. . . . . . . . . . . . . . . . 46

ix



3.7 Ratio of indirect calls with small target sets. The definition of
small depends on the threshold. If the indirect call’s target set size is
smaller than the threshold value, this indirect call is considered as with
small target sets. The last two columns respectively show the ratios of
indirect calls with small target sets in DeepType and TypeDive. . . . . 48

3.8 The effectiveness of DeepType on different optimization lev-
els. This table shows the ANT reported by DeepType when analyzing
benchmarks respectively compiled with optimization level O0, O1, O2
and O3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 ANT values of DeepType, DT-noSH and DT-weak. DT-noSH
exhibits the contribution of SMLTA. DT-weak shows the impact of storing
entire multi-layer types in Type-Func Map. . . . . . . . . . . . . . . . . . 54

3.10 The capability of MLTA and SMLTA in preventing exploits. The
listed function pointers, located in glib, can be corrupted through the
vulnerability. MLTA fails to prevent the exploits through the 5 function
pointers while SMLTA can prevent these exploits. To differentiate two
function pointers named "callback" in separate functions, one is denoted
as "callback*". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1 Selective instrumentation strategy. Each class of instrumentation is
applied based on the type of pointer and the type of operation, ensuring
that only the necessary code is inserted at each instrumentation site. At
the pointer arithmetic of a spatially risky pointer, I2 is before I4. At the
deallocation site of a temporally risky pointer, I5 is before I3. . . . . . . 85

4.2 Runtime overhead comparison. Benchmarks are grouped by scale.
Pointer count reports exposed raw pointers (Raw) and risky pointers
(Risky) identified by LiteRSan, along with raw pointers plus aliases
(Aliased) identified by traditional points-to analysis. Overheads are shown
for LiteRSan, ERASan, and RustSan. Nonapplicable results are listed as
-. For some benchmarks (base64, ripgrep, and servo), ERASan and/or
RustSan do not have runtime overhead because the benchmarks cannot
successfully be executed with the sanitizers employed. . . . . . . . . . . . 89

4.3 Ablation study of runtime overhead. The table shows pointer counts
(risky and ASan-guarded), and runtime overhead comparison of LiteR-
San, Semi-LiteRSan, and ASan across benchmarks. . . . . . . . . . . . 91

x



4.4 Memory overhead comparison. Benchmarks are grouped by scale.
Pointer counts report exposed raw pointers (Expo-raw) and risky pointers
identified by LiteRSan, along with raw pointers plus aliases (Aliased)
identified by traditional points-to analysis. Memory overheads are shown
for LiteRSan, ERASan, and RustSan. Nonapplicable results are listed
as -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Ablation study of memory overhead. The table shows pointer
counts (risky and ASan-guarded), and memory overhead comparison of
LiteRSan, Semi-LiteRSan, and ASan across benchmarks. . . . . . . . 93

4.6 Compilation overhead comparison. Benchmarks are grouped by scale.
Pointer counts report exposed raw pointers (Expo-raw) and risky pointers
identified by LiteRSan, along with raw pointers plus aliases (Aliased)
identified by traditional points-to analysis. Compilation vverheads are
shown for LiteRSan, ERASan, and RustSan. Nonapplicable results are
listed as -. SE indicates silent exit, SEGV indicates segmentation fault,
and TO indicates a compilation timeout. . . . . . . . . . . . . . . . . . . 94

4.7 Bug detection capability of ASan and LiteRSan. Listed are the 20
most recent memory safety vulnerabilities in RustSec, grouped by bug class. 95

4.8 Detection capability of ASan and LiteRSan on memory safety
vulnerabilities. The listed vulnerabilities are grouped by bug class. They
are memory safety vulnerabilities discovered and registered in RustSec
earlier than the 20 memory safety vulnerabilities in Table 4.7. . . . . . . 96

xi



Acknowledgments

At the beginning of my academic journey, pursuing a Ph.D. was never part of the plan.
By a twist of fate, however, I embarked on this path. Looking back now, I am deeply
grateful for that decision. It has shaped who I am today. Through this journey I have
learned to think calmly, to accept the unexpected with composure, to remain curious
about new ideas, and to focus not only on results but also on the process itself. The road
has been long, often winding, but illuminated by stars. I was never truly alone. I owe
much to the people who have supported and guided me, in my work, in my life, and in
the quiet shaping of my spirit.

First and foremost, I would like to express my heartfelt gratitude to my advisor Dr.
Dinghao Wu. It was his recognition and confidence in me that made me believe I could
become a researcher. He is a scholar of the old-school, with deep expertise in program
analysis and formal verification. He has always been able to pierce through complexity
and uncover the essence of a problem, pointing out flaws in my work with precision and
clarity. Though I am now near the end of my Ph.D., his professionalism still reminds
me of how much more there is to learn and how far I can still grow. Dinghao’s style of
mentorship has been trust and freedom. He allowed me the space to explore, to make
mistakes, and to choose the research directions that truly interested me. He seldom
intervened unless I sought his help. This approach helped me grow into an independent
researcher, one capable of making difficult decisions in critical situations. I am deeply
grateful for his trust, for bearing the costs of my trial and error, and for providing the
space in which I could find my own path.

I am equally grateful to my co-advisor Dr. Taegyu Kim, who guided me during a
period of confusion and helped explore new research directions. He always respected my
choices, while offering advice that was carefully tailored to my background. When we
had different opinions, he always listened to me thoughtfully and provided constructive
feedback that improved my work. From him, I learned the importance of listening, which
I previously neglected but is significant in collaboration. Beyond research, Teagyu also
paid attention to my career development. He shared his experiences, provided practical
guidance, and supported me in concrete ways, such as analyzing reviewer’ feedback
together, inviting me to guest lecture in his class, and taking detailed notes during my
presentations and later suggesting improvements. I am truly grateful for his support.

I would also like to thank Dr. Hong Hu, my committee member and collaborator
on the DeepType project. When I was new to LLVM, he generously shared technical

xii



knowledge and practical tips that greatly accelerated my learning. He organized a weekly
reading group, which provided me with a valuable platform for learning and exchange.
Through those meetings I not only learned the latest advances in the field, but also
improved my presentation skills and developed sharper critical thinking through lively
discussion. His active and creative mind has always made our conversations stimulating
and rewarding.

My gratitude also goes to Dr. Sencun Zhu, my outside committee member and former
master’s advisor. He guided me through my very first research project on malware
detection, teaching me how to identify problems and devise solutions, which opened the
door to research for me. He has always been warm, kind, and generous with his help. For
my dissertation, his insights reached beyond the scope of the projects, offering high-level
perspectives that encouraged me to think more globally and critically.

I would also like to thank my collaborators and lab mates. Although our research
directions were not always closely aligned, their expertise broadened my horizons and the
discussions often provided fresh perspectives. The Ph.D. journey is long and filled with
struggles, their empathy and support were a source of comfort during difficult times.

Finally, and most importantly, I want to thank my family and friends for their infinite
encouragement and love. Although living overseas has meant long stretches without
seeing one another, their care and greetings have never ceased. They have always been
attentive to my well-being, asking about my health, worrying about my stress, and
offering words of comfort and encouragement. Their constant support has been a source
of strength and warmth throughout my Ph.D. journey.

To my parents, Mr. Yifeng Xia and Ms. Jianfang Xu, who have selflessly supported
every decision I have made. I know their hope was for a daughter close at hand, someone
who could share meals and conversations at home. Yet my path took me far away,
across an ocean and time zones, leaving us with hurried phone calls instead of everyday
companionship. Still, they put aside their own needs to support my dreams. When I was
almost giving up, they reassured me of my abilities and encouraged me to keep going,
yet also reminded me that choosing another path would never diminish their love. Their
love has always been a safe harbor, allowing me to set sail without fear.

To my husband, Dr. Kaiming Huang, without whom I can hardly imagine completing
this Ph.D. He was the serendipity at the very beginning of this story. If my parents have
been the harbor, then he has been the captain. Over the eleven years since we met, he
has been guiding the ship with me through storms and tides. He has felt my worries
more deeply, my sorrows more painfully, and my joys more brightly, than I have. His
love and support have given me the courage to overcome every obstacle.

In the end, though hardship and struggle are the constants of life, and though I am
but an ordinary figure in this vast world, I am profoundly grateful for everything I have
been given. I believe there are things in this world that will never change. May the
flowers ever bloom, and may the good dreams remain.

xiii



Chapter 1 |
Introduction

Software and systems permeate every aspect of modern life. Their influence will deepen
as society becomes increasingly interconnected. Along with the enhanced productivity
and convenience, vulnerabilities in software and system security raise public concerns, as
their failures can lead to widespread and devastating consequences. For example, the
global IT outage in 2024 [158], as a result of a flawed update to CrowdStrike’s Falcon
platform, caused widespread “blue screen of death” errors across millions of Windows
machines. This single event disrupted daily life, halted businesses and government
operations worldwide, and led to financial losses of at least $10 billion U.S. dollars [155].
Recognizing these risks, governments and institutions have been paying closer attention
to software and system security. The U.S. Executive Order 14028 [2], for instance,
mandates cybersecurity and software security enhancement, calling for rigorous detection,
protection, and security event logging to mitigate vulnerabilities and threats.

1.1 Program Analysis in Software and System Security
Program analysis plays an essential role in advancing software and system security.
By analyzing program structure, values, and potential behaviors during execution, it
derives critical properties of the program and enables a broad spectrum of security
mechanisms, such as vulnerability detection [28, 70, 154], program hardening against
exploitation [43, 52, 53, 151], and fault localization for timely patches [30, 168, 169],
collectively enforcing security at different stages of the software lifecycle. Beyond these
applications that directly target security, program analysis is also widely applied in the
broader domain of software quality assurance, such as optimization techniques [77,164]
and formal verification [45,109], where it improves computational efficiency performance
and establishes strong correctness and reliability guarantees. Altogether, these techniques
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built upon program analysis not only strengthen the reliability and resilience of modern
software and systems, but also enhance their efficiency, correctness, and trustworthiness.

To support these applications, different approaches in program analysis are adopted
either individually or in hybrid forms. Each approach inspects a distinct kind of informa-
tion or attribute for specific purposes, yet they are interrelated and often complement
one another.

Type-based analysis examines the declared or inferred types of program variables,
expressions, and functions. It can detect simple errors such as type mismatches and
illegal casts [25,38,132,148], or violations of typing rules [4,5,84]. Beyond error detection,
type information serves as a lightweight yet effective abstraction for program reasoning.
For example, type-based methods are frequently applied to resolve indirect calls and
construct call graphs, where they approximate possible call targets by matching function
pointer types with function signatures [12,128]. Compared to more precise analyses, type-
based analysis is adopted due to its scalability and low overhead, making it a practical
choice for large codebases. However, this efficiency comes at the cost of precision, since
type information alone abstracts away detailed control-flow and data-flow relationships.
Consequently, type-based approaches are often combined with other analyses, such as
points-to analyses, to improve accuracy while maintaining scalability [78, 165].

Data-flow analysis tracks how values propagate across program variables and state-
ments, enabling reasoning about program behaviors beyond simple type information.
Data-flow analysis often relies on control-flow graphs (CFGs) [6], which capture the possi-
ble execution paths through a program. CFGs support a broad spectrum of applications,
ranging from compiler optimizations such as liveness analysis and reaching definitions to
advanced software security mechanisms, including fuzzing [16,40,79] for bug discovery,
control-flow integrity (CFI) [1, 99, 100, 149] for preventing control-flow hijacking, and
isolation techniques [75, 94] for runtime protection.

An essential instance of data-flow analysis is points-to analysis, also known as alias
analysis, which determines the set of memory locations a pointer or reference may refer
to and captures relationships between pointers. It is crucial for reasoning about heap
objects, enforcing memory safety, and enabling optimizations. Classical techniques include
Andersen’s inclusion-based analysis [8] and Steensgaard’s unification-based analysis [129],
with widely used implementations such as SVF (Static Value-Flow) [130] and LLVM’s
pointer analysis passes. These analyses face the long-standing challenge of balancing
precision and efficiency, which has led to a range of specialized variants tailored to
different purposes and requirements.
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From the perspective of sensitivity to program semantics, data-flow analysis can
be distinguished among flow-sensitivity, path-sensitivity, and context-sensitivity. Flow-
sensitive analyses account for the order of statements and maintain different facts at
different program points, yielding greater accuracy, but at the cost of higher complexity
compared to flow-insensitive approaches. Path-sensitive analyses refine this further
by distinguishing between different execution paths (e.g., branch conditions), enabling
precise reasoning about conditional behaviors, but they often suffer from path explosion.
Context-sensitive analyses differentiate among calling contexts in inter-procedural analysis,
avoiding rough merges across function calls and enabling more precise data tracking, but
increase computational cost and memory usage relative to context-insensitive analyses.

From the perspective of scope, data-flow analysis can be intra-procedural, restricted
to reasoning within a single function, or inter-procedural, extending across function
boundaries to capture global program behaviors. High-precision analyses often combine
flow-sensitivity, path-sensitivity, and context-sensitivity with inter-procedural reasoning,
but these combinations are computationally expensive. Scalable analyses reduce the cost
by sacrificing some forms of sensitivity, which improves efficiency but inevitably leads to
a loss of accuracy.

Complementing static approaches, dynamic analysis gathers information from pro-
gram’s actual program executions, including concrete paths, memory accesses, and thread
interactions, etc. Tools such as Valgrind [95] and AddressSanitizer [122] leverage dynamic
analysis to detect memory errors at runtime for runtime profiling and validation. While
dynamic analysis provides precision with respect to the actual behaviors during execution,
it suffers from inherent limitations: coverage is restricted to the inputs specified, and
runtime monitoring may introduce significant overhead.

1.2 Precision and Efficiency
Despite the broad range of approaches, program analysis faces the critical challenge of
balancing precision against efficiency, as described in Chapter 1.1. Analyses that capture
rich semantic details, such as context-sensitive, flow-sensitive and path-sensitive points-to
analysis, can achieve high precision, but they often incur prohibitive computational cost
and struggle to scale to large, real-world programs. Conversely, lightweight analyses that
prioritize efficiency, such as type-based methods or coarse-grained data-flow analyses, can
process large codebases, but they may be too imprecise to detect certain vulnerabilities,
or not applicable to practical enforcement. This trade-off has been troubling the design
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of program analysis tools, where developers must decide between depth of reasoning and
practical scalability.

This dissertation exposes applicable solutions to address the challenge of bridging
precision and efficiency for program analysis. Through two works respectively focusing
on two research fields, one on resolving indirect call targets (Chapter 3) and the other on
enforcing memory safety in Rust (Chapter 4), this dissertation demonstrates how seman-
tically tailored, domain-specific techniques can achieve both accuracy and performance
improvements compared to general program analysis approaches.

To be specific, the first work DeepType leverages the hierarchical data structures
commonly found in C/C++ programs, integrating type-based and data-flow reasoning
into a multi-layered type analysis. This hybrid approach enables the precise resolution of
indirect call targets while maintaining scalability to large codebases. The second work
LiteRSan respects Rust’s ownership and lifetime semantics to design a Rust-specific
static analysis that improves precision and reduces redundant instrumentation of sanitizer
checks. Combined with a lightweight metadata-based runtime mechanism, LiteRSan
enforces memory safety efficiently with subtle compilation, runtime and memory overhead.

Altogether, these two projects illustrate how language and semantics specific features
can reconcile precise reasoning with practical performance in program analysis for security
enforcement. They highlight a broader insight: instead of seeking one-size-fits-all solutions,
advancing program analysis requires instantiated techniques tailored to the semantics of
specific languages or domains, thereby achieving the optimal balance between precision
and efficiency.

1.3 Research Problems
To illustrate how language and semantics specific characteristics advance the balance
between precision and efficiency in program analysis, I will present two concrete projects
that leverage this insight. Each project addresses individual research problem that is
fundamental yet crucial in software and system security.

The first project, DeepType (see Chapter 3), addresses a long-standing challenge in
program analysis: the resolution of indirect call targets in C/C++ programs. Indirect calls
are pervasive in real-world software, arising from function pointers, virtual methods, and
callbacks. Accurately resolving their targets is essential for constructing precise control-
flow graphs (CFGs), which in turn plays an important role in a wide range of compiler
optimizations, security mechanisms (e.g., control-flow integrity), and program verification
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tasks. However, this problem is notoriously difficult. As low-level programming languages,
C and C++ allow complex pointer manipulation and flexible use of data structures,
making indirect call resolution highly challenging. Existing approaches either sacrifice
precision, leading to excessive false positives, or incur prohibitive computational cost,
limiting scalability.

DeepType tackles this challenge by advancing the state of type-based analysis,
multi-layer type analysis (MLTA) [78]. Building on the intuition of MLTA, DeepType
leverages the common characteristic of C/C++ programs: the pervasive use of composite
data structure hierarchies, which can be exploited to narrow down call targets. While
TypeDive pioneered the idea of multi-layer type analysis, it produces false positives by
design because it does not explicitly model the data flow between multi-layer types,
which weakens the restrictions provided by multi-layer types. DeepType improves
imprecision by tracking data-flow relationships across multi-layer types, thereby respecting
the hierarchical type system. This refinement takes full advantage of the extra type
information and restrictions to differentiate more precisely among potential call targets,
reducing false positives while maintaining efficiency.

The second project, LiteRSan (see Chapter 4), develops a comprehensive yet
lightweight sanitizer to enforce memory safety in Rust. Although Rust is a memory-safe
language, its support for unsafe code reintroduces memory safety vulnerabilities. More
importantly, these vulnerabilities can propagate from unsafe blocks to safe code, making it
challenging to uncover all memory safety bugs. Detecting such bugs is critical as memory
safety remains a foundational requirement for building reliable and secure systems.

Sanitization has become the widely used technique for detecting memory safety
violations, with tools such as AddressSanitizer (ASan) integrated into the Rust compiler
toolchain. However, existing sanitizers face two fundamental limitations in the Rust
context. First, they are not designed to align with Rust’s type system and ownership
semantics, resulting in redundant checks. Second, ASan and its successors rely on
coarse-grained shadow memory and red zone mechanisms, which can fail to capture
certain bugs while simultaneously incurring significant runtime and memory overhead.
LiteRSan addresses these limitations with two key innovations. First, it introduces
a Rust-specific static analysis that respects Rust’s ownership rules to identify risky
pointers, which may violate spatial or temporal safety. By instrumenting checks only for
these pointers, LiteRSan eliminates the redundant instrumentation deployed by generic
sanitizers, thereby reducing unnecessary overhead. Second, it replaces shadow memory
and red zones with a fine-grained, metadata-based runtime validation mechanism. This
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mechanism maintains lightweight and compact metadata to track pointer and object
states precisely at runtime, ensuring complete coverage of memory safety violations with
significantly lower cost. These techniques enable LiteRSan to achieve a balance that
existing approaches fail to reach: comprehensive bug detection coupled with minimized
compilation, runtime, and memory overhead. LiteRSan demonstrates how language-
specific insights can fundamentally advance sanitizer design, providing both precision
and efficiency in enforcing memory safety for Rust.

Despite targeting different languages and problem domains, both projects follow the
same philosophy: leverage language and semantics specific features to tailor analysis
strategies, which can simultaneously achieve high accuracy and practical performance,
advancing the reliability and security of modern software systems.

1.4 Dissertation Structure
The remainder of this dissertation is organized as follows. Chapter 2 reviews the
background and previous work related to both research problems. Chapter 3 details
the design, implementation, and evaluation of DeepType. The result is published in
USENIX Security Symposium 2024 [165]. Chapter 4 presents the design, implementation,
and evaluation of LiteRSan. A manuscript on LiteRSan is under review [166]. Finally,
Chapter 5 concludes the dissertation and discusses potential directions for future research.
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Chapter 2 |
Background and Related Work

This chapter reviews the background and related work of the two projects: (1) indirect
call target resolution, presented in Section 2.1, and (2) Rust memory safety enforcement,
presented in Section 2.2.

2.1 Indirect Call Target Resolution
This section introduces the background knowledge of indirect call target resolution,
including traditional analyses and advanced multi-layer type analysis in Section 2.1.1,
and reviews related work in this domain in Section 2.1.2.

2.1.1 Background

To resolve indirect call targets, existing approaches can generally be categorized into
type-based analysis and data-flow analysis. Type-based analysis checks the types of call
sites and functions (i.e., their signatures) to determine whether an address-taken function
is a valid target. As discussed in Section 1.1, this approach is efficient and scalable.
However, it often lacks precision in large and complex programs, where many functions
share identical signatures and thus cannot be distinguished using type information
alone. In contrast, data-flow analysis achieves higher precision by explicitly tracking
how function pointers propagate through variables and memory. By following the actual
values of function pointers used to make indirect calls, data-flow analysis can determine
the precise callees. While this approach provides strong accuracy guarantees, it suffers
from poor scalability due to its computational cost. For example, SVF (Static Value-Flow
Analysis) [130], which applies data-flow techniques to construct control-flow graphs, may
require several days to complete its analysis on a large codebase such as the Linux kernel.
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Multi-Layer Type Analysis (MLTA) [78] was introduced as a compromise between
these two extremes, upgrading the scalable type-based methods with precision gains
from data-flow analysis. MLTA builds on a common characteristic of C/C++ programs:
function pointers are frequently embedded within composite data structures, often
organized hierarchically. To leverage this property, MLTA extends traditional types into
multi-layer types that capture not only the type of the function pointer itself but also
the surrounding layers of composite structures that encapsulate it.

Illustrative Example. Consider a function pointer b.a.ptr of type void(int)*,
where ptr is a field of struct A, and a (an instance of struct A) is itself a field of
struct B. In this case, MLTA extends the traditional type

void(int)*

into the multi-layer type

void(int)* | struct A | struct B,

where “|” separates different layers.

Following the working principles of type-based analysis, MLTA then compares the
multi-layer types of functions and indirect call sites to determine valid targets.

Although MLTA improves indirect call resolution by refining granularity beyond
function signatures alone and achieves better precision than purely type-based methods
while remaining more scalable than full data-flow analysis, it still exhibits important
limitations. Specifically, MLTA’s handling of data-flow and type matching does not fully
respect the semantics of multi-layer types.

While MLTA defines multi-layer types, it still tracks data flow in the same manner as
traditional type systems: by recording flows between variables and their traditional types.
Similarly, its type matching strategy splits a multi-layer type into separate traditional
types and then records potential targets for each layer independently. For example, if the
function pointer b.a.ptr takes the address of function foo, MLTA splits its multi-layer
type void(int)* | struct A | struct B into three independent layer types: void(int)*,
struct A, and struct B. It then records foo as a valid target for each of these types
individually. When analyzing an indirect call site, MLTA performs the same splitting,
identifies potential targets for each layer separately, and calculates their intersection.
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This splitting strategy makes MLTA traditional type-level reasoning, weakening the
additional restrictions that multi-layer types are intended to enforce.

As a result, MLTA may fail to distinguish function pointers with different multi-layer
types and introduce false positives, undermining its intended precision. These false
positives will be illustrated in detail with an example in Section 3.1.1.

2.1.2 Related Work

Prior work on resolving indirect call targets spans a spectrum of program analysis
techniques, each trading off precision against computational cost. At one end are
conservative methods that impose minimal analysis and computation but tend to yield
highly over-approximated target sets. Next are type-based approaches, which improves
precision yet still limited. Then there are works based on data-flow analyses, which
achieve higher precision by tracing pointer propagation but at significantly higher cost.
Finally, dynamic methods offer the greatest accuracy by relying on runtime information.
This section reviews and compares these approaches.

Conservative Solutions

Conservative approaches to resolving indirect call targets rely on minimal static analysis
and are easy to implement with strong soundness guarantee. These approaches are
lightweight and straightforward to deploy, particularly in settings where source code
is unavailable. Moreover, they ensure that no legitimate target is missed, providing
soundness at the cost of precision.

One of the earliest and most influential efforts in this field is the work of Abadi et
al. on Control-Flow Integrity (CFI) [1], which enforces that every computed control
transfer must target a location permitted by a statically constructed control-flow graph
(CFG). In practice, this means that all address-taken functions identified in the binary
are included as valid indirect call targets. Zhang et al. proposed CCFIR [175], which
further develops this idea by deriving a white-list of valid targets from the relocation
tables provided by ASLR. Indirect control transfers are then forced to pass through a
controlled “springboard” section, where the enforcement mechanism ensures that they
only reach entries on the white-list. This design makes CCFIR efficient, compatible with
commodity binaries, and deployable without requiring access to source code. Similarly,
Zhang and Sekar introduced COTS [177], a system that targets commercial off-the-shelf
binaries. Under their model, every valid function in the binary is conservatively treated
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as a potential target for indirect calls. This approach again prioritizes simplicity and
soundness, relying only on relocation information to enumerate possible targets.

Despite their advantages, conservative methods suffer from a fundamental limitation:
lack of precision. Because the target sets they compute are large, which often include all
address-taken functions or even all valid functions, these solutions introduce a significant
number of false positives. This over-approximation impairs the effectiveness of control-
flow integrity enforcement, since an attacker may still redirect control flow to a wide range
of allowed but malicious destinations. Furthermore, for downstream program analyses or
optimizations, the size of the target sets reduces their utility, as reasoning about such
imprecise call graphs becomes both inefficient and less meaningful. Consequently, while
conservative solutions remain valuable as a foundation, they provide limited precision in
practice and motivate the development of more refined techniques.

Type-Based Analysis

Type-based analysis offers a more precise way to restrict indirect call targets when
type information is available. It is efficient by leveraging type signatures of functions
and function pointers used at indirect call sites to eliminate large numbers of invalid
targets without requiring heavy-weight static analysis. This makes type-based approaches
practical for large programs, as they are lightweight, easy to integrate into compiler
toolchains, and scale well to real-world applications. Furthermore, type-based analy-
sis is less conservative than approaches that simply include all functions, since type
compatibility rules provide restrictions that reduce the size of target sets.

Prior works targeting scalability adopted type-based analysis. Tice et al. introduced
two influential techniques, VTV and IFCC [145]. VTV provides forward-edge CFI
protection for GCC by validating the correctness of vtable pointers at virtual call sites.
Specifically, it checks that the vtable pointer used for a call corresponds to either the
static type of the object or one of its subclasses, ensuring type-safe dispatch. IFCC,
implemented in LLVM, generalizes this idea by partitioning function pointers into disjoint
sets based on type signatures and enforcing that each indirect call can only target
functions within its assigned set. This design provides efficient protection with low
runtime overhead, although the granularity of type information limits precision.

Building on these ideas, Niu and Tan developed MCFI [99], which broadens the
allowable targets to include all address-taken functions whose types are structurally
equivalent to the function pointer’s type. This structural matching provides a flexible yet
principled way of determining compatibility and yields higher coverage, but it can still
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over-approximate targets in programs with widespread use of generic or weakly-typed
interfaces. Victor et al. proposed TypeArmor [150], which further refines type-based
restrictions by incorporating both function signatures and the number of arguments
into the target resolution process. By enforcing compatibility on these dimensions,
TypeArmor significantly reduces the number of spurious targets compared to earlier
type-based schemes.

More recently, Multi-Layer Type Analysis (MLTA) [78] extended the type-based
paradigm by leveraging the observation that function pointers in C/C++ programs are
frequently embedded in composite data structures. MLTA augments traditional function
pointer types with the types of the surrounding data structures, thereby forming multi-
layer types that more precisely capture program semantics. By comparing multi-layer
types of call sites and functions, MLTA can significantly refine the set of valid targets
beyond what is achievable using flat type signatures alone.

Another prominent line of work focuses on C++ virtual functions, where the class
hierarchy provides additional type context. Systems such as ShrinkWrap [46], SafeDis-
patch [58], VFGuard [107], IFCC [145], and VTrust [174] all use variations of class
hierarchy analysis combined with object type information to identify valid targets for
virtual calls. These approaches exploit the inheritance relationships in C++ to ensure
that only compatible vtables or object types are permitted at call sites. While effective,
these systems still operate within a single-layer type framework, limiting their ability to
distinguish more nuanced cases involving nested data structures.

Despite their advantages, type-based analyses also face notable limitations. Their
reliance on type compatibility alone means that they remain less precise than data-flow
or hybrid approaches, particularly in programs with pervasive type reuse, inheritance, or
casting. In such contexts, multiple semantically distinct functions may share equivalent
type signatures, leading to overly large target sets. Furthermore, these analyses are
inherently flow-insensitive, since they do not consider the actual propagation of function
pointers at runtime. As a result, while type-based analysis strikes a useful balance
between scalability and precision, it cannot eliminate false positives effectively, and its
precision is fundamentally bounded by the type system itself.

Data-Flow Analysis

Data-flow analysis methods refine indirect call target resolution by explicitly tracking
how function pointer values are produced, propagated, stored, and used. Compared to
purely type-based schemes, these approaches generally achieve higher precision because
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they reason about actual data flow among pointers rather than relying solely on function
signature and type information. They are also language and representation agnostic,
operating at the source, intermediate representation, or binary level. This flexibility
makes them particularly attractive for analyzing stripped binaries or kernels where
type information is incomplete or unavailable. Moreover, by deriving targets from
concrete function pointer values, data-flow analysis can compute target sets that are
often significantly smaller than those produced by conservative or type-based techniques,
improving both the security of CFI enforcement and the precision of downstream analyses
such as call graph construction.

Ge et al. developed a fine-grained CFI framework for kernels that applies taint
analysis to identify indirect call targets [42]. Their system begins by tainting function
pointers initialized with a given function or with previously tainted pointers. If a function
pointer resides in a structure, the taint is propagated to the corresponding field of all
objects of that structure type. This policy allows the system to leverage data-structure
information in addition to the function pointer itself, producing more precise target sets
than pure type-based matching. Evaluated on FreeBSD, MINIX, and BitVisor kernels,
their approach eliminated over 70% of indirect targets compared to prior state-of-the-art
techniques, while incurring macrobenchmark overheads of less than 2%. These results
demonstrate that data-tracking reasoning can substantially improve forward-edge CFI in
kernel environments without prohibitive runtime cost.

Kim et al. proposed Block-based Pointer Analysis (BPA), which performs data-flow
analysis directly on stripped binaries [62]. BPA introduces a block memory model, where
heap, stack, and global memory regions are partitioned into abstract blocks. Pointer
analysis is then performed within these blocks to infer aliasing and resolve indirect call
targets. This approach provides a scalable balance between precision and efficiency for
binary-level target identification. Building on this foundation, they later introduced
BinPointer [63], which extends BPA with offset sensitivity. By tracking offsets within
each block, BinPointer can distinguish between different fields within the same abstract
block, yielding finer-grained aliasing information and improved precision, particularly in
programs that rely heavily on pointer arithmetic. However, while effective for C-style
programs, these block-based analyses face difficulties in handling aggressive type casting
and lack support for the richer class semantics of C++, leading to missed targets.

Another representative system is CFGAccurate, built on the angr binary analysis
platform [124]. CFGAccurate interleaves four techniques, forced execution, backward
slicing, symbolic execution, and value-set analysis, to iteratively refine control-flow graphs
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until no new indirect call targets emerge. This combination enables more complete and
precise target recovery than single-technique approaches, especially in complex binaries
with indirect branches. Nevertheless, the reliance on symbolic execution and repeated
refinement introduces high computational overhead, making CFGAccurate less practical
for large-scale programs.

In summary, data-flow analyses provide target sets based on concrete pointer propa-
gation and offer precision advantages over conservative or type-based methods. They
are especially valuable for binary analysis, where type information is limited. However,
these benefits come with notable drawbacks. Precise flow-sensitive, path-sensitive, and
context-sensitive analyses incur significant computational costs. Abstractions such as
block models struggle with pervasive type casting, and symbolic execution suffers from
path explosion and solver overhead. These limitations motivate the exploration of hybrid
techniques that combine type structure with selective data-flow reasoning to balance
scalability and precision.

Dynamic Analysis

Dynamic approaches represent another important class of techniques for resolving indirect
call targets. Unlike static methods, which approximate possible targets before execution,
dynamic systems leverage runtime information to enforce that each indirect call targets
a valid destination. The primary advantage of this strategy is precision during execution.
Because checks are applied to the actual runtime state, dynamic analysis can eliminate
many of the over-approximations inherent in static analysis. Moreover, dynamic methods
are often more robust to complex program features such as aggressive casting, inline
assembly, or dynamically generated code, which are difficult for static analysis to reason
about. By validating control transfers at runtime, these approaches can provide strong
security guarantees.

Several representative systems illustrate the design space of dynamic enforcement.
PittyPat [37] applies runtime profiling to monitor control transfers and enforces that
indirect calls only target legitimate functions observed during profiling. While this
reduces the attack surface compared to conservative policies, its coverage is inherently
tied to the quality and completeness of training inputs. Griffin [41] introduces a hybrid
design by combining both hardware and software techniques. It instruments indirect
branches and consults shadow stacks and metadata at runtime, achieving low overhead
while providing strong forward- and backward-edge protection. uCFI [50] further extends
this domain by proposing a unified framework that enforces fine-grained control-flow
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integrity dynamically with reduced instrumentation cost, making runtime validation
more efficient and practical. CCFI [149] protects control data by using cryptographic
message authentication codes (MACs) to verify the integrity of code pointers at runtime.
This approach provides strong tamper-resistance guarantees but comes with the cost
of maintaining and verifying MACs on each pointer use. Finally, PiCFI [100] combines
static analysis with lightweight runtime checking: it leverages static pointer analysis to
narrow target sets and then instruments dynamic checks to validate runtime targets,
striking a balance between coverage and performance.

Despite their strengths, dynamic analyses face fundamental limitations. Their re-
liance on runtime checks inevitably introduces performance overhead, which may be
prohibitive in performance-critical systems. Coverage is another challenge: unless the
entire execution space is exercised, dynamic systems can only validate targets encountered
at runtime, leaving unexecuted paths unchecked. Additionally, instrumentation and
metadata maintenance can increase complexity and memory usage, limiting deployment
in resource-constrained settings such as embedded systems or kernels.

2.2 Rust Memory Safety Enforcement
This section provides background and reviews prior work on Rust memory safety enforce-
ment. It first introduces Rust’s built-in memory safety model and the primary causes of
memory safety violations, and then introduces the traditional pointer analyses [8,129,130]
and AddressSanitizer (ASan) [122], which form the foundation of many existing Rust
memory safety tools, as discussed in Section 2.2.1. Finally, prior work on Rust memory
safety enforcement is discussed in Section 2.2.2.

2.2.1 Background

Rust’s Memory Safety Guarantees

Spatial memory safety refers to the prevention of out-of-bounds memory accesses, which
are among the most common sources of vulnerabilities in low-level languages such as C
and C++. Rust enforces spatial safety by design. Unlike C/C++, where pointers can
be arithmetically operated or arbitrarily cast, Rust prohibits explicit pointer arithmetic
on references [65]. A reference in Rust (&T or &mut T) is always tied to a well-defined
memory region, and its validity is guaranteed by the compiler. For data structures such
as arrays, slices, and vectors, Rust maintains internal metadata (e.g., length and capacity)
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that is automatically checked at access points. At compile time, the compiler statically
verifies bounds for indexing operations. For dynamically determined indices, Rust inserts
runtime bounds checks to ensure no access exceeds the container’s limits. This design
ensures that in safe Rust, a dereference can never reach beyond allocated memory region.

Nevertheless, Rust also acknowledges the need for low-level control in systems pro-
gramming and thus provides an unsafe mode. Unsafe blocks allow developers to perform
operations such as raw pointer arithmetic, unchecked array indexing, casting between
pointer types, or calling external functions (FFI). These unsafe constructs bypass the
compiler’s spatial checks and can lead to memory safety violations, making them the root
cause of out-of-bounds errors [9,88,108]. While necessary for writing performance-critical
code (e.g., implementing memory allocators, system calls, or custom data structures),
unsafe code reintroduces the possibility of spatial errors such as buffer overflows or
out-of-bound memory dereferences.

Temporal memory safety ensures that memory is only accessed while it is still valid,
thereby preventing errors such as use-after-free, double free, and dangling references.
Rust enforces temporal safety through its ownership and borrowing model. Each object
in Rust has a unique owner, and when the owner goes out of scope, the Rust compiler
automatically inserts the deallocation code to free the memory. This eliminates the
possibility of memory leaks caused by forgotten deallocations and prevents double
deallocations of the same resource. Borrowing rules complement ownership by managing
the lifetimes of references. A reference can only live as long as its owner, and the
compiler’s borrow checker enforces this property statically [65]. This guarantees that no
reference outlives the object it points to, thus preventing dangling pointers. Furthermore,
the aliasing rules enforce that multiple immutable references may co-exist, but only
exactly one mutable reference may exist. This rule ensures not only memory safety
but also no data-race in multi-threaded programs, making Rust unique among system
programming languages in providing memory and thread safety.

As with spatial safety, unsafe code provides privileges that bypass these temporal
safety guarantees. In unsafe blocks, developers can create and manipulate raw pointers,
cast lifetimes manually, or interface with foreign code, none of which are verified by the
borrow checker. While powerful, these capabilities open the door to temporal safety
violations: a raw pointer may outlive the object it points to, memory may be freed
multiple times, or stale references may be dereferenced after deallocation [9, 108]. Thus,
even though safe Rust guarantees temporal safety at compile time, unsafe constructs
remain the primary source of temporal vulnerabilities.
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Pointer Analyses in Rust

Pointer or alias analysis is a long-standing problem in program analysis, aimed at
determining whether two pointers may refer to the same memory location at a given
program point [48]. Classical pointer analysis is often formulated in terms of three
relations: must-alias, may-alias, and no-alias. If the analysis cannot prove that two
pointers always refer to distinct memory locations, it conservatively labels them as
may-alias. This conservative strategy ensures soundness but typically yields significant
over-approximation.

In the context of C and C++, such over-approximation is common and inevitable
because of the languages’ permissive pointer semantics. Arbitrary casts, unchecked
pointer arithmetic and memory accesses make it difficult for static analyses to rule out
aliasing relationships precisely [33,49]. As a result, alias analysis often produces large
sets of may-alias relationships, which increases false positives in downstream applications
such as bug detection, sanitizer instrumentation, or optimization.

When applied to Rust, classical pointer analyses become even less effective. Rust
introduces a unique ownership and borrowing model in which each object has a single
owner, and references must follow strict lifetime and mutability rules. The Rust compiler
enforces these rules at compile time through the borrow checker, guaranteeing memory
safety in safe code. However, general-purpose alias analyses are unaware of these semantics.
They conservatively assume that pointers can alias in ways that Rust’s type system
and ownership discipline explicitly forbid. Consequently, these analyses not only inherit
the over-approximation problems seen in C/C++ but amplify them in Rust, producing
unnecessary false positives.

A prominent example is SVF (Static Value-Flow Analysis) [131], a widely used state-
of-the-art pointer and alias analysis framework. SVF supports advanced inter-procedural,
flow-sensitive, and context-sensitive analyses and has been applied to numerous do-
mains, including security and compiler optimization. Notably, both ERASan [88] and
RustSan [27], the state-of-the-art Rust memory safety sanitizers, adopt SVF in their
underlying static analysis to identify potentially unsafe pointers before applying sanitizer
instrumentation. While powerful in theory, SVF exhibits two fundamental drawbacks in
the Rust context.

First, SVF does not align with Rust’s ownership semantics. Since it does not model
ownership and borrowing rules, SVF conservatively reports aliasing relationships that
cannot occur in Rust programs. This leads to imprecise identification of unsafe pointers,
producing excessive and redundant instrumentation when integrated into sanitizers.
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Second, SVF incurs substantial analysis cost. The combination of context-sensitivity,
flow-sensitivity, and inter-procedural reasoning introduces high computational complexity,
resulting in excessive analysis times on medium- to large-scale codebases [64, 69]. These
scalability issues make SVF impractical for use in large-scale or production Rust analysis
pipelines, where timely feedback and low overhead are essential.

Address Sanitizer

A widely adopted approach to enforcing memory safety at runtime is memory safety
sanitizers. These tools instrument program code to insert runtime checks that validate
the safety of memory operations, with the goal of detecting both spatial errors (e.g.,
buffer overflows, out-of-bounds accesses) and temporal errors (e.g., use-after-free, double
free). Unlike static analyses, which analyzes code features without execution, sanitizers
monitor actual program behaviors, thereby leveraging precise program states of concrete
execution paths to detect memory safety violations. Their general applicability have led
to integration into mainstream compilers and adoption in large-scale software projects
across multiple languages, particularly C and C++.

Among these tools, AddressSanitizer (ASan) [122] stands out as the most widely
deployed memory safety sanitizer due to practicality and effectiveness. It has been
integrated into both GCC and Clang/LLVM toolchains, and is frequently used in
production-scale projects written in C, C++, and, more recently, Rust. ASan works
by instrumenting every memory access instruction (i.e., loads, stores, and stack or
heap accesses) with runtime checks that validate whether the access is legitimate. This
design makes ASan both comprehensive and practical, enabling it to uncover numerous
previously unknown memory safety bugs in real-world software.

ASan’s detection capability is built on three core design mechanisms: red zones,
shadow memory, and quarantine.

Red zones. ASan surrounds allocated memory objects with red zones, which are
memory regions acting as buffers between valid objects. Any access that falls into a red
zone triggers an error, thereby catching common buffer overflows and out-of-bounds
accesses.
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Shadow memory. To efficiently check temporal memory safety, ASan maintains a
shadow memory space that encodes the validity status of program’s memory regions.
For each byte of program memory, a corresponding entry in the shadow memory
indicates whether it is allocated or not. Instrumented memory accesses consult the
shadow memory to validate whether the memory address is valid, thereby catching
use-after-free and double-free bugs.

Quarantine. To strengthen shadow memory mechanism and mitigate temporal
errors, ASan employs a quarantine mechanism. When memory is freed, it is not
immediately returned to the allocator. Instead, it is placed into a quarantine pool
for a limited time, ensuring that dangling pointers to the freed region are less likely
to be reused immediately. Once the quarantine expires, the memory is recycled and
reallocated for new objects.

While ASan’s combination of red zones, shadow memory, and quarantine provides a
practical defense against many memory errors, the approach suffers from two fundamental
limitations: limited bug detection capability and and high runtime and memory overhead.

ASan does not guarantee complete detection of spatial and temporal errors. For
spatial safety, its red zones are fixed in size. Large buffer overflows that extend beyond
the red zone can access adjacent valid objects without being detected, particularly in
heap or global data regions. For temporal safety, shadow memory is updated once a
memory region is reallocated, erasing evidence of prior dangling pointers. Although the
quarantine mechanism delays reuse, it only provides short-lived protection. If a dangling
pointer remains in scope after the quarantine expires and the region is reallocated, the
error will go undetected. As a result, ASan may miss use-after-free bugs or overflows
that exceed red zones.

ASan’s design also introduces significant overhead, which limits its applicability in
performance-critical settings. Instrumentation of every memory access typically slows
down execution by at least 2–3×, depending on workload characteristics. In addition,
the use of red zones and shadow memory imposes large memory costs: red zones
increase fragmentation, while shadow memory and metadata can double or even triple
total memory usage in some applications. This overhead makes ASan impractical for
deployment in resource-constrained environments or for long-running production systems.

These limitations highlight the need for more precise and lightweight sanitization
mechanisms. Ideally, a sanitizer should retain ASan’s comprehensive bug detection
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capability but eliminate reliance on coarse-grained shadow memory and red zones,
instead adopting more fine-grained, semantics-aware mechanisms that align with Rust’s
ownership and borrowing semantics.

2.2.2 Related Work

Memory Sanitizing

The most widely adopted sanitization tools are AddressSanitizer (ASan) [122] and its
successors. Among them, ERASan [88] and RustSan [27] are particularly designed for
Rust, both of which aim to reduce ASan’s prohibitive performance and memory costs
while preserving its ability to detect spatial and temporal memory violations.

ERASan [88] introduces the idea of selective sanitization for Rust programs. Instead
of instrumenting all memory accesses, ERASan leverages SVF (Static Value-Flow Analy-
sis) [131] to identify program locations where raw pointers or their aliases may be used
and thus violate memory safety. ASan checks are then retained only for these poten-
tially unsafe accesses. This strategy significantly reduces the instrumentation overhead
compared to ASan’s whole-program instrumentation, while still providing equivalent
memory safety guarantees. However, the reliance on whole-program pointer analysis
makes ERASan computationally expensive during compilation, as SVF computes exhaus-
tive alias information across the entire program. This results in long compile times and
poor scalability for large codebases.

RustSan [27] adopts a similar approach but extends selective sanitization to cover a
broader range of unsafe behaviors. By analyzing unsafe constructs beyond raw pointer
usage, RustSan targets those program points where Rust’s ownership and borrowing
guarantees no longer apply. Like ERASan, it employs SVF to statically identify relevant
pointers, and then preserves ASan checks only for those operations. While this reduces
runtime overhead compared to full ASan, RustSan still inherits the scalability limitations
of SVF-based pointer analysis and thus suffers from high compile-time cost.

In contrast, our solution LiteRSan achieves lightweight yet comprehensive memory
safety enforcement through improvements in two critical dimensions. First, LiteRSan
provides more complete safety guarantees by precisely identifying unsafe pointers through
a Rust-specific static analysis that aligns with ownership and lifetime semantics, rather
than relying on whole-program alias information. This precision allows LiteRSan
to eliminate redundant checks without missing subtle temporal or spatial violations.
Second, LiteRSan deploys a lightweight metadata-based runtime validation mechanism
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in place of ASan’s coarse-grained red zone and shadow memory mechanisms, achieving
significantly lower runtime and memory overhead. Finally, because LiteRSan avoids
SVF’s heavyweight alias analysis, it achieves significantly lower compile-time overhead
than ERASan and RustSan, making it practical for large-scale Rust programs.

Memory Isolation

Another major line of defense against unsafe code, which includes both unsafe Rust code
and external C/C++ libraries, is memory isolation, which aims to confine the effects
of memory errors by separating trusted and untrusted regions. Rather than detecting
errors directly, isolation approaches focus on ensuring that memory used exclusively by
safe Rust code cannot be corrupted by unsafe components.

XRust [74] was one of the earliest attempts to protect Rust programs from unsafe code
through isolation. XRust builds on SVF [131] to identify memory objects and pointer
dereferences that may be influenced by unsafe code. Once these objects are identified,
XRust instruments bounds checks around pointer dereferences to ensure they remain
within valid object boundaries. This design prevents unsafe Rust code from corrupting
safe Rust memory, but at the cost of runtime overhead from added bounds checking.
Moreover, the reliance on SVF introduces scalability challenges when analyzing large
Rust codebases.

Trust [14] takes a different approach by leveraging hardware-assisted memory protec-
tion. Specifically, Trust employs Intel Memory Protection Keys (MPK) [55] to enforce
isolation between memory that is exclusively used by safe Rust code and memory that
may be accessed by unsafe code. Similar to XRust, it uses SVF to identify unsafe accesses,
but instead of inserting software-based checks, Trust configures memory protection keys
to prevent unsafe code from directly manipulating safe memory regions. This approach
significantly reduces runtime overhead compared to pure software-based checking, while
still protecting the integrity of safe Rust memory.

MetaSafe [61] focuses on protecting critical metadata associated with Rust’s safe
abstractions, such as the length fields of String or Vec. MetaSafe moves this metadata
into a dedicated, isolated memory region, which is protected using Intel MPK. This
ensures that even if unsafe code manipulates raw pointers to data buffers, the associated
metadata—which governs bounds and ownership semantics—remains protected. By
safeguarding metadata integrity, MetaSafe prevents unsafe code from undermining Rust’s
compiler-enforced safety guarantees.
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PKRU-Safe [64] addresses a key limitation of the above approaches: the heavy
compile-time cost of SVF-based analysis. Instead of relying on static alias analysis,
PKRU-Safe employs lightweight dynamic monitoring to identify unsafe memory accesses
at runtime. Once identified, these accesses are isolated using Intel MPK. This hybrid
approach reduces compile-time overhead while still leveraging hardware isolation to
protect safe memory. However, it inherits the limitations of MPK, including limited
number of keys and potential key management complexity in multi-threaded contexts.

Sandcrust [66] focuses on protecting Rust applications that depend on untrusted
external C libraries. Rather than attempting to isolate unsafe memory within a single
process, Sandcrust enforces process-level separation: unsafe library code is executed
in a separate sandboxed process, with communication handled through inter-process
communication (IPC). This strong isolation boundary prevents unsafe C code from
corrupting Rust’s safe memory space, albeit with higher overhead from context switches
and IPC operations.

Fidelius Charm [7] addresses similar challenges in the context of untrusted C libraries.
Instead of sandboxing the entire library, it selectively protects sensitive data by migrating
it to and from protected memory pages when crossing library boundaries. Before calling
into an untrusted C library, sensitive data is copied out of protected memory, and once
the library returns, the data is restored. This approach reduces the performance overhead
of full sandboxing but requires careful data movement to prevent leaks.

While these isolation-based techniques provide strong protection for safe Rust memory,
they share common limitations. By design, they allow memory errors within unsafe
code to occur, only ensuring that the damage does not propagate into safe Rust regions.
As a result, vulnerabilities such as use-after-free or buffer overflows can still manifest
inside unsafe code itself, potentially leading to denial-of-service or exploitable states if
the unsafe code interacts with external components.

In contrast, LiteRSan goes beyond isolation by actively detecting memory safety
bugs both within unsafe code and in “safe” code that is indirectly affected by unsafe
constructs. For example, temporal violations on smart pointers, caused by misuse in
unsafe code, can propagate into safe abstractions. LiteRSan directly detects such bugs
through lightweight runtime checks, whereas isolation-based approaches would allow
them to occur silently. That said, like other sanitization tools, LiteRSan provides more
comprehensive bug detection coverage than isolation-based techniques.
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Static Bug Detection

Static analyses for Rust aim to detect memory safety and correctness bugs without
executing programs, typically by reasoning over Rust’s mid-level IRs (e.g., MIR) or over
crate source code. Compared with dynamic sanitization, static tools can achieve broad
code coverage and catch bugs early in the development cycle. However, they often trade
precision for scalability and thus can suffer from high false-positive rates.

Rudra [13] targets ecosystem-scale analysis of unsafe Rust and focuses on three
high-impact bug families: potential overflow, uninitialized memory, and panic safety
issues. It builds pattern-based static analyses that scan crates on crates.io, combining
syntactic heuristics with targeted data-flow reasoning to surface likely memory-safety
vulnerabilities in unsafe code. Rudra demonstrated large-scale practicality by analyzing
the Rust package ecosystem and reporting numerous previously unknown issues, but its
pattern-driven approach can over-approximate in ambiguous contexts, contributing to
notable false-positive rates.

MirChecker [72] performs fully automated bug detection directly on Rust’s Mid-
level Intermediate Representation (MIR). It introduces abstract-interpretation domains
tailored to MIR to reason about numeric properties, pointer states, and control flow,
enabling checks for memory-safety violations and runtime crashes that elude purely
syntactic scans. By operating at MIR, MirChecker benefits from compiler desugaring
while retaining enough structure to analyze ownership-relevant operations; nevertheless,
like many abstract-interpretation systems, its precision depends on domain choices and
widening or narrowing strategies, which can lead to conservative alarms.

Rupair [51] focuses on buffer overflows in Rust and goes beyond detection to automatic
rectification. It uses static analysis to locate overflow-prone code patterns and then
generates patches to fix the issues, aiming to reduce developer effort in triaging and
remediation. This detection-and-repair pipeline shows that actionable fixes can be
synthesized for a class of memory errors in Rust, though its specialization to buffer
overflows limits coverage of other bug families.

SafeDrop [29] studies invalid memory deallocation in Rust, such as use-after-free
and double-free arising from ownership-based resource management. It implements a
path-sensitive, field-sensitive static data-flow analysis over crate APIs, using a modified
Tarjan-style algorithm for scalable path sensitivity and a cache-based strategy for efficient
interprocedural reasoning. Evaluations indicate high recall on known CVEs with moderate
analysis overhead compared to baseline compilation time.

22



FFIChecker [71] concentrates on cross-language memory-management issues at Rust’s
Foreign Function Interface (FFI) boundaries. It statically reasons about ownership
mismatches and lifetime violations that occur when Rust interacts with manual memory
management in C/C++. By modeling how objects cross FFI calls and how their lifetimes
are (mis)managed across languages, FFIChecker detects errors that conventional Rust-
only analyses miss.

SyRust [135] complements static bug finders by automatically generating well-typed
Rust programs to test library APIs. It introduces a program-synthesis technique that
encodes typing and ownership constraints as logical formulas so that generated tests
respect Rust’s borrowing rules and API chaining constraints. This semantic-aware
generation improves effectiveness for libraries while ensuring synthesized programs compile
and execute, broadening dynamic coverage in areas that static analyses flag as suspicious.

These tools demonstrate strong coverage within their targeted scopes: ecosystem-wide
unsafe code scanning (Rudra), MIR-level numeric/semantic checks (MirChecker), overflow
detection and repair (Rupair), deallocation errors (SafeDrop), FFI lifetime/ownership
mismatches (FFIChecker), and semantic test generation (SyRust). However, they also
illustrate common challenges of static detection in Rust: precision limits from over-
approximation (e.g., pattern matches or conservative abstract domains), high false-
positive rates in complex ownership/aliasing scenarios, and non-trivial analysis time
at scale (especially for interprocedural, path-sensitive data-flow). For instance, Rudra
achieves broad detection but reports a substantial fraction of benign findings under
large-scale scans, reflecting the inherent conservatism of pattern-based static analysis.

In contrast, LiteRSan focuses on sound bug manifestation at runtime with selective,
semantics-aware instrumentation. Rather than classifying potential bugs purely statically,
it aligns with Rust’s ownership and lifetime rules to precisely identify unsafe pointers
and then performs lightweight dynamic validation. This hybrid stance avoids false
positives (every reported violation corresponds to an actual illegal access) while keeping
compile-time costs and runtime overhead low, complementing static tools that provide
coverage but may require substantial analyses.

2.3 Takeaways
Prior work on indirect call resolution spans a wide spectrum of techniques. Conservative
solutions guarantee soundness but are excessively imprecise, leading to large target sets
that undermine their downstream utility. Type-based analyses improve scalability and
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are straightforward to implement, but they lack the precision needed to handle complex
programs where many functions share similar type signatures. Data-based analyses, by
contrast, achieve far greater accuracy by tracking pointer propagation through program
states, yet this precision comes at the expense of prohibitive compile-time cost and
scalability limitations. Dynamic approaches offer runtime precision but at the cost of
runtime overhead and incomplete coverage. Collectively, these approaches illustrate the
long-standing trade-off between efficiency and precision in resolving indirect calls.

Efforts to enforce memory safety in Rust have likewise followed multiple directions.
Sanitization tools, such as ASan and its Rust-specific derivatives (ERASan, RustSan),
provide broad bug-detection coverage but incur high runtime and memory overhead,
limiting their practicality. Memory isolation approaches use static or dynamic analyses
combined with hardware mechanisms (e.g., MPK) to protect safe Rust memory, but
they cannot prevent bugs within unsafe code itself. Static bug detection tools analyze
ownership, lifetimes, and data flows to detect potential vulnerabilities, but they often
suffer from high false-positive rates and long analysis times when scaled to large codebases.
These lines of work underscore the challenge of achieving strong safety guarantees in
Rust without sacrificing performance.

Across both domains, from indirect call target identification to Rust memory safety
enforcement, the central lesson is consistent: achieving high precision often comes at a
prohibitive efficiency cost. Conservative or lightweight analyses scale well but lack of
accuracy, while precise analyses offer accuracy at the cost of scalability and efficiency.
The following chapters present two approaches, DeepType and LiteRSan, which are
designed to bridge this gap in respective research domains. By leveraging targeted,
semantics and domain specific static analyses, these systems demonstrate that it is
possible to achieve both precision and efficiency, addressing the long-standing barrier in
program analysis research.
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Chapter 3 |
DeepType: Indirect Call Target
Resolution

Indirect call, used commonly to determine the functions to be called at runtime, is a
fundamental feature of C/C++ for achieving dynamic program characteristics. Produc-
tion software (e.g., nginx) and operating systems (e.g., Linux) intensively utilize indirect
calls to dynamically adapt program behaviors according to runtime environments and
demands, through loading and linking the desired shared libraries.

Precise identification of indirect call targets is of paramount importance, as the control-
flow transitions between indirect calls and their respective targets play an essential
role in the construction of a global control-flow graph (CFG), which is extensively
adopted in various security-related fields. Static analysis tools rely on CFG for bug
detection and program hardening [52, 57, 60, 73, 120, 170, 172, 173, 176, 178], program
partitioning and privilege separation [19, 23, 54, 76, 80, 113], pruning redundant paths
in symbolic execution [18, 21, 26, 147, 160], and guiding directed fuzzing for specific
objectives [17,24,96,102,105,106,125]. Additionally, control-flow Integrity (CFI) defenses
[1, 20, 42, 99, 100, 145, 175, 177] have been proposed to mitigate control-flow hijacking
attacks. However, the strength of CFI depends on the precision of CFG. Imprecise CFG
construction results in advanced attacks that bypass CFI [56,82,112,121,123,163].

The key challenge in construction of an accurate CFG is identifying the targets of
indirect calls. Modern compilers like GCC and Clang cannot determine these targets
without additional analysis and instrumentation. Conservative approaches [175, 177]
consider all functions or those with address taken as potential targets for each indirect
call, producing a considerable number of false positive edges within CFG, which impair
the functionality of the applications built upon CFG and impose unnecessary cost. Data
tracking analysis [42,62,124,130,178] tracks value flow, which pursues accuracy at the cost
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of high performance overhead while the accuracy depends on the precision of the taint
analysis and points-to analysis techniques they employ. Type-based analysis [99,145,150]
checks function signatures to identify functions whose types match with an indirect call.
While this approach is efficient, it is susceptible to false positive targets if many functions
share the same type as the actual target.

Multi-layer type analysis (MLTA) [78] was proposed for the purpose of improving the
accuracy of type-based analysis. Given the fact that function pointers can be members
of composite data structures, the type of a function pointer along with the composite
types holding it compose a multi-layer type. For example, if function pointer ptr with
type void (int)* is a member of object a with type struct.A, the variable a.ptr has
multi-layer type void (int)* | struct.A. A function f also has this multi-layer type
if it is assigned to a.ptr. MLTA matches multi-layer types of functions and indirect calls
to refine indirect call targets.

However, multi-layer types introduce challenges in type matching because address-
taken functions may be propagated between different multi-layer types through infor-
mation flow, making it hard to collect all targets for an indirect call (see Section 3.1.2).
MLTA bypasses the challenges by splitting a multi-layer type into several two-layer types,
and adopts each layer’s type as the basic unit for information storage and type matching
(see Section 3.1.1), which avoids missing targets while producing false positive targets. It
relinquishes the type information between spitted layers and weakens the restrictions
provided by multi-layer types, thereby negatively affecting accuracy.

This paper proposes an advanced approach, Strong Multi-Layer Type Analysis
(SMLTA), to mitigate the false positive targets produced by MLTA. It adheres to the
strong restriction that identifies only those functions as targets whose entire multi-layer
types match with the indirect calls. SMLTA addresses the challenges in multi-layer type
matching by resolving the relationships between multi-layer types based on the directions
of information flow, and utilizes an adapted breadth-first search (BFS) algorithm [157]
to discover all multi-layer types engaged in the propagation of target functions. It
also employs a conservative strategy to deal with ambiguous type information due to
information flow.

We implemented SMLTA within a prototype, DeepType,1 which contains two
working phases: 1) information collection and 2) target identification. In the first phase,
DeepType establishes and maintains the mappings between multi-layer types and their
associated functions (Section 3.3.1). The collected multi-layer types are organized in a

1DeepType is available at https://github.com/s3team/DeepType.git.
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hierarchical manner for the purpose of quick retrieval (Section 3.3.2). It also preserves
the relationships between multi-layer types as indicated by the directions of information
flow, facilitating the tracing of multi-layer types engaged in function propagation (Section
3.3.3). In the second phase, DeepType determines the multi-layer type of each indirect
call and discovers all other multi-layer types engaged in target propagation (Section
3.4.1). Then, it verifies whether the engaged multi-layer types match with the indirect
call to precisely identify associated functions as targets (Section 3.4.2). Additionally,
DeepType handles diverse instructions and code patterns in real-world programs to
reduce the inaccuracy caused by corner cases (Section 3.5).

We evaluated DeepType on Linux kernel, 5 server programs, and 14 user-level
applications (Section 3.6). We compared it with TypeDive (i.e., the prototype of MLTA),
as MLTA is the-state-of-the-art approach in type-based analysis. The results indicate that
DeepType outperforms TypeDive in the precision of indirect call target identification,
reducing the average number of indirect call targets by 43.11% on average across most
benchmarks. In terms of performance, DeepType decreases the runtime overhead by
5.45% to 72.95% and achieves lower memory consumption in all evaluated benchmarks.
Additionally, a case study on a real-world CVE shows that SMLTA is more powerful
than MLTA in reducing attack surface and preventing exploits.

In summary, this work makes the following contributions.
• Propose a novel approach called Strong Multi-Layer Type Analysis (SMLTA) that

employs strong restrictions provided by multi-layer types to refine indirect call
targets.

• Develop a prototype, DeepType, which overcomes challenges in multi-layer type
matching and utilizes SMLTA to precisely and efficiently identify indirect call
targets.

• Evaluate DeepType with 20 benchmarks and compare it with TypeDive, exhibiting
its capability in further refining indirect call targets and reducing both runtime
overhead and memory consumption. Additionally, we demonstrate that SMLTA
offers a higher level of security.

3.1 Motivation and Challenges
This section clarifies the challenges in indirect call target identification using multi-layer
types, describes how MLTA and SMLTA address these challenges, and highlights the
accuracy improvement achieved by SMLTA through an example.
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3.1.1 Motivating Example

Listing 3.1 shows a code snippet with buffer overflow vulnerability. The strcpy at line
24 can overwrite the memory location adjacent to buf if the length of msg is larger than
MAX_LEN. The adjacent memory location belongs to w_op, which is afterwards assigned
to u->uw at line 25. So, the function pointer u->uw->low_priv can point to an address
manipulated by the attacker after buffer overflow occurs. At line 28, this function pointer
is used to make an indirect call, resulting in arbitrary execution if a lenient CFG is
deployed on this program. To prevent such control-flow hijacking attack and other
unexpected bugs caused by imprecise CFG, precisely identifying indirect call targets is
crucially required.

1 typedef void (*fp)(char*);
2 struct Write {fp low_priv; fp high_priv;};
3 struct User {struct Write *uw; ...};
4 struct Kernel {struct Write *kw; ...};
5

6 void func_init(struct Write *w_op, struct Kernel *k) {
7 w_op->low_priv = &write_to_shared_mem;
8 w_op->high_priv = &write_to_protected_mem;
9 k->kw->low_priv = &write_to_protected_mem;

10 k->kw->high_priv = &write_to_kernel_mem;
11 }
12

13 void user_priv_write(fp icall_ptr, char *buf) {
14 ...
15 (*icall_ptr)(buf);
16 }
17

18 void write_to_mem (char *msg) {
19 struct Kernel *k;
20 struct User *u;
21 struct Write *w_op;
22 char buf[MAX_LEN];
23 func_init(w_op, k);
24 strcpy(buf, msg); // buffer overflow
25 u->uw = w_op;
26 ...
27 if (user_mode()) {
28 if (low_priv()) (*u->uw->low_priv)(buf);
29 else user_priv_write(u->uw->high_priv, buf);
30 }
31 }

Listing 3.1: A program vulnerable to control-flow hijacking attack through indirect call.
The strcpy at line 24 has buffer overflow vulnerability, which allows attackers to rewrite the function
pointer u->uw->low_priv and redirect control-flow through the indirect call at line 28.
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Traditional Type-Based Analysis

Traditional type-based analysis examines the signatures of address-taken functions and the
types of indirect calls. If these types match, the function is identified as a potential target.
This approach is not impacted by the challenges described in Section 3.1.2 because
it solely relies on the types of function pointers, ignoring composite data structures
holding them. In Listing 3.1, the indirect call at line 28 has type void (char*)*,
which matches with functions write_to_shared_mem, write_to_protected_mem, and
write_to_kernel_mem. As a result, all of them are identified as targets though only
write_to_shared_mem is the real target. Similarly, the indirect call at line 15 also has
the three targets while only function write_to_protected_mem is the real target.

Multi-Layer Type Analysis (MLTA)

MLTA utilizes the extra type information extracted from composite data structures and
supports field-sensitivity considering that a composite data structure may have multiple
members holding different functions. If one function is assigned to a pointer, MLTA
records the mappings between the multi-layer type and the function, which is called
"type-func confinement". It splits multi-layer types and uses each layer type along with
an index as key, as Table 3.1 shows. Similarly, the original and transformed types in type
assignment and casting operations are logged in a split manner as well.

In Listing 3.1, the indirect call at line 28 has multi-layer type void (char*)* |
struct.Write | struct.User. MLTA identifies potential targets by collecting associ-
ated functions for each layer and calculating the intersection to find common functions. For
the first layer void (char*)* and the second layer struct.Write with index 0, both have
no original type. Thus, MLTA retrieves the associated functions from Table 3.1, resulting
in set {write_to_shared_mem, write_to_protected_mem, write_to_kernel_mem} for
the first layer and set {write_to_shared_mem, write_to_protected_mem} for the sec-
ond layer. The third layer struct.User with index 0 has an original type struct.Write
(see line 25), thus MLTA gathers the associated functions for both types, generating a set
{write_to_shared_mem, write_to_protected_mem, write_to_kernel_mem}. Finally,
it computes the intersection of these three sets. The common functions in resulting
set {write_to_shared_mem, write_to_protected_mem} are identified as targets. The
indirect call at line 15 with type void (char*)* has no original type. So, MLTA
directly generates the target set {write_to_shared_mem, write_to_protected_mem,
write_to_kernel_mem}, according to Table 3.1. In contrast with tradition type-based
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Type Index Functions

void (char*)* -
write_to_shared_mem(7)

write_to_protected_mem(8,9)
write_to_kernel_mem(10)

struct.Write
0 write_to_shared_mem(7)

write_to_protected_mem(9)

1 write_to_protected_mem(8)
write_to_kernel_mem(10)

struct.User
0 -

... -

struct.Kernel
0 write_to_protected_mem (9)

write_to_kernel_mem(10)

... -

Table 3.1: Mappings between types and functions in MLTA for Listing 3.1. MLTA splits
multi-layer types into two-layer types and maintains mappings between these types and associated
functions. The two-layer types are presented by a composite type along with an index, which indicates
the member type at a specific position. For example, struct.Write with index 0 represents the two-layer
type void (char*)* | struct.Write. The numbers in parenthesis indicate the line numbers where
the functions are confined to the types.

analysis, MLTA narrows down the target set for the indirect call at line 28, but there is
still a visible gap between MLTA result and ground truth.

Strong Multi-Layer Type Analysis (SMLTA)

SMLTA employs entire multi-layer types as keys for information storage, as Table 3.2
shows, to circumvent the false positive targets caused by splitting multi-layer types. The
relationships between multi-layer types are also recorded by entire multi-layer types. We
call multi-layer type T2 a "friend type" relative to multi-layer type T1 if information
flows from T2 to T1 (i.e., a function may be propagated from T2 to T1). To identify
targets for an indirect call, SMLTA exhaustively searches for its friend types and gathers
all associated functions as targets.

In Listing 3.1, the indirect call at line 28 has multi-layer type void (char*)* |
struct.Write#0 | struct.User#0 where "#0" indicates the index. SMLTA exhaustively
discovers all friend types that may have information flowing to this multi-layer type,
only void (char*)* | struct.Write#0 in this example, and then gathers associated
functions of these multi-layer types. The resulting set {write_to_shared_mem} contains
the identified target, which is exactly the real target. The indirect call at line 15 has type
void (char*)*. Because the function pointer icall_ptr is a parameter, SMLTA adds a
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Type Functions

void (char*)* | s.Write#0 write_to_shared_mem(7)

void (char*)* | s.Write#1 write_to_protected_mem(8)

void (char*)* | s.Write#0 | s.Kernel#0 write_to_protected_mem(9)

void (char*)* | s.Write#1 | s.Kernel#0 write_to_kernel_mem(10)

Table 3.2: Mappings between types and functions in SMLTA for Listing 3.1 program.
SMLTA treats each multi-layer type as a whole and uses the entire multi-layer type as a basic unit in
storage-purposed data structures. In this table, the structs are abbreviated as "s". The index of each
member in a composite type is denoted as "#N" where N is a number. For instance, s.Write#0 represents
struct.Write with index 0.

"fuzzy type" as its outer layer, which matches with any type. Thus, this indirect call can
match with all address-taken functions whose first layer is void (char*)*, resulting in the
target set {write_to_shared_mem, write_to_protected_mem, write_to_kernel_mem}
without missing potential targets.

3.1.2 Challenges

The use of multi-layer types presents challenges in matching indirect calls with all
potential targets, particularly when functions are propagated across multi-layer types
due to information flow. We categorize the challenges into three classes consistent to
three forms of information flow.

First, type assignment and casting operations can transform one multi-layer type into
another, resulting in information flow from the original to the transformed type, as well
as affecting members of composite types. For example, the type assignment operation
(line 25) indicates information flow from w_op to u->uw, as well as w_op->low_priv to
u->uw->low_priv. In this context, the function write_to_shared_mem with multi-layer
type void (char*)* | struct.Write (line 7), should be propagated to void (char*)*
| struct.Write | struct.User. Because information flow affects individual layers
as well as overall multi-layer types, it is challenging to track various multi-layer types
involved in function propagation and identify all potential targets.

Second, a function pointer performing as an actual parameter can sometimes dis-
card outer layers during parameter passing, leading to discrepancies of type infor-
mation at different positions. For instance, the actual parameter u->uw->high_priv
(line 29) has multi-layer types void (char*)* | struct.Write and void (char*)* |
struct.Write | struct.User, while the corresponding formal parameter icall_ptr
(line 13) has type void (char*)*. The obscured outer layers can result in mismatch of
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multi-layer types, making it challenging to identify all potential targets for an indirect
call that uses a formal parameter.

Third, some mechanisms, such as virtual tables [159] used by compilers, can introduce
information flow between composite types (e.g., struct.Write) and general pointer
types (e.g., char*). These general pointer types can hinder function propagation since
they do not have associated functions, resulting in missing potential targets.

MLTA bypasses these challenges by splitting each multi-layer type, thus simplifying
the complex information flow between them to straightforward information flow between
traditional types, which is easier to track. It conservatively confines a function to each
layer of its multi-layer type, ensuring no missing target even if the outer layers are
discarded. Specifically, to overcome the third challenge, MLTA marks all general pointer
types and composite types that interact with them as "escaping types". It skips the layers
of escaping types when calculating intersection, which removes the impact of general
pointer types.

In SMLTA, the first challenge is addressed by maintaining the relationships between
multi-layer types and the exhaustive search of all friend types engaged in function
propagation. The second challenge is addressed by fuzzy type, which conservatively
admits that all types could possibly match with the discarded outer layer types, ensuring
no missing targets. The third challenge is also solved by conducting an exhaustive search
of friend types. This search treats general pointer types as bridges between composite
types, unblocking function propagation stuck on general pointer types.

3.2 Overview and Workflow
The prototype of SMLTA is called DeepType, which contains two phases: Information
Collection and Target Identification. The workflow is shown in Figure 3.1.

Program 
bitcode

Phase 2:

Target 
Identification

I-call 1 loc. …
Target set …

I-call 2 loc. …
Target set …

……

Type-Func Map

Type-Type Map

Phase 1:

Information 
Collection

Type Lookup Maps

Figure 3.1: Workflow of DeepType. DeepType contains two working phases. In phase 1, it
collects and records type information in three data structures. In phase 2, it refers to the recorded type
information to discover friend types, gather associated functions, and identify targets.

32



Given bitcode as input, phase 1 analyzes initialization instructions and type propa-
gation instructions to collect information. An initialization instruction assigns a function
to a function pointer. We say, it confines the function to the corresponding multi-layer
type. The mappings between the entire multi-layer types and associated functions are
stored in Type-Func Map. For quick access and retrieval purpose, DeepType archives
these multi-layer types in Type Lookup Maps in a hierarchical manner using multi-layer
mappings. Type propagation instructions include type assignment and casting instruc-
tions that possibly propagate functions from one multi-layer type to another through
information flow. DeepType records the mappings between destination and source
multi-layer types of information flow in Type-Type Map using entire multi-layer types as
keys and values. The sources are friend types relative to destinations.

In phase 2, DeepType analyzes each indirect call instruction to figure out its
multi-layer type. If the function pointer is a formal parameter, fuzzy type is added to
represent potentially discarded outer layers. Then, DeepType exhaustively searches
for friend types from Type-Type Map, retrieves multi-layer types that match with the
indirect call or its friend types from Type Lookup Maps, and obtains associated functions
from Type-Func Map. The union of all associated functions are potential targets for the
indirect call. Finally, DeepType outputs a list of indirect calls in the analyzed program
along with their locations and respective targets.

3.3 Design of Phase 1: Information Collection
This section presents how SMLTA collects information from initialization and type
propagation instructions, and how it organizes multi-layer types hierarchically.

3.3.1 Type-Function Confinements

A function could be considered as a potential target of an indirect call only if it is utilized
to initialize local and/or global variables. We confine the function to the multi-layer type
of the initialized function pointer by establishing a mapping between them in Type-Func
Map. It is straightforward to determine the multi-layer types of local variables, by
extracting the types layer by layer as they are loaded. However, the multi-layer types of
formal parameters and nested global variables may not be fully ascertainable using the
same method.
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The multi-layer type of a formal parameter is uncertain because it may have extra
outer layers that are lost during parameter passing. To complete its multi-layer, we
introduce fuzzy type, as defined in Definition 1, to cover for missing layers. The fuzzy
type can be matched with any type. For instance, void (int)* | fuzzy type matches
with any multi-layer type whose first layer is void (int)*, including void (int)*, void
(int)* | struct.A#0, and void (int)* | struct.A#0 | struct.X#0, etc. Similarly,
when an index is uncertain,2 we employ fuzzy index, which matches with any index.

Definition 1. Fuzzy type marks the type of an uncertain layer. The existence of
this layer is uncertain, and the type of this layer is uncertain. In type verification, a
fuzzy type can match with any type, even if the corresponding layer does not exist.

1 typedef struct bfd_target
2 {
3 ...
4 void* (*_bfd_read_ar_hdr_fn) (bfd *);
5 ...
6 } bfd_target;
7

8 extern const bfd_target x86_64_elf32_vec;
9 ...

10 static const bfd_target * const _bfd_target_vector[] =
11 {
12 ...
13 &x86_64_elf32_vec, // nested global variable
14 ...
15 };

Listing 3.2: Nested global variable. x86_64_elf32_vec is a nested global variable because it
serves as a member in another global variable _bfd_target_vecor. This example is from targets.c from
binutils-2.35.

A nested global variable is one that initializes members of other variables, thus may
have extra layers involved in other initialization instructions. Its multi-layer type is uncer-
tain when analyzing the instruction initializing it. To gather complete type information,
we track all variables that hold this global variable iteratively. For instance, Listing 3.2
shows a nested global variable x86_64_elf32_vec (line 8) with type struct.bfd_target,
which initializes a member of another global variable _bfd_target_vector (line 13).
Thus, the function pointer_bfd_read_ar_hdr_fn (line 4), as a member of the global

2In LLVM IR, index is typically derived from GetElementPtrInst when the corresponding operand
is a constant. However, index may be non-constant operand such as a phi instruction, indicating an
uncertain index until runtime.
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variable, should be confined to both void (bfd*)* | struct.bfd_target#53 and void
(bfd*)* | struct.bfd_target#53 | vector.bfd_target#237, ensuring that a poten-
tial target could be identified through both multi-layer types.

3.3.2 Multi-Layer Type Organization

For efficient access and retrieval, we organize the collected multi-layer types hierarchically
using multi-layer mappings and store them in Type Lookup Maps. We prepare N maps for
a program, in which the multi-layer types have up to N+1 layers. To archive a multi-layer
type T, the first n layers of T is used as a key in the n-th map (where 1 ≤ n ≤ N), and
the n-th layer of T is stored as the corresponding value. If T consists of M layers, where
M is less than N, only the first M maps are utilized for storage.

Figure 3.2 shows an outline of Type Lookup Maps and exemplifies the utilization of
this data structure via two multi-layer types: 1⃝ void (int)* | struct.A | struct.X
and 2⃝ void (int)* | struct.B | struct.Y | struct.P.3 The First Map stores the
mapping between the common first-layer type void (int)* and respective second-layer
types struct.A, for 1⃝, and struct.B, for 2⃝. The Second Map stores mappings between
first-two-layer types and corresponding third-layer types, among which the first entry is
for 1⃝ and the second entry is for 2⃝. The Third Map works in a similar way to store the
rest part of 2⃝. If a multi-layer type contains more than four layers, we will establish
more maps based the number of layers, to record the rest parts.

The First Map

key value set

void(int)* {struct.A, struct.B}

…… {……}

The Second Map

key value set

void(int)* | struct.A {struct.X}

void(int)* | struct.B {struct.Y}

…… {……}

The Third Map

key value set

void(int)* | struct.B | struct.Y {struct.P}

…… {……}

Type Lookup Maps

……①

② ②

Figure 3.2: Outline of Type Lookup Maps with two example types stored. Type Lookup Maps
use multi-layer mappings to archive multi-layer types. The First Map records the first-layer types and
corresponding second-layer types; The Second Map records the first-two-layer types and corresponding
third-layer types; So on so forth. 1⃝ void (int)* | struct.A | struct.X and 2⃝ void (int)* |
struct.B | struct.Y | struct.P are archived as examples.

The question is: how many mappings are sufficient in Type Lookup Maps? In other
word, what is the optimal value of N? This number should neither be too large to

3The indexes are omitted to simplify the example and emphasize the key point, which is how to
hierarchically archive multi-layer types.
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guarantee the performance of DeepType nor too small to hold the multi-layer types.
Our solution is to decide the number of mappings conforming to the multi-layer types
in the analyzed programs. Take the benchmarks (see Section 3.6.1) in this work as an
example, Table 3.3 shows the number of multi-layer types with different layer counts.

Programs Total <=8 layers > 8 Layers

binutils 311* 311* 0
sqlite 220 220 0
nginx 101 101 0
httpd 88 88 0
openvpn 43 43 0
proftpd 88 88 0
sshd 46 46 0
linux 5,447 5,447 0

Table 3.3: Number of multi-layer types with different layer counts. 311* presents the average
of binutils programs.

Across all benchmarks, the multi-layer types in them contain at most 8 layers, which
means 7-layer mappings are sufficient to record these multi-layer types. Thus, we adopt
7-layer mappings in our implementation. If multi-layer types with more than 8 layers are
common in other programs, more mappings can be deployed in DeepType to supply
extra precision in practice.

3.3.3 Type Relationship Resolving

A function can be propagated from one multi-layer type to another via type propagation
instructions. To collect all involved multi-layer types, we analyze type assignment and
casting instructions and introduce friend type, as defined in Definition 2, to describe their
relationships.

Definition 2. A is a friend type relative to B if either of the following holds:

1. There exists information flow from A to B.
2. There exists information flow from A to C, and C to B.

Due to the information flow, the associated functions of A are propagated to B. We
say, A shares functions with B.

The second condition manifests that one multi-layer type is a friend type relative to
another if there exists a chain of information flow following the first condition. This chain
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can be as long as the entire program. We record the mapping between one multi-layer
type and its direct friend types, satisfying the first condition, in Type-Type Map. The
indirect friend types, satisfying the second condition, can be inferred through the direct
relationships recorded in Type-Type Map.

Type Assignment

A type assignment instruction assigns the value of one variable to another. These
two variables have different multi-layer types, but share the same first-layer type (e.g,
void(int)* and void(int)*|struct.A). Such instructions create a one-way relationship:
the source type of information flow is a friend type relative to the destination type. For
example, Listing 3.3 shows a type assignment operation (line 10) where the return value
of function bfd_get_section_by_name is assigned to pupdate->section, resulting in
information flow from the source type asection to the destination type asection |
struct.section_add#5, which allows asection to share its associated functions with
asection | struct.section_add#5.

1 struct section_add {...; asection *section;};
2

3 asection *bfd_get_section_by_name (bfd *abfd, const char *name);
4

5 copy_object (bfd *ibfd, bfd *obfd, const bfd_arch_info_type *input_arch)
6 {
7 ...
8 struct section_add *pupdate;
9 ...

10 pupdate->section = bfd_get_section_by_name (ibfd, pupdate->name);
11 ...
12 }

Listing 3.3: Type assignment. A variable with multi-layer type asection is assigned to another
variable with multi-layer type asection|struct.section_add#5 in line 10. This example is from
objcopy.c in binutils-2.35.

Type Casting

A type casting instruction transforms one type into another, resulting in distinct multi-
layer types. In Listing 3.4, the original type of entry is struct.bfd_hash_entry* (line
2). It is transformed to struct.string_hash_entry at line 4. The type casting at line
6 transforms struct.string_hash_entry* to struct.bfd_hash_entry*. Considering
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the flow-insensitivity feature of our static analysis, 4 it is uncertain whether a type casting
instruction executes before or after an indirect call, making it uncertain whether the
multi-layer type of the indirect call is transformed from another multi-layer type. To
address this ambiguity, we conservatively establish a bidirectional relationship between
the source and destination types, allowing them to share associated functions with each
other so that indirect calls do not miss any potential target.

1 static struct bfd_hash_entry *
2 string_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table,

const char *string)
3 {
4 struct string_hash_entry *ret = (struct string_hash_entry *) entry;
5 ...
6 return (struct bfd_hash_entry *) ret;
7 }

Listing 3.4: Type casting. struct.bfd_hash_entry is casted to struct.string_hash_entry in
line 4. struct.string_hash_entry is casted to struct.bfd_hash_entry in line 6. This example is
from ecofflink.c in binutils-2.35.

3.4 Design of Phase 2: Target Identification
This section presents how SMLTA identifies indirect call targets utilizing the type
information stored in Type-Func Map, Type-Type Map and Type Lookup Maps.

3.4.1 Friend Type Discovery

For each indirect call, SMLTA examines whether the function pointer is a formal parameter
to decide if fuzzy type should be added to complete its multi-layer type. Once the multi-
layer type of an indirect call is ascertained, we discover all of its friend types to ensure
that the associated functions shared by the friend types will be identified as potential
targets. Given that a multi-layer type can be partially transformed from another type,
we extract all possible fragments, as defined in Definition 3, to support the exhaustive
search of friend types relative to the entire multi-layer type of the indirect call.

Definition 3. A fragment of multi-layer type T is one or multiple continuous layers
in type T.

4SMLTA is flow-insensitive for efficiency. Tracking the execution sequence of instructions is beyond
our scope.
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A multi-layer type with N layers has (1+N)×N
2 possible fragments, as exemplified in

Table 3.4. The Fragment column lists all possible fragments while the layers before and
after each fragment are respectively listed in Before-Part and After-Part columns.
We can substitute each fragment with its friend types and concatenate these types with
corresponding Before-Part and After-Part to generate friend types relative to the entire
multi-layer type, thereby transforming the task of searching for friend types relative to
the multi-layer type into discovering friend types for individual fragments.

Before-Part Fragment After-Part

A |B|C
A| B |C

A|B| C
A|B |C

A| B|C
A|B|C

Table 3.4: A table recording the fragments of multi-layer type A|B|C. A multi-layer type
A|B|C with 3 layers has 6 possible fragments, including single-layer fragments, two-layer fragments, and
three-layer fragments.

For each fragment, the search of direct friend types is straightforward, which is
achieved by querying Type-Type Map. However, the exhaustive search of indirect friend
types can be challenging because these types may be buried in long, cyclic chains of
information flow. To address this issue, SMLTA employs an exhaustive search algorithm
adapted from Breadth-First Search, which monitors the state of discovered friend types to
bypass cycles in chains. This algorithm is detailed in Algorithm 1, where Frag represents
a fragment and Fragft represents its friend types.

We prepare three sets, Schecked, Schecking, and Sunchecked, to manage friend types in
different states and prevent cyclic search. A friend type currently being used to query the
Type-Type Map is held in Schecking and is moved to Schecked post-query. Sunchecked holds
newly discovered friend types for the next round of search. Initially, the current Frag is
placed into Schecking. In each search iteration, we look for friend types for elements in
Schecking by querying Type-Type Map and place newly discovered friend types to Sunchecked.
After each iteration, update the three sets for the following round of search. Repeat this
process until Schecking is empty and Scheked is no more updated, indicating that all Fragft

have been discovered.
Given friend types of each fragment, we generate the friend types relative to the

entire multi-layer type of an indirect call by concatenation operations, and gather them
in a set S along with the multi-layer type itself for type verification.
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Algorithm 1: Exhaustive search of Fragft
Input: Type-Type-Map, Frag
Output: All Fragft are placed in Schecked

1 Schecked ← {};
2 Schecking ← {Frag};
3 Sunchecked ← {};
4 Schecked_origSize ← 0;
5 Schecked_newSize ← 0;
6 while Schecking is not empty do
7 foreach e ∈ Schecking do
8 Sunchecked ← SetMerge(Sunchecked, Type-Type-Map[e]);
9 Schecked_origSize ← Schecked.size();

10 Schecked ← SetMerge(Schecked, Schecking);
11 Schecked_newSize ← Schecked.size();
12 Schecking ← ∅;
13 Schecking ← Sunchecked;
14 Sunchecked ← ∅;
15 if Schecked_origSize == Schecked_newSize then
16 return Schecked;

3.4.2 Type Verification

The elements in S, are not exactly the multi-layer types that confine target functions
of this indirect call due to three kinds of mismatches: 1) Some friend types generated
through fragments do not exist among the recorded multi-layer types; 2) Some elements
in S, containing fuzzy type and index, apparently differ from but actually match with
the recorded multi-layer types; 3) Some recorded multi-layer types, containing fuzzy type
and index, apparently differ from but actually match with the elements in S. Hence,
we query Type Lookup Maps for type verification and collecting verified types, which is
defined in Definition 4.

Definition 4. A verified type is a multi-layer type that is recorded in Type-Func
Map and Type Lookup Maps, and matches with an element in S.

To perform type verification, we check each element in S to find verified types in Type
Lookup Maps. Given a multi-layer type T in S, first of all, we pass the first-layer type
of T to The First Map to achieve a scope of second-layer types. Then, check whether
the elements in this scope match with the second-layer type of T. Concatenate the
first-layer type with every matched second-layer type to generate a set of first-two-layer
types. Lookup The Second Map to achieve a scope of third-layer types and find those
who match with the third-layer type of T. Following this working pattern to check the
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remaining layers until all verified types are retrieved from Type Lookup Maps. Finally,
query Type-Func Map with verified types to find associated functions. The union of such
functions are identified as potential targets of the indirect call.

3.5 Implementation
DeepType is built on LLVM 15.0 in 2.8k lines of C++ code. It supports C and C++
programs, providing particular advantages for programs that frequently employ composite
data structures. This section delineates the enhancements in accuracy and performance
from implementation perspective.

3.5.1 Special Handling

In addition to the novel approach SMLTA, DeepType enhances accuracy from imple-
mentation aspect by addressing diverse instructions and rare code patterns. We identified
four typical corners cases and applied special handlings to each, aiming to mitigate
inaccuracy resulting from the imprecise processing of these corner cases.

Composite instructions

A composite instruction encapsulates one or more embedded instructions as operands.
When analyzing composite instructions, DeepType cannot acquire complete type
information due to the obscured types within the embedded instructions. Listing 3.5
demonstrates a composite instruction. It is a store instruction that encapsulates a
bitcast as its second operand, which itself is also a composite instruction embedding a
getelementptr instruction as its first operand.

1 store <2 x i64> %12, <2 x i64>* bitcast (i32 ()** getelementptr inbounds (%struct.
Sqlite3Config, %struct.Sqlite3Config* @sqlite3Config, i64 0, i32 13, i32 0) to
<2 x i64>*), align 8, !dbg !56905, !tbaa !11590

Listing 3.5: A composite instruction. The store instruction in sqlite is composite, incorporating an
embedded bitcast instruction, which in turn is composite and contains an embedded getelementptr
instruction.

To gather complete type information, we employ ordered trees to represent hierarchical
structure of composite instructions and their embedded instructions, and conduct a
systematic analysis of instructions within ordered trees from the lowest to the highest
levels, ensuring that the types hidden in embedded instructions can be utilized to generate
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bitcast
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GEP
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<2xi64>*
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Figure 3.3: Ordered tree of the instructions in Listing 3.5. The root node represents the
composite instruction store. Its child nodes at level 1 denote the instruction’s operands. The second
operand is another composite instruction bitcast. The child nodes at level 2 correspond to the operands
of bitcast, among which the first one is a getelementptr instruction.

complete multi-layer types when analyzing their parent instructions. For example, we
construct a three-level tree to represent the instructions in Listing 3.5. The store
instruction occupies the root node in level 0, the bitcast instruction is situated in
the second child node at level 1, and the getelementptr instruction resides in the
first child node of the bitcast at level 2, as Figure 3.3 depicts. The getelementptr
instruction returns a three-layer type i32()* | struct.sqlite3_mutex_methods#0 |
struct.Sqlite3Config#13, which serves as the source type for the bitcast. So, we
record it and the destination type void (int)* | struct.A as friend types each other
in Type-Type Map. This relationship contributes to accuracy, but it could be missed
without the special handling to composite instructions.

Anonymous structures

In LLVM bitcode, structs are sometimes anonymous when the specific names are not
necessary or when they help to optimize the internal representation. This anonymity
helps reduce IR size, but can lead to type mismatches, resulting in imprecise target
identification.

We address this by assigning a unique identifier to each anonymous struct based on
the sequence of member types. 5 This identifier assists in linking anonymous structs
to named equivalents elsewhere in the bitcode, thus mitigating inaccuracy caused by
mismatches of anonymous structs. If no named equivalent is found, they are named as
struct.anon, which conservatively matches with any struct, preventing missing targets
resulted from anonymous structs.

5As of October 2023, the latest version of TypeDive uses similar method to identify anonymous
structs. However, it ignores those anonymous structs whose names never appear in the bitcode, which
may lead to missing targets.
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Dead functions

The iterative updating and patching of applications often results in the presence of
dead functions, which are declared but not invoked, thus will not be executed during
runtime. The analysis of instructions within these dead functions generates redundant
type information, leading to false positive targets and unnecessary performance overhead.
To enhance both accuracy and efficiency, our analysis omits dead functions.

Empty Type

In LLVM IR, the notation "{}" is employed to denote an anonymous struct type when the
specific details of the data structure are unnecessary and subsequently omitted. We name
it as empty type. Contrary to the anonymous structs discussed in Section 3.5.1, which
merely lack names, the empty type is anonymous and contains no fields. However, what
it represents can often be inferred from bitcast and other corresponding instructions
in proximity. We categorize the code patterns involving empty types into two distinct
classes, addressing each class with tailored solutions. Otherwise, the presence of empty
type can impact the precision of our analysis as itself does not match with any struct.

When the empty type serves as the destination type in a bitcast, we observed that
any subsequent utilization of the empty type in IR corresponds to the usage of the source
type in source code. Accordingly, we record the source type as a friend type relative to the
empty type, mitigating missing targets that may result from type mismatch. Conversely,
when the empty type is the source type in a bitcast, we observed that its outer layer
types in IR are the outer layer types of the destination type in source code. Thus, we
record the empty type’s outer layer types as those of the destination type’s, ensuring
that complete multi-layer types are gathered for type matching and target identification.

3.5.2 Caches

To diminish the performance overhead, we deploy two caches aiming at reducing runtime
cost without affecting accuracy. The first one is used to store the verified types of a
multi-layer type so that the exhaustive search algorithm and type verification process
only run once for each multi-layer type. The second one is used to store identified targets
of an indirect call so that another indirect call with the same multi-layer type can be
quickly resolved by accessing the cache.
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3.6 Evaluation
This sections presents the evaluation results of DeepType. Section 3.6.1 details experi-
ment setup. Section 3.6.2 and Section 3.6.3 demonstrates the effectiveness and overhead,
respectively, by comparing DeepType with TypeDive (commit acb8f4c) since MLTA
is the-state-of-the-art approach in type-based analysis. Additionally, we evaluate the
contribution of SMLTA in accuracy in Section 3.6.4 and present its security impact
through a case study in Section 3.6.5.

3.6.1 Experiment Setup

Experiments are conducted on Ubuntu 20.04 with 8-core Intel Core i9-9880H CPU @
2.30GHz and 16GB DDR4 RAM. Benchmarks include linux kernel, 5 web servers and 14
user applications. The GNU Binutils-2.35 is a collection of binary tools. We selected 13
among 15 programs as the discarded ones barely use indirect calls.6 SQLite-3.45.1 is a
database engine which contains numerous multi-layer types. 5 server programs are nginx,
httpd, openVPN, proftpd and sshd. We use Linux-5.1 as the benchmark to show the
scalability of DeepType.

These benchmarks are compiled by WLLVM [156] with LLVM-15. We use -g -O0 7 flags
to ensure that the generated bitcode contains debug information and type information,
and that the instructions DeepType analyzes are not optimized out. Another flag
-Xclang -no-opaque-pointers is used to disable opaque pointers so that pointers’ types are
sustained. To compare with TypeDive, we execute both tools on LLVM-15 and apply
dead function elimination on them to make sure the benchmark bitcode analyzed by
DeepType and TypeDive are exactly the same. In the experiments, we deploy 7-layer
mappings in Type Lookup Maps, which are sufficient to archive the multi-layer types in
our benchmarks, as presented in Table 3.3.

3.6.2 Effectiveness of DeepType

The effectiveness of DeepType is demonstrated by its ability to narrow down the
scope of indirect call targets. We use Average Number of Targets (ANT) as metric to

6The program sysinfo does not contain any indirect call; The program elfedit only has 53 indirect
calls without complex multi-layer types, showing exactly the same result for TypeDive and DeepType.

7This optimization level compiles the fastest and generates the most debuggable IR code, with which
we can determine whether a function pointer is a local variable or formal parameter.
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quantitatively measure effectiveness, which is defined as:

ANT = Num(T )
Num(IC) ,

where Num(T ) represents the total number of identified targets, Num(IC) represents
the total number of indirect calls that have targets. While the metric in TypeDive
paper [78] is also average number, it only takes into account the indirect calls whose
multi-layer types have at least two layers. Their metric neglects the fact that single-layer
types can also benefit from MLTA, and that some indirect calls have no target identified
because they are not initialized or because DeepType and TypeDive miss targets due
to inevitable obstacles in implementation, as elaborated in Section 3.7.1. Therefore, we
define ANT to precisely evaluate the effectiveness. To clarify false positive (FP) and
false negative (FN) subsequently used in this paper, we define them in Definition 5.

Definition 5. Given an indirect call, a false positive (FP) is a function erroneously
included in the target set contrary to the ground truth. A false negative (FN) is a
function erroneously excluded from the target set contrary to the ground truth.

Table 3.5 presents the ANT for the benchmarks tested by DeepType and TypeDive,
and the reduction rate in ANT achieved by DeepType compated to TypeDive. Given
that the binutils programs share numerous library functions, leading to analogous ANT
value, we only list their average ANT. The details are available in Table 3.6. The data in
Table 3.5 indicates that DeepType reduces the ANT by 43.11% on average across most
benchmarks, including binutils, httpd and linux. However, DeepType does not manage
to decrease the ANT for nginx, openvpn and proftpd.

Program DeepType TypeDive Reduction Rate

binutils 2.47 10.98 77.50%
sqlite 6.24 8.32 25.00%
nginx 6.38 5.60 -13.93%
httpd 6.23 12.27 49.23%
openvpn 2.35 1.62 -45.06%
proftpd 3.10 2.96 -4.73%
sshd 5.43 5.57 2.51%
linux 9.74 25.17 61.30%

Table 3.5: Average number of inidrect call targets. This table shows the average number of
indirect call targets, and the reduction rate produced by DeepType over TypeDive. binutils shows the
average of the 13 programs in binutils.
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Program DeepType DT-weak TypeDive

addr2line 2.38 2.62 8.60
ar 2.45 2.69 12.73
bfdtest1 2.38 2.62 12.89
bfdtest2 2.38 2.63 12.89
cxxfilt 2.37 2.62 8.64
nm-new 2.48 2.72 13.01
objcopy 2.63 2.87 13.08
objdump 2.95 3.19 11.26
ranlib 2.45 2.69 12.73
readelf 2.29 2.29 2.30
size 2.39 2.64 12.95
strings 2.37 2.62 8.64
strip-new 2.63 2.87 13.08

Table 3.6: Average number of indirect call targets for binutils. Detailed results for the programs
in binutils collection.

The reduction in ANT can be attributed to SMLTA and special handlings in Deep-
Type. SMLTA follows the strong restriction that checks the entire multi-layer type of an
indirect call to identify targets that match with it. In contrast, TypeDive employs MLTA
which separately resolves each layer of a multi-layer type and calculates intersection to
determine the target set, potentially leading to FPs. The special handlings in DeepType
are tailored to address corner cases where type information may be obscured, which
enable DeepType to extract more accurate type information, thereby reducing FPs.

To validate the reasons for ANT reduction, we conducted a manual analysis on
objcopy, as it contains substantial yet manageable number of indirect calls. By manually
examining the indirect calls for which DeepType collects fewer targets than TypeDive,
we confirmed the contributions of SMLTA and special handlings, and additionally unveiled
another factor contributing to the reduction of ANT.

Field-sensitivity deployed in DeepType enables the differentiation of distinct mem-
bers within in a composite data structure, even if they share the same type, which further
refines indirect call targets. Despite the assertion of field-sensitivity in TypeDive paper,
our manual analysis discovered FPs due to its field-insensitive. For instance, in a simpli-
fied scenario, a function is confined to i64(i8*)* | struct.bfd_target#13, whereas
an indirect call has multi-layer type i64(i8*)* | struct.bfd_target#23, without any
type propagation involved. TypeDive identifies this function as a target because its first
and second layers respectively match i64(i8*)* and struct.bfd_target. By contrast,
field-sensitive DeepType mitigates such FPs. Thus, field-sensitivity is another reason
for ANT reduction.
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Table 3.5 also shows that DeepType does not consistently reduce ANT, particularly
in the cases of nginx and openvpn. There are two reasons for the increasing ANT. First,
the adoption of fuzzy type leads to the conservative inclusion of all potentially matching
types. It decreases FNs meanwhile inevitably brings in FPs, consequently raising the
ANT value. Second, the special handlings enable DeepType to extract more precise
type information, diminishing both FPs and FNs. In situations where the reduction
in FNs surpasses that in FPs within a program, the ANT value increases. Given that
the rising ANT is attributed to the reduction in FNs, it is deduced that DeepType is
theoretically and practically effective in refining indirect call targets.

[1, 2)
[2, 4)

[4, 8)
[8, 16)

[16, 32)
[32, 64)

[64, 128)

[128, 256)
[256, ∞)

Indirect Call Target Set Sizes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Nu
m

be
r o

f I
nd

ire
ct

 C
al

ls

Distribution of Indirect Calls identified by DEEPTYPE and TypeDive
DEEPTYPE
TypeDive

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

Cu
m

ul
at

iv
e 

Nu
m

be
r o

f I
nd

ire
ct

 C
al

ls

DEEPTYPE-Cumu
TypeDive-Cumu

Figure 3.4: Distribution of indirect calls with different sizes of target sets in linux. The
y-axis on the left shows number of indirect calls. The y-axis on the right shows cumulative number of
indirect calls. The x-axis shows indirect call target sets’ sizes ranging from 1 to infinite divided into 9
intervals. DeepType and TypeDive respectively represents the number of indirect calls reported by
DeepType and TypeDive. DeepType-Cumu and TypeDive-Cumu respectively represents the cumulative
number of indirect calls reported by two tools.

Figure 3.4 shows the distribution of indirect calls with different number of targets
in linux kernel. We choose linux kernel because it is a complicated program that can
demonstrate the distribution patterns as comprehensive as possible. In the experiment,
although a number of indirect calls have no target according to either DeepType or
TypeDive or both, we observe that DeepType is capable of finding more valid targets
for more indirect calls, thus DeepType and DeepType-Cumu have more indirect calls
than TypeDive and TypeDive-Cumu in most intervals. The main difference between
DeepType and TypeDive falls in intervals [2,4) and [4,8), the number of targets
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represented by these two intervals is much smaller than the average number of indirect
call targets reported by TypeDive. As the number of indirect call targets increases, the
difference between DeepType and TypeDive gradually decreases and becomes trivial
except for interval [64,128), where DeepType has more indirect calls, and interval
[128,256), where TypeDive has more indirect calls.

This trend indicates that the ratio of indirect calls with small target sets is lower in
DeepType. We define small by different values of threshold in Table 3.7. A target set
is considered as small when its size is less than the threshold. We observe that when
the threshold is 2 or 4, DeepType has lower ratio of indirect calls with small target
sets. However, this does not imply that TypeDive outperforms DeepType for these
indirect calls. At lower thresholds (i.e., 2 or 4), a single FP or FN can significantly impact
whether an indirect call is categorized as with a small or large target set. Conversely, at
higher thresholds, the influence of false reports on categorizing diminishes. Therefore,
the general trend is more indicative. In most cases, DeepType demonstrates a higher
ratio of indirect calls with small target sets, underscoring its effectiveness in refining
indirect call targets.

Threshold DeepType TypeDive

2 23.0% 24.1%
4 47.7% 48.5%
8 84.7% 84.5%
16 90.6% 89.5%
32 93.2% 91.5%
64 94.8% 92.4%
128 99.7% 93.4%
256 99.9% 98.1%

Table 3.7: Ratio of indirect calls with small target sets. The definition of small depends on the
threshold. If the indirect call’s target set size is smaller than the threshold value, this indirect call is
considered as with small target sets. The last two columns respectively show the ratios of indirect calls
with small target sets in DeepType and TypeDive.

Additionally, we compiled the benchmarks with various optimization levels to assess
the effectiveness of DeepType across these levels, which is reported in Table 3.8. In
general, DeepType has higher ANT when the benchmarks are compiled with more
aggressive optimization settings for the majority of the programs examined. The increasing
ANT can be attributed to the fact that higher optimization levels tend to optimize away
certain instructions that DeepType relies upon for analysis, leading to incomplete type
information being gathered. Consequently, DeepType produces an increased number of
FPs and FNs. When there is a predominance of FPs over FNs, the ANT increases.
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Program O0 O1 O2 O3

binutils 2.47 3.20 3.20 3.13
sqlite 6.24 6.46 6.48 6.56
nginx 6.38 8.00 8.02 7.99
httpd 6.23 6.23 6.23 6.23
openvpn 2.35 2.80 2.45 2.45
proftpd 3.10 3.10 3.10 3.10
sshd 5.43 5.43 5.43 5.43
linux 9.74 9.74 9.74 9.74

Table 3.8: The effectiveness of DeepType on different optimization levels. This table shows
the ANT reported by DeepType when analyzing benchmarks respectively compiled with optimization
level O0, O1, O2 and O3.

The stability of ANT values across different optimization levels for programs such as
http, proftpd, sshd, and linux can be explained by two factors. First, the FPs and FNs
caused by the optimized-out instructions achieve a balance, neutralizing their impacts
on the ANT value. Second, the minimal number of FPs and FNs does not significantly
alter the ANT value.

Despite the reduced efficacy of DeepType on higher optimization levels compared to
the O0 level, it nevertheless outperforms TypeDive in those benchmarks where DeepType
with O0 optimization surpasses TypeDive. This observation demonstrates that while
there is a marginal decrease in effectiveness with higher optimization levels, DeepType
retains its comparative advantage over TypeDive.

3.6.3 Performance of DeepType

DeepType employs caches to obviate redundant analysis and improve performance. To
evaluate the runtime overhead comprehensively, we disabled the caches in DeepType,
resulting in a variant denoted as DT-nocache. We executed DeepType, DT-nocache,
and TypeDive on each benchmark for three times to obtain average execution time, which
yields more reliable statistics as it helps mitigate the impact of hardware conditions and
operating system states through averaging.

Figure 3.5 presents the execution time for each benchmark. DeepType significantly
outperforms TypeDive, showing a reduction in overhead ranging from 5.45% to 72.95%,
with an average reduction of 37.02%. DT-nocache also demonstrates reduced overhead
compared to TypeDive, despite TypeDive is equipped with caches.

To deduce the primary source of runtime overhead and reveal the reason for Deep-
Type’s efficiency, we separately measured the execution time of information collection

49



DeepType DT-nocache TypeDive
0

5

10

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

3.41
5.14 5.76

binutils

DeepType DT-nocache TypeDive
0

5

10

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

1.98 2.06

7.32

sqlite

DeepType DT-nocache TypeDive
0

2

4

6

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

1.15 1.20 1.56

nginx

DeepType DT-nocache TypeDive
0

2

4

6

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

0.76 0.76 1.06

httpd

DeepType DT-nocache TypeDive
0

2

4

6

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

1.04 1.07 1.10

openvpn

DeepType DT-nocache TypeDive
0

2

4

6

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)
0.91 0.95 1.20

proftpd

DeepType DT-nocache TypeDive
0

2

4

6

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

0.67 0.71 0.73

sshd

DeepType DT-nocache TypeDive
0

50

100

150

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

)

65.51
82.61

118.22

linux

DeepType DT-nocache TypeDive

Figure 3.5: Execution time of DeepType, DT-nocache and TypeDive. DT-nocache represents
DeepType without caches deployed. For each benchmark, we plot a bar chart to depict the execution
times of DeepType, DT-nocache, and TypeDive, and the y-axis scale of which is adjusted to encompass
the full data range without excessive magnification, allowing for clear differentiation in execution times.
Specifically, the binutils chart illustrates the average execution times across all assessed binutils programs.

and target identification phases, considering the shared general workflow of all tools.
The experiments were conducted on linux benchmark, which manifests noticeable differ-
ences among three tools. According to Figure 3.6, the percentages of runtime overhead
incurred during target identification exhibit a progressive increase among DeepType,
DT-nocache, and TyepDive, standing at 20.6%, 44.2%, and 65.0%, respectively. Thus,
the lower overhead of DeepType should owe to the target identification phase, wherein
DeepType straightforwardly deals with the entire multi-layer type of each indirect call.
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In contrast, TypeDive addresses each two-layer type within the multi-layer type and
calculates intersections, incurring additional runtime overhead. The fact that DeepType
refines indirect call targets also indicates that TypeDive consumes extra computational
resources on FPs.

79.4%

20.6%

DEEPTYPE

55.8%
44.2%

DT-nocache

35.0%

65.0%

TypeDive

Information Collection
Target Identification

Figure 3.6: Runtime overhead distribution of DeepType, DT-nocache and TypeDive.
DeepType and TypeDive follow the same general workflow that contains two phases: 1) collect
information and record it in data structures, 2) analyze indirect call sites and recorded information to
identify targets.

An additional observation reveals that the distinction in runtime overhead is evident
in binutils, sqlite and linux, whereas it is negligible in the five server programs. The
reason for this distinction is the higher prevalence of multi-layer types with more layers
in binutils, sqlite and linux as illustrated in Figure 3.7. The efficiency advantage of
DeepType over TypeDive is primarily attributed to DeepType’s one-time resolution
on the entire multi-layer type, in contrast to the laborious resolution in TypeDive for each
two-layer type. It is noteworthy that a multi-layer type may consist of multiple two-layer
types. Consequently, the benchmarks containing more multi-layer types with more layers
amplify the runtime overhead discrepancy between DeepType and TypeDive.

Typically, memory overhead is not a main concern in static analysis, as tools that
offer efficient performance without compromising precision are often favored. We still
measure the memory overhead of DeepType using Massif tool in Valgrind [95] tool
suite with –pages-as-heap=yes option enabled, to measure all the memory used, and
compare it with TypeDive for a thorough performance assessment.

Figure 3.8 shows the memory overhead of DeepType and TypeDive. Regarding
user applications and server programs in the benchmarks, both tools exhibit memory
overhead below 150 MB. However, in the context of the Linux kernel, both DeepType
and TypeDive demonstrate higher memory overheads ranging from 4.2 GB to 4.3 GB.
This discrepancy is attributed to the larger size of kernel, which involves more multi-layer
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Figure 3.7: Number of multi-layer types with different layer counts. The y-axis on the
right shows the number of multi-layer types in linux while the y-axis on the left shows the number of
multi-layer types in other benchmakrs.

types. As a result, both tools record a greater volume of type information, leading to
increased sizes of data structures and consequently consuming more memory spaces.

DeepType shows lower memory overhead than TypeDive, while the subtle difference
between two tools remains consistent across all benchmarks. This consistency is attributed
to the comparable memory space occupied by the data structures in two tools. Although
DeepType records entire multi-layer types, which have larger sizes than two-layer types,
it allocates fewer entries in maps for storage. The difference is due to the additional
memory space utilized in TypeDive for recording escaping types, which is designed to
overcome the third challenge, as elaborated in Section 3.1.2. In contrast, DeepType
adopts the exhaustive search algorithm which does not consume so much memory space
as escaping types.

3.6.4 Contribution of SMLTA

As described in Section 3.6.2, DeepType is capable to narrow down the scope of indirect
call targets. This capability owes to SMLTA and special handlings to corner cases. To
further investigate the impact of SMLTA on effectiveness, we disabled special handlings
in a variant denoted as DT-noSH. Different ANT values of DeepType and DT-noSH
exhibit the impact of special handlings, revealing the contribution of SMLTA.
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Figure 3.8: Memory overhead of DeepType and TypeDive. The scales from 150 to 4250 on
y-axis are cut out because there is a gap between the memory overheads of linux and other benchmarks.
DeepType always has lower memory overhead than TypeDive while the difference between two tools is
consistently subtle.

Table 3.9 presents the ANT reported by DeepType and DT-noSH. The ANT of
DT-noSH is close to that of DeepType, indicating that disabling the special handlings
has minimal impact on the effectiveness of DeepType, which reveals the primary role
of SMLTA in accuracy improvement. The rationale behind the statistics is that the
special handlings are specifically implemented to address corner cases. Without them,
DeepType generates slightly more FPs and FNs. Given the definition of ANT, minor
fluctuations in the total number of indirect call targets do not significantly alter ANT
value when the volume of indirect calls is relatively high. Nonetheless, these special
handlings remain crucial, as they play a vital role in mitigating the FPs and FNs that
are orthogonal to SMLTA.

Recall that there are four special handlings. First, the systematic analysis of composite
instructions facilitates the generation of complete multi-layer types. Among all the
benchmarks, nginx and linux exhibit the most significant improvement owing to this
special handling, given their relatively higher prevalence of composite instructions. Second,
linking anonymous structs with named equivalents enables DeepType to accurately
recognize and match multi-layer types. We observe that openvpn and linux obtain the
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Program DeepType DT-noSH DT-weak

binutils 2.47 2.48 2.70
sqlite 6.24 6.33 6.97
nginx 6.38 8.62 12.99
httpd 6.23 6.23 7.66
openvpn 2.35 2.39 2.35
proftpd 3.10 3.13 4.22
sshd 5.43 5.42 5.43
linux 9.74 9.72 13.09

Table 3.9: ANT values of DeepType, DT-noSH and DT-weak. DT-noSH exhibits the contribu-
tion of SMLTA. DT-weak shows the impact of storing entire multi-layer types in Type-Func Map.

most benefit from this special handling compared to other benchmarks. Third, DeepType
eliminates dead functions to discard redundant information, thereby mitigating FPs. All
benchmarks, except for httpd and openvpn, benefit from this special handling. Last,
DeepType handles empty types accordance to specific code patterns. Due to the
infrequent occurrence of the empty type, its impact on ANT is negligible.

Although the comparison between DeepType and DT-noSH reveals the signifi-
cant contribution of SMLTA to effectiveness, we also implemented a weak version of
DeepType, denoted as DT-weak, which stores two-layer types in Type-Func Map, to
help examine the impact of recording entire multi-layer types. As depicted in Table
3.9, DT-weak demonstrates a higher ANT than DeepType across most benchmarks,
indicating that recording entire multi-layer types, rather than two-layer types, effectively
refines indirect call targets. The difference between two tools is particularly evident on
nginx and linux, which contain relatively more complex multi-layer types than other
benchmarks. Note that, DT-weak still benefits from SMLTA because only the method of
recording multi-layer types in Type-Func Map has been modified, while other SMLTA
designs, such as multi-layer mappings, continue to play a role in filtering out FPs.

3.6.5 Case Study

While SMLTA is a fundamental tool applicable across various security-related fields (e.g.,
static bug detection, symbolic execution, fuzzing, and etc.), we demonstrate its security
impact through the example of CFI enforcement.

CVE-2023-43641 [31] is an out-of-bounds access that enables arbitrary write in libcue.
As detailed in Listing 3.6 at line 3, both the value of index i and ind can be controlled
by attacker. By setting the index i negative, an attacker can achieve arbitrary write
through preparing the value of ind. The exploit [11] utilized this vulnerability to corrupt
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a function pointer in glib (cross-referenced by libcue) to achieve arbitrary code execution.
To be specific, the exploit overwrites the heap object info (line 7), which is allocated in
a function invoked by track_set_index (line 1). This overwrite enables the corruption
of function pointer pre_parse_func (line 15) in glib, and the corrupted function pointer
is subsequently used to call the initable_init function, which behaves similarly to the
system function, enabling arbitrary code execution.

1 void track_set_index (...) {
2 ...
3 track->index[i] = ind;
4 }
5

6 static gboolean get_file_metadata (...) {
7 TrackerExtractInfo *info;
8 ...
9 tracker_extract_info_unref(info);

10 ...
11 }
12

13 gboolean g_option_context_parse (...) {
14 ...
15 if (!(* group->pre_parse_func) (context, group, group->user_data, error))
16 ...
17 }

Listing 3.6: CVE-2023-43642 vulnerable code. Line 3 is vulnerable to out-of-bounds access. An
exploit for this vulnerablity can overwrite a function pointer in glib to gain code execution.

Similar to many typical CVE exploits, this exploit assumes Control Flow Integrity
(CFI) is not deployed. The function pointer pre_parse_func has a type mismatch with
the target function initable_init, making the exploit preventable by both MLTA and
SMLTA. However, this does not imply that the vulnerability can be completely mitigated
by either MLTA or SMLTA, as attackers may still conduct exploits by corrupting
alternative function pointers.

We further examined glib and revealed 5 function pointers that can bypass MLTA, see
Table 3.10. MLTA fails to prevent the exploits that corrupting these function pointers
because it identifies the function initable_init as a valid target for these function point-
ers, though it is a FP in fact. This FP can be attributed to MLTA’s approach of splitting
multi-layer types, which confines the function initable_init respectively to gboolean
(Ginitable*, GCancellable*, GError**)* and struct._GInitableIface with in-
dex 1, weakening the restriction of multi-layer type matching.

For example, traverse_func in Table 3.10 has type gboolean (gpointer*,
gpointer*, gpointer*)*, matching with gboolean (Ginitable*, GCancellable*,
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Function Pointers MLTA SMLTA

callback ✗ ✓
callback* ✗ ✓
traverse_func ✗ ✓
func ✗ ✓
predicate ✗ ✓

Table 3.10: The capability of MLTA and SMLTA in preventing exploits. The listed function
pointers, located in glib, can be corrupted through the vulnerability. MLTA fails to prevent the exploits
through the 5 function pointers while SMLTA can prevent these exploits. To differentiate two function
pointers named "callback" in separate functions, one is denoted as "callback*".

GError**)* due to information flow in glib. Thus, MLTA identifies initable_init as a
potential target, enabling attackers to rewrite the function pointer with the address of
initable_init and achieving arbitrary code execution.

In contrary, SMLTA is able to prevent these exploits because it strictly confines
initable_init to its entire multi-layer type gboolean (Ginitable*, GCancellable*,
GError**)* | struct._GInitableIface#1, which does not match with any function
pointer in Table 3.10. Consequently, SMLTA effectively reduces the attack surface of
control-flow hijacking attacks utilizing this vulnerablity. By limiting the attacker’s ability
to corrupt function pointers, SMLTA offers a higher level of security compared to MLTA
in CFI implementation.

3.7 Discussion
This section discusses the soundness of SMLTA (Section 3.7.1), the limitations of this
work (Section 3.7.2) and future extensions (Section 3.7.3).

3.7.1 Soundness

This section discusses the soundness of SMLTA. In theory, SMLTA belongs to type-based
analysis, the soundness of which has already been proved [87,97,103,153,162]. In general,
the static analysis in DeepType is flow-insensitive, indicating that it does not track
the sequences of instructions or data-flow between basic blocks, but purely collects type
information, which does not yield any FN.

Specifically, SMLTA contains 4 novel designs, none of which produces FNs. First,
fuzzy type and fuzzy index stand for uncertain layers and indexes. They match with any
type and index to ensure that no potential targets can be missed. Second, multi-layer
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mappings are used to archive the collected multi-layer types without any omission. It
does not produce any FN because all recorded multi-layer types can be retrieved through
querying the mappings. Third, the relationships among multi-layer types involved in an
information flow chain is conservatively recorded. Any potential information flow between
two multi-layer types is considered when identifying targets. Finally, the exhaustive
search algorithm discovers all friend types that can share associated functions with the
multi-layer type of the indirect call, ensuring all potential targets being identified.

3.7.2 Limitations

The implementation of DeepType does not robustly address all corner cases in real-world
programs. Besides the ones addressed in Section 3.5.1, some corner cases are out of our
scope. For example, LLVM IR only contains type information but omits instantiated
values of the members in global variables with composite type. If a function pointer as a
member of a global variable is initialized at the global scope, the function assigned to
it is apparent in source code but does not appear in the corresponding IR, thus does
not appear in bitcode.8 Given this fact, DeepType is unable to record the mappings
between multi-layer types and functions for such initialization instructions, resulting in
missing targets for involved indirect calls. Take binutils programs as another example,
some indirect call targets are functions in the GNU linker, LD, while we use Clang to
compile the programs which uses LLD as linker.

Albeit the accuracy improvement contributed by SMLTA and special handlings,
DeepType still exhibits deficiencies in terms of accuracy. For small programs that contain
few complicated multi-layer types, DeepType is limited in reducing FPs compared
to TypeDive meanwhile possibly yielding extra FPs instead due to the conservative
design and implementation choices for soundness purpose. In addition, if several function
pointers have the same multi-layer type but points to different functions, SMLTA produces
FPs in this scenario.

In evaluation aspect, there is no standard scale available to calculate the statistics
such as FP rate, FN rate and accuracy, due to the absence of ground truth. Although
“pseudo ground truth” [63] is a feasible solution, it highly depends on the precision of
dynamic analysis adopted. If the dynamic analysis result is not proved to be extremely
close to the ground truth, the numerical data of soundness and precision relative to the
pseudo ground truth is not convincing subsequently. We use ANT as metric to reflect

8Bitcode is a binary encoding of LLVM IR.
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the accuracy improvement. But it is convincing only in the context that both SMLTA
and MLTA pertain to type-based analysis and the novel designs in DeepType does not
produce FNs.

3.7.3 Future Work

SMLTA generates FPs when multiple functions share the same multi-layer type with an
indirect call. This is a limitation intrinsic to type-based analysis that relies solely on
type verification. To enhance accuracy, we intend to integrate data-flow analysis with
SMLTA, assessing both value and multi-layer type to further constrain potential targets,
thereby reducing the FPs inherent to SMLTA. To maintain a balance between accuracy
and performance, this data-flow analysis will be designed to be lightweight, focusing on
intra-procedural analysis.

Motivated by the absence of a standard and reliable metric for comparing various
approaches, we also plan to develop a benchmark that includes a comprehensive ground
truth. This ground truth will encompass, but is not limited to, indirect call targets, alias
pointers, and value sets. This will enable a wide range of basic tools used in both static
and dynamic analysis to evaluate their effectiveness, identify the fundamental reasons for
any inaccuracies, and enhance their design and implementation accordingly.

3.8 Conclusion
In this paper, we have introduced strong multi-layer type analysis (SMLTA), a novel ap-
proach in refining indirect call targets, that thoroughly utilizes type information provided
by multi-layer types. It treats the entire multi-layer type as a basic unit for information
storage and type verification to improve accuracy. SMLTA resolves relationships between
multi-layer types, exhaustively discovers friend types for indirect calls, and employs fuzzy
type to overcome the challenges in indirect call target identification using multi-layer
types. Additionally, multi-layer mappings are deployed to hierarchically archive multi-
layer types for quick access. We implemented SMLTA in DeepType, which is equipped
with special handlings to address diverse code patterns and corner cases. DeepType
is scalable to large applications with superior effectiveness as well as performance. The
experiment results showed that DeepType narrows down the scope of indirect call
targets by 43.11% on average across most benchmarks, reduces runtime overhead by
37.02% on average and consumes less memory compared to TypeDive. A case study in
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CVE exploit demonstrated that SMLTA is more powerful than MLTA in reducing attack
surface and preventing exploits. However, the intrinsic limitation of type-based analysis
can still produce false positive targets. We leave it as future work to further improve
accuracy through lightweight data-flow analysis.
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Chapter 4 |
LiteRSan: Rust Memory Safety
Enforcement

Memory-safe programming languages have emerged as a promising approach [144] to
mitigate prevalent memory safety vulnerabilities, which account for 70%–80% of all
software vulnerabilities [85, 101, 136]. Among these languages, Rust [65] stands out
by enforcing strong compile-time safety guarantees. Its advanced type system detects
security issues early and helps confine additional costs to protect safety-critical operations.
Studies show that, aside from these checks, Rust’s performance can closely match that of
C/C++ [179]. Consequently, Rust has rapidly gained adoption in security-critical and
performance-sensitive domains [32,86,143].

Despite its robust safety guarantees, Rust’s type system is not flawless. It can be too
restrictive, preventing the expressiveness required for low-level systems programming,
or it may introduce prohibitive runtime overhead in performance-critical code paths.
Consequently, Rust permits unsafe code, such as raw pointer dereferences or calling
external C library functions [9, 39, 108], enabling developers to bypass Rust’s memory
safety checks. Nevertheless, the use of unsafe Rust code reintroduces memory safety
vulnerabilities, such as buffer overflows and Use-After-Free (UAF) bugs, undermining
Rust’s foundational memory-safety benefits [89,90,108,167].

Various detection and mitigation mechanisms have been proposed to address memory
safety challenges introduced by unsafe Rust. Static analysis tools, such as Rudra [13],
MirChecker [72], and SafeDrop [29], have successfully identified many real-world vulnera-
bilities in Rust programs. However, these tools typically suffer from high false positives
(e.g., Rudra reports approximately 89% false positives [13]), and have limited capability
in detecting diverse bug types [27, 88]. Memory isolation techniques, such as XRust [74],
TRust [14] and PKRUSafe [64], provide runtime protection by restricting unsafe code’s
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access to memory objects exclusively used by safe code. Nonetheless, these approaches
target only subsets of memory objects and primarily focus on spatial memory errors (e.g.,
buffer overflows) while neglecting temporal memory errors such as UAF. Rust fuzzing
frameworks [3, 22, 35, 171] have also emerged to detect memory safety vulnerabilities.
However, it is well-known that the probabilistic nature of the fuzzing approach results in
challenges of systematical detection of memory errors [15].

Researchers have also developed tools based on Address Sanitizer (ASan) [122],
a compiler-based memory error detector, to reveal memory safety vulnerabilities in
Rust. Compared to static analysis (limited bug detection capability), memory isolation
(partial protection), and fuzzing (probabilistic by nature), ASan-based approaches provide
deterministic dynamic validation of every memory access. Notably, ERASan [88] and
RustSan [27] have advanced this area by optimizing away redundant checks for memory
accesses already instrumented by the Rust compiler, thereby significantly reducing ASan’s
runtime overhead by 71.4% and 62.3%, respectively.

Despite these advances, existing ASan-based tools still do not fully align with Rust’s
native safety guarantees. Although ERASan and RustSan remove certain checks already
enforced by Rust’s type system, their reliance on traditional C/C++ pointer analyses (i.e.,
SVF [131]) leads to significant over-approximation of unsafe pointers, as such analyses
are not integrated with Rust’s ownership and borrowing semantics [67]. As a result, both
tools introduce superfluous checks for memory accesses that are already guaranteed to
be safe, imposing unnecessary runtime overhead. In addition, the static analysis time of
ERASan and RustSan is prohibitively high, increasing compilation time by 1,635.35%
and 1,193.31% per our measurements, due to their reliance on SVF, which is particularly
expensive for large programs [64]. Furthermore, ASan suffers from inherent limitations
in bug detection. Its red zones can be bypassed by overflows that exceed the boundaries,
and its shadow memory mechanism may fail to detect UAF bugs when freed memory
is reallocated post-quarantine, which makes dangling pointers to the original object
undetectable. These gaps cause ASan-based tools to provide incomplete bug coverage
despite significant overhead.

To address these limitations, our goal is to design a memory error detection mechanism
tailored to Rust’s inherent safety guarantees while addressing the loopholes introduced
by unsafe code and the weaknesses of existing detection frameworks. Specifically, we
strive to (1) identify pointers that truly pose spatial or temporal risks by incorporating a
Rust-specific static analysis, eliminating extraneous checks on pointers that are either
statically-proven safe or protected with compiler-inserted checks, (2) maintain complete
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coverage and precision in detecting all classes of memory errors, including spatial and
temporal errors without using heavyweight ASan-based approaches, and (3) minimize
overhead by integrating Rust’s ownership and borrowing rules into both static analysis
and enforcing selective instrumentation for lightweight runtime checks.

Achieving these three objectives requires addressing three major challenges: (1)
Rust’s allowance of raw pointers within otherwise safe code complicates standard pointer
analysis, as many may-alias inferences valid in the C/C++ context break under Rust’s
stricter ownership model, (2) bridging static checks and runtime validation demands a
lightweight metadata design that captures Rust memory safety model, and (3) avoiding
expensive and coarse-grained ASan-based runtime checks. To address these challenges,
we developed LiteRSan (Lite-Rust-Sanitizer), which deploys a Rust-specific static
analysis to pinpoint truly risky pointers and selectively instrument them with minimal
metadata to detect both spatial and temporal memory errors at runtime. This synergy of
compile-time insights and targeted runtime checks enables comprehensive and accurate
memory error detection with minimal overhead across 28 widely used Rust benchmarks:
only 18.84% runtime, 0.81% memory and 97.21% compile-time overhead. In contrast,
ERASan incurs 152.05% runtime, 739.27% memory, and 1,635.35% compile-time overhead,
while RustSan incurs 183.50%, 861.98%, and 1,193.31%.

In summary, we make the following contributions:
• Rust-specific Taint Analysis: We introduce a Rust-specific static analysis scheme

that identifies risky pointers by integrating Rust’s ownership and borrowing semantics
rather than defaulting to generic pointer analysis.

• Lightweight Metadata Inference and Runtime Checks: We design a compact
metadata mechanism for runtime validation of spatial and temporal safety, removing
the heavyweight components (e.g., red zones and shadow memory) of classic sanitizers.

• Comprehensive and Efficient Bug Detection: Our approach, LiteRSan, sys-
tematically detects spatial and temporal memory errors in Rust. Compared to prior
Rust sanitizers, LiteRSan offers complete coverage and higher accuracy in detecting
bugs while minimizing compile-time, runtime, and memory overhead compared with
existing ASan-based tools.
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4.1 Threat Model
We assume that memory errors, including both spatial (e.g., out-of-bound read/write)
and temporal (e.g., UAF and double-free) errors, are possible in Rust programs. Our
goal is to detect all such memory errors. While directly-linked C/C++ libraries may
also contain memory errors, we focus on Rust source code and neither analyze nor
harden such external libraries. We also assume that no extra memory safety defenses are
deployed beyond Rust’s built-in safety support. Memory leaks are out of scope, as they
are generally not classified as memory safety violations [92,93,122,134]. Figure 4.1 shows
the complete set of the bug patterns that LiteRSan covers, as ASan-based tools [27,88]
do in Rust programs.

Spatially 
Risky Pointers

> Initialized 
Length > Capacity

Deference with 
Offset

Null?

Temporally 
Risky Pointers

Access Free

Deference after 
being Dangling

Use-before-
initialization OOB Access Null Pointer 

Dereference UAF Double Free

Figure 4.1: Memory safety bug patterns. Memory safety bugs within scope include spatial errors
(i.e., use-before-initialization, out-of-bound accesses), null pointer dereferences, and temporal errors (i.e.,
use-after-free, double free).

Non-memory-safety errors, such as concurrency bugs and logic errors, are outside
the protection scope of LiteRSan. In addition, LiteRSan is not designed to detect
type conversion bugs. Notably, Rust’s std::mem::transmute() [115] allows converting
the type of an object to any other type. LiteRSan does not address errors caused by
misusing this dangerous API. However, LiteRSan can detect type confusion bugs that
arise from temporal errors, such as UAF. As mentioned above, LiteRSan does not
target external C/C++ libraries. Therefore, cross-language attacks [83] that propagate
exploitation from components written in unsafe languages (e.g., C/C++) are out of scope
and can be addressed by existing works [111].
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4.2 Motivation and Challenges
This section outlines the motivation and challenges behind this work. Chapter 4.2.1
presents an illustrative example showing how ASan-based tools often introduce redundant
runtime checks, motivating the need for a more precise static analysis capable of accurately
identifying instrumentation sites. Chapter 4.2.2 then discusses the key challenges to be
addressed to overcome the limitations of existing memory safety sanitizers.

4.2.1 Motivating Example

While Rust enforces memory safety for most memory accesses (Section 2.2.1), severe errors
(e.g., buffer overflows and UAF) can still occur when unsafe code is used. Listing 4.1
shows an example of a common scenario in web applications (e.g., Servo [143]).

1 struct Cache {
2 ptr: Option<*mut u8>,
3 }
4

5 impl Cache {
6 fn save(&mut self, ptr: *mut u8) {
7 self.ptr = Some(ptr);}
8

9 fn load(&self) -> Box<String> {
10 unsafe {
11 Box::from_raw(self.ptr.unwrap())}}
12 }
13

14 fn main() {
15 let mut cache = Cache { ptr: None };
16 let token = Box::from("session-token");
17 println!("Session␣token:␣{}", token);
18 {
19 let local_token = token;
20 cache.save(local_token.as_ptr() as *mut u8);
21 // local_token goes out of scope here.
22 }
23 let stale_token = cache.load(); // Dangling pointer
24 println!("Stale␣session␣token:␣{}", stale_token); // UAF
25 }

Listing 4.1: Use-after-free by caching a raw pointer after ownership transfer.

In Listing 4.1, the string “session-token” is a heap object allocated at line 16. A
smart pointer, token, points to and owns this object. At line 19, ownership is transferred:
a new smart pointer, local_token, takes the ownership of the heap object. Lines 20
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and 7 define a raw pointer, self.ptr, derived from local_token. This raw pointer does
not take the ownership of the string, so the owner remains local_token. local_token
goes out of scope at the end of line 21, causing the object it owns to be deallocated.
The raw pointer self.ptr then becomes dangling. At line 23, a new smart pointer,
stale_token, is created from the dangling raw pointer, and it also becomes dangling.
Then, all subsequent dereferences of the two dangling pointers are UAF.

ASan instruments all memory accesses, which can be redundant, incurring high
performance and memory overhead without guaranteeing comprehensive memory safety.1

For the example in Listing 4.1, no spatial memory safety check is necessary. For temporal
memory safety, the dereference of token (line 17) does not require safety instrumentation,
as Rust’s ownership model ensures its validity.

To address this deficiency, prior work (i.e., ERASan [88] and RustSan [27]) improves
ASan’s performance by selectively instrumenting only raw pointers, or pointers in unsafe
code, and their aliases. However, for the example discussed here, conventional alias
analysis would identify all pointers in Listing 4.1 as aliases to the raw pointer self.ptr in
unsafe code, resulting in redundant checks inserted to the dereference site of a safe pointer
(line 17). This redundancy stems from insufficient consideration of Rust’s memory safety
guarantees, leading to over-approximating and instrumenting safe pointer dereferences.

Ideally, a Rust memory safety sanitizer should: (1) leverage Rust’s memory safety
model to precisely differentiate safe pointers (e.g., token) from unsafe ones (e.g.,
self.ptr); (2) selectively instrument only unsafe pointers, avoiding redundant checks
on Rust-guaranteed safe pointers; and (3) provide comprehensive, accurate, and efficient
detection for all memory error classes. Such an approach narrows checks to only unsafe
operations, incurring minimal overhead while ensuring comprehensive detection coverage.

4.2.2 Challenges

As discussed in Section 2.2.1, existing memory error detection approaches are both
incomplete and inefficient. Static analyzers [13, 72] often produce a high number of false
positives, while ASan-based techniques [27,88] incur significant performance overhead
and still fail to detect many bugs. We observed that the shortcomings of ASan-based
tools largely stem from analyzing Rust in LLVM IR [68]—a language-independent, low-
level compiler intermediate representation, using generic pointer analysis [131] without

1As evaluated in MSET [152], ASan failed to detect around 50% of C/C++ memory errors in their
constructed benchmark. We believe the rationale would be similar for Rust, as ASan is not aware of
Rust’s memory safety model.
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accounting for Rust’s unique memory safety guarantees. This insight guides us in develop
LiteRSan. To propose our approach, we first introduce the key concept of risky pointer,
which will be used throughout the rest of this paper.

Definition 6. A risky pointer is a pointer whose dereferences may violate memory
safety. Such a pointer is spatially risky if it bypasses Rust’s spatial enforcements, or
temporally risky if it may outlive its referenced object.

Detailed explanations of spatially and temporally risky pointers are presented in
Section 4.4.2. Note that (1) a pointer may be both spatially and temporally risky; (2)
A raw pointer becomes risky only when it is exposed in unsafe code (Definition 7); and
(3) Rust’s native smart pointers may also be risky. For example, constructing multiple
smart pointers from a raw pointer may violate Rust’s ownership rules, rendering these
smart pointers risky and potentially causing UAF bugs that elude compiler checks.

Definition 7. An exposed raw pointer is a raw pointer directly used in unsafe
code, bypassing Rust’s safety guarantees.

We identify three key challenges in building an efficient and comprehensive memory
safety sanitizer tailored to Rust.

• C1: Leveraging Rust’s unique type system to precisely identify risky
pointers. Program analysis for Rust in prior work [14, 27, 74, 88] does not utilize
Rust’s ownership and borrowing semantics, significantly over-approximating risky
pointers. A refined approach should integrate Rust’s intrinsic memory safety model
to more precisely identify risky pointers.

• C2: Managing lightweight safety metadata for runtime checks. Relying on a
coarse-grained protection scheme like ASan’s shadow memory and red zones [122] is
expensive and imprecise. Tailoring compact yet fine-grained metadata that incorpo-
rates Rust’s memory safety guarantees enables more efficient and accurate runtime
error detection. Additionally, because raw pointers lack spatial metadata (i.e., bounds
information), LiteRSan must infer and maintain their metadata to enable runtime
validation.

• C3: Minimizing overhead while ensuring coverage. As Rust’s memory safety
model already protects a substantial amount of memory accesses, additional checks
are only needed for those involving risky pointers. The challenge is to minimize cost
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while maintaining accuracy and comprehensiveness by (1) selectively instrumenting
only the truly risky pointers based on their specific risk types and (2) enforcing an
efficient runtime check mechanism rather than incomplete and inefficient ASan-style
checks.

By addressing these challenges, LiteRSan complements Rust’s inherent memory
safety guarantees with precise instrumentation to achieve comprehensive and low-overhead
runtime safety checks, closing the gap left by prior work [27,88].

4.3 LiteRSan Overview and Workflow
To address the three key challenges described in Section 4.2.2, we propose a Rust-specific
static analysis to identify risky pointers. Coupling it with a metadata-based runtime
checking mechanism, we develop our prototype system, LiteRSan. Figure 4.2 illustrates
the main components and the overall workflow of LiteRSan.
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Figure 4.2: LiteRSan overview. LiteRSan consists of three stages. Each addresses one of the
primary challenges in enabling efficient and comprehensive sanitizer checks. The output of each stage
serves as the input to the next.

Stage 1 conducts Rust-specific static analysis to addresses C1. LiteRSan first
pre-processes the target Rust program using reachability analysis to narrow the analysis
scope to potentially reachable functions (Section 4.4.1). Within this scope, LiteRSan
identifies both Spatially Risky Pointers (Section 4.4.3) and Temporally Risky Pointers
(Section 4.4.4). Since the misuse of raw pointers is the primary cause of memory safety
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violations in Rust, LiteRSan begins by identifying them. It annotates the instructions
involving raw pointers during Mid-level IR (MIR) [114] to LLVM IR code generation, and
analyzes the definitions and uses of these pointers in annotated instructions to identify
raw pointers. Raw pointers are classified as both spatially and temporally risky because
they are exempt from Rust’s compile-time safety enforcement. To identify additional
temporally risky pointers, LiteRSan performs lifetime-aware taint analysis starting
from instructions that use raw pointers. This is necessary because raw pointers can
propagate temporal risks to other pointers referencing the same memory object. In
contrast, spatial risks do not propagate if each raw pointer arithmetic and dereference is
instrumented with bounds checking. Additionally, LiteRSan identifies risky pointers
used in unsafe APIs that may cause memory safety violations.

Stage 2 constructs lightweight spatial and temporal metadata to address C2 (Section
4.5.1 Section 4.5.2), enabling efficient runtime validation. For spatially risky pointers,
LiteRSan maintains three pieces of metadata: capacity, initialized length and offset.
When spatial metadata is unavailable at a pointer’s definition site (e.g., a raw pointer
derived from another raw pointer), LiteRSan backtracks pointer derivations to extract
metadata from the object’s allocation site. This process also identifies metadata-carrying
pointers, which are responsible for transmitting spatial metadata at runtime.

For temporally risky pointers, the risk arises from shared access to the same memory
object. Once the object is deallocated by its owner or via an unsafe API, all referencing
pointers that remain in scope become dangling. To address this, LiteRSan maintains
may-alias relationships and ownership information as temporal metadata. May-aliases
are established during Stage 1 via taint analysis, as pointers tainted by the same raw
pointer must reference the same object. Among these, LiteRSan analyzes pointer types
and Drop implementations [36] to identify owners.

Stage 3 addresses C3 by selectively instrumenting identified risky pointers and
metadata-carrying pointers (Section 4.5.3), thereby minimizing runtime overhead while
preserving the comprehensive coverage of runtime checks. Leveraging spatial and temporal
metadata collected in Stage 2 and updating it during execution, LiteRSan performs
accurate and comprehensive detection of both spatial and temporal memory errors
(Section 4.5.4). The complete set of memory safety bugs detectable LiteRSan is
summarized in Figure 4.1.
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4.4 Rust-Specific Static Analysis
In this section, we present LiteRSan’s Rust-specific static analysis, which addresses
the challenge of identifying risky pointers (C1) discussed in Section 4.2.2. We begin by
defining the scope of the analysis in Section 4.4.1 and introducing the definition of risky
pointers in Section 4.4.2. We then describe our approach to identifying spatially and
temporally risky pointers in Section 4.4.3 and Section 4.4.4, respectively, and conclude
this section by discussing soundness and precision in Section 4.4.5.

4.4.1 Static Analysis Scope Restriction

LiteRSan restricts its static analysis to reachable functions, motivated by the structure
of Rust programs, which often include deeply nested library code, much of which is
dead code (i.e., unreachable from the program entry point2). To exclude such dead code
from LiteRSan’s analysis, LiteRSan performs reachability analysis to conservatively
identify and analyze only potentially reachable functions at runtime.

Specifically, starting from the program’s entry point, LiteRSan identifies and
enqueues both directly called functions and address-taken functions (i.e., potential indirect
call targets [78, 165]) for analysis. For each function in the queue, LiteRSan recursively
discovers and further enqueues the function’s callees and address-taken functions, thereby
restricting its analysis scope to functions potentially reachable during execution. By
limiting analysis to reachable functions, LiteRSan focuses on identifying risky pointers
within this scope that may lead to memory safety violations.

4.4.2 Risky Pointer Definition

Within LiteRSan’s restricted analysis scope, most pointers are safe thanks to Rust’s
native safety guarantees for safe code, as discussed in Section 2.2.1. However, a subset
of pointers remains unprotected and may still violate memory safety. We refer to these
as risky pointers (Definition 6), and LiteRSan focuses its safety checks exclusively on
them. For fine-grained analysis and instrumentation, we further classify risky pointers
into spatially risky and temporally risky categories, corresponding to potential violations
of spatial and temporal memory safety, respectively.

2The entry point is typically the main function. For library crates compiled with built-in benchmarks,
each function in the benchmark is treated as an entry point.

69



Spatially risky pointers include (1) raw pointers and (2) smart pointers used
in certain unsafe APIs. Raw pointers are spatially unsafe because arbitrary pointer
arithmetic is permitted on them, which may result in invalid pointers whose dereferences
are not checked. Moreover, Rust’s standard libraries (e.g. std) provide unsafe APIs that
may subvert bounds checking if misused [10,61]. When a pointer is used in conjunction
with such unsafe APIs, it is considered spatially risky.

Temporally risky pointers include (1) raw pointers and (2) any valid (i.e., in-scope
according to Rust’s scoping rules [140]) pointers that reference the same memory object
as a raw pointer. Raw pointers are temporally unsafe because they are exempt from
Rust’s ownership rules; once the referenced object is deallocated, the raw pointer becomes
dangling. Furthermore, as illustrated in Section 4.2.1, if a smart pointer is constructed
from a raw pointer and takes ownership of an object that already has an owner, multiple
owners will coexist. Deallocating the object through one owner leaves the others dangling.
Invalid pointers whose lifetimes have ended (e.g., token in Listing 4.1) are excluded from
temporally risky pointers, since any use of them is prevented by Rust compiler.

4.4.3 Spatially Risky Pointer Identification

Raw Pointers

The misuse of raw pointers is a primary cause of memory safety bugs in Rust programs [88].
To identify them, LiteRSan tracks raw pointers via LLVM IR metadata annotation
during the MIR-to-LLVM IR lowering phase, as outlined in Section 4.3.

Based on ERASan [88]’s approach, LiteRSan attaches custom LLVM metadata [138]
to IR instructions by modifying the codegen-ssa and codegen-llvm components of
the rustc compiler. To determine the locations of annotations, LiteRSan performs
a type-matching analysis during the MIR-to-LLVM IR lowering phase. Specifically, it
analyzes the types of program variables and expressions in the MIR (i.e., Rust’s mid-level
representation) to identify those involving raw pointers (e.g., *const T). If a value
is of raw pointer type, the corresponding LLVM instruction is tagged with !rawptr.
Additionally, instructions originating from unsafe code blocks are marked with !unsafe.
This analysis allows LiteRSan to propagate type information from Rust’s MIR and
identify the instructions relevant to raw pointers in the resulting LLVM IR.

After annotating the LLVM IR, LiteRSan analyzes instructions tagged with !rawptr
to determine whether they define or use raw pointers. For each definition, it further
checks whether the uses occur within unsafe code by examining the presence of the
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!unsafe metadata. If the instruction uses a raw pointer, LiteRSan checks whether it
appears in unsafe code before tracing its operand back to the corresponding definition site.
This step is important because raw pointers can be encapsulated within safe abstractions
(e.g., smart pointer creation), where they are not dereferenced and therefore do not
pose risks. Through this analysis, LiteRSan accurately identifies only standalone raw
pointers that are directly used in unsafe code and may cause memory safety bugs. These
raw pointers are considered as risky pointers, both spatially risky and temporally risky
(discussed in Section 4.4.4).

Unsafe APIs

As Rust’s standard libraries (e.g., std) provide unsafe APIs that may cause spatial safety
violations [10,61], LiteRSan analyzes these APIs to extend its protection. In general,
an API may be unsafe because it directly uses raw pointers or subverts Rust’s bounds
checks when misused. LiteRSan handles type (1) APIs by identifying underlying raw
pointers using the method discussed above and marking them as spatially risky.

Type (2) APIs are more challenging to address. A notable example is
vec::set_len() [116], which can alter a vector’s length to an arbitrary value, po-
tentially resulting in out-of-bounds accesses that bypass the compiler’s spatial safety
checks. Automatically and comprehensively identifying such APIs would requires analyz-
ing and understanding all library code, which is an undecidable problem [110]. Therefore,
we manually examined Rust’s standard libraries and identified nine APIs that may
circumvent bounds checks3. LiteRSan marks the pointers involved in these APIs as
spatially risky, updates their metadata, and inserts runtime checks accordingly. For exam-
ple, to detect out-of-bounds accesses potentially caused by vec::set_len(), LiteRSan
retrieves the capacity of the vector at its definition site and inserts a spatial check at the
API’s call site to verify whether the new length (i.e., the argument to vec::set_len())
exceeds the legal capacity.

4.4.4 Temporally Risky Pointer Identification

To detect temporal memory safety violations, LiteRSan must go beyond merely identi-
fying raw pointers (as discussed in Section 4.4.3). It must also detect any valid pointer
that might reference the same memory object as a raw pointer.

3Unsafe APIs that may violate memory safety, within our scope, without involving raw pointers
include unchecked_add/sub/mul/neg/shl/shr, forward/backward_unchecked and set_len. LiteR-
San handles them by inserting bounds or validity checking at their call sites.
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This may sound similar to finding all may-alias pointers to this memory object;
however, the key difference is that any may-alias smart pointers that have been moved
or gone out of scope should be excluded (e.g., token after line 19 in Listing 4.1).

One approach to identifying temporally risky pointers is to perform alias analysis
on each raw pointer, find the complete set of pointers that refer to the same memory
object, and then filter out aliased smart pointers that are invalid. However, existing alias
analysis frameworks for LLVM (e.g. SVF [131]) do not account for Rust’s ownership and
borrowing semantics when computing aliases. As a result, they tend to produce largely
over-approximated alias sets, since many smart pointers deemed aliases may no longer
be valid when a raw pointer references the same memory object. Furthermore, whole-
program alias analysis is generally highly expensive for large programs [64]. Therefore, we
develop a new Rust-specific, inter-procedural, flow-sensitive, lifetime-aware taint analysis
to directly identify temporally risky pointers without relying on traditional alias analysis.

Illustrative Example

We reuse the example in Listing 4.1 to briefly illustrate the workflow of LiteRSan’s
taint analysis. In this example, a raw pointer, self.ptr is defined at line 20 through
an existing smart pointer (local_token), which owns a heap object. Here, the raw
pointer self.ptr serves as a taint source. LiteRSan’s taint analysis performs two key
operations to identify temporally risky pointers to the object pointed by self.ptr:

• Backward propagation traces the ownership transfer preceding the definition of
the raw pointer. This includes identifying the smart pointer (local_token) whose
ownership is transferred from token. Since token goes out of scope before self.ptr
is defined, the analysis terminates backward propagation at its definition site (line 19)
without tainting token.

• Forward propagation tracks how taint from the raw pointer is propagated to
pointers derived from it. In this example, a new pointer stale_token is derived from
self.ptr (line 23), making stale_token temporally risky.

In short, to capture all temporal safety violations, the taint analysis must consider
both the preceding ownership history of any object referenced by a raw pointer (i.e.,
backward) and all subsequent pointers derived from that raw pointer (i.e., forward).
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Exposed Raw Pointer Classification

To distinguish the exposed raw pointers (taint sources) that require different taint analysis
propagation directions, we classify them as follow.

• Type 1 (T1) raw pointers: exposed raw pointers created by referencing an object
already owned by an existing smart pointer (e.g., via Vec::as_ptr() [117]). As
shown in Listing 4.1, self.ptr is derived from a valid smart pointer local_token.
The creation of such raw pointers implies existing ownership. Consequently, T1 raw
pointers require both backward taint analysis (to trace the ownership history of the
referenced object) and forward taint analysis (to track subsequent pointer derivations).

• Type 2 (T2) raw pointers: exposed raw pointers created to reference a newly
allocated memory object. Since there is no preexisting ownership chain to consider,
T2 raw pointers require only forward taint analysis.

After locating these definitions, LiteRSan performs an inter-procedural taint analysis
starting from the definition site of each exposed raw pointer (i.e., taint source) and
propagating on only forward or both directions according to the class of raw pointers.

Lifetime-aware Taint Analysis

LiteRSan performs a combination of backward and forward taint analysis, both of
which track pointer derivation instructions (Definition 8), augmented with lifetime-aware
propagation that respects Rust’s ownership rules, to identify temporally risky pointers.

Definition 8. A pointer derivation instruction is any operation that produces
a new pointer value from an existing one, by one of the following:

• Assignment (direct copy of a pointer),
• Computation (arithmetic or type conversion),
• Memory propagation (store/load through objects), or
• Inter-procedural transfer (via function calls or returns).

• Backward taint analysis: Starting from each taint source (i.e., the definition site of
a T1 pointer), the analysis traces backward along the derivation chain to the pointers
from which T1 is derived. These pointers share the same referenced object with
T1, and their definition sites are marked as taint sinks. This propagation halts if
ownership is transferred, as any further use of the original owners is disallowed by the
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Rust compiler, ensuring that the original owners are free from temporal memory safety
violations. In particular, if a pointer is invalidated before the exposed raw pointer is
defined—through function return for stack pointers or through explicit drop for heap
pointers—it is considered safe and excluded from tainted pointers, as it can no longer
contribute to temporal safety violations.

• Forward taint analysis: Starting from each taint source (i.e., the definition site of
a T1 or T2 pointer), the analysis propagates taint to all pointers derived from it. Any
pointer derived from a tainted pointer is likewise marked as tainted. This forward
propagation continues until no further pointer derivations exist.

Inter-procedural Analysis

Taint propagates inter-procedurally through function calls and returns. For direct calls,
forward propagation flows from actual arguments at call site to corresponding formal
parameters of the callee, and from callee’s return value to the variable receiving it in the
caller. Backward propagation flows in the reverse direction and terminates at invalidated
pointers, such as those that are out of scope or have transferred ownership.

For indirect calls, LiteRSan conservatively resolves potential call targets using a
type-based analysis [99,146]. This approach matches function signatures (i.e., function
prototypes) at indirect call sites with those of address-taken functions. Although more
advanced multi-layer type analysis techniques [78, 165] can improve precision, they
introduce additional static analysis overhead, while the precision gain in Rust is limited.
This is because Rust programs typically rely less on dynamic dispatch [44,81,91] than
programs in other languages, and the multi-layered structural patterns common in C/C++
are less prevalent in Rust. Once potential callees are identified, taint is propagated in
the same manner as for direct calls.

LiteRSan adopts a worklist-based algorithm [98] adapted for inter-procedural taint
analysis, as presented in Algorithm 2. First, it caches pointer derivations whose sources
originate from other functions, either directly (e.g., formal parameters) or indirectly (e.g.,
intermediate variables derived from formal parameters), and are therefore unresolved
within the current function context (lines 4–10). After completing the initial pass over
all functions, it performs a depth-first search over the cached derivations to exhaustively
propagate taint (lines 11–25). This two-step process ensures that all transitive taint
relationships are resolved and that all potential temporally risky pointers are identified.
In addition, LiteRSan also addresses temporally risky pointers involved with unsafe
APIs, similar to the approach described in Section 4.4.3.
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Algorithm 2: Inter Procedural Taint Propagation
Input: F — set of functions; R — set of initially tainted raw pointers
Output: TaintedSets — mapping from each taint source to its tainted pointers

1 Chapter etKwBlockBeginfunctionend function begin InterProcTaintPropagation(F, R)
2 Initialize TaintedSets to map each r ∈ R to {r}
3 Initialize WorkList ← ∅
4 for each unresolved pointer derivation D in F do
5 (src, dst)← ExtractSourceAndDestination(D)
6 Add D to WorkList
7 if src is tainted then
8 Add dst to the same tainted set as src
9 else if dst is tainted and no ownership transfer in D then

10 Add src to the same tainted set as dst

11 for each tainted pointer t in TaintedSets do
12 Initialize Visited ← ∅
13 Initialize Stack ← {t}
14 while Stack is not empty do
15 p← pop an element from Stack
16 if p /∈ Visited then
17 Add p to Visited
18 for each unresolved pointer derivation D in WorkList do
19 (src, dst)← ExtractSourceAndDestination(D)
20 if src = p then
21 Add dst to the same tainted set as t
22 Push dst onto Stack
23 else if dst = p and no ownership transfer in D then
24 Add src to the same tainted set as t
25 Push src onto Stack

26 return TaintedSets

4.4.5 Soundness and Precision

Source Language Definition

We begin by defining the source language on which our Rust-specific static analysis
operates. The source language is Rust, restricted to the subset of constructs relevant
to potential memory safety violations. That is, unsafe operations and the portions of
safe code that interact with them through pointer derivations. Rust’s ownership model
ensures that each value has a unique owner, and its borrow checker enforces strict rules
on references (&T, &mut T). In particular, the compiler guarantees that references never
outlive their owners (temporal safety) and that container accesses remain within bounds
(spatial safety), inserting runtime checks where necessary. Together, these mechanisms
enforce memory safety in Rust code.
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However, Rust also permits the use of unsafe code blocks, where raw pointers (*const
T, *mut T) can be directly accessed and arbitrarily used. These exposed raw pointers,
along with unsafe APIs, are exempt from the lifetime and bounds checks enforced in safe
Rust. As a result, they constitute the root cause of spatial and temporal memory safety
violations. To formally reason about soundness, we therefore formalize a Rust-inspired
source language which abstracts away most of Rust’s safe constructs and captures exactly
the portion of Rust where the compiler’s guarantees no longer apply and where static
analysis must conservatively track pointer derivations to enforce memory safety.

Types. Types distinguish among owners, safe references and raw pointers:

τ ::= T | Owner⟨T ⟩ | &T | &mut T | ∗const T | ∗mut T

where T ranges over base types. Owner⟨T ⟩ abstracts over Rust’s smart pointers (e.g.,
Box<T>, Rc<T>, Arc<T>) that manage memory allocation and deallocation. References
&T and &mut T are governed by Rust’s borrow checker and guaranteed to be spatially
and temporally safe. Raw pointers ∗const T and ∗mut T are unrestricted and thus the
root cause of potential memory safety violations.

Objects and Pointers. Both spatial and temporal memory safety focuses on the
status of memory objects and pointers. Let Loc be a countable set of abstract locations.
Identifiers id ∈ Loc denote allocated memory regions.

o ::= obj(id, τ) (memory object of type τ at abstract location id)
p ::= ptr(o, τ) (pointer of type τ referencing object o)

Here, o denotes an allocated memory region (either on stack or heap). A pointer p

references an object and carries its type, which may be an owner, a safe reference, or
a raw pointer. Owners and references comply with Rust’s safety guarantees while raw
pointers are free from memory safety rules.
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Operations. Operations that are involved in our Rust-specific static analysis.

op ::= ptr_from_obj(p, o) (define pointer p from object o)
| ptr_from_ptr(p, ps, κ) (define pointer p from source pointer ps via κ)
| ∗p (dereference)
| p⊕ k (pointer arithmetic by offset k)
| mod(o, µ) (container modifier that modifies o)
| dealloc(o, p) (deallocation of o via p)

Here κ represents a pointer derivation instruction as defined in Definition 8, and µ

represents a container modifier (e.g., push() or pop()) that modifies the memory object’s
capacity or initialized length. The operations capture exactly what are potentially involved
in a spatial or temporal memory safety violation in unsafe Rust: pointer creation from
objects ptr_from_obj, pointer derivation from existing pointers ptr_from_ptr, pointer
dereference ∗p, pointer arithmetic p ⊕ k, container modifiers mod(o, µ) that change
the spatial status (see Section 4.5.1) of underlying memory objects, and deallocation
dealloc(o) that changes temporal status (i.e., also see Section 4.5.1). Pure computations
on non pointer values, control flow, and safe reference primitives are omitted because
the Rust compiler already enforces their safety or they do not alter aliasing or lifetime
relations that expose risks.

Soundness Argument

LiteRSan’s Rust-specific static analysis is sound for identifying both spatially and
temporally risky pointers in the source language defined above.

Scope (Section 4.4.1). First, the conservative reachability analysis includes every
function that may execute at runtime, ensuring that any operation in the set

{ ptr_from_obj(·, ·), ptr_from_ptr(·, ·, κ), ∗(·), (·)⊕ (·), mod(·, µ), dealloc(·, ·) }

that can occur at runtime is analyzed statically. Thus, all risky pointers that can trigger
memory errors at runtime are within the analysis scope.

Spatially risky pointer identification (Section 4.4.3). By definition of the type
grammar, only raw pointers lack compiler-enforced bounds checks. That says, if a spatial
error occurs at an operation either ∗p or p⊕ k, then p must be an exposed raw pointer
in this operation, since safe references are checked by the Rust semantics and owners
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expose only safe references in safe code. LiteRSan therefore begins by conservatively
annotating all instructions involving raw pointers, ensuring that all raw pointers are
initially captured. The subsequent analysis prunes false positives by leveraging the fact
that exposed raw pointers that bypass Rust’s safety guarantees can only be used within
unsafe code. Consequently, LiteRSan excludes raw pointers that are encapsulated
inside Owner⟨T ⟩ and cannot be directly accessed, since any access must go through
the owner interface and is protected by memory safety rules. This pruning preserves
soundness while improving precision. Additionally, LiteRSan identifies and handles
each unsafe API performing any defined operation individually, based on a thorough
review of the Rust standard library without sacrificing coverage.

Temporally risky pointer identification (Section 4.4.4). LiteRSan em-
ploys a lifetime-aware taint analysis over the pointer creation and derivation opera-
tions of the source language. Concretely, taint advances at ptr_from_obj(p, o) and
ptr_from_ptr(p, ps, κ) with κ from Definition 8. Taint sources are exposed raw pointers.
A pointer q is reported as temporally risky if there exists a tainted pointer p such
that q and p may reference the same object and their lifetimes overlap, where lifetimes
are induced by pointer definition (ptr_from_obj(p, o) and ptr_from_ptr(p, ps, κ)) and
deallocation (dealloc(o, p)).

Coverage of alias discovery. The taint propagation tracks only pointer derivation
instructions, namely ptr_from_ptr(p, ps, κ) with κ in Definition 8. This is sufficient
because Rust’s ownership and borrowing rules ensure that aliasing can only occur through
explicit and syntactically visible pointer derivations [59]. Therefore, every alias of an
exposed raw pointer is reachable by taint propagation along the pointer derivation chains.
Specifically, backward taint propagation stops at ownership transfer sites that create
new owners. By Rust’s lifetime rules, the original owners become invalid after ownership
transfer and any use of such invalid pointers are prohibited by the compiler. Consequently,
the original owners cannot alias an exposed raw pointer created later, since its lifetime
ends before the raw pointer is introduced. Terminating the backward taint propagation
at ownership transfer sites is therefore sound.

Loops. Although loops often require iterative data-flow analysis to reach a fixed point,
one pass suffices in this analysis, which reasons only about static derivation relationships,
instead of mutable program states (e.g., ranges, offsets, sizes). Since LLVM IR contains
a fixed and finite set of pointer derivation instructions and the loop body consists of
a finite number of instances of κ, visiting each derivation once reaches the same set of
aliased pointers as any iterative fixed point, thus all aliases are conservatively identified.
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Inter-procedural propagation. Soundness requires that every inter-procedural deriva-
tion be captured. LiteRSan resolves indirect calls with a type-based analysis [99, 146]
that is sound as it collects all potential callees. Therefore, every inter-procedural pointer
derivation is represented by the operation ptr_from_ptr(p, ps, κ), where κ is param(f, j)
when the j-th formal argument p of a potential callee f receives the actual parameter ps;
κ is ret(f) when the pointer p in caller receives the return value ps of f . Both param(f, j)
and ret(f) are instances of κ included in Definition 8, ensuring that taint propagates
inter-procedurally to all potential aliases, which establishes inter-procedural soundness.

Given the arguments above, the lifetime-aware taint analysis is sound for identifying
temporally risky pointers in the defined source language. Because aliasing in Rust occurs
only through explicit pointer derivations, taint need only propagate along these derivations;
ownership transfer provides a safe stopping point; loops contain a finite number of
derivations; and inter-procedural flows are conservatively included. Consequently, any
pointer whose lifetime overlaps with that of an exposed raw pointer to the same object is
tainted, ensuring that all temporally risky pointers are identified.

Precision Discussion

While the analysis is sound by design, potential false negatives may arise in practice
due to implementation limitations, such as compiler optimizations or missing IR from
dynamically linked code. The approach may also introduce some over-approximation, for
example, by analyzing derivations that never occur during actual execution. However, this
imprecision is significantly reduced compared to prior work [27, 88] relying on traditional
points-to analysis, which is unaware of pointer lifetimes. In contrast, LiteRSan excludes
pointers that are invalid at the time of exposed raw pointer creation or not derived from
tainted sources, as these are protected by Rust’s compile-time safety guarantees and are
not susceptible to temporal memory safety violations.

4.5 Lightweight Runtime Checks
In this section, we present the lightweight runtime checks of LiteRSan. LiteRSan uses
compact memory safety metadata in place of red zones and shadow memory to address
Challenge C2 and adopts a selective instrumentation strategy to address Challenge C3
(see Section 4.2.2). We describe the metadata structures in Section 4.5.1 and the metadata
inference approach in Section 4.5.2. Section 4.5.3 details our selective instrumentation
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strategy, and Section 4.5.4 explains how the instrumented checks uses memory safety
metadata to detect memory safety violations at runtime.

4.5.1 Metadata Structure

For each risky pointer, LiteRSan maintains spatial metadata for spatially risky pointers
and temporal metadata for temporally risky pointers. This metadata is inferred during
static analysis, propagated at runtime through instrumentation, and stored in dedicated
data structures rather than embedded directly in the pointer representation (e.g., fat
pointers). At runtime, the metadata is dynamically updated and used to detect memory
safety violations.

Spatial Metadata

For spatially risky pointers, LiteRSan tracks three key attributes that are necessary
and sufficient to enforce spatial memory safety in Rust:

• Capacity: the maximum number of elements allowed in a referenced memory object.
For pointers referencing scalar-type objects (e.g., integers), the capacity is set to 1.

• Initialized length: the number of elements that have been initialized within a
referenced memory region.

• Offset: the index within an object that the pointer references.

LiteRSan maintains a map from each spatially risky pointer to its spatial metadata,
which consists of the attributes listed above; this metadata map is stored separately from
the pointers themselves.

Temporal Metadata

For temporally risky pointers, LiteRSan tracks the following information as temporal
metadata:

• May-alias relationships: pointers that may reference the same memory object are
grouped to represent their potential aliasing.

• Ownership: the owner(s) of the referenced objects.

LiteRSan uses taint source raw pointers to associate temporally risky pointers
with their temporal metadata via two maps: a reverse map that links each temporally
risky pointer back to its originating taint source, and a forward map that links each taint
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source to the corresponding metadata which it shares with its tainted pointers. This
dual-mapping design avoids redundant metadata storage for multiple pointers derived
from the same source while accurately associating each temporally risky pointer with its
temporal metadata.

To record may-alias relationships, LiteRSan groups all temporally risky pointers
that may reference the same memory object into a pointer set. This pointer set integrates
with LiteRSan ’s taint analysis, as may-alias pointers identified by LiteRSan share a
common taint source and can be grouped during taint analysis without additional effort.
When a raw pointer is derived from another, their pointer sets are merged to ensure a
complete representation of may-alias relationships.

Ownership is a critical component of temporal metadata, as the owners are the
pointers responsible for deallocating the referenced objects. As a result, owners must be
tracked at runtime to update the temporal state (i.e., dangling or valid) of all pointers in
the same pointer set. To record the owners, LiteRSan maintains a dedicated owner set,
which is a subset of the pointer set.

4.5.2 Metadata Inference

Metadata inference is performed during static analysis. LiteRSan infers each risky
pointer’s memory safety metadata at its definition site and instruments the code to
receive and maintain the inferred metadata, enabling runtime validation.

Spatial Metadata Inference

To infer spatial metadata for raw pointers, LiteRSan analyzes each raw pointer’s
definition site and, if necessary, traces pointer derivations back to the allocation site
of the memory object, where the spatial metadata is defined. Specifically, LiteRSan
backtracks along the pointer-derivation chain to locate the corresponding root pointer,
which is the first pointer that references the memory object. LiteRSan then extracts
spatial metadata from the root pointer’s definition site, where the memory allocation
appears as an operand at. Depending on how the memory region is referenced, metadata
extraction falls into two distinct cases:

• In the direct case, the root pointer references a memory object whose spatial metadata
can be directly extracted. This occurs when the referenced object is a basic container
provided by the Rust standard library, such as vectors (Vec<T>) and arrays ([T; N]),
which manage contiguous memory regions. In this case, LiteRSan directly obtains
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spatial metadata from the container’s fields. For example, the length and capacity
fields in Vec<T> directly provide Initialized Length and Capacity (Section 4.5.1).

• In the indirect case, the root pointer refers to a memory object indirectly via
abstractions such as Box<T> or Rc<T>, which do not explicitly carry spatial metadata.
In this case, LiteRSan backtracks to the definition site of the underlying T-typed
object to infer and extract spatial metadata.

Additionally, when the definition site of any raw pointer involves pointer arithmetic,
LiteRSan computes the resultant Offset. Another category of spatially risky pointers,
smart pointers associated with unsafe APIs, is relatively uncommon. Thus, LiteRSan
handles these cases individually, applying sanitizer checks based on the semantics of each
unsafe API, as discussed in Section 4.4.3.

Once spatial metadata is extracted from a root pointer, it is transmitted to the
spatially risky pointers along the pointer-derivation chain. The root pointer, along with
the intermediate pointers on this chain, is referred to as metadata-carrying pointers. Note
that metadata-carrying pointers are not necessarily risky themselves but are tracked to
enable accurate metadata propagation.

To enable runtime checking, LiteRSan propagates statically inferred spatial metadata
to spatially risky pointers through inserted instrumentation. This process involves two
cases. First, if the risky pointer is a root pointer, the metadata is available at its definition
site; therefore, instrumenting its definition site suffices. Second, if the risky pointer is
a derived pointer, metadata must be passed along the derivation chain. In this case,
LiteRSan instruments the definition sites of all metadata-carrying pointers in the chain
to ensure proper metadata propagation to the derived pointer.

Temporal Metadata Inference

For temporal metadata, the may-alias relationships and the taint-source raw pointers are
inferred during the identification of temporally risky pointers, through lifetime-aware taint
analysis, as described in Section 4.5.1. The owner(s) of the referenced memory objects are
inferred by analyzing the definition site of each tainted pointer based on Rust’s ownership
model. Specifically, owners are smart pointer types (e.g., Box and Rc) that manage the
lifetime of a memory object and are responsible for its deallocation. LiteRSan detects
owners by analyzing pointer types and determining whether they are associated with
memory deallocation, typically indicated by their Drop implementation [36].
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Robustness and Completeness Guarantee

LiteRSan adopts a hybrid strategy to infer spatial and temporal metadata, ensuring
that metadata is accurately and reliably extracted.

Spatial metadata is inferred for (i) raw pointers and (ii) smart pointers associated
with unsafe APIs. For raw pointers, LiteRSan extracts initial metadata from referenced
objects via static analysis and passes it to runtime functions through instrumentation.
This method is robust because Rust’s ownership and borrowing rules guarantee aliasing
occurs only through explicit, visible derivations [59], making metadata fully traceable.
It is also complete since static analysis extracts only initial metadata, while runtime
instrumentation ensures precise, immediate updates. During execution, root pointers
are initialized before derived pointers, enabling accurate metadata transmission and
preventing stale values. For smart pointers associated with unsafe APIs, LiteRSan
addresses each case individually based on its semantics. The small number of such APIs,
combined with tailored handling, ensures robustness and completeness.

Temporal metadata consists of (i) may-alias relationships and (ii) object owners.
May-alias relationships are inferred through lifetime-aware taint analysis, proven sound
in Section 4.4.5. Owners are identified based on pointer types and Drop usage, following
Rust’s ownership rules. As both types and Drop usage are statically deterministic, this
approach guarantees both completeness and robustness.

4.5.3 Selective Instrumentation

LiteRSan performs selective instrumentation by applying only the runtime checks
necessary to each identified risky pointer. To support these checks, it also instruments
the program to propagate statically inferred metadata and manage it at runtime. This
section first introduces the five classes of instrumentation used in LiteRSan and how
they are selectively applied according to the risky pointer type and program context.

Instrumentation Types

LiteRSan defines five instrumentation classes (I1–I5) to initialize and update metadata
during execution, and perform runtime memory safety checks based on the metadata.

• I1: Pointer activation (metadata initialization).

• I2: Spatial metadata update.

• I3: Pointer deactivation (temporal metadata update).
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• I4: Spatial safety checks.

• I5: Temporal safety checks.

I1 type. I1 instrumentation is inserted at the definition sites of root pointers, metadata-
carrying pointers, and identified risky pointers. It propagates statically inferred metadata
to the runtime function, and marks each pointer as active by registering it with its
associated spatial and temporal metadata.

For spatially risky pointers and their derivation sources (i.e., root and metadata-
carrying pointers), I1 establishes a runtime mapping between each pointer and its spatial
metadata. Root pointers are initialized with metadata directly from static analysis,
while derived pointers inherit metadata from their source pointer. For temporally risky
pointers, I1 maintains a mapping from each taint-source raw pointer to associated
temporal metadata and a reverse mapping from each tainted pointer to its taint source,
as discussed in Section 4.5.1. Depending on whether the definition site corresponds to a
taint source or a tainted pointer, I1 creates or updates these mappings.

I2 type. LiteRSan employs I2 to update spatial metadata at runtime in two scenarios:
(1) when the offset of a spatially risky pointer or metadata-carrying pointer is modified
(e.g., through pointer arithmetic), and (2) when the underlying memory object is modified
(e.g., through container operations, such as push() and pop()).

For (1), I2 updates the Offset field in its associated spatial metadata. For (2), I2
updates and synchronizes the Initialized length and/or Capacity field(s) for both the
pointer performing the modification and all preceding pointers in the derivation chain.
This is because those pointers all reference the same memory object.

I3 type. I3 instrumentation is inserted at deallocation sites, including function returns
for stack-allocated objects and explicit drop operations for heap-allocated objects, to
deactivate invalidated pointers. If a non-owner pointer is deallocated, LiteRSan
only marks this pointer as dangling, as the referenced object is not deallocated. If
an owner deallocates the memory object, or if the last owner is invalidated (e.g., via
mem::forget()), I3 queries the reverse map to identify the taint-source raw pointer and
marks it, along with all pointers in its pointer set, as dangling.

I4 and I5 types. LiteRSan applies I4 at pointer arithmetic and dereference sites of
spatially risky pointers, and I5 at dereference and deallocation sites of temporally risky
pointers, to detect spatial and temporal memory safety violations, respectively. The
detection mechanisms for I4 and I5 are detailed in Section 4.5.4.
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Instrumentation Strategy

LiteRSan employs a selective instrumentation strategy that inserts only the necessary
code at each instrumentation site. This approach ensures that metadata remains up-to-
date and that memory safety violations are detected efficiently. Table 4.1 summarizes
the instrumentation strategy.

Pointer Type Definition Dereference Pointer
Arithmetic

Container
Modifier Deallocation

Spatially Risky Pointers I1 I4 I2, I4 I2 -
Temporally Risky Pointers I1 I5 - - I5, I3
Metadata-Carrying Pointers I1 - I2 I2 -

Table 4.1: Selective instrumentation strategy. Each class of instrumentation is applied based
on the type of pointer and the type of operation, ensuring that only the necessary code is inserted at
each instrumentation site. At the pointer arithmetic of a spatially risky pointer, I2 is before I4. At the
deallocation site of a temporally risky pointer, I5 is before I3.

For all three pointer types, LiteRSan inserts I1 at their definition sites to register
the pointers along with their associated spatial or temporal metadata at runtime, making
them activated. This metadata is later used to initialize derived pointers or to validate
memory safety at runtime.

For spatially risky pointers, which may cause spatial memory safety violations, LiteR-
San selectively inserts I2 and I4. I2 is placed at pointer arithmetic operations (e.g.,
add(), offset()) and at container modifier operations (e.g., unsafe API set_len()) to
update spatial metadata instantly at runtime, enabling I4 to precisely perform spatial
memory safety validation. I4 is inserted at pointer arithmetic and dereference sites
to detect spatial violations using the maintained spatial metadata. Importantly, I2 is
placed before I4 at pointer arithmetic sites, ensuring that any invalid pointer arithmetic
is detected immediately using the up-to-date metadata.

For temporally risky pointers, which can result in temporal memory safety violations,
LiteRSan selectively applies I3 and I5. I3 is inserted at deallocation sites (e.g., drop())
to update temporal metadata, ensuring that the temporal validity state of each pointer
is accurately maintained. I5 is applied at dereference and deallocation sites to detect
temporal errors, such as use-after-free and double-free. At deallocation sites, I5 is placed
before I3 to prevent I3 from prematurely marking the pointer as invalid and causing
erroneous double-free reports.

For metadata-carrying pointers, which serve only to transmit spatial metadata (see
Section 4.5.2), LiteRSan selectively applies I2 at pointer arithmetics and container
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modifiers (e.g., Vec::push()), ensuring that spatial metadata is instantly updated and
accurately propagated to spatially risky pointers.

4.5.4 Runtime Check Mechanism

LiteRSan maintains and updates memory safety metadata through I1–I3, and lever-
ages this metadata at runtime to detect spatial and temporal violations via I4 and I5,
respectively. Figure 4.1 (see Section 4.1) summarizes the complete set of memory errors
that LiteRSan detects and illustrates how I4 and I5 perform runtime checks.

For all risky pointers, LiteRSan first performs null checks at dereferences. For
spatially risky pointers, I4 compares the pointer’s Offset against its Initialized Length
and Capacity. An access is alarmed as a use-before-initialization if the offset exceeds the
initialized length, or as an out-of-bounds access if it exceeds the capacity. For temporally
risky pointers, I5 consults the temporal metadata maintained by I3 to determine whether
the pointer is dangling. A dereference of a dangling pointer triggers a use-after-free
alarm, while a deallocation of a dangling pointer raises a double-free alarm.

Benefits of Our Strategy

The benefits of LiteRSan are to impose lower runtime and memory overhead while
providing more comprehensive detection coverage in comparison with ASan-based ap-
proaches [27, 88]. Specifically, LiteRSan selectively instruments only the pointers that
may potentially violate memory safety and inserts only necessary checks for them. These
pointers are only a subset of the pointers that existing ASan-based techniques [27,88]
check. Moreover, LiteRSan can detect memory safety bugs that existing ASan-based
approaches may miss by maintaining the fine-grained spatial and temporal metadata.
This metadata is compact and lightweight, contributing further to runtime efficiency.

4.6 Implementation
We implement LiteRSan on top of LLVM-14. It takes the program’s LLVM bitcode
as an input, performs static analysis, applies selective instrumentation, and generates
instrumented LLVM bitcode.

The input bitcode is generated from Rust programs using a customized version of
rustc-1.64-nightly. This compiler is extended to support metadata annotation during
the MIR-to-LLVM IR lowering phase. Following ERASan’s [88] annotation mechanism,
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we modify the codegen-llvm and codegen-ssa to insert LLVM metadata on instructions
involving raw pointers. These annotations enable LiteRSan to identify raw pointers
during static analysis, as described in Section 4.4.3. On the other hand, the output
bitcode includes inserted calls to runtime functions (i.e., I1-I5 in Section 4.5.3). At
runtime, the instrumented code is invoked to update metadata instantly and detect
memory safety violations as the program executes.

4.7 Evaluation
We elaborate the experiment setup (Section 4.7.1) and evaluate LiteRSan in comparison
with the two state-of-the-art Rust sanitizers, ERASan [88] and RustSan [27], as follows:
runtime overhead (Section 4.7.2), memory overhead (Section 4.7.3), compilation overhead
(Section 4.7.4), and bug detection capability (Section 4.7.5).

4.7.1 Experiment Setup

All experiments were conducted on a server with an Intel Xeon Gold 6230 CPU, 80 cores,
and 754 GB RAM, running Ubuntu 24.04.

Benchmarks

We evaluated LiteRSan on 28 benchmarks: 26 most frequently downloaded Rust crates
from crates.io4 and two real-world applications (servo and ripgrep). For each bench-
mark, we compile and execute both the baseline versions (without instrumentation) and
the instrumented versions produced by each sanitizer 20 times. The average compilation
time, execution time, and memory usage are used to compute the respective overheads.
For the benchmarks shared with ERASan, we use its experiment setup [34]. Thus, we
use the same test cases to ensure a fair comparison. For the remaining benchmarks, we
use their native test suites.

Compilation Process

To ensure both accurate static analysis and evaluation on realistic production situation,
we adopt a staged compilation process. For each benchmark, the compiler first emits
LLVM IR with inlining and LLVM prepopulate passes disabled so that MIR-derived

4crates.io is Rust’s official package registry. Each crate is implemented entirely in Rust and
compiled as an independent unit, functioning as either a library or an executable with benchmark input.
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annotations are preserved in the IR. At this stage, LiteRSan and the comparison tools
(ERASan and RustSan) perform static analysis and insert their respective instrumentation.
After instrumentation, compilation resumes with the standard optimization pipeline to
produce optimized (i.e., -O3) executables.

This approach is essential rather than a shortcut. Running LLVM optimizations
before analysis can replace or eliminate original instructions and drop critical metadata,
leading to missed identification of risky operations. This metadata-preservation challenge
is not unique to LiteRSan but equally affects ERASan and RustSan; analyzing directly
on optimized IR would cause all these tools to miss protecting unsafe operations. By
applying analysis on pre-optimized IR, we preserve full semantic information and ensure
that risky pointers are precisely identified.

At the same time, compiling instrumented IR under -O3 guarantees that our evaluation
reflects realistic deployment conditions. Most LLVM optimizations transform instructions
in place rather than reordering them, so checks remain associated with the correct
memory operations. Furthermore, because LiteRSan implements its checks as runtime
calls with observable actual effects, subsequent LLVM optimizations do not remove them.
Our experiments demonstrate this property in practice, as LiteRSan achieves 100%
bug detection even when executing fully optimized binaries.

In summary, this staging is a necessary and fair methodology: it preserves metadata
for accurate analysis, ensures that checks are preserved under aggressive optimization, and
yields performance results correspond to practical compilation, runtime, and memory costs
under realistic deployment. Future improvements in preserving Rust-specific metadata
across optimization could streamline this process, but the present design is the only
viable way to ensure correctness across Rust memory safety sanitizers.

Ablation Study

To decompose LiteRSan’s overhead, we developed a variant Semi-LiteRSan, which
uses LiteRSan ’s static analysis to identify risky pointers and selectively instruments
runtime checks, but employs ASan’s runtime validation mechanisms in place of LiteRSan
’s metadata-based approach. Comparing Semi-LiteRSan with LiteRSan isolates the
benefit of lightweight metadata while comparing Semi-LiteRSan with RustSan and
ERASan highlights the benefit of our precise risky pointer identification, as RustSan and
ERASan employ ASan’s runtime validation mechanisms.
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4.7.2 Runtime Overhead

Runtime overhead refers to the additional execution time introduced by sanitizer checks
compared to the baseline execution time without instrumentation. Table 4.2 shows
the runtime overhead of LiteRSan, ERASan, and RustSan. Across all benchmarks,
LiteRSan consistently achieves the lowest overhead. By geometric mean, LiteRSan
incurs only 18.84% runtime overhead, significantly lower than ERASan’s 152.05% and
RustSan’s 183.50%, presenting reductions of 87.61% and 89.73%, respectively.

Benchmark LOC Pointer Count Runtime Overhead (%)
Raw Risky Aliased LiteRSan ERASan RustSan

base64 7,025 1,787 14,320 131,242 35.21 - 431.28
byteorder 3,411 95 355 5,391 1.72 53.36 76.37
bytes(buf) 5,867 88 376 2,904 28.39 137.90 154.33
bytes(bytes) 5,867 91 411 2,089 25.57 166.97 169.62
bytes(mut) 5,867 102 484 2,267 27.82 157.28 165.48
indexmap 8,693 386 2,214 32,132 23.06 287.14 293.65
itoa 613 9 32 291 20.34 116.11 131.05
memchr 1,139 50 185 3,133 13.18 212.39 217.74
num-integer 2,383 570 3,095 8,449 1.17 5.59 8.34
ryu 3,443 17 82 2,247 17.71 63.80 70.89
semver 2,483 24 81 839 4.83 317.21 388.52
smallvec 2,912 59 278 982 13.34 134.53 152.33
strsim-rs 1,102 109 431 1,015 1.06 380.51 389.72
uuid(format) 4,971 15 50 62,149 40.62 362.41 411.04
uuid(parse) 4,971 15 50 62,091 37.31 338.06 402.53

bat 53,517 2,567 25,546 138,726 321.11 894.97 931.36
crossbeam-utils 31,246 64 290 2,227 1.28 116.09 136.17
hashbrown 10,384 51 383 6,596 9.32 58.65 69.45
hyper 20,952 1,824 15,201 114,269 43.57 278.16 297.23
rand(generators) 15,220 27 78 2,619 31.85 26.49 31.64
rand(misc) 15,220 66 258 2,527 7.94 10.12 23.47
regex 65,417 294 3,896 6,383 38.54 831.87 867.34
ripgrep 33,226 1,864 18,734 - 304.03 - -
syn 58,884 1,088 23,034 186,730 72.29 583.25 618.92
tokio 69,875 1,482 19,375 74,697 53.35 563.24 593.22
unicode 172,875 95 363 1,054 8.89 47.96 62.37
url 40,595 353 2,266 34,368 21.06 612.75 686.41
servo 11.26 M 1.27 M 14.63 M - 86.58 - -

GeoMean - - - - 18.84 152.05 183.50

Table 4.2: Runtime overhead comparison. Benchmarks are grouped by scale. Pointer count reports
exposed raw pointers (Raw) and risky pointers (Risky) identified by LiteRSan, along with raw pointers
plus aliases (Aliased) identified by traditional points-to analysis. Overheads are shown for LiteRSan,
ERASan, and RustSan. Nonapplicable results are listed as -. For some benchmarks (base64, ripgrep,
and servo), ERASan and/or RustSan do not have runtime overhead because the benchmarks cannot
successfully be executed with the sanitizers employed.
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The superior efficiency of LiteRSan arises from two key factors. First, it applies
lifetime-aware taint analysis to precisely identify risky pointers, greatly reducing false
positives that would otherwise result in unnecessary instrumentation. In contrast,
ERASan and RustSan rely on traditional points-to analysis in SVF [131], conservatively
treating all aliases of raw pointers (ERASan) or pointers in unsafe code (RustSan) as
risky, leading to redundant instrumentation for pointers whose safety is already enforced
by the Rust compiler. As shown in the Pointer Count columns of Table 4.2, LiteRSan
identifies far fewer risky pointers than the aliased counts across all benchmarks, with
reductions ranging from 38.96% to 99.92%. Second, LiteRSan employs the lightweight
metadata-based runtime mechanism in place of the heavyweight red zone and shadow
memory mechanisms deployed in ASan-based tools.

To quantify the contributions of these two components discussed above, we conduct an
ablation study using Semi-LiteRSan, a variant of LiteRSan introduced earlier in this
section. As presented in Table 4.3, the runtime overhead of Semi-LiteRSan is 70.04%
by geometric mean and is consistently higher than LiteRSan across all benchmarks but
still lower than ERASan and RustSan. Comparing Semi-LiteRSan with LiteRSan
isolates the impact of the lightweight metadata-based runtime mechanism, as both
instrument the same sites but differ in runtime validation mechanisms. The results
demonstrate that the metadata-based runtime checking in LiteRSan reduces overhead
by 73.10%. Comparing Semi-LiteRSan against ERASan and RustSan, which use the
same runtime validation mechanisms but different static analyses, highlights the benefit
of our Rust-specific analysis, achieving reductions of 53.94% and 61.83%, respectively.

In addition, Table 4.3 also compares LiteRSan with ASan by reporting the number
of risky pointers identified by LiteRSan (Risky column), the total pointers guarded
by ASan (ASan-guarded column), and their runtime overheads. Across all benchmarks,
LiteRSan identifies greatly fewer risky pointers than ASan-guarded pointers, indicating
that most pointers in Rust are already guaranteed safe and therefore ASan checks are
excessively redundant. By leveraging precise Rust-specific static analysis, LiteRSan
substantially reduces the number of instrumented pointers and achieves significant runtime
performance gains. Specifically, ASan incurs 359.90% runtime overhead by geometric
mean, while Semi-LiteRSan incurs 70.04%, demonstrating that precise risky pointer
identification and selective instrumentation reduce overhead by 80.54%. LiteRSan
further lowers the overhead to 18.94%, showing that replacing ASan’s heavyweight
shadow memory and red zones with our lightweight metadata-based mechanism yields
an additional 73.10% reduction.
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Benchmark Pointer Count Runtime Overhead (%)
Risky ASan-guarded LiteRSan Semi-LiteRSan ASan

base64 14,320 1,075,072 35.21 89.27 624.71
byteorder 355 24,275 1.72 17.75 131.23
bytes(buf) 376 37,783 28.39 78.27 289.20
bytes(bytes) 411 18,354 25.57 79.32 292.98
bytes(mut) 484 26,796 27.82 79.64 295.37
indexmap 2,214 378,711 23.06 87.86 419.93
itoa 32 5,195 20.34 88.56 241.11
memchr 185 16,633 13.18 53.17 342.19
num-integer 3,095 75,990 1.17 5.77 35.12
ryu 82 9,769 17.71 52.62 101.45
semver 81 4,787 4.83 32.91 536.83
smallvec 278 13,736 13.34 53.71 284.08
strsim-rs 431 4,038 1.06 26.63 522.02
uuid(format) 50 730,713 40.62 75.66 481.02
uuid(parse) 50 731,856 37.31 96.46 467.23

bat 25,546 1,859,420 321.11 542.13 1,187.60
crossbeam-utils 290 5,695 1.28 16.19 187.15
hashbrown 383 67,106 9.32 35.51 124.61
hyper 15,201 737,542 43.57 84.70 323.03
rand(generators) 78 17,807 31.85 55.77 151.86
rand(misc) 258 9,632 7.94 30.49 131.42
regex 3,896 49,383 38.54 243.58 1,584.07
ripgrep 18,734 962,161 304.03 524.54 1,210.16
syn 23,034 1,770,205 72.29 278.64 1,390.21
tokio 19,375 728,064 53.35 108.46 914.47
unicode 363 7,715 8.89 42.59 157.94
url 2,266 255,893 21.06 85.74 937.53
servo 14.63 M 16,994,787 86.58 218.05 1,281.96

GeoMean - - 18.84 70.04 359.90

Table 4.3: Ablation study of runtime overhead. The table shows pointer counts (risky and
ASan-guarded), and runtime overhead comparison of LiteRSan, Semi-LiteRSan, and ASan across
benchmarks.

4.7.3 Memory Overhead

Memory overhead refers to the additional memory consumed by sanitizer checks over
the baseline memory usage. We measured memory overhead using the Linux time
command [137], which reports the peak resident set size (max RSS) of the process. This
metric captures the maximum amount of memory consumption during execution, which
is widely adopted as a practical measure of memory overhead.

As shown in Table 4.4, LiteRSan demonstrates a substantial advantage in memory
efficiency over both ERASan and RustSan. Across all benchmarks, LiteRSan incurs only
trivial overhead, with a geometric mean of only 0.81%. In contrast, ERASan and RustSan
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Benchmark LOC Pointer Count Memory Overhead (%)
Expo-raw Risky Aliased LiteRSan ERASan RustSan

base64 7,025 1,787 14,320 131,242 3.56 - 5,271.84
byteorder 3,411 95 355 5,391 0.03 357.73 406.27
bytes(buf) 5,867 88 376 2,904 2.68 86.27 98.58
bytes(bytes) 5,867 91 411 2,089 2.15 2,218.86 2,143.63
bytes(mut) 5,867 102 484 2,267 2.19 5,376.09 5,339.28
indexmap 8,693 386 2,214 32,132 1.78 1,754.14 2,090.46
itoa 613 9 32 291 1.43 65.71 69.83
memchr 1,139 50 185 3,133 1.96 49.61 61.56
num-integer 2,383 570 3,095 8,449 0.02 524.07 674.62
ryu 3,443 17 82 2,247 0.28 81.69 85.22
semver 2,483 24 81 839 1.88 6,832.92 7,683.53
smallvec 2,912 59 278 982 1.14 4,370.14 4,518.99
strsim-rs 1,102 109 431 1,015 1.36 5,568.87 5,729.60
uuid(format) 4,971 15 50 62,149 0.15 875.22 879.71
uuid(parse) 4,971 15 50 62,091 0.15 1,065.03 1,094.13

bat 53,517 2,567 25,546 138,726 4.96 4,619.51 5,017.39
crossbeam-utils 31,246 64 290 2,227 0.05 57.85 58.97
hashbrown 10,384 51 383 6,596 0.37 6,613.42 6,814.56
hyper 20,952 1,824 15,201 114,269 3.69 2,681.30 2,966.32
rand(generators) 15,220 27 78 2,619 0.26 85.18 88.64
rand(misc) 15,220 66 258 2,527 0.22 1,457.08 1,654.97
regex 65,417 294 3,896 6,383 1.83 8,191.68 8,574.25
ripgrep 33,226 1,864 18,734 - 4.77 - -
syn 58,884 1,088 23,034 186,730 1.65 327.11 343.74
tokio 69,875 1,482 19,375 74,697 1.33 1,343.17 1,504.36
unicode 172,875 95 363 1,054 0.86 56.83 63.38
url 40,595 353 2,266 34,368 1.37 312.35 356.88
servo 11.26 M 1.27 M 14.63 M - 2.82 - -

GeoMean - - - - 0.81 739.27 861.98

Table 4.4: Memory overhead comparison. Benchmarks are grouped by scale. Pointer counts
report exposed raw pointers (Expo-raw) and risky pointers identified by LiteRSan, along with raw
pointers plus aliases (Aliased) identified by traditional points-to analysis. Memory overheads are shown
for LiteRSan, ERASan, and RustSan. Nonapplicable results are listed as -.

impose significantly higher memory costs, reaching 739.27% and 861.98%, respectively.
These results highlight the contribution of LiteRSan ’s lightweight metadata design,
which maintains only the essential spatial and temporal information for runtime validation,
eliminating the substantial memory footprint associated with shadow memory and red
zone mechanisms in ASan-based tools.

The contribution of metadata-based runtime mechanism is evident when comparing
LiteRSan with Semi-LiteRSan. As shown in Table 4.5, Semi-LiteRSan incurs
443.90% memory overhead, whereas LiteRSan reduces this by 99.82%. Additionally,
reduced instrumentation also plays a key role. Semi-LiteRSan achieves 39.95% and
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Benchmark Pointer Count Memory Overhead (%)
Risky ASan-guarded LiteRSan Semi-LiteRSan ASan

base64 14,320 1,075,072 3.56 3,015.06 10,723.03
byteorder 355 24,275 0.03 248.62 1,065.10
bytes(buf) 376 37,783 2.68 37.63 411.25
bytes(bytes) 411 18,354 2.15 1,044.84 21,368.49
bytes(mut) 484 26,796 2.19 3,433.34 64,467.47
indexmap 2,214 378,711 1.78 1,233.98 4,620.00
itoa 32 5,195 1.43 28.21 123.68
memchr 185 16,633 1.96 39.85 81.62
num-integer 3,095 75,990 0.02 416.44 769.33
ryu 82 9,769 0.28 66.26 92.20
semver 81 4,787 1.88 4,686.86 13,347.98
smallvec 278 13,736 1.14 2,863.90 78,376.98
strsim-rs 431 4,038 1.36 3,943.39 9,869.13
uuid(format) 50 730,713 0.15 157.72 1,008.17
uuid(parse) 50 731,856 0.15 166.83 1,239.21
bat 25,546 1,859,420 4.96 1,817.64 36,539.25
crossbeam-utils 290 5,695 0.05 41.91 548.96
hashbrown 383 67,106 0.37 4,067.88 28,530.65
hyper 15,201 737,542 3.69 1,752.87 35,747.78
rand(generators) 78 17,807 0.26 69.77 378.25
rand(misc) 258 9,632 0.22 1,050.56 8,025.48
regex 3,896 49,383 1.83 6,739.62 37,082.47
ripgrep 18,734 962,161 4.77 51.02 28,728.19
syn 23,034 1,770,205 1.65 33.68 609.24
tokio 19,375 728,064 1.33 769.19 1,843.51
unicode 363 7,715 0.86 41.17 333.48
url 2,266 255,893 1.37 206.59 791.42
servo 14.63 M 16,994,787 2.82 8,174.46 52,329.43

GeoMean - - 0.81 443.90 3,282.12

Table 4.5: Ablation study of memory overhead. The table shows pointer counts (risky and
ASan-guarded), and memory overhead comparison of LiteRSan, Semi-LiteRSan, and ASan across
benchmarks.

48.50% lower overhead than ERASan and RustSan, respectively, purely due to the
reduced instrumentation sites identified by precise Rust-specific static analysis.

Moreover, when compared with ASan, which introduces 3,282.12% overhead, Semi-
LiteRSan lowers memory overhead by 86.48% through precise static analysis and
selective instrumentation, while LiteRSan further cuts overhead by 99.06%, again
demonstrating the benefit of the lightweight metadata-based runtime checks.

4.7.4 Compilation Overhead

Compilation overhead refers to the additional compilation time introduced by a sani-
tizer’s static analysis and instrumentation compared to the baseline build. As shown
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in Table 4.6, LiteRSan consistently incurs substantially lower overhead. By geometric
mean, LiteRSan produces 97.21% overhead, compared to 1,635.35% for ERASan and
1,193.31% for RustSan, presenting reductions of 94.06% and 91.85%, respectively. More-
over, all benchmarks are successfully compiled with LiteRSan deployed, while both
comparison tools fail to complete compilation for servo within a 24-hour timeout and
and crash with segmentation faults when analyzing ripgrep due to SVF errors. These
results highlight the scalability of LiteRSan for large, complex, real-world applications.

Benchmark LOC Pointer Count Compilation Overhead (%)
Expo-raw Risky Aliased LiteRSan ERASan RustSan

base64 7,025 1,787 14,320 131,242 174.17 SE 6,260.03
byteorder 3,411 95 355 5,391 66.52 614.35 674.93
bytes(buf) 5,867 88 376 2,904 47.94 636.77 748.59
bytes(bytes) 5,867 91 411 2,089 45.25 625.32 682.33
bytes(mut) 5,867 102 484 2,267 46.19 627.09 755.26
indexmap 8,693 386 2,214 32,132 103.59 5,807.79 2,310.17
itoa 613 9 32 291 47.76 334.31 414.24
memchr 1,139 50 185 3,133 86.14 514.86 560.28
num-integer 2,383 570 3,095 8,449 186.57 1,359.64 1,512.04
ryu 3,443 17 82 2,247 64.03 868.87 931.11
semver 2,483 24 81 839 42.34 390.24 451.72
smallvec 2,912 59 278 982 59.21 422.05 489.63
strsim-rs 1,102 109 431 1,015 58.25 452.52 528.97
uuid(format) 4,971 15 50 62,149 207.82 9,230.63 2,669.96
uuid(parse) 4,971 15 50 62,091 202.32 9,038.49 2,684.37

bat 53,517 2,567 25,546 138,726 167.91 25,020.17 4,826.05
crossbeam-utils 31,246 64 290 2,227 104.06 586.35 639.52
hashbrown 10,384 51 383 6,596 72.16 1,227.80 1,182.08
hyper 20,952 1,824 15,201 114,269 184.98 20,920.41 5,127.40
rand(generators) 15,220 27 78 2,619 84.27 776.41 835.54
rand(misc) 15,220 66 258 2,527 95.93 1,079.36 866.17
regex 65,417 294 3,896 6,383 128.70 1,463.51 923.09
ripgrep 33,226 1,864 18,734 - 142.07 SEGV SEGV
syn 58,884 1,088 23,034 186,730 123.84 25,397.17 1,499.46
tokio 69,875 1,482 19,375 74,697 149.02 18,607.29 4,965.73
unicode 172,875 95 363 1,054 54.95 549.73 677.47
url 40,595 353 2,266 34,368 191.89 1,618.63 1,521.94
servo 11.26 M 1.27 M 14.63 M - 186.13 TO TO

GeoMean - - - - 97.21 1,635.35 1,193.31

Table 4.6: Compilation overhead comparison. Benchmarks are grouped by scale. Pointer counts
report exposed raw pointers (Expo-raw) and risky pointers identified by LiteRSan, along with raw
pointers plus aliases (Aliased) identified by traditional points-to analysis. Compilation vverheads are
shown for LiteRSan, ERASan, and RustSan. Nonapplicable results are listed as -. SE indicates silent
exit, SEGV indicates segmentation fault, and TO indicates a compilation timeout.

The efficiency of LiteRSan arises from its lightweight, Rust-specific static analysis,
in contrast to the SVF-based approaches of ERASan and RustSan. As discussed in
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Section 2.2.1, SVF is a heavyweight points-to analysis framework, which substantially
increases compilation cost. LiteRSan instead restricts analysis to reachable functions
and examines only instructions relevant to risky pointer identification, performing this
in a single pass. Despite its efficiency, this analysis remains sufficient to identify all
spatially and temporally risky pointers, as formally proved in Section 4.4.5, enabling
precise selective instrumentation with modest compilation overhead.

4.7.5 Security Evaluation

In addition to performance improvement, LiteRSan provides a more comprehensive
memory error detection coverage than ERASan and RustSan, both of which share the
same capability as ASan. Therefore, we show the bug detection capability of LiteRSan
and compare it only with ASan (whose detailed approach and limitations are discussed
in Section 2.2.1).

RUSTSEC ID Type Class ASan LiteRSan

RUSTSEC-2023-0021 NPD Null-pointer deref ✓ ✓
RUSTSEC-2023-0024 NPD Null-pointer deref ✓ ✓
RUSTSEC-2023-0038 OOB Spatial ✓ ✓
RUSTSEC-2023-0039 OOB Spatial ✓ ✓
RUSTSEC-2023-0056 OOB Spatial ✗ ✓
RUSTSEC-2024-0002 OOB Spatial ✗ ✓
RUSTSEC-2025-0003 OOB Spatial ✓ ✓
RUSTSEC-2025-0005 OOB Spatial ✓ ✓
RUSTSEC-2025-0018 OOB Spatial ✓ ✓
RUSTSEC-2023-0045 UBI Spatial ✓ ✓
RUSTSEC-2023-0087 UBI Spatial ✗ ✓
RUSTSEC-2024-0018 UBI Spatial ✓ ✓
RUSTSEC-2024-0374 UBI Spatial ✓ ✓
RUSTSEC-2024-0400 UBI Spatial ✓ ✓
RUSTSEC-2023-0010 DF Temporal ✓ ✓
RUSTSEC-2023-0078 UAF Temporal ✗ ✓
RUSTSEC-2024-0007 UAF Temporal ✓ ✓
RUSTSEC-2024-0017 UAF Temporal ✓ ✓
RUSTSEC-2025-0016 UAF Temporal ✓ ✓
RUSTSEC-2025-0022 UAF Temporal ✓ ✓

Table 4.7: Bug detection capability of ASan and LiteRSan. Listed are the 20 most recent
memory safety vulnerabilities in RustSec, grouped by bug class.

We analyzed bugs reported by RustSec, the Rust Security Advisory Database [161],
over the past two years, focusing on the cases where bug root causes (i.e., PoCs) are
publicly available for validation. We list memory safety bugs in our scope (discussed in
Section 4.1) in Table 4.7. LiteRSan successfully detects all of 20 bugs, whereas ASan
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fails to identify two out-of-bounds access bugs, one use-before-initialization bug, and one
use-after-free bug. These cases occur in Rust-specific contexts (illustrated as case studies).
Because ASan was originally designed for C/C++, it effectively detects conventional
memory safety violations but lacks the ability to handle Rust-specific memory safety
rules and check per-pointer spatial and temporal memory safety. In contrast, LiteRSan
incorporates Rust’s memory safety rules in its static analysis and enforces per-pointer
spatial and temporal memory safety checks, enabling the detection of such missing bugs.

RUSTSEC ID Type Class ASan LiteRSan

RUSTSEC-2020-0061 NPD Null-pointer deref ✓ ✓
RUSTSEC-2023-0013 NPD Null-pointer deref ✓ ✓
RUSTSEC-2020-0039 OOB Spatial ✓ ✓
RUSTSEC-2020-0167 OOB Spatial ✓ ✓
RUSTSEC-2021-0003 OOB Spatial ✓ ✓
RUSTSEC-2021-0048 OOB Spatial ✓ ✓
RUSTSEC-2021-0094 OOB Spatial ✓ ✓
RUSTSEC-2023-0015 OOB Spatial ✓ ✓
RUSTSEC-2023-0016 OOB Spatial ✓ ✓
RUSTSEC-2023-0030 OOB Spatial ✓ ✓
RUSTSEC-2023-0032 OOB Spatial ✓ ✓
RUSTSEC-2019-0023 UAF Temporal ✓ ✓
RUSTSEC-2020-0005 UAF Temporal ✓ ✓
RUSTSEC-2020-0060 UAF Temporal ✓ ✓
RUSTSEC-2020-0091 UAF Temporal ✓ ✓
RUSTSEC-2020-0097 UAF Temporal ✓ ✓
RUSTSEC-2022-0070 UAF Temporal ✓ ✓
RUSTSEC-2022-0078 UAF Temporal ✓ ✓
RUSTSEC-2023-0005 UAF Temporal ✓ ✓
RUSTSEC-2023-0009 UAF Temporal ✓ ✓
RUSTSEC-2021-0031 UAF Temporal ✓ ✓
RUSTSEC-2021-0128 UAF Temporal ✓ ✓
RUSTSEC-2021-0130 UAF Temporal ✓ ✓
RUSTSEC-2019-0009 DF Temporal ✓ ✓
RUSTSEC-2019-0034 DF Temporal ✓ ✓
RUSTSEC-2020-0038 DF Temporal ✓ ✓
RUSTSEC-2021-0018 DF Temporal ✓ ✓
RUSTSEC-2021-0028 DF Temporal ✓ ✓
RUSTSEC-2021-0033 DF Temporal ✓ ✓
RUSTSEC-2021-0039 DF Temporal ✓ ✓
RUSTSEC-2021-0042 DF Temporal ✓ ✓
RUSTSEC-2021-0047 DF Temporal ✓ ✓
RUSTSEC-2021-0053 DF Temporal ✓ ✓

Table 4.8: Detection capability of ASan and LiteRSan on memory safety vulnerabilities.
The listed vulnerabilities are grouped by bug class. They are memory safety vulnerabilities discovered
and registered in RustSec earlier than the 20 memory safety vulnerabilities in Table 4.7.
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As a complement of Table 4.7, Table 4.8 reports the detection results of LiteRSan
and ASan on earlier RustSec vulnerabilities. Together, these tables cover all publicly
disclosed memory safety bugs reported in the RustSec Advisory Database to date. In
total, the combined dataset includes 55 vulnerabilities: 21 use-after-free (UAF), 3 double-
free (DF), 21 out-of-bounds accesses (OOB), 7 use-before-initialization (UBI), and 3
null-pointer dereference (NPD). They also cover all the vulnerabilities experimented
by ERASan. As a result, LiteRSan successfully detects all the listed bugs identified
by ASan, demonstrating full coverage of ASan’s detection capabilities on Rust memory
safety bugs, while detecting additional Rust-specific bugs, including UBI and certain
safe-code out-of-bounds violations. We illustrate one spatial memory safety bug in Case
Study 1 and one temporal memory safety bug in Case Study 2.

Case Study 1

RUSTSEC-2023-0056 [118] is an out-of-bounds access vulnerability in the vm-memory
crate [142]. In this crate, get_slice is a trait method intended to return a smart pointer-
like abstraction, VolatileSlice, over a slice, but it lacks a default implementation. If
a user implements this method incorrectly, for example, by miscomputing the offset
or count, the internal pointer in the returned VolatileSlice may reference memory
outside the intended region, potentially leading to out-of-bounds access.

Several methods in VolatileMemory trait, such as get_ref and get_array_ref,
invoke get_slice without proper bounds checking, thereby raising potential memory
safety violations. Listing 4.2 illustrates this issue using get_atomic_ref as an example.
In line 6, get_slice is invoked to wrap an allocated memory region with a requested size
of size_of::<T>() bytes. In line 9, the internal pointer of the returned VolatileSlice
(i.e., slice.addr) is cast and dereferenced without verifying whether the underlying
memory actually aligns with the requested bounds. If get_slice returns a region
smaller than the requested region, any dereference beyond the actual region results in an
out-of-bounds access.

According to our experiment, ASan cannot detect this bug because it only places red
zones around memory objects. However, in this case, the pointer returned by get_slice
may point to a valid memory object, but beyond the actual valid bound, which is
within this object. As a result, invalid accesses beyond the actual bound but within
the larger allocated object remain undetected by ASan, since no red zones are placed at
the logical boundary returned by get_slice. In contrast, LiteRSan tracks memory
safety metadata for each pointer at its definition site. This allows LiteRSan to precisely
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1 fn get_slice(&self, offset: usize, count: usize)
2 -> Result<VolatileSlice<BS<Self::B>>>;
3

4 fn get_atomic_ref<T: AtomicInteger>(&self, offset: usize)
5 -> Result<&T> {
6 let slice = self.get_slice(offset, size_of::<T>())?;
7 slice.check_alignment(align_of::<T>())?;
8

9 unsafe { Ok(&*(slice.addr as *const T)) }
10 }

Listing 4.2: Potential out-of-bounds access in get_atomic_ref.

extract the actual bound of slice.addr and perform spatial memory safety checks,
detecting potential out-of-bounds access.

Case Study 2

RUSTSEC-2023-0078 [119] is a use-after-free vulnerability reported in the tracing
crate [141]. As shown in Listing 4.3, the vulnerability originates from the improper use
of mem::forget in line 4, where the exclusive owner of the underlying memory object is
forgotten. While mem::forget prevents the object’s destructor from being called, the
Rust compiler considers the object to be logically invalid after its owner is forgotten. The
memory region may subsequently be reused by the compiler, making any future access
to the original object via existing pointers a use-after-free violation.

1 pub fn into_inner(self) -> T {
2 let span: *const Span = &self.span;
3 let inner: *const ManuallyDrop<T> = &self.inner;
4 mem::forget(self);
5

6 let _span = unsafe { span.read() };
7 let inner = unsafe { inner.read() };
8 ManuallyDrop::into_inner(inner)
9 }

Listing 4.3: Potential use-after-free in Instrumented::into_inner.

This vulnerability stems from a violation of Rust’s ownership model rather than
traditional heap misuse found in C/C++. Because the memory is never explicitly freed,
ASan does not update its shadow memory to mark the region as invalid, thus fails
to detect the temporal safety violations. Covering this type of vulnerability in ASan
is fundamentally challenging as ASan is unaware of Rust’s ownership semantics. To
detect such bugs, ASan would need to determine whether an object still has a valid
owner at every program point, which requires a significant change in the underlying
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design of ASan. In contrast, LiteRSan is designed with ownership awareness. It tracks
ownership and marks the pointers referencing the same object as dangling when the
last owner is dropped. Any subsequent dereferences of the dangling pointers are flagged
as use-after-free. This allows LiteRSan to detect ownership-related memory safety
violations that lie beyond ASan’s capabilities.

4.8 Discussion
This section discusses the limitations of LiteRSan and explores how complementary
safety mechanisms can be combined to provide more comprehensive coverage of Rust
memory safety.

4.8.1 Limitations

Although LiteRSan significantly advances memory safety enforcement in Rust and
surpasses the capabilities of ASan-based tools, it shares some of their inherent limitations.
Specifically, type conversion bugs and cross-language vulnerabilities remain out of scope.

Type Conversion Bugs

We consider type conversion bugs, such as those introduced via unsafe APIs like
transmute() [139], out of scope, as it is widely accepted as orthogonal to spatial and
temporal memory safety. The same view is shared by many prior works [25,47,104]. Type
conversion bugs stem from reinterpreting one type as another, which can break safety
invariants without violating spatial bounds or temporal validity. As a result, LiteRSan
may not be able to detect them if they do not violate spatial bounds or temporal validity.
State-of-the-art ASan-based tools [27, 88] also share the same problem [127]. One way to
address this problem is to integrate type confusion bug detection techniques [25]. But it
is worth noting that LiteRSan is able to detect such type confusion bugs if they stem
from memory errors such as UAF.

Cross-language Attacks

LiteRSan leverages Rust’s ownership and borrowing semantics to infer memory safety
metadata and enforce spatial and temporal safety. As a result, it does not guarantee the
detection of memory safety violations originating from external code written in languages
without such semantics, such as C/C++ libraries interfaced via FFI. Similar to ERASan
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and RustSan, LiteRSan does not cover cross-language memory safety violations, which
are considered out of scope.

To address cross-language attacks, one potential direction is to integrate LiteRSan
with existing isolation or sandboxing techniques [126,133], to mitigate memory errors
originating from external code. Another direction is to extend the scope of LiteRSan to
external libraries and enforce runtime checks at FFI boundaries. However, this requires a
deep understanding of the semantics of each external API, which is difficult to generalize
and automate. It also requires static analysis on C/C++ code, which lacks Rust’s
safety guarantees, making Rust-specific analysis inapplicable. Despite these challenges,
cross-language memory safety is a promising direction for future work.

4.8.2 Toward Full Coverage of Rust Memory Safety

Achieving full coverage of Rust memory safety requires combining different classes of
defenses, as each has inherent limitations and addresses different aspects of the problem.

Static Analysis

Static analysis tools such as Rudra [13], SafeDrop [29], and MIRChecker [72] aim to detect
potential vulnerabilities at compile time without execution overhead. They are designed
to catch certain classes of errors systematically but often suffer from false positives and
limited precision in analyzing complex unsafe code. While static analysis cannot enforce
safety at runtime, it provides an essential first line of defense and complements dynamic
techniques like sanitizers.

Isolation and Sandboxing

Isolation techniques, including XRust [74], TRust [14], and PKRUSafe [64], enforce strong
protection boundaries to eliminate memory safety violations. Unlike sanitizers, which
aim to detect violations, isolation focuses on preventing exploitation. These approaches
can complement LiteRSan by mitigating risks from external code (e.g., C libraries via
FFI) and by providing fallback protection when runtime detection is incomplete.

Fuzzing Frameworks

Fuzzing frameworks such as AFL++ [40], Cargo-fuzz [22], and Honggfuzz [35] explore
program behaviors dynamically by generating diverse inputs. While fuzzing can expose
previously unknown bugs, it does not provide soundness guarantee and is fundamentally
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coverage-driven. When combined with sanitizers like LiteRSan, fuzzing becomes
significantly more effective, as sanitizer checks increase the likelihood of detecting subtle
memory safety violations during fuzzing campaigns.

Memory Safety Sanitizers

Sanitizers such as ASan, ERASan, RustSan, and LiteRSan provide runtime detection of
memory safety violations with varying trade-offs in precision and performance. LiteRSan
advances this line of work by introducing Rust-specific static analysis to reduce overhead
while maintaining soundness. However, as discussed earlier, sanitizers alone cannot
address all classes of bugs, such as type confusion or FFI-related vulnerabilities.

Integration for Comprehensive Memory Safety

Though various classes of defenses and advanced techniques in each class, no single
approach provides complete coverage of Rust memory safety. Static analysis is efficient
but incomplete; fuzzing is effective in practice but probabilistic; isolation is strong but
coarse-grained; and sanitizers are precise but introduce runtime overhead. A promising
path forward is to integrate these complementary mechanisms in a layered fashion. For
example, static analysis can prune potential errors early, memory safety sanitizers can
selectively enforce runtime safety checks, fuzzing can explore residual cases, and isolation
can restrict violations from unsafe external code. By combining these complementary
approaches, the community can further approach more practical and comprehensive
memory safety for Rust programs.

4.9 Conclusion
Rust provides strong memory safety through its ownership semantics and type system.
However, these guarantees can be undermined by the use of unsafe code, which rein-
troduces memory safety vulnerabilities. To detect such bugs, ASan-based tools are
commonly used. Yet, even state-of-the-art sanitizers like ERASan and RustSan incur
substantial performance and memory overhead, and still fail to catch certain memory
safety violations.

Therefore, we propose a novel Rust memory sanitizer, LiteRSan, with lower overhead
and more comprehensive and accurate memory error detection than ERASan and RustSan.
We achieve this goal by precisely identifying risky pointers and selectively instrumenting
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those risky pointers to minimize overhead while ensuring higher detection coverage
than ERASan and RustSan. As a result, LiteRSan imposes 18.84% runtime overhead,
97.21% compilation overhead, and 0.81% memory overhead, with geometric mean, while
ERASan and RustSan, respectively, incur 152.05% and 183.50% runtime overhead,
1635.35% and 1193.31% compilation overhead, and 739.27% and 861.98% memory
overhead. Furthermore, LiteRSan detects 55 memory safety vulnerabilities with 100%
accuracy, unlike ASan-based approaches that miss four of them.
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Chapter 5 |
Conclusion and Future Work

This dissertation has explored how exploiting language and semantics specific features can
advance program analysis by improving both precision and efficiency. Traditional program
analyses often face an inherent trade-off: fine-grained approaches offer higher precision
at significant computational cost, while coarse-grained techniques achieve efficiency at
the expense of accuracy. This work demonstrates that leveraging domain knowledge
embedded in programming languages and problem contexts provides a practical path to
reconciling this trade-off.

Through two concrete projects, DeepType and LiteRSan, the dissertation shows
that semantics-aware insights enable program analysis to advance in both accuracy and
efficiency. The first project, DeepType, introduced strong multi-layer type analysis
(SMLTA) for C/C++, which leverages the types of composite data structures and
explicitly models data-flow across their type hierarchies to refine indirect call target
resolution. The second project, LiteRSan, developed a Rust-specific memory safety
sanitizer that incorporates Rust’s ownership and borrowing semantics to precisely identify
risky pointers and enforce memory safety with low compilation and runtime overheads.
Altogether, these projects demonstrate that exploiting language and semantics is not
merely an optimization, but a foundational design principle for building precise, efficient,
and practical program analyses.

5.1 Key Insights
A key insight that emerges from both projects is that language and semantics specific
features provide a guiding principle for advancing program analysis, particularly in
achieving a more effective balance between precision and efficiency.
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In the DeepType project, the fundamental intuition behind multi-layer type analysis
is that function pointers in C/C++ are frequently embedded within composite data
structures. By exploiting this structural characteristic and explicitly modeling the
data-flow across multiple layers of these types, DeepType maintains multi-layer type
information and performs multi-layer type matching. This approach enables precise
indirect call target resolution without incurring the prohibitive cost of whole-program,
flow-sensitive pointer analysis. Semantic knowledge of C/C++ type system restricts the
analysis search space, yielding high precision at modest computational cost.

In LiteRSan project, the key observation is that Rust already enforces strong
safety guarantees through its ownership and borrowing system. Instead of treating all
pointers uniformly as in traditional points-to analysis, LiteRSan explicitly models
Rust’s semantics, excluding compiler-guaranteed safe pointers and focusing exclusively
on risky pointers that may violate memory safety at runtime. The precise identification
of risky pointers, coupled with lightweight metadata-based runtime checks, delivered
significant precision and efficiency improvements over language-agnostic sanitizers such
as ASan and its variants.

In the LiteRSan project, the insight lies in recognizing that Rust enforces strong
safety guarantees through its ownership and borrowing model. Rather than treating all
pointers uniformly, as in traditional points-to analysis, LiteRSan explicitly incorporates
Rust’s semantics to exclude compiler-guaranteed safe pointers and focuses exclusively on
risky pointers that may lead to runtime memory safety violations. This precise identifi-
cation, combined with lightweight metadata-based runtime checks, achieves significant
improvements in both precision and efficiency over language-agnostic sanitizers such as
ASan and its successors.

Altogether, these projects illustrate that semantic awareness enables analyses that
are both precise and lightweight, in contrast to generic, language-agnostic approaches.
More broadly, they demonstrate that leveraging program semantics can fundamentally
reshape the cost–precision landscape of program analysis.

5.2 Extensions and Future Directions
While this dissertation has shown the benefits of exploiting language and semantics, it
also points to several promising directions for extending these ideas.

Building upon DeepType, one extension is to generalize strong multi-layer type
analysis (SMLTA) beyond function pointers. By modeling the multi-layer type flows of
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general pointers, SMLTA could be used to identify the memory objects they reference or
to capture higher-level abstractions such as sockets, file descriptors, or I/O management
structures. Such an extension would broaden the utility of SMLTA beyond call graph
construction to enforcing memory safety, strengthening RAII-style resource management,
and supporting analyses of complex systems-level abstractions.

LiteRSan demonstrates the power of Rust-specific static analysis for memory safety
enforcement, but this analyses approach can be adapted for broader domains, such as
constructing fine-grained data- and control-dependency graphs for Rust programs. These
graphs could enable analyses that isolate provably safe regions of code from unsafe code
or from safe code that depends on unsafe blocks. This direction would provide stronger
compartmentalization guarantees for Rust applications and open pathways for formally
verifying subsets of real-world Rust systems.

The principle of exploiting semantics and domain specific properties to balance preci-
sion and efficiency extends beyond the two research problems studied in this dissertation.
Other security-critical challenges, such as concurrency bug detection, side-channel defense,
or software isolation and sandboxing, could benefit from analyses that are tailored to the
unique abstractions of a language or research domain. For example, concurrency analyses
could exploit language-level synchronization constructs, while side-channel defenses could
exploit compiler-level representations of timing-sensitive operations.

Finally, the rise of large language models (LLMs) and AI-driven systems introduces
new domains where semantics-aware program analysis may play a role. These systems
are still programs, albeit with unique structures such as computational graphs, dynamic
control flows, and data propagation across neural layers. Borrowing from the lessons of
this dissertation, program analysis techniques could be adapted to exploit these semantics
to detect, mitigate, and verify security vulnerabilities in AI systems. Such efforts would
extend program analysis into emerging domains while retaining the core principle of
precision–efficiency balance through semantic awareness.
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