
Adversarially Reprogramming Pretrained Neural

Networks for Data-limited and Cost-efficient

Malware Detection∗

Lingwei Chen† Xiaoting Li‡ Dinghao Wu‡

Abstract

To mitigate evolving malware attacks, machine learning models have
been successfully deployed to detect malware. However, these models
are often challenged by data scarcity, design efforts and constrained re-
sources. Inspired by the adversarial vulnerability of machine learning, in
this paper, we design a novel model Adv4Mal to adversarially reprogram
an ImageNet classification neural network for malware detection in both
white-box and black-box settings. As such, a small or moderate amount
of data are sufficient to train a promising malware detection model, the
varying software features can be uniformly processed without extra ef-
forts, and the majority of computation can be wisely shared and reused
to save the resources. This, to the best of our knowledge, has not yet been
explored. Specifically, Adv4Mal proceeds by embedding software features
into a host image to construct new data, and learning a universal pertur-
bation to be added to all inputs in an imperceptible manner, such that
the outputs of the pretrained model can be accordingly mapped to the
final detection decisions for all software. We evaluate Adv4Mal on three
software datasets. The experimental results demonstrate that Adv4Mal
can successfully exploit ImageNet model’s learning capability and limited
data to achieve high performance in malware detection, and also yield
significant advantages of model flexibility to different features, and cost
efficiency in computing resources.

1 Background and Motivation

Software over computers and smartphones plays a vital role in our daily lives
[5]. Unfortunately, its ubiquity and benefits immensely attract attackers to
disseminate malware onto unsuspecting users to deliberately fulfill their intents,
such as unwanted advertising, and user tracing. According to a recent report,
the total number of malware has surpassed 1.1 billion [3]. Given such a huge
amount of malware, machine learning models have been successfully deployed

∗To appear in SIAM International Conference on Data Mining (SDM22).
†Department of Computer Science and Engineering, Wright State University, Dayton, OH

45435, USA.
‡College of Information Sciences and Technology, Pennsylvania State University, University

Park, PA 16802, USA.

1

by many security companies to detect malware earlier than signature-based
methods, and thus protect the legitimate users against the threats it poses
[1, 16, 10, 33].

However, constructing and maintaining these models represents a significant
challenge in terms of data scarcity, design expertise and constrained resources.
On one hand, high-quality labeled malware samples are often scarce and costly
to acquire, while learning models generally require a large dataset for training.
On the other hand, models need to be continually advanced to fit in the evolving
features on new malware and its variants as well. Furthermore, complicating
model structure may drastically increase the consumption of computation and
memory, causing malware detection services (especially for those deployed in
clouds) very expensive. With this in mind, we may raise the following question:
“can we build up a malware detection model with scarce training data and
limited computing resources, which is also applicable to various software features
without structure modification?”

Despite their remarkable inference ability, machine learning models them-
selves are vulnerable to adversarial attacks that can easily add small pertur-
bations to the input data and cause the models to misclassify it with high
confidence [15, 20]. Based on this fact, adversarial reprogramming [12] has been
proposed to repurpose a machine learning model trained in a source domain
to perform a target-domain task through learning a universal perturbation to
the target-domain data without modifying the pretrained model parameters,
where the domains and tasks can be completely different. For example, some
recent works [22, 31, 6] effectively reprogrammed neural networks to solve text
classification, medical image classification, and fraud detection tasks.

Inspired by these great successes, if we follow a similar way, malware detec-
tion problem can be reduced to a feasible adversarial reprogramming problem
over well-trained neural networks, which, to the best of our knowledge, has
not yet been explored. Unlike traditional adversarial attacks utilizing the lin-
ear approximations of neural networks to mislead the classifications, adversarial
reprogramming completely depends on the nonlinear interactions of the input
and the perturbation. In other words, given a deep neural network of nonlin-
ear structure, a well-formulated offset added to its input would be sufficient
on its own to repurpose the network to a new task without the need of model
fine-tuning. Similarly, transfer learning has been also widely used to solve a
target-domain task based on the knowledge transferred from a source-domain
task [23]. However, it is achieved by fine-tuning a pretrained source-domain
model with the target-domain data, which still requires a mass of training data
to update model parameters. Training data scarcity thus remains an issue that
is easily encountered in transfer learning.

As such, adversarial reprogramming paradigm yields the prospective advan-
tages to address the aforementioned malware detection challenge. (1) Since
there is no need to fine-tune the source-domain model and the perturbation
is the only trainable parameter, a small or moderate amount of training data
are sufficient to repurpose a source-domain model to detect malware. (2) Due
to the source-domain model is software-feature-agnostic, adversarial reprogram-

2

ming can flexibly embed different software features through the uniform input
layer without extra efforts for model structure modification. (3) It also enables
the resources deployed to the source-domain model reusable for shared compute
from different malware detection tasks and benefit the application scenarios with
limited computing resources. Considering that ImageNet classification neural
networks have been undergoing vibrant evolution in their nonlinear deep struc-
tures and learning capability, and a wide range of such pretrained models can
be easily available for straightforward leverages, in this paper, we would like
to investigate how ImageNet classification neural networks can be adversari-
ally reprogrammed to detect malware in a learning-effective yet cost-efficient
manner.

To this end, we present a novel model, called Adv4Mal, which Adversarially
reprograms an ImageNet classification neural network to perform Malware de-
tection task. Given a pretrained model of this kind and a host image randomly
selected from ImageNet, Adv4Mal proceeds by injecting the features extracted
from software into the host image to construct new image dataset, and learning
a universal perturbation to be added to all inputs, such that the outputs of the
pretrained model can be accordingly mapped to the final detection decisions
(i.e., benign or malicious) for all software. This leads to the following three
major goals for Adv4Mal: (1) input transformation to embed software features
and perturbation into the host image for the adversarial task, (2) output trans-
formation to map ImageNet classes to malware detection classes, and (3) either
white-box or black-box optimization to learn the universal perturbation corre-
sponding to the model scenarios of complete or limited access. In summary, this
paper has the following major contributions:

• We explore a novel and practical perspective of malware detection, where we
leverage adversarial reprogramming of high-performance and nonlinear deep
neural networks trained in ImageNet classification domain to perform malware
detection task with limited training software data, software-feature-agnostic
model, and less consumption of computing resources.

• We consider a general application scenario, where Adv4Mal (1) conceals the
visibility of software features and perturbation to more stealthily reprogram
a potential model deployed by self or others, and (2) implements adversarial
reprogramming in both white-box and black-box settings with different model
access levels. Thus, we propose a black-box optimization to facilitate pertur-
bation formulation. We also investigate different output mapping methods.

• We conduct extensive experiments on three software datasets, including Win-
dows PE files, Android apps, and Drebin apps, to evaluate Adv4Mal on mal-
ware detection effectiveness and cost efficiency.

3

Software (e.g.,

PE files, apps)

ImageNet Data

Feature

representation

Input Transformation

ImageNet Classification

Neural Networks

Output Transformation

Benign

Malicious

Benign

Malicious

White/black-box

Optimization

Input Transformation

Output Transformation

Benign

Malicious

Benign

Malicious

White/black-box

Optimization

Figure 1: The overview of Adv4Mal.

2 Methods and Technical Solutions

2.1 Problem Statement

We consider that we have either complete or limited access to a deployed Ima-
geNet classification neural network, and use white-box or black-box adversarial
reprogramming of this model for malware detection, so as to reduce the cost
of developing and maintaining malware detection systems. The source-domain
task for our application is ImageNet classification, and the target-domain task
is malware detection. Accordingly, we define x to be software features, t(x) a
malware detection function, X̃ ImageNet images, and s(X̃) a pretrained Im-
ageNet classification model (e.g., DenseNet [18], Google Cloud Vision API).
Based on these definitions, the input transformation function hs(·;θ) comprises
embedding x to a host image to formulate new data X̃, and learning a universal
perturbation θ added to X̃ such that X̃ = hs(x;θ); the output transforma-
tion function ht(·) further maps ImageNet classes to malware detection classes
such that t(x) = ht(s(X̃)). Given a set of software training samples, Adv4Mal
proceeds with input and output transformations, while the only trainable per-
turbation θ is updated through evaluating the difference between the output
and the corresponding input’s ground truth using white-box or black-box opti-
mization. The overview of Adv4Mal is illustrated in Figure 1.

2.2 Motivation on Adversarial Reprogramming

Adversarial reprogramming is effected on the nonlinear interactions of the in-
put x and the perturbation θ, which can be satisfied by an ImageNet clas-
sification neural network of nonlinear deep structure [25]. Specifically, let an
ImageNet classification model s(X̃) receive an input X̃, which is transformed
from a software x with the perturbation θ such that the input X̃ can be rewrit-

4

ten as X̃ = [x,θ], and let the weights of s(X̃) be partitioned into two sets
W̃ = [wx,wθ]. The output of ImageNet classification model can be approxi-
mated as

s(X̃) = g(W̃T X̃) = g(wT
x x + wT

θ θ)

= g1(wT
x x) + g2(wT

θ θ) + g3(θTx)
(1)

where g(·), g1(·), g2(·), and g3(·) are abstracted functions here for the sake of
simplicity that can be decided by the model’s nonlinear structure and activation
functions. Eq. (1) implies that the perturbation θ can adapt not only the
effective bias wT

θ θ, but also the weights applied to the input x through θTx
without even touching the original weights wx to change the way the input is
processed. Therefore, an additive perturbation to an ImageNet model’s input
would be sufficient on its own to repurpose the network to output the results
for malware detection task [12]. When revisit transfer learning [23, 9], we can
observe that it is necessary to fine-tune the pretrained model to transfer the
knowledge to the target task. Differently, adversarial reprogramming keeps all
model parameters unchanged and solely learns the perturbation θ to perform
the adversarial tasks. From the application point of view, transfer learning is
not as feasible as adversarial reprogramming, since sometimes we may not have
sufficient labeled training data for model fine-tuning, and may not have complete
access to the pretrained models to tamper with parameters and intermediate
layers.

The above theoretical analysis indicates that adversarial reprogramming of
ImageNet neural networks can benefit our malware detection problem in four
aspects. (1) Only the perturbation θ is trainable that takes less training efforts
regarding labeled data and time cost than transfer learning and other models
trained from scratch. (2) As the input format of s(X̃) is fixed while software
features x always need to be transformed to X̃, s(X̃) is software-feature-agnostic
and applicable to varying malware detection tasks without impact on model
structure and computes. (3) ImageNet neural networks with pretrained wx

and wθ provide powerful learning capability to extract expressive patterns from
subtle software features and achieve high performance in malware detection.
(4) Since its original weights are unchanged, ImageNet model can be shared
for major computes, and the resources deployed to it are thus reusable for
different malware detection tasks whose individual computations are less-costly
data transformations.

2.3 Input Transformation

Input transformation is to convert the software data to the input space of Ima-
geNet classification. Normally, feature distribution and perturbation magnitude
need not be constrained for adversarial reprogramming to work. However, the
idea is more general here: Adv4Mal could repurpose any ImageNet model de-
ployed by self or others, while those provided by others may be aware of potential
attacks to avoid computing resource abuse. Thus, we would like to construct

5

our imperceptible reprogramming attack, such that the visibility of software
features and perturbation are concealed to the deployed models.

Software feature embedding. Without loss of generality, each given software
x ∈ X can be represented by a k-dimensional feature vector x = 〈x1, x2, x3, · · · , xk〉,
where the value of xi depends on the possible features derived from software.
For example, API calls can effectively reflect the behaviors of software [5, 7],
which have been thus often extracted from Windows PE files or Android apps
to represent them. In this case, xi = {0, 1} indicting the absence or presence
of API call i in software x. In addition, software can be also represented using
representation learning methods [24, 2]. Considering that each pixel value for
ImageNet images is initially scaled to [0, 1] before being further transformed, we
need to normalize xi as 0 ≤ xi ≤ 1 to perform the software feature embedding.

To conceal their visibility, we embed software features in a host image
X̃ ∈ Rn×n×3 randomly selected from ImageNet in a dispersed manner. Gen-
erally, high-frequency areas in images with sharp transients may more signif-
icantly enhance the invisibility of features embedded in the host image than
low-frequency areas. We hence introduce Discrete Wavelet Transform (DWT)
[29] to mark high-frequency areas by dividing each host image channel into two
quadrants:

cAi, (cHi, cVi, cDi) = dwt(X̃i), i ∈ {0, 1, 2} (2)

where cAi is low-frequency quadrant and cHi, cVi, cDi are high-frequency
quadrants. After that, we zero cAi to hide low-frequency quadrant, perform
inverse DWT over all quadrants, and normalize it to the range 0 to 1:

Ci = Norm(idwt(cAi ∗ 0, (cHi, cVi, cDi))) (3)

such that we can approximately mark those high-frequency areas in the spatial
domain as C ∈ Rn×n×3 by zeroing out the pixels of value less than 0.5. Some
examples are displayed in Figure 2(b)-(d) obtained from host images in Fig. 2(a).
Given C, k pixels are then randomly selected from X̃ to store k feature values
from x:

X̃ = X̃k
C ⊕ x (4)

where ⊕ is feature embedding operation. A mask M ∈ Rn×n×3 is accordingly
formulated with 0 for k locations of the embedded features and 1 for others to
avoid software features being perturbed. Once k pixels are designated, pixel i
will be firmly associated with the same feature xi for all software samples. Some
feature embedding examples using binary API calls from an Android app are
shown in Figure 2(e), where software features can be hardly perceived in host
images.

Perturbation formulation. The perturbation in adversarial reprogramming
is formulated to be added to all inputs [12], which can be defined as:

θ̃ = ε · tanh(θ �M) (5)

where θ ∈ Rn×n×3 is the universal perturbation to be learned, M is a mask
as defined above, � denotes the element-wise product, and tanh(·) bounds the

6

(a) (b) (c) (d) (e) (f)

Figure 2: (a) host images, (b-d) high-frequency areas marked in R-G-B channels,
(e) input with software features, (f) input with perturbation.

perturbation to be in (−1, 1). Here we also introduce an adjustable hyper-
parameter ε to govern the magnitude of the perturbation. The transformed
new input data sample can thus be presented as:

hs(x;θ) = clip(X̃ + ε · tanh(θ �M)) (6)

where clip(·) performs per-pixel clipping of the image to limit each pixel value
to the range of [0, 1]. In our method, both ε and clip(·) contribute to the
perturbation imperceptibility. Some perturbed image examples are shown in
Figure 2(f) with ε = 0.3, where the perturbations are imperceptible.

2.4 Output Transformation

Output transformation is to map ImageNet classes back to malware detection
classes. For the new input X̃ = hs(x;θ), the ImageNet model outputs ỹ = s(X̃)
with ỹ ∈ {0, 1, · · · , 999}, while for the software x, the malware detection func-
tion outputs y = t(x) with y ∈ {0, 1}. To avoid extra training effort, we leverage
non-parametric mapping methods to formulate output transformation function
ht(·) by using either hard coded mapping or soft coded mapping method. Specif-
ically, hard coded mapping simply assigns two randomly-selected class outputs
of ImageNet to predict benign and malicious classes respectively:

ht(ỹ) = 〈ỹi, ỹj〉, i 6= j. (7)

Soft coded mapping forms two class sets of ImageNet with the same number
of non-repeated classes each, and averages the outputs for both sets, which are
used to report malware detection decisions respectively:

ht(ỹ) = 〈 1

|I|
∑
i∈I

ỹi,
1

|J |
∑
j∈J

ỹj〉, |I| = |J | (8)

where I and J are two non-repeated index sets used to locate the ImageNet
classes.

7

2.5 Optimization

White-box setting. To achieve our cost-efficient malware detection goal, a
more feasible solution is to reprogram self-deployed ImageNet models for com-
plete access without extra expenses on large model query. The optimization of
Adv4Mal can be directly formulated as:

θ∗ = argmin
θ

(− log p(ht(ỹ)|hs(x;θ)) + λ‖θ‖2F) (9)

where p(ht(ỹ)|hs(x;θ)) indicates the probability that an image input X̃ trans-
formed from software x being classified as ỹ, which can be mapped to malware;
λ is the regularization parameter. Eq. (9) shows that θ is the only parameter
for our problem, which can be updated by optimizing this loss using Adam.

Black-box setting. For the adversarial reprogramming scenarios that Adv4Mal
attempts to repurpose models deployed by others (e.g., online image classifica-
tion APIs or public facing services), only input-output responses can be queried
and retrieved without knowing the model architecture. As such, optimizing
the loss function in Eq. (9) to compute the gradient via back-propagation is
infeasible, since ∇θs(hs(x;θ)) is inadmissible. To update the perturbation θ,
it is necessary to use black-box optimization techniques to enable the model
training. Recent examples have demonstrated the effectiveness of gradient-free
optimizations [26, 21, 19, 8]. As a particular set, Evolution Strategies have
exhibited very high parallelizability and good exploration behaviors [4, 27].

To this end, in this paper, following the Evolution Strategies, we propose a
black-box optimization to facilitate our problem. More specifically, let L(θ) be
the objective function acting on perturbation θ, and pψ(θ) be the population
distribution. Our black-box optimization proceeds to maximize the average ob-
jective value Eθ∼pψL(θ) over the population by searching for ψ with stochastic
gradient ascent [26]. Accordingly, based on the definitions, we can instantiate
the objective function L(θ) as the classification accuracy of malware detection,
and the population distribution pψ as an isotropic multivariate Gaussian with
mean ψ and fixed covariance σ2I, such that Eθ∼pψL(θ) can be rewritten as

Eθ∼pψL(θ) = Eρ∼N(0,I)L(θ + σρ) (10)

In this way, the original objective L(θ) can be cast as a Gaussian-blurred version
L(θ + σρ). To perform the optimization of Eρ∼N(0,I)L(θ + σρ) over θ using
stochastic gradient ascent, we further deploy REINFORCE algorithm [32] to
formulate the new gradient estimator:

∇θEρ∼N(0,I)L(θ + σρ) =
1

σ
Eρ∼N(0,I){L(θ + σρ)ρ}

=
1

nσ

n∑
i=1

L(θ + σρi)ρi

(11)

Eq. (11) demonstrates four repeated executions for this optimization: (1) per-
forming n stochastic manipulations on perturbation θ, (2) evaluating malware

8

Table 1: Statistics of software datasets

Dataset #Total #Ben #Mal #APIs #Perms #Ints

Windows PEs 10,000 5,000 5,000 3,503 - -
Android apps 7,670 4,367 3,303 329 104 204
Drebin apps 15,036 9,476 5,560 215 - -

detection accuracy for each manipulation L(θ + σρi), (3) estimating gradient
based on these n manipulations and evaluation results, and then (4) updating
θ using the estimated gradient. Here we take advantage of mirrored sampling
[14] to reduce the variance by manipulating θ with (ρ,−ρ) pairs, such that the
impact of outliers on each population can be mitigated and the possibility to
fall into local optima in training may also be decreased.

As the host image X̃ and software features x are constants during the re-
programming, we can pre-process feature embedding on X̃, which significantly
decreases the training time cost. Also, the only trainable parameter is the
n × n × 3 perturbation tensor θ; therefore, the complexity of Adv4Mal is con-
sistent for all different software features and different malware detection tasks.
Based on the trained model, we can easily perform malware detection that needs
only input and output transformations, while leaving the majority of computes
to the deployed ImageNet models.

3 Empirical Evaluation

3.1 Experimental Setup

Datasets. We test Adv4Mal on three software datasets: Windows PE files [7],
Android apps [5], and Drebin apps [34]. The dataset statistics are summarized
in Table 1. Each Windows PE file is represented as 3, 503-dimensional API call
vector; each Android app is represented as 329-dimensional API call vector, 104-
dimensional permission vector, and 204-dimensional filtered intents respectively;
and each Drebin app is represented as 215-dimensional API call vector. We
mainly use API calls to evaluate malware detection effectiveness and parameters
on PE files and Android apps, while Drebin apps are included in baseline studies,
and the comparison among API calls, permissions, and filtered intents is used
for cost efficiency evaluation.

Parameter setting. We randomly select 80% of the samples for training, while
the remaining 20% is used for testing, and we report the mean accuracy and
F1-score of 5 runs on test samples for all the experiments. The training setting
is specified as 0.01 initial learning rate, and 5 × 10−4 L2 regularization on the
perturbation. We also set σ = 0.01 and n = 50 for black-box optimization.

Pretrained ImageNet models. For adversarial reprogramming, consider-

9

ing the query expenses on online image classification services, we employ five
pretrained ImageNet models for white-box and black-box settings, including
DenseNet-121 and DenseNet-161 [18], ResNet-50 and ResNet-101 [17], and Inception-
V3 [30].

Baselines. We compare Adv4Mal with some other malware detection models
from recent works: linear model from Demontis et al. [11], ensemble on base
linear models from Chen et al. [5] which is similar to DroidFusion [34], stacked
auto-encoder (SAE) from Hardy et al. [16] with structure of [k, 128, 64, 10, 2],
convolutional neural network (CNN) from Demetrio et al. [10] with structure
of [(1, 6, 3), (6, 16, 3), 64, 10, 2] (since we do not have raw bytes of the files, we
convert software features to 60× 60, 18× 18, and 16× 16 matrices for PEs, An-
droid and Drebin apps as inputs respectively), long short-term memory (LSTM)
from Athiwaratkun et al. [2] (we only feed one-hot features to each unit in the
feature number order), and graph convolutional network (GCN) from Garcia et
al. [13] with two-layer structure over graphs built on software feature differences
for all samples. To compare Adv4Mal with models of the comparable amount
of parameters, we also include the aforementioned five ImageNet neural net-
works as baselines, where the output of each network is replaced with a linear
layer for binary classification and the networks are fine-tuned through transfer
learning. Note that, due to the data limitation, other state-of-the-art models
(e.g., [1, 33]) interacting with unavailable features (e.g., hardware or relation
features) are not included here.

3.2 Ablation Study on Output Transformation

We first perform an ablation study to decide the mapping method that better
benefits Adv4Mal. For hard coded mapping, we randomly choose two Ima-
geNet classes, while for soft coded mapping, we randomly divide 1,000 Ima-
geNet classes into two sets. Based on this setting, we evaluate Adv4Mal using
ResNet-101 with ε = 0.3 and white-box optimization. Figure 3 shows the com-
parative results. We can see that hard coded mapping slightly outperforms soft
coded mapping on test accuracy and F1-score. When we look into the training
procedure, we observe that hard coded mapping reaches a stable loss at epoch
8, while soft coded mapping requires 12–15 epochs to achieve the comparative
test performance, which enforces higher training time. Therefore, hard coded
mapping leads to faster and better convergence results, and we use it in our
model Adv4Mal for the further evaluation.

3.3 Evaluation of Adv4Mal

Malware detection effectiveness. In our experiments, we evaluate Adv4Mal
over different perturbation magnitudes ε and host images X̃ for Windows PE
files and Android apps under white-box setting Note that, we mainly use white-
box setting for parameter evaluations, while the comparison between white-box

10

90

91

92

93

94

Accuracy(%) F1-score(%)

Hard
Soft

(a) Windows PE files

91

92

93

94

95

Accuracy(%) F1-score(%)

Hard
Soft

150

200

250

300

350

PE files Apps

Hard
Soft

(b) Android apps (c) Training time (s)

Figure 3: Test performance and training time between hard and soft coded
mappings.

and black-box optimizations will be further discussed in the following subsection.
In particular, we test Adv4Mal for malware detection with ε ∈ {0.1, 0.2, 0.3, 0.4, 0.5},
while the host images X̃ being randomly selected from ImageNet data, including
kerry blue terrier, toucan, home theater, cellphone, and trimaran. The results
are shown in Figure 4. As we can see, though different parameter settings con-
tribute to different test results, which will be further discussed later, Adv4Mal
successfully achieves the goal of reprogramming five well-trained ImageNet clas-
sification models to perform malware detection. Averagely, Adv4Mal obtains
93.75% test accuracy and 93.78% F1-score on Windows PEs, and 94.45% accu-
racy and 93.56% F1-score on Android apps.

Impact of perturbation magnitudes (ε). We empirically investigate the
sensitivity of perturbation magnitude ε on the performance of Adv4Mal, which is
illustrated in Figure 4(a)-(b), and Fig. 4(d)-(e) (note that, all these experiments
are run on a host image of kerry blue terrier). Generally, when we enlarge ε, the
test effectiveness increases. We can observe that the accuracy and F1-score rise
to a stable high level at ε = 0.3 for all five pretrained neural networks on both
datasets and then either slightly increase or drop when ε changes from 0.3 to
0.5. On the other hand, the larger ε may increase the risk of perturbation being
recognized by the pretrained models. In this respect, we use ε = 0.3 throughout
the following evaluations to keep a good trade-off between the malware detection
effectiveness and perturbation imperceptibility for adversarial reprogramming.

Impact of host images (X̃). It is also interesting to see if different host
images affect the performance of our model Adv4Mal. Since Inception-V3 out-
performs other pretrained models at ε = 0.3, we report the test accuracy and
F1-score of Adv4Mal that repurposes Inception-V3 for malware detection over
five different host images selected from ImageNet. As shown in Figure 4(c) and
Figure 4(f), we find that the evaluation results slightly vary in different host
images. However, the standard deviations of accuracy and F1-score on both
datasets fall within [0.001, 0.003], which imply that the performance difference
is not statistically significant and Adv4Mal is loosely coupled with host images.

Impact of optimizations. To assess the impact of black-box setting on the
detection performance, we assume that we are not aware of the ImageNet model

11

83

86

89

92

95

0.1 0.2 0.3 0.4 0.5

DenseNet-121
Densenet-161
ResNet-50
ResNet-101
Inception-V3

(a) Windows PE files-𝝐-ACC

93

94

95

Accuracy(%) F1-score(%)

Terrier Toucan
Theater Cellphone
Trimaran

(b) Windows PE files-𝝐-F1 (c) Windows PE files-𝒙

A
c
c
u

ra
c
y
 (

%
)

Perturbation magnitude (𝜖)

83

86

89

92

95

0.1 0.2 0.3 0.4 0.5

DenseNet-121
Densenet-161
ResNet-50
ResNet-101
Inception-V3

F
1
-s

c
o

re
 (

%
)

Perturbation magnitude (𝜖) Host images (𝑥)

83

86

89

92

95

0.1 0.2 0.3 0.4 0.5

DenseNet-121
Densenet-161
ResNet-50
ResNet-101
Inception-V3

(d) Android apps-𝝐-ACC

93

94

95

96

Accuracy(%) F1-score(%)

Terrier Toucan
Theater Cellphone
Trimaran

(e) Android apps-𝝐-F1 (f) Android apps-𝒙

A
c
c
u

ra
c
y
 (

%
)

Perturbation magnitude (𝜖)

83

86

89

92

95

0.1 0.2 0.3 0.4 0.5

DenseNet-121
Densenet-161
ResNet-50
ResNet-101
Inception-V3

F
1
-s

c
o

re
 (

%
)

Perturbation magnitude (𝜖) Host images (𝑥)

Figure 4: Evaluation on ε and host images (white-box): (a), (b), (c) specify the
test results on Windows PE files, while (d), (e), (f) give the results on Android
apps.

architecture, but query the models with inputs and retrieve the output predic-
tions to facilitate our gradient-free optimization. The results are illustrated
in Table 2 (lower table). We can observe that black-box reprogramming still
manages to averagely achieve highly promising 91.60% accuracy and 91.83%
F1-score on Windows PE files, 92.64% accuracy and 91.70% F1-score on An-
droid apps, and 95.00% accuracy and 91.89% F1-score on Drebin apps. Clearly,
white-box reprogramming outperforms the black-box approach in all of our ex-
periments. As will be explained in Section 3.5, black-box optimization takes
more training epochs (20-25) to obtain the effective perturbation than white-
box (8-10), which results in much higher training time. For our cost efficiency
goal, white-box setting enables a more feasible solution than black-box setting
for convenient resource self-deployment, complete and free model access, and
better performance in practice. But we believe that scaling up black-box op-
timization to many parallel workers can achieve linear speedups, and further
advancing gradient-free optimization techniques can make the training proce-
dure more stable and feasible with less variance. As leveraging online/public
services can significantly reduce the self-deployed resources, we would like to
leave more investigations on black-box optimization as our future work.

12

Table 2: Comparisons of different machine learning-based malware detection
models

Method Pretrained
Windows PE files Android apps Drebin apps

ACC F1 ACC F1 ACC F1
(%) (%) (%) (%) (%) (%)

Linear (Demontis et al. [11]) - 87.65 87.61 91.22 90.25 92.48 88.53
Ensemble (Chen et al. [5]) - 89.35 89.41 91.85 90.96 93.67 90.35
SAE (Hardy et al. [16]) - 91.40 91.64 92.62 91.48 94.85 91.67
CNN (Demetrio et al. [10]) - 91.05 91.13 92.36 91.47 94.55 91.15
LSTM (Athiwaratkun et al. [2]) - 88.35 88.42 90.88 90.12 90.56 87.20
GCN (Garcia et al. [13]) - 89.85 89.96 91.45 90.93 94.10 91.30

DenseNet-121 - 89.80 89.85 88.98 88.03 91.63 88.31
DenseNet-161 - 89.60 89.67 88.13 87.35 90.88 87.16
ResNet-50 - 89.85 89.87 89.05 88.21 91.82 88.74
ResNet-101 - 89.55 89.66 88.76 87.83 90.26 87.65
Inception-V3 - 89.70 89.83 87.95 87.17 90.79 87.15

Adv4Mal (White-box)

DenseNet-121 93.20 93.34 94.46 93.69 96.50 93.41
DenseNet-161 92.35 92.35 94.59 93.71 97.70 94.37
ResNet-50 92.75 92.92 94.27 93.47 96.82 93.59
ResNet-101 92.80 92.92 94.40 93.62 96.90 93.70
Inception-V3 93.85 93.91 94.53 93.55 97.81 94.56

Adv4Mal (Black-box)

DenseNet-121 91.65 91.87 92.77 91.67 94.52 91.75
DenseNet-161 91.85 91.93 92.86 92.25 95.98 92.70
ResNet-50 90.95 91.52 92.07 91.19 94.08 91.12
ResNet-101 91.30 91.46 93.64 92.70 94.56 91.33
Inception-V3 92.25 92.37 91.84 90.68 95.90 92.56

3.4 Comparisons with Baselines

Comparisons with regular models. We compare Adv4Mal with other base-
lines that can directly feed feature vectors for malware detection, including
linear model [11], ensemble model [5], SAE [16], CNN [10], LSTM [2], and GCN
[13]. The comparative results are illustrated in Table 2. We can observe that
compared to linear and ensemble models, SAE has greatly boosted the test per-
formance; whereas, CNN, LSTM and GCN, as other types of neural networks,
yield less advantage from deep structure to detect malware due to the facts that
(1) converting feature vectors to matrices enforces either information padding
(for PE files and Drebin apps) or lost (for Android apps), which degrades the
feature expressiveness learned by convolutions; (2) features without sequential
relations and graphs built on feature vectors appear to introduce some noisy
information. Obviously, Adv4Mal leverages the powerful feature extraction ca-
pability of ImageNet classifiers, whose structures are more sophisticated and
much deeper than regular SAEs and CNNs, to achieve state-of-the-art accuracy
and F1-score for malware detection. Most of black-box methods enjoy either
comparative or better performance than baselines (except for SAE and CNN).
By contrast, white-box models on either Inception-V3 or DenseNet-161 obtain
the best results on Windows PEs, Android and Drebin apps respectively, while
five pretrained models reprogrammed by Adv4Mal under the same setting all
outperform other baselines.

13

Figure 5: Evaluation of cost efficiency: (a) time cost on different features, (b)
and (c) time cost for Window PE files in white/black-box settings, and (d) and
(e) time cost for Android apps in white/black-box settings.

Table 3: Training time (transfer learning and Adv4Mal)

Method Model PEs (s) Android (s) Drebin (s)

Transfer
Learning

DenseNet-121 545 431 830
DenseNet-161 912 708 1,379
ResNet-50 380 311 590
ResNet-101 636 495 963
Inception-V3 550 443 847

Adv4Mal
(White)

DenseNet-121 199 156 303
DenseNet-161 308 242 468
ResNet-50 147 116 224
ResNet-101 225 177 342
Inception-V3 207 162 314

It is worth remarking that we can surely increase the parameters of regular
SAE and CNN to a similar number that ImageNet neural networks have and
further improve their malware detection performance. However, the increase
of parameters will come with the huge growth of computations and resource
consumption as well, since they are trained from scratch and all parameters
need to be updated. Differently, the only trainable parameter for Adv4Mal is
224 × 224 × 3 perturbation tensor, which is consistent to all inputs and tasks,
while its training cost is comparable to regular SAE and CNN used in baselines.

Comparisons with transfer learning models. As aforementioned, we would
like to see if we directly train a deep neural network with similar structure to
the pretrained model reprogrammed by Adv4Mal for malware detection, how
the performance difference will be. To this end, we replace the output of five
ImageNet neural networks with a linear layer for binary classification, and fine-
tune these models using transfer learning. All the parameters for these networks
are updated. The malware detection results are shown in Table 2. Surprisingly,
though the structure of these models are much deeper than regular SAE and
CNN, their accuracy and F1-score perform apparently worse, which are not even
close to Adv4Mal. Due to the large amount of parameters to update for trans-

14

fer learning, limited data might be the main reason for these underperforming
results. This indicates that Adv4Mal is applicable to the application scenario
with limited training data. In addition, as demonstrated in Table 3, the bur-
densome model fine-tuning operation also enforces 2.5-3 times higher training
cost for transfer learning than Adv4Mal. By contrast, Adv4Mal merely updates
a single perturbation tensor and directly leverages the learning power of the
pretrained model, such that it is less influenced by the limited data setting, and
enjoys better detection performance and less training cost.

3.5 Evaluation of Cost Efficiency

In addition to less training cost and less training data demand than transfer
learning, here we demonstrate the practicality of Adv4Mal for malware detec-
tion with cost efficiency in model design and computing resources. We evaluate
Adv4Mal using Inception-V3 on Android apps with three completely differ-
ent feature representations: 329-dimensional API calls, 204-dimensional filtered
intents, and 104-dimensional permissions, and also report computing time of
Adv4Mal including/excluding the consumption by the ImageNet neural net-
works. All the results are illustrated in Figure 5.

Model flexibility to different features. From Figure 5(a), we can see that
different from the models constructed from scratch or transfer learning that
require more training and test time as the feature dimension increases, the time
cost of Adv4Mal is consistent to features of different types and dimensions:
the training time on API calls, filtered intents, and permissions is ranging in
(161.5, 162.8)s and the test time is varying in (3.7, 3.8)s. This implies that
Adv4Mal is software-feature-agnostic and flexible to different software features
without imposing extra time cost and design effort, which yields an advantage
of applicability and scalability for different malware detection scenarios.

Training and test time costs. Figure 5(b)-(e) show that black-box training
requires much higher time cost than white-box training due to its large model
query and gradient exploration. In both settings, when we exclude the time
cost consumed by the ImageNet models, all the costs enjoy a drastic drop.
For example, the training time for Adv4Mal using DenseNet121 on PE files
is 199.0s: 116.5s are consumed by DenseNet121 while only 82.5s are used on
data transformation and perturbation update; under the same data setting,
regular SAE and transfer learning on DenseNet121 cost 71.1s and 545.0s for
model training. This implies that the major cost of Adv4Mal is spent on shared
computes in ImageNet models; also, Adv4Mal costs the comparable time to
regular networks and much less than transfer learning. Adv4Mal yields another
advantage to enable reusable resources, reduce the computing cost for individual
malware detection tasks, and thus address the real-world challenge for such
models with limited resources.

15

4 Significant Impact and Applicability

Our solution impacts on malware detection as follows: (1) Adv4Mal leverages
the powerful learning ability of ImageNet neural networks, which enjoys bet-
ter performance than a malware detection model constructed from scratch,
and more potentials than transfer learning for less training data and cost; (2)
Adv4Mal provides scalable application interfaces and flexible resource manage-
ments for different malware detection tasks, as they need only store and update
the data, and enforce major computation to the ImageNet models.

In this respect, Adv4Mal holds the applicability of reprogramming high-
performance neural networks to perform malware detection tasks. Similar to
the recent work that focused on building dynamically connected networks with
reusable components [28], in practice, we may consider the ImageNet models
as our reusable components to perform the shared compute disentangled out of
different tasks, while these components can be self-deployed in local or cloud
servers for complete and easy access, or reached through pay-per-use online
services. This especially benefits the scenarios with many tasks yet limited
resources. Though we demonstrate adversarial reprogramming of image-domain
neural networks on malware detection, both source-domain models and target-
domain tasks can be in a wider range.

5 Conclusion

In this paper, we propose Adv4Mal to adversarially reprogram ImageNet models
for malware detection. Adv4Mal proceeds by input and output transformations,
while the perturbation is updated through white-box or black-box optimiza-
tion. We conduct experiments on three datasets to evaluate the performance
of Adv4Mal, which validate its malware detection effectiveness, small training
data demand, model flexibility, and cost efficiency. The black-box optimization
proposed in Adv4Mal still has potentials to be further advanced. We leave it as
our future work, yet it does not impact the great value and validity of Adv4Mal
for data-limited and cost-efficient malware detection in practice.

Acknowledgments

The work was supported in part by a seed grant from the Penn State Center
for Security Research and Education (CSRE) and startup fund at Wright State
University.

References

[1] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning
based android malware detection using real devices,” Computers & Secu-
rity, 2020.

16

[2] B. Athiwaratkun and J. W. Stokes, “Malware classification with LSTM
and GRU language models and a character-level CNN,” in ICASSP, 2017.

[3] AV-TEST, “The AV-TEST security report 2019/2020,” in https://www.av-
test.org/en/news/facts-analyses-on-the-thre-at-scenario-the-av-test-
security-report-2019-2020/, 2020.

[4] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies–a comprehensive
introduction,” Natural computing, 2002.

[5] L. Chen, S. Hou, and Y. Ye, “SecureDroid: Enhancing security of machine
learning-based detection against adversarial android malware attacks,” in
ACSAC, 2017, pp. 362–372.

[6] L. Chen, Y. Fan, and Y. Ye, “Adversarial Reprogramming of Pretrained
Neural Networks for Fraud Detection,” CIKM, 2021.

[7] L. Chen, Y. Ye, and T. Bourlai, “Adversarial machine learning in malware
detection: Arms race between evasion attack and defense,” in EISIC, 2017,
pp. 99–106.

[8] M. Cheng, S. Singh, P. Chen, P.-Y. Chen, and S. Liu, “Sign-Opt: A query-
efficient hard-label adversarial attack,” arXiv preprint arXiv:1909.10773,
2020.

[9] G. M. Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. Goodfellow, E. Lavoie,
X. Muller, G. Desjardins, D. Warde-Farley, P. Vincent et al., “Unsuper-
vised and transfer learning challenge: a deep learning approach,” in ICML
Workshop, 2012.

[10] L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, and F. Roli,
“Adversarial exemples: A survey and experimental evaluation of practi-
cal attacks on machine learning for windows malware detection,” TOPS,
vol. 24, no. 4, pp. 1–31, 2021.

[11] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, et al., “Yes, machine
learning can be more secure! a case study on android malware detection,”
TDSC, pp. 711–724, 2017.

[12] G. F. Elsayed, I. Goodfellow, and J. S.-Dickstein, “Adversarial reprogram-
ming of neural networks,” arXiv:1806.11146, 2018.

[13] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,”
arXiv preprint arXiv:1711.04043, 2017.

[14] J. Geweke, “Antithetic acceleration of monte carlo integration in bayesian
inference,” Journal of Econometrics, 1988.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv:1412.6572, 2014.

17

[16] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “DL4MD: A deep learning
framework for intelligent malware detection,” in ICDATA, 2016, p. 61.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in CVPR, 2016, pp. 770–778.

[18] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, “Densenet: Implementing efficient convnet descriptor pyra-
mids,” arXiv preprint arXiv:1404.1869, 2014.

[19] A. Ilyas, L. Engstrom, A. Athalye, and J. Lin, “Black-box adversarial at-
tacks with limited queries and information,” in ICML, 2018, pp. 2137–2146.

[20] X. Li, L. Chen, and D. Wu, “Turning Attacks into Protection: Social Media
Privacy Protection Using Adversarial Attacks,” SDM, 2021, pp. 208–216.

[21] S. Liu, B. Kailkhura, P.-Y. Chen, P. Ting, S. Chang, and L. Amini, “Zeroth-
order stochastic variance reduction for nonconvex optimization,” arXiv
preprint arXiv:1805.10367, 2018.

[22] P. Neekhara, S. Hussain, S. Dubnov, and F. Koushanfar, “Adversar-
ial reprogramming of text classification neural networks,” arXiv preprint
arXiv:1809.01829, 2018.

[23] S. J. Pan and Q. Yang, “A survey on transfer learning,” TKDE, vol. 22,
no. 10, pp. 1345–1359, 2009.

[24] I. Popov, “Malware detection using machine learning based on word2vec
embeddings of machine code instructions,” in Siberian Symposium on Data
Science and Engineering (SSDSE), 2017, pp. 1–4.

[25] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, “On
the expressive power of deep neural networks,” in ICML, 2017, pp. 2847–
2854.

[26] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution strate-
gies as a scalable alternative to reinforcement learning,” arXiv preprint
arXiv:1703.03864, 2017.

[27] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber, “Parameter-exploring policy gradients,” Neural Networks,
vol. 23, no. 4, pp. 551–559, 2010.

[28] N. Shazeer, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean, “Out-
rageously large neural networks: The sparsely-gated mixture-of-experts
layer,” arXiv:1701.06538, 2017.

[29] M. J. Shensa et al., “The discrete wavelet transform: wedding the a trous
and mallat algorithms,” TSP, pp. 2464–2482, 1992.

18

[30] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in CVPR, 2016, pp. 2818–
2826.

[31] Y.-Y. Tsai, P.-Y. Chen, and T.-Y. Ho, “Transfer learning without knowing:
Reprogramming black-box machine learning models with scarce data and
limited resources,” in ICML, 2020.

[32] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine learning, vol. 8, no. 3, pp. 229–256,
1992.

[33] Y. Ye, S. Hou, L. Chen, J. Lei, W. Wan, J. Wang, et al., “Out-of-sample
node representation learning for heterogeneous graph in real-time android
malware detection,” in IJCAI, 2019.

[34] S. Yerima, and S. Sezer, “Droidfusion: A novel multilevel classifier fusion
approach for android malware detection,” in IEEE transactions on cyber-
netics, 2019.

19

