
Plagiarism Detection of Multi-threaded Programs Using

Frequent Behavioral Pattern Mining

Zhenzhou Tian*, Qing Wang and Cong Gao

School of Computer Science and Technology

Xi'an University of Posts and Telecommunications

Shaanxi Key Laboratory of Network

Data Analysis and Intelligent Processing
Xi'an, Shaanxi 710121, P. R. China

*tianzhenzhou@xupt.edu.cn

Lingwei Chen and Dinghao Wu

College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

Received 10 July 2020

Revised 14 August 2020

Accepted 5 October 2020

Software dynamic birthmark techniques construct birthmarks using the captured execution
traces from running the programs, which serve as one of the most promising methods for

obfuscation-resilient software plagiarism detection. However, due to the perturbation caused by

non-deterministic thread scheduling in multi-threaded programs, such dynamic approaches

optimized for sequential programs may su®er from the randomness in multi-threaded program
plagiarism detection. In this paper, we propose a new dynamic thread-aware birthmark FPBirth

to facilitate multi-threaded program plagiarism detection. We ¯rst explore dynamic monitoring

to capture multiple execution traces with respect to system calls for each multi-threaded pro-

gram under a speci¯ed input, and then leverage the Apriori algorithm to mine frequent patterns
to formulate our dynamic birthmark, which can not only depict the program's behavioral

semantics, but also resist the changes and perturbations over execution traces caused by the

thread scheduling in multi-threaded programs. Using FPBirth, we design a multi-threaded
program plagiarism detection system. The experimental results based on a public software

plagiarism sample set demonstrate that the developed system integrating our proposed birth-

mark FPBirth copes better with multi-threaded plagiarism detection than alternative

approaches. Compared against the dynamic birthmark System Call Short Sequence Birthmark
(SCSSB), FPBirth achieves 12.4%, 4.1% and 7.9% performance improvements with respect to

union of resilience and credibility (URC), F-Measure and matthews correlation coe±cient

(MCC) metric, respectively.

Keywords: Software plagiarism; dynamic birthmark; multi-threaded program; frequent pattern.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 30, Nos. 11&12 (2020) 1667–1688
#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194020400252

1667

https://dx.doi.org/10.1142/S0218194020400252

1. Introduction

As modern social coding platforms, such as GitHub and CodeShare, have been

emerging as one of the most vibrant and important information sources to software

programming ecosystem, the incentive for the developers to copy or abuse the ready-

to-use codes from others to expedite their own software developments increases as

well. For example, as revealed in 2018, Redcore, a Chinese startup's \self-made" web

browser, was found to plagiarize substantial code from Google Chrome. Due to the

openness of Android, application (app) plagiarism has become even more prevalent

through repackaging [1, 2] such that about 13% of apps hosted in third-party mar-

ketplaces are repackaged [3], which poses serious threats to the healthy development

of software industry.

In order to detect the evolving software plagiarism, di®erent birthmarking

techniques [4–9] have been developed. In these methods, software birthmark,

which is a set of features, is ¯rst extracted from a program to uniquely identify the

programs, and then birthmark similarities are measured to determine the potential

plagiarism between the programs. Compared to the static birthmark analysis on

programs' lexical, grammatical or structural characteristics, dynamic birth-

marking techniques [7, 10, 11] construct birthmarks using the captured execution

traces from running the programs, which can depict the behaviors and semantics

of the programs more accurately and thus enjoy better anti-obfuscation ability.

However, due to the perturbation caused by non-deterministic thread scheduling

in multi-threaded programs, existing dynamic approaches optimized for sequential

programs may su®er from the randomness in plagiarism analysis for multi-

threaded programs [12]. For instance, given an input, birthmarks extracted from

multiple runs of the same multi-threaded program can be very di®erent; in the

extreme cases, such constructed birthmarks may even fail to detect plagiarism

between a multi-threaded program and itself [13]. Two dynamic birthmarking

methods (i.e. thread-related system call birthmark (TreSB) [13] and thread-

oblivious birthmark (TOB) [12]) have been accordingly proposed, yet they still

su®er from either weak universality or limitation of overall behavior under-

standing in multiple threads.

To address the challenge, we run a number of multi-threaded programs, and

analyze their behaviors, from which we observe that the same input may generally

enforce the same program function execution, while not all parts of the program get

involved in thread interleaving, so that its multiple execution traces under the same

input may be similar, but not identical. This calls for a sophisticated method to

characterize the behavioral patterns from multiple execution traces. Inspired by the

success of motif recognition in DNA sequence analysis where di®erence-tolerant

motifs are extracted to identify common patterns of DNA sequence variations, in this

paper, we would like to shift such a paradigm that generalizes motif formulation to

abstract the behaviors of the multi-threaded programs through their execution

traces. More speci¯cally, we ¯rst explore dynamic monitoring to capture multiple

1668 Z. Tian et al.

execution traces for each multi-threaded program under the same input, and then

use Apriori [14] to extract signi¯cant frequent patterns over execution traces, based

on which, we construct a thread-aware birthmark, called FPBirth, to model the

behavior of the multi-threaded program and reduce the impact of interleaving

threads on multi-threaded program plagiarism detection. The contributions of this

paper are summarized as follows:

. A new and dynamic behavioral representation learning method for multi-threaded

programs is proposed over their multiple execution traces through candidate set

generation and frequent pattern mining. This allows a re¯ned representation to

preserve semantics of execution traces while tolerating di®erences among them as

well.

. Based on extracted frequent patterns, a new thread-aware birthmark FPBirth is

constructed, which is leveraged to design a multi-threaded program plagiarism

detection system.

. Comprehensive experimental studies on a public software plagiarism sample set

are conducted to demonstrate that FPBirth is a reliable thread-aware birthmark,

and plagiarism detection system over it can achieve the state-of-the-art results,

which also outperforms TreSB and TOB.

2. Related Work

In this section, we review the related work on birthmark-based software plagiarism

detection. Since we target binaries, existing researches [23, 24] operating on the

source code level will not be discussed, while there have already been several mature

detection systems over source code [25, 26]. Basically, the birthmarking approaches

without requiring the access to program source code fall into two categories: Static

birthmark and dynamic birthmark.

2.1. Static birthmark-based software plagiarism detection

Tamada et al. [4] did the pioneer work of proposing the concept of static software

birthmark and designing four kinds of birthmarks constant values in ¯eld variables

(CVFV), sequence of method calls (SMC), inheritance structure (IS) and used classes

(UC) for Java programs. Myles et al. [17] introduced k-gram-based static birthmarks,

where sets of Java bytecode sequences of length k are taken as the birthmarks.

Considering that API calls are usually an indispensable part of a program, Seokwoo

et al. [27] proposed a static birthmark based on disassembled API calls from

executables for detecting plagiarism of windows applications. These birthmarks are

simply constructed based on the essential elements that are di±cult to be tampered

with, and thus signi¯cantly enforce syntactic and semantic information loss, ren-

dering them susceptible to even simple code transformations [6]. Lim et al. [28, 29]

proposed several static birthmarks with the basic idea of simulating the runtime

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1669

behaviors of Java programs via conducting control °ow analysis or analyzing stack

°ows. Similarly, Park [30] proposed to extract all possible sequences of object

instructions from CFG of each method, and applied them for detecting common

modules in Java packages. These methods show weakness against control °ow ob-

fuscation, and su®er from high time consumption since a mass of traces can be

extracted if the CFG is complex. Luo et al. [16, 31] proposed an obfuscation-resilient

method based on longest common subsequence of semantically equivalent basic

blocks. Symbolic execution combined with theorem proving is utilized for birthmark

extraction and comparison, which ensures high detection accuracy but also leads to

the scalability issue. To alleviate the impact of code transformations, Esh [32] and

Git [33] chose to lift the binary assembly code to intermediate languages such as

LLVM-IR or BoogieIVL, on the basis of which canonicalization and normalization

are performed to form the ¯nal representations for programs.

With the popularity of representation learning and deep learning, some works

applying them to achieve binary code similarity detection have been emerging.

Asm2Vec [34] generated vector representations for assembly sequences by design-

ing and training a representation learning model that is improved upon the PV-DM

[35] model, and compared the vectors with cosine similarity. Xu et al. [36] designed

a deep neural network-based graph embedding model for processing program CFGs

to vectors, followed with a siamese architecture to achieve similarity detection.

INNEREYE [37] trained an LSTM-based neural network model to obtain

embedding vectors for basic blocks and achieve basic-block similarity calculation,

based on which program level similarity can be detected. Broadly speaking, the

embedding vectors output by trained models can also be viewed as a kind of

software birthmark. These methods demonstrate promising detection performance

and resilience against code obfuscation attacks, while the limitation lies in con-

struction of a large and high-quality database and a long-time training phase.

There also exist plagiarism detection researches [1] targeting Android Apps.

DroidMoss [3] took hash value of bytecode fragments as birthmark. ViewDroid [38]

presented a functional view graph birthmark, which is vulnerable to dummy view

insertion and encryption attacks.

2.2. Dynamic birthmark-based software plagiarism detection

Myles et al. [5] introduced the concept of dynamic software birthmark and sug-

gested the whole program path (WPP) birthmark, which was demonstrated to be

susceptible to loop transformations. Schuler [39] de¯ned a dynamic birthmark for

Java programs by observing how objects provided by the Standard APIs are used.

Wang et al. [20] designed System Call Short Sequence Birthmark (SCSSB) and

Input-Dependent System Call Subsequence Birthmark (IDSCSB) to address the

problems with API-based techniques. To improve birthmark resilience against deep

code obfuscations, core values identi¯ed with data °ow analysis were organized as

sequences and graphs to depict program behavior [9]. By taking the data and

1670 Z. Tian et al.

control dependency among system calls into birthmark construction, Wang et al.

[40] proposed system call dependence graph birthmark (SCDGB). Patrick [41]

proposed heap graph birthmark (HGB) for JavaScript via conducting heap mem-

ory analysis. As SCDGB and HGB utilize graph isomorphism for calculating

birthmark similarity, these two methods su®er from the scalability issue. Dynamic

API authority vectors (DAAV) [42] constructed a dynamic call graph but con-

verted it to authority vectors with random walks to speed up similarity detection.

However, the uncertainty caused by thread scheduling greatly a®ects the e®ec-

tiveness of these traditional dynamic birthmarks, making them not suitable for

multi-threaded programs.

Considering the noticeable impact of thread scheduling on birthmarking tech-

niques, Tian et al. [15] introduced the concept of thread-aware birthmark. Ac-

cordingly, two dynamic birthmarking methods TreSB [13] and TOB [12] were

proposed to detect multi-threaded program plagiarism. TreSB made use of the

thread-related system calls which are in charge of thread operations and manage-

ment to depict the program behavior, which also makes it only applicable to multi-

threaded programs. TOB chose to revive traditional dynamic birthmarks by de-

signing a slicing-merging framework to alleviate the impact of thread interleaving

non-determinism. Yet the assumption that event occurring in each thread is stable

is not always true due to the interactions between threads. A common practice of

these two methods is that they both extract birthmarks from a single execution

trace corresponding to a certain input. Di®erently, our proposed FPBirth takes the

frequent patterns mined from multiple execution traces collected from multiple

runs of multi-threaded programs under the same given input as birthmark,

which preserves the behavioral semantics and also improves the di®erence-tolerant

ability.

3. Problem Statement

In this section, we ¯rst de¯ne the software plagiarism detection problem. A software

birthmark, whose classical de¯nition is given in De¯nition 1, is a set of characteristics

extracted from a program that re°ects intrinsic properties of the program and can

hence be used to identify the program uniquely. Static birthmarks tend to overlook

operational behaviors of a program. In this respect, dynamic birthmarks, as de¯ned

in De¯nition 2, are introduced to remedy this formulation. Dynamic birthmarks are

extracted based on runtime behaviors and thus are believed to be more accurate

re°ections of program semantics. However, when multi-threaded programming

gradually becomes the mainstream, the traditional birthmark techniques inevitably

encounter a great obstacle in multi-threaded program plagiarism detection. The non-

determinism brought by thread schedules in multi-threaded programs causes the

execution behaviors to di®er across di®erent runs, while plagiarism is essentially

determined based on similarity measuring over the execution behaviors. In order to

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1671

address this challenge, the concept of thread-aware birthmark [15] is accordingly

elaborated to abstract the behaviors of the multi-threaded programs through their

execution traces, which is speci¯ed in De¯nition 3.

De¯nition 1 (Software Birthmark [4]). Let p be a program and f be a method

for extracting a set of characteristics from p. We say fðpÞ is a birthmark of p if and

only if both of the following conditions are satis¯ed:

— fðpÞ is obtained only from p itself.

— Program q is a copy of p implies that fðpÞ ¼ fðqÞ.
De¯nition 2 (Dynamic Software Birthmark [5]). Let p be a program, I be an

input to p and fðpÞ be a set of characteristics extracted from p by executing p with

input I. We say fðp; IÞ is a dynamic birthmark of p if and only if both of the following

conditions are satis¯ed:

— fðp; IÞ is obtained only from p itself when executing p with input I.

— Program q is a copy of p implies that fðp; IÞ ¼ fðq; IÞ.
De¯nition 3 (Thread-Aware Dynamic Software Birthmark [15]). Let p; q be

two multi-threaded programs, I be an input, s be a thread schedule to p and q and

fðp; I; sÞ be a set of characteristics extracted from p when executing p with I and

schedule s. We say fðp; I; sÞ is a thread-aware dynamic birthmark of p if and only if

both of the following conditions are satis¯ed:

— fðp; I; sÞ is obtained only from p itself when executing p with input I and thread

schedule s.

— Program q is a copy of p implies that fðp; I; sÞ ¼ fðq; I; sÞ.
Obviously, these are abstract guidelines without considering any implementation

feasibility. In practice, even if there is a plagiarism correlation between two pro-

grams, the constructed birthmarks may not be exactly the same. Therefore, for

software birthmarking techniques, instead of enforcing exact birthmark matching,

the plagiarism of two programs is decided by a similarity metric that computes the

similarity score between their birthmarks and a threshold " over this score with a

range between 0 and 1. In our work, we measure the similarity between the original

program p's birthmark and the suspect program q's birthmark simðfðp; I; sÞ; fðq; I;
sÞÞ to determine the plagiarism. The higher the similarity, the more possible the

suspect program q copies code from the original program p. We do not set " to a ¯xed

value, while analyze its impact on performance under a wide range of choices. As

such, the plagiarism can be decided by Eq. (1), which gives a conceptual de¯nition of

sim that returns either positive, negative, or inconclusive.

simðpf ; qfÞ ¼
� 1� " q is a copy of p;

< " q is not a copy of p

otherwise inconclusive:

8<
: ; ð1Þ

1672 Z. Tian et al.

4. Proposed Method

In this section, we present the detailed method of how we construct thread-aware

birthmarks for multi-threaded programs over their execution traces, which is illus-

trated in Fig. 1.

4.1. Candidate set generation

The thread interleaving in multi-threaded programs leads to changes in the program

execution traces. To capture such unique behaviors so that the constructed birth-

marks are di®erence-tolerant to the changes among execution traces, we take as

input multiple execution traces from a multi-threaded program under the same

input, and extract frequent behavioral patterns over execution traces to formulate

birthmark. To improve the e®ectiveness of frequent pattern mining, pattern candi-

date set is ¯rst generated through pre-processor, gram-based slice and slice merging,

which is displayed in Fig. 2.

4.1.1. Pre-processor

The captured execution traces consist of system calls related to program and thread

operations, where each record in the system call sequence is speci¯ed as system call

number, name and return value. However, the raw execution traces are not appli-

cable for direct FPBirth extraction. First, those system calls that fail cannot cor-

rectly re°ect the program's behaviors [16], which should be considered noises to be

¯ltered out using their return values. For example, some system call serves to close

the ¯les; if there is a failure, this system call will be revoked multiple times until it

succeeds. Second, those system calls that are invoked randomly may perturb the

execution traces, which should be also removed. For example, futex, essentially

designed to reduce the number of system calls for performance issue, is called only

when the program is likely to be blocked for a longer time until the condition

becomes true. Its occurrences show intrinsic randomness under di®erent executions.

Fig. 1. The overview of FPBirth construction.

Fig. 2. Basic process of pattern candidate set generation.

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1673

Another kind of system calls that are responsible for memory management, such as

mmap and brk, also greatly depend on real-time memory chunk needs. To this end,

we perform the pre-processing to prune these captured execution traces before fed to

birthmark construction.

4.1.2. Gram-based slice

Due to its simplicity and scalability, k-gram model [17] in natural language proces-

sing is then used to slice up the pre-processed execution traces to form di®erent

subsequences of k continuous system calls. Given a pre-processed execution trace

s ¼ ðe1; e2; . . . ; enÞ, a series of subsequences split by k-gram can be de¯ned as

gramsðs; kÞ ¼ fgijgi ¼ ðei; eiþ1; . . . ; eiþkÞg; 1 � i � n� kþ 1: ð2Þ
In this respect, execution traces can be transformed into a set of short sequences to

facilitate fast pattern mining while not signi¯cantly compromising their important

semantic information, which thus greatly ensures the integrity of trace contents.

4.1.3. Slice merging

To generate the candidate set for frequent pattern mining, we further merge all the

short sequences sliced by k-gram over multiply execution traces of each multi-

threaded program under the same input. In other words, one multi-threaded pro-

gram with one input will specify one pattern candidate set. As such, given a multi-

threaded program p and an input I, a pattern candidate set can be de¯ned as

CanSet Ip ¼
[m
i¼1

gramsðsi; kÞ; ð3Þ

where si is program p's ith execution trace under input I and m is the number of

execution traces.

4.2. Frequent pattern mining

Frequent pattern mining is an important research topic in data mining [18], which

searches for recurring relationships in a given dataset with frequency not less than

minimum support threshold, and thus leads to discovery of associations among

itemsets. Therefore, based on the generated candidate sets, we explore a frequent

pattern mining method Apriori [14] to dig out the most representative behavioral

patterns to birthmark each multi-thread program, which not only preserve semantics

of execution traces, but also have strong ability to resist variations caused by thread

interleaving.

The key of Apriori is the apriori knowledge that all non-empty subsets of a

frequent itemset must also be frequent. Therefore, Apriori algorithm follows the

iterative steps that frequent t-itemsets (i.e. itemsets that contain t items and have

frequency not less than minimum support �) are generated by joining frequent

1674 Z. Tian et al.

t� 1ð Þ-itemsets with itself until no new frequent itemsets are identi¯ed. In this way,

given a candidate set CanSet Ip, the generated frequent pattern set over it can be

de¯ned as

FreSet Ip ¼ ffijcountðfiÞ � �; 1 � i � lÞg; ð4Þ
where fi is ith frequent pattern in CanSet Ip and l is the number of frequent patterns

in FreSet Ip.

To perform frequent pattern mining, the length of the input sequences k, which is

decided by k-gram slices, must be appropriately considered: (1) excessive length will

lead to an explosion in the number of iterations and itemset candidates, and the

burden of program running, while (2) the length being too short may enforce short

frequent itemset generation; since we utilize frequent itemsets as patterns to con-

struct the birthmark, frequent itemsets being too short will not be able to depict any

speci¯c patterns and thus degrade their expressiveness and representativeness to

execution traces and the corresponding birthmark's semantics and accuracy to the

multi-threaded programs. That is to say, given the input sequences of length k, the

length of frequent itemsets t may directly impact on the validity of the constructed

birthmark. As such, the length of the input sequences k and the length range of the

frequent itemsets t will be empirically evaluated in the experiments on the sample

data to ¯nd the best trade-o® between the e®ectiveness and e±ciency for multi-

threaded program plagiarism detection.

4.3. Frequent pattern reduction

Using frequent pattern mining over CanSet Ip, we may generate the frequent pattern

set FreSet Ip with a large number of frequent patterns, where according to the im-

plementation of Apriori algorithm, the resulting patterns with shorter length are

obviously more than the ones with longer length. On the one hand, shorter patterns

are weaker than longer ones in representing program-speci¯c semantic behaviors for

less context; on the other hand, shorter patterns themselves may be embedded in

longer patterns, which has a major drawback to cause the redundancy, and thus

mislead the e®ect of the constructed birthmark over frequent patterns. Therefore,

the removal of such short frequent patterns is indispensable.

More speci¯cally, we here propose a pattern removing method before constructing

the birthmark, named insigni¯cant pattern removing, where all the frequent patterns

that are included in others as continuous subsequences are insigni¯cant and should

be removed. For example, given the pattern \ABCDE", the following pattern

\ABC" becomes insigni¯cant because it is a complete substring and gives no extra

information, while the pattern \ADE" will be retained due to its variation on

\ABCDE".

Finally, the re¯ned frequent pattern set is used to construct the thread-aware

dynamic software birthmark for the program. Note that, for dynamic birthmarks,

the number of pattern occurrences is related to the execution behavior of the

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1675

program to some extent; that is, birthmark similarity should be measured over

pattern frequency instead of pattern existence. To facilitate such a similarity cal-

culation, we further transform the frequent pattern set into key-value pair set where

the keys represent the frequent patterns and the values refer to their corresponding

frequencies. This key-value pair set acts as the program's dynamic birthmark under a

speci¯ed input, named FPBirth. Accordingly, given a frequent pattern set FreSet Ip,

FPBirth can be de¯ned as

FPBirth I
p ¼ fhfi; supðfiÞijfi 2 FreSet Ipg; ð5Þ

where fi is ith frequent pattern in FreSet Ip and supðfiÞ is the frequency of pattern fi
(i.e. support count).

Algorithm 1 gives the pseudo-code on FPBirth generation. Lines 2 to 3 generate

candidate set. The function grams returns a set of short sequences and the merge

function merges all short sequences to return the pattern candidate set. Line 4 uses

Apriori as the frequent pattern mining algorithm. Apriori algorithm follows the

iterative steps that frequent t-itemsets are generated by joining frequent

Algorithm 1. Extracting FPBirth
Input:

s: a pre-processed execution trace consisted of system calls
k: the window size used to generate k-grams
σ: minimum support
t: the length range of frequent patterns
m: the number of execution traces

Output:
FPBirthp : the birthmark FPBirth, which is a key-value pair set

1: FPBirthp ← 〈〉
2: short sequences = grams(s, k) � Slicing s with a window of length k

3: CanSetp = merge(short sequences,m) � To generate the candidate set
4: FreSetp = apriori(CanSet p , σ, t) � To generate the frequent pattern set
5: for pattern

a
∈ FreSetp do

6: for pattern
b

∈ FreSetp do
7: if pattern

a
.complete substring(pattern

b
) then

8: remove pattern
a

� Insignificant pattern removing
9: else

10: FPBirthp ← FPBirthp ⊕ 〈
pattern

a
, frequency

〉

11: end if
12: end for
13: end for
14: return FPBirthp

1676 Z. Tian et al.

ðt� 1Þ-itemsets with itself until no new frequent itemsets are identi¯ed. Lines 5–13
reduce the frequent patterns. The re¯ned frequent pattern set and its corresponding

frequency constitute key-value pairs that are used to construct thread-aware dy-

namic birthmarks for the program. The algorithm ¯nally returns FPBirthp.

The most time-consuming phase of Algorithm 1 is frequent pattern mining. The

number of iterations in this phase depends on the length of the input sequences k

decided by k-gram slices and the parameters t and �. As described in Sec. 4.2, given the

input sequences of length k, the length of frequent itemsets tmay impact on the number

of iterations and the validity of the constructed birthmark, and thus they will be

empirically evaluated in the experiments on the sample data to ¯nd the best trade-o®

between the birthmark e®ectiveness and construction e±ciency. The validity and

authenticity of the mining results of the Apriori algorithm will be a®ected by the

parameter �. A large � may result in ¯ltering out some important but infrequent

itemsets, and in extreme cases, no frequent itemsets can be mined. On the contrary, a

small � may result in insigni¯cant frequent itemsets, and furthermore, the time over-

head may increase while performance deteriorates signi¯cantly. This paper considers

that � ¼ 4 is a reasonable choice for the experimental dataset, which will be detailed in

Sec. 6.1; that is, itemsets that have frequency no less than 4 are frequent itemsets.

5. FPBirth-based Software Plagiarism Detection

In the previous section, we mine the frequent patterns over the execution traces to

construct thread-aware dynamic birthmark FPBirth. Here, we further leverage such

birthmarks for multi-threaded program plagiarism detection.

5.1. Similarity calculation and plagiarism detection

Using FPBirth, we can e®ectively and dynamically birthmark a multi-threaded

program under a speci¯ed input. However, an FPBirth birthmark merely abstracts

part of the semantics and behaviors of the program under a single input, based on

which, the plagiarism detection decision is clearly biased and not reliable. For in-

stance, two di®erent programs may adopt the same standard exception handling

mechanism, while any inputs that invoke the exception handling will enforce the

same behavioral patterns for both programs. To address this issue, we formulate

di®erent inputs and perform multiple executions for each multi-threaded program

under each of these inputs to cover as many functional blocks as possible, so that we

can construct a series of FPBirth birthmarks to thoroughly represent the semantics

and behaviors of the program. Given an original program p, a suspect program q and

a set of inputs fI1; I2; . . . ; Idg, we accordingly generate a set of FPBirth birthmark

pairs for p and q, which can be denoted as fðFPBirth I1
p ;FPBirth

I1
q Þ; . . . ;

ðFPBirth Id
p ;FPBirth

Id
q Þg. Instead of evaluating the similarity between a single pair of

birthmarks, we calculate the similarities for all pairs of birthmarks and take their

mean value as the measure of software similarity between p and q, which can be

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1677

denoted as follows:

simðpf ; qfÞ ¼
Xd
i¼1

simðFPBirth Ii
p ;FPBirth

Ii
q Þ=d: ð6Þ

Based on simðpf ; qfÞ and Eq. (1), we can obtain the ¯nal plagiarism detection results,

where the threshold " is adjustable for di®erent sample dataset. Note that we aim to

outline a general paradigm to explore the similarity between p and q, where the

measure models can be instantiated in di®erent ways. In this paper, we employ cosine

similarity for measurement, since it is commonly used in high-dimensional positive

spaces with the outcome being neatly bounded in ½0; 1�.

5.2. System implementation

Figure 3 depicts the overview of our FPBirth-based birthmarking system. The

plainti® represents the original program owned by its developer while the defendant

represents the suspicious program that may have plagiarized the plainti®. The sys-

tem mainly consists of four modules: the dynamic monitor for capturing program

execution traces, the extractor for extracting FPBirth birthmarks, the similarity

calculator for computing birthmark similarity, and the decision maker that deter-

mines whether the defendant is guilty.

Dynamic monitor module, which is implemented as a PIN plugin [19], monitors

program executions. Speci¯cally, using the PIN dynamic instrumentation framework

and API functions PIN AddSyscallEntryFunction and PIN AddSyscallExitFunction,

monitoring and analysis code is instrumented before and after system call invoking

positions, respectively, to capture relevant system call information during program

execution. The form of each system call is speci¯ed as < thread identi¯er, system call

number, system call name, speci¯c parameter, return value >: The extractor module

handles the execution traces captured by the dynamic monitor module, and performs

the construction of FPBirth birthmark through candidate set generation, frequent

pattern mining and frequent pattern reduction. In the similarity calculator, simi-

larity scores are computed between the birthmarks of plainti® and defendant under

di®erent inputs, and the decision maker decides the plagiarism using the threshold

over the mean of similarity scores.

6. Experimental Results and Analysis

In this section, we conduct experimental studies using a public software plagiarism

sample set to fully evaluate the performance of our developed FPBirth-based system

in multi-threaded program plagiarism detection.

Fig. 3. Overview of FPBirth-based software plagiarism detection prototype.

1678 Z. Tian et al.

6.1. Experimental setup

We evaluate the e®ectiveness of our proposed detection system over FPBirth on a

public software plagiarism sample set [13], including 234 multi-threaded programs of

di®erent versions, derived from a series of obfuscations (e.g. SandMax, Zelix, UPX)

over 35 benchmark multi-threaded programs, which are shown in Table 1. The

parameter settings to implement our model for evaluation are speci¯ed as: k ¼ 6 for

k-gram slice, which is also the length of the input sequences for frequent pattern

mining, minimum support � ¼ 4, the length of frequent patterns ranging in t 2 ½3; 6�;
for each input, m ¼ 4 for the number of execution traces captured. As for the

baselines, we compare our approach with two multi-threaded program plagiarism

detection methods TreSB [13] and TOB [12] and system call-based dynamic birth-

mark technique SCSSB [20].

6.2. FPBirth evaluation

With these settings, we mainly evaluate the resilience and credibility of the thread-

aware birthmark FPBirth [6], which can be described as follows [5]:

. Resilience. Let p be a program and q be a copy of p generated by applying

semantics-preserving code transformations � . A birthmark is resilient to � if

simðpf ; qfÞ � 1� ".

. Credibility. Let p and q be independently developed programs. A birthmark is

credible if it can di®erentiate the two programs, that is simðpf ; qfÞ < ".

Table 1. Benchmark multi-threaded programs.

Name Size (kb) Version #Ver Name Size (kb) Version #Ver

pigz 294 2.3 21 chromium 80,588 28.0.1500.71 1

SOR 593.3 JavaG1.0 44 lbzip 113.3 2.1 1

dillo 610.9 3.0.2 1 blackschole 12.5 Parsec3.0 2
lrzip 219.2 0.608 1 Dooble 364.4 0.07 1

bodytrack 647.5 Parsec3.0 2 pbzip2 67.4 1.1.6 1

epiphany 810.9 3.4.1 1 °udanimate 46.4 Parsec3.0 2

plzip 51 0.7 1 ¯refox 59,904 24.0 1
canneal 414.7 Parsec3.0 2 rar 511.8 5.0 1

konqueror 920.1 4.8.5 1 dedup 127.2 Parsec3.0 2

cmus 271.6 2.4.3 1 luakit 153.4 d83cc7e 1
ferret 2,150 Parsec3.0 2 mocp 384 2.5.0 1

midori 347.6 0.4.3 1 freqmine 227.6 Parsec3.0 2

mp3blaster 265.8 3.2.5 1 seaMonkey 760.9 2.21 1

streamcluster 102.7 Parsec3.0 2 mplayer 4,300 r34540 1
Crypt 518.1 JavaG1.0 43 swaption 94 Parsec3.0 2

sox 55.2 14.3.2 1 Series 593.3 JavaG1.0 43

x264 896.3 Parsec3.0 2 arora 1,331 0.11 1

SparseMat 593.3 JavaG1.0 43

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1679

In other words, resilience re°ects the ability of birthmark to be resistant to all

kinds of semantic-retention code obfuscations, while credibility characterizes the

ability of birthmark to distinguish independently developed software.

6.2.1. Resilience evaluation

In this experiment, the benchmark program is taken as the original program while

the obfuscated program is taken as the suspect program so that a series of original-

suspect comparison pairs are formulated to evaluate the resilience of FPBirth.

The experimental results regarding similarity distribution under three di®erent

obfuscations (H1, H2 and H3) are illustrated in Fig. 4(a), where H1 uses di®erent

compilers and optimizations (e.g. llvm, gcc, o0-oS) for weak obfuscation, H2 applies

professional obfuscation tools (e.g. SandMark, Zelix, ProGuard) for strong obfus-

cation and H3 uses UPX for packing. We can observe that most of the comparison

pairs enforce a similarity higher than 0.9; this indicates that FPBirth birthmark

enjoys an excellent resistance to the obfuscation strategies involved in this public

dataset.

6.2.2. Credibility evaluation

In this experiment, the programs independently developed are selected from the

dataset to evaluate the credibility of FPBirth. Speci¯cally, the selected instances

include 6 multi-threaded compression/decompression software, 7 web browsers and 5

audio player software. We use FPBirth to birthmark software and then calculate the

similarity between them. Figure 4(b) shows the distribution of similarity over similar

software and di®erent software, where S stands for software included in the same

category and D represents software distributed in di®erent categories. We can see

that the similarity between software belonging to di®erent categories is very low,

with the mean similarity below 0.1. This indicates that FPBirth birthmark can

(a) Resilience evaluation (b) Credibility evaluation

Fig. 4. FPBirth evaluation on resilience and credibility.

1680 Z. Tian et al.

e®ectively distinguish di®erent kinds of software. Due to their remarkable consis-

tency in functions, the similarity between software in the same category is slightly

higher, but most of them still fall into a very low range. There are few comparison

pairs with a similarity between 0.2 and 0.3 as their designs adopt the same algorithm

or both rely on some functional modules. For example, the average similarity be-

tween browser Dooble and Epiphany is 0.28, since both ones use WebKit layout

engines. Overall, FPBirth performs well in di®erentiating independently developed

software.

6.3. Comparisons with traditional birthmark techniques

We also compare FPBirth with TreSB [13] and TOB [12], two traditional thread-

aware birthmark techniques and SCSSB [20], a dynamic birthmark technique based

on system calls by detection e®ect and time cost.

6.3.1. Comparative analysis on detection e®ect

In this section, to quantitatively validate the e®ectiveness of di®erent birthmark

methods, we use union of resilience and credibility (URC) [21], F-Measure, matthews

correlation coe±cient (MCC) [22] and area under the curve (AUC) as the perfor-

mance measures.

(i) URC. URC is an indicator designed for comprehensively measuring the birth-

marks in terms of resilience and credibility:

URC ¼ 2� R� C

Rþ C
; ð7Þ

where R represents the ratio of plagiarism pairs correctly classi¯ed to all comparison

pairs with plagiarism, and C represents the ratio of independently developed pairs

correctly classi¯ed to all comparison pairs with independence (i.e. without plagia-

rism). The value of URC is between 0 and 1, and the higher the URC, the better the

performance of the birthmark. According to the criteria given in Eq. (1), the pla-

giarism detection result is decided by the threshold ". We set the e®ective value range

of the threshold as 0–0.5, that is, 1� " � ". Figure 5(a) shows the comparative

results between FPBirth and other birthmark techniques under di®erent thresholds.

As the blue line shows, FPBirth performs better than the other three birthmarking

methods.

(ii) F-Measure and MCC. F-Measure and MCC are commonly used in the ¯eld of

information retrieval and data mining. In this regard, the \uncertain" part of the

criteria given in Eq. (1) is removed here, and plagiarism detection is described as a

binary classi¯cation problem:

simðpf ; qfÞ ¼
� " q is a copy of p;

< " q is not a copy of p:

�
ð8Þ

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1681

For F-Measure measurement, the harmonic average of precision and recall is used

here, which is described as

F-Measure ¼ 2� Precision� Recall

Precisionþ Recall
: ð9Þ

MCC is an evaluation metric considering true positives (TP), true negatives (TN),

false positives (FP) and false negatives (FN), and can be used to make a reasonable

assessment of test e®ectiveness in the case of unbalanced positive and negative

samples, which is denoted as

MCC ¼ TP� TN� FP� FNffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp : ð10Þ

Figures 5(b) and 5(c), respectively, show the comparison results between FPBirth

and other birthmark techniques under di®erent thresholds, where FPBirth outper-

forms TreSB, TOB and SCSSB in most measurements.

(iii) AUC. With the help of AUC, we can further perform the quantitative analysis

of the technical performance of each birthmark with respect to URC, F-Measure and

(a) URC (b) F-measure

(c) MCC (d) Pattern length

Fig. 5. Comparative analysis on detection performance and pattern length.

1682 Z. Tian et al.

MCC. Table 2 summarizes the speci¯c AUC values of di®erent measure metrics for

each birthmark technique. It can be observed that all three AUC values of FPBirth

are higher than those of traditional birthmark methods, which indicates that

FPBirth can cope better with multi-threaded program plagiarism detection.

To get a more intuitive sense of the performance di®erences among the birthmark

methods, we quantify their performance gains using PerGain [12], which takes the

SCSSB as baseline and calculates performance improvement values for each thread-

aware birthmark in terms of the AUC metric. Speci¯cally, it can be denoted as

PerGain ¼ AUCX �AUCSCSSB

AUCSCSSB

� 100%; ð11Þ

where AUCX and AUCSCSSB represent the AUC values of a thread-aware birthmark

and SCSSB and X 2 fFPBirth; TOBSA; TOBSS ; TreSBg. As summarized in

Table 3 regarding the PerGain values, FPBirth achieves 12.4%, 4.1% and 7.9%

performance improvements with respect to URC, F-Measure and MCC metric, re-

spectively, and consistently outperforms the other three thread-aware birthmarks.

6.3.2. Comparative analysis on time cost

FPBirth and other three birthmark-based detections mainly include trace capture,

birthmark generation and similarity calculation. Considering that the experiments

are conducted on the same set of execution traces, here we focus on comparing the

time cost of FPBirth with others in terms of birthmark generation (Phase II) and

similarity calculation (Phase III). Table 4 gives the average time cost of each

Table 2. Comparison of birthmark techniques over AUC.

SCSSB TOBSA TOBSS TreSB FPBirth

URC 0.394 0.404 0.402 0.431 0.443

F-Measure 0.916 0.933 0.925 0.952 0.954

MCC 0.820 0.839 0.834 0.875 0.885

Table 3. Quantitative comparison of thread-aware
birthmarks with SCSSB regarding PerGain.

TOBSA TOBSS TreSB FPBirth

URC 2.5 2.0 9.4 12.4

F-Measure 1.9 1.0 3.9 4.1

MCC 2.3 1.7 6.7 7.9

Table 4. Comparison of birthmarks over time cost (ms).

SCSSB TOBSA TOBSS TreSB FPBirth

Phase II 103 103 103 102 1556

Phase III 0.1 0.1 20 0.02 9.9

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1683

birthmark. From the results, we can observe that the average time of FPBirth to

generate birthmark is higher than others. The reason behind this is that other

methods use k-gram directly to construct birthmarks, while FPBirth takes extra time

to mine the frequent patterns that improves the birthmark's thread-aware ability.

Since FPBirth constructs more representative frequent patterns, it takes a little more

time (9.9ms on average) for similarity calculation as well, which is still less than

TOBSS using maximum weighted dichotomy matching. Though it is more time-

consuming, FPBirth is still signi¯cant and promising for multi-threaded program

plagiarism detection for its better detection e®ectiveness. Our follow-up plan is to

optimize the frequent pattern mining process to improve FPBirth's construction

e±ciency.

6.4. Evaluation on pattern length

As described in Sec. 4.2, the length of frequent patterns directly a®ects the validity

of the constructed birthmark. Therefore, this section analyzes the impact of pattern

length on detection performance. Figure 5(d) displays the AUC values of URC,

F-Measure and MCC for plagiarism detection using FPBirth with di®erent pattern

lengths, where F-Measure slightly increases as the length increases, while URC and

MCC su®er from a drop at length 3, but keep going up afterwards and reach to the

best at length 5. Considering all three metrics, length 6 gives the best balance. This

is why we choose k ¼ 6 for k-gram slice and input sequence length for frequent

pattern mining. In addition, given the length of the input sequences, frequent

patterns after mining and reduction may still enjoy di®erent pattern lengths

ranging from 1 to 6. As discussed, patterns being too short may exist in di®erent

programs as common behaviors, which may not be able to di®erentiate a program

from others and should be removed. From our results, pattern lengths ranging from

3 to 6 provide the best detection performance, which is what we've set up for our

experiments.

7. Discussion

As FPBirth is extracted via frequent behavioral pattern mining over the execution

traces captured from program runs, it su®ers from the same limitation as other

dynamic birthmarks in exhaustively covering all behaviors of a program, which

thus brings performance concerns to the detection due to false positives. In other

words, two independent programs, especially those with functional similarity, may

handle certain inputs in the similar ways; if the provided inputs used to drive

program executions occasionally cover a large portion of the similar parts (which

actually constitute only a very small part of the whole program), a high similarity

will be measured, thus causing false positives. To alleviate this problem, we may

either use all the o±cially accompanied test cases (e.g. the programs from the

1684 Z. Tian et al.

Parsec 3.0 benchmark come with test cases), or provide a lot of inputs varying

types to drive a program executing di®erent functional parts. A more reasonable

way is to combine with test case generation techniques, and we take it as a future

work.

In addition, we dynamically instrument the program binaries to capture the

system call traces. Despite that the dynamic instrument tool PIN supports the col-

lection of program execution traces on multiple platforms (including Windows,

Linux and macOS), FPBirth is not applicable to cross-platform plagiarism detection,

as the system calls under di®erent operating systems are di®erent and there exists no

de¯nite correspondence between them. For those programs that do not involve any

system calls or have very few system calls, FPBirth will not work either. Moreover,

obfuscation techniques that perform deletion, modi¯cation or substitution to system

calls are likely to frustrate our method. However, it is worth noting that system calls

being the only way an application uses to request services from the operating sys-

tem's kernel, are di±cult to delete and tamper with in a large scale. Therefore, it is

rather troublesome and expensive to successfully enforce such kind of obfuscations,

which are very likely to introduce subtle concurrent problems for multi-threaded

programs if not properly handled.

8. Conclusion

This paper proposes a new dynamic thread-aware birthmark FPBirth to detect the

multi-threaded program plagiarism. More speci¯cally, we ¯rst explore dynamic

monitoring to capture multiple execution traces with respect to system calls for each

multi-threaded program under a speci¯ed input, and then leverage Apriori algorithm

to mine frequent patterns to formulate our dynamic birthmark, which can not only

depict the program's behavioral semantics, but also resist the changes and pertur-

bations over execution traces caused by the thread scheduling in multi-threaded

programs. Using FPBirth, we design a multi-threaded program plagiarism detection

system. The experimental results based on a public software plagiarism sample set

demonstrate that the developed system integrating our proposed birthmark FPBirth

outperforms alternative dynamic birthmark approaches in multi-threaded plagia-

rism detection.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of

China (61702414), the Natural Science Basic Research Program of Shaanxi

(2018JQ6078, 2020GY-010), the Science and Technology of Xi'an

(2019218114GXRC017CG018-GXYD17.16), the International Science and Tech-

nology Cooperation Program of Shaanxi (2018KW-049, 2019KW-008) and the Key

Research and Development Program of Shaanxi (2019ZDLGY07-08).

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1685

References

1. K. Chen, P. Liu and Y. Zhang, Achieving accuracy and scalability simultaneously in
detecting application clones on android markets, in Proc. Int. Conf. Software Engi-
neering, 2014, pp. 175–186.

2. L. Luo, Y. Fu, D. Wu, S. Zhu and P. Liu, Repackage-proo¯ng android apps, 46th Annual
IEEE/IFIP Int. Conf. Dependable Systems and Networks, 2016, pp. 550–561.

3. W. Zhou, Y. Zhou, X. Jiang and P. Ning, Detecting repackaged smartphone applications
in third-party android marketplaces, in Proc. ACM Conf. Data and Application Security
and Privacy, 2012, pp. 317–326.

4. H. Tamada, M. Nakamura, A. Monden and K.-I. Matsumoto, Design and evaluation of
birthmarks for detecting theft of Java programs, IASTED Conf. Software Engineering,
2004, pp. 569–574.

5. G. Myles and C. Collberg, Detecting software theft via whole program path birthmarks,
Int. Conf. Information Security, 2004, pp. 404–415.

6. Z. Tian, T. Liu, Q.-h. Zheng, F. Tong, D. Wu, S. Zhu and K. Chen, Software plagiarism
detection: A survey, J. Cyber Secur.1(3) (2016) 52–76.

7. Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang and Z. Yang, Software plagiarism detection
with birthmarks based on dynamic key instruction sequences, IEEE Trans. Softw. Eng.
41(12) (2015) 1217–1235.

8. F. Zhang, D. Wu, P. Liu and S. Zhu, Program logic based software plagiarism detection,
IEEE Int. Symp. Software Reliability Engineering, 2014, pp. 66–77.

9. Y.-C. Jhi, X. Jia, X. Wang, S. Zhu, P. Liu and D. Wu, Program characterization using
runtime values and its application to software plagiarism detection, IEEE Trans. Softw.
Eng. 41(9) (2015) 925–943.

10. J. Ming, D. Xu, Y. Jiang and D. Wu, Binsim: Trace-based semantic binary di±ng via
system call sliced segment equivalence checking, 26th USENIX Security Symp., 2017,
pp. 253–270.

11. Y.-C. Jhi, X. Wang, X. Jia, S. Zhu, P. Liu and D. Wu, Value-based program charac-
terization and its application to software plagiarism detection, in Proc. Int. Conf. Soft-
ware Engineering, 2011, pp. 756–765.

12. Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan and Z. Yang, Reviving sequential program
birthmarking for multithreaded software plagiarism detection, IEEE Trans. Softw. Eng.
44(5) (2017) 491–511.

13. Z. Tian, T. Liu, Q. Zheng, M. Fan, E. Zhuang and Z. Yang, Exploiting thread-related
system calls for plagiarism detection of multithreaded programs, J. Syst. Softw. 119
(2016) 136–148.

14. R. Agrawal and R. Srikant, Mining sequential patterns, in Proc. Int. Conf. Data Engi-
neering, 1995, pp. 3–14.

15. Z. Tian, Q. Zheng, T. Liu, M. Fan, X. Zhang and Z. Yang, Plagiarism detection for
multithreaded software based on thread-aware software birthmarks, in Proc. Int. Conf.
Program Comprehension, 2014, pp. 304–313.

16. L. Luo, J. Ming, D. Wu, P. Liu and S. Zhu, Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software plagiarism detection, in Proc.
ACM SIGSOFT Int. Symp. Foundations of Software Engineering, 2014, pp. 389–400.

17. G. Myles and C. Collberg, K-gram based software birthmarks, in Proc. ACM Symp.
Applied Computing, 2005, pp. 314–318.

18. J. Han, H. Cheng, D. Xin and X. Yan, Frequent pattern mining: Current status and
future directions, Data Min. Knowl. Discov. 15(1) (2007) 55–86.

19. C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi
and K. Hazelwood, Pin: Building customized program analysis tools with dynamic

1686 Z. Tian et al.

instrumentation, in Proc. ACM SIGPLAN Conf. Programming Language Design and
Implementation, 2005, pp. 190–200.

20. X. Wang, Y.-C. Jhi, S. Zhu and P. Liu, Detecting software theft via system call based
birthmarks, Annual Computer Security Applications Conf., 2009, pp. 149–158.

21. X. Xie, F. Liu, B. Lu and L. Chen, A software birthmark based on weighted k-gram, 2010
IEEE Int. Conf. Intelligent Computing and Intelligent Systems, 2010, pp. 400–405.

22. B. W. Matthews, Comparison of the predicted and observed secondary structure of T4
phage lysozyme, Biochim. Biophys. Acta (BBA)-Protein Struct. 405(2) (1975) 442–451.

23. A. A. Pandit and G. Toksha, Review of plagiarism detection technique in source code, Int.
Conf. Intelligent Computing and Smart Communication, 2020, pp. 393–405.

24. C. Liu, C. Chen, J. Han and P. S. Yu, GPLAG: Detection of software plagiarism by
program dependence graph analysis, in Proc. ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining, 2006, pp. 872–881.

25. L. Prechelt, G. Malpohl and M. Philippsen, Finding plagiarisms among a set of programs
with JPlag, J. Univers. Comput. Sci. 8(11) (2002) 1016.

26. G. Cosma and M. Joy, An approach to source-code plagiarism detection and investigation
using latent semantic analysis, IEEE Trans. Comput. 61(3) (2011) 379–394.

27. S. Choi, H. Park, H.-i. Lim and T. Han, A static API birthmark for Windows binary
executables, J. Syst. Softw. 82(5) (2009) 862–873.

28. H.-i. Lim, H. Park, S. Choi and T. Han, A method for detecting the theft of Java
programs through analysis of the control °ow information, Inf. Softw. Technol. 51(9)
(2009) 1338–1350.

29. H.-i. Lim and H. Taisook, Analyzing stack °ows to compare Java programs, IEICE
Trans. Inf. Syst. 95(2) (2012) 565–576.

30. H. Park, H.-i. Lim, S. Choi and T. Han, Detecting common modules in Java packages
based on static object trace birthmark, Comput. J. 54(1) (2011) 108–124.

31. L. Luo, J. Ming, D. Wu, P. Liu and S. Zhu, Semantics-based obfuscation-resilient binary
code similarity comparison with applications to software and algorithm plagiarism de-
tection, IEEE Trans. Softw. Eng. 43(12) (2017) 1157–1177.

32. Y. David, N. Partush and E. Yahav, Statistical similarity of binaries, in Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation, 2016, pp. 266–280.

33. Y. David, N. Partush and E. Yahav, Similarity of binaries through re-optimization, in
Proc. ACM SIGPLAN Conf. Programming Language Design and Implementation, 2017,
pp. 79–94.

34. S. H. Ding, B. C. Fung and P. Charland, Asm2Vec: Boosting static representation ro-
bustness for binary clone search against code obfuscation and compiler optimization,
IEEE Symp. Security and Privacy, 2019, pp. 472–489.

35. Q. Le and T. Mikolov, Distributed representations of sentences and documents, Int. Conf.
Machine Learning, 2014, pp. 1188–1196.

36. X. Xu, C. Liu, Q. Feng, H. Yin, L. Song and D. Song, Neural network-based graph
embedding for cross-platform binary code similarity detection, in Proc. ACM SIGSAC
Conf. Computer and Communications Security, 2017, pp. 363–376.

37. F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng and Z. Zhang, Neural machine translation
inspired binary code similarity comparison beyond function pairs, in Proc. 2019 Network
and Distributed Systems Security Symp., 2019, pp. 1–15.

38. F. Zhang, H. Huang, S. Zhu, D. Wu and P. Liu, ViewDroid: Towards obfuscation-resilient
mobile application repackaging detection, in Proc. ACM Conf. Security and Privacy in
Wireless & Mobile Networks, 2014, pp. 25–36.

39. D. Schuler, V. Dallmeier and C. Lindig, A dynamic birthmark for Java, in Proc. IEEE/
ACM Int. Conf. Automated Software Engineering, 2007, pp. 274–283.

Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining 1687

40. X. Wang, Y.-C. Jhi, S. Zhu and P. Liu, Behavior based software theft detection, in Proc.
ACM Conf. Computer and Communications Security, 2009, pp. 280–290.

41. P. P. F. Chan, L. C. K. Hui and S.-M. Yiu, Heap graph based software theft detection,
IEEE Trans. Inf. Forensics Secur. 8(1) (2013) 101–110.

42. D.-K. Chae, S.-W. Kim, S.-J. Cho and Y. Kim, E®ective and e±cient detection of soft-
ware theft via dynamic API authority vectors, J. Syst. Softw. 110 (2015) 1–9.

1688 Z. Tian et al.

	Plagiarism Detection of Multi-threaded Programs Using Frequent Behavioral Pattern Mining
	1. Introduction
	2. Related Work
	2.1. Static birthmark-based software plagiarism detection
	2.2. Dynamic birthmark-based software plagiarism detection

	3. Problem Statement
	4. Proposed Method
	4.1. Candidate set generation
	4.1.1. Pre-processor
	4.1.2. Gram-based slice
	4.1.3. Slice merging

	4.2. Frequent pattern mining
	4.3. Frequent pattern reduction

	5. FPBirth-based Software Plagiarism Detection
	5.1. Similarity calculation and plagiarism detection
	5.2. System implementation

	6. Experimental Results and Analysis
	6.1. Experimental setup
	6.2. FPBirth evaluation
	6.2.1. Resilience evaluation
	6.2.2. Credibility evaluation

	6.3. Comparisons with traditional birthmark techniques
	6.3.1. Comparative analysis on detection effect
	6.3.2. Comparative analysis on time cost

	6.4. Evaluation on pattern length

	7. Discussion
	8. Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 900
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

