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Abstract

Machine learning, especially deep learning, has emerged as

one of the most powerful tools for attribute inference attacks

over social media, which poses serious threats to users’ pri-

vacy and security. In this paper, we explore a novel perspec-

tive of protecting data privacy in social media, where we take

advantage of the vulnerability of machine learning, and in-

troduce adversarial attacks to forge latent feature represen-

tations and mislead attribute inference attacks. Considering

that text data in social media shares the most significant

privacy of users, we investigate how text-space adversarial

attacks can be elaborated to obfuscate users’ attributes, and

accordingly present a text-space adversarial attack as de-

fense, or AaaD for short. Specifically, we advance AaaD by

constructing semantically and visually similar word candi-

dates to perturb, and leveraging word importance scores as

selection probabilities to upgrade a population-based opti-

mization to expedite adversarial text generation. We eval-

uate the performance of AaaD on two social media data

sets, while the experimental results validate its effectiveness

against inference attacks. Our work yields great value and

unveils a new insight on the applicability of adversarial at-

tacks for attribute obfuscation and privacy protection.

1 Background and Motivation

Social media has been enjoying explosive growth for
a decade, while its worldwide accessibility has drasti-
cally reshaped the world that allows billions of people
all around the globe to conveniently perform numerous
activities such as creating online profiles, sharing per-
sonal posts, and interacting with other people. Such
a heterogeneous environment generates a rich source of
user-oriented data, which attracts not only researchers
for studying and understanding social communities and
individuals, but also attackers for infiltrating users’ sen-
sitive information to deliberately fulfill the economic,
social, or political intents (e.g., unwanted advertising,
user tracing) [29, 2]. This puts users’ privacy at risk.
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In response to these privacy concerns, social media
generally takes action to protect those explicit sensitive
user data like credentials by all means. However, with
the rapid development in machine learning, and espe-
cially the revolutionary learning structures and capabil-
ities raised by deep learning, it is highly probable for the
attackers to launch automated attribute inferences from
implicit data, which cause unintentional user attribute
information leakage and threaten social media privacy
[7, 30, 12]. For instance, a user’s tweets can be fed to a
well-trained machine learning model to infer the user’s
various private attributes, such as gender, age, and lo-
cation [10]. Despite their remarkable inference ability,
machine learning models are suffering from the inher-
ent learning vulnerability to adversarial attacks [8, 5].
It has shown that by adding small perturbations to the
input data, these pre-trained models can be easily fooled
into misclassification. To this end, if we take advantage
of such a vulnerability, social media privacy protection
problem can be reduced to a feasible adversarial attack
formulation problem against attribute inference attacks.

Some recent works [10, 19, 26, 11] showed that
adversarial attacks have been starting to be leveraged
as defenses against inference attacks, which present
great potentials to help data obfuscation and privacy
protection. However, the prior attempts of this kind
focus on the specific application scenarios where their
target is limited to continuous data. The investigation
into more challenging text data of discrete property
has been scarce. In fact, text data is an important
component of social media, which shares the most
significant privacy of users. On the other hand, natural
language processing (NLP)-based models have been
widely and effectively used to parse information of text
data from different perspectives [17, 9, 15]. Therefore,
in this paper, we would like to focus on text data to
investigate how text-space adversarial attacks can be
formulated to obfuscate users’ attributes and enforce
NLP-based inference attacks as less effective as possible
for privacy disclosure.

More specifically, we present a text-space adversar-
ial attack as defense, or AaaD for short, against NLP-
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based attribute inferences over social media data. AaaD
proceeds by iteratively perturbing the source text origi-
nated from social media, such that its specific attribute
label is changed, while the underlying constraints con-
formable to text-space attacks are satisfied. This nat-
urally leads to the following two goals for AaaD: (1)
constructing a sequence of constrained perturbations to
automatically craft plausible adversarial texts, and (2)
making the inference attack model fail to predict correct
attribute values from the perturbed input texts. As an
example, Figure 1 shows two perturbations performed
by AaaD on a tweet. The first perturbation changes
“like” to a semantically similar word “love”, while the
second one replaces “joker” with a visually similar word
“jokor”, both of which follow our defined constraints
and successfully obfuscate the target attribute. Though
there are challenges for attribute annotation on social
media data, we believe that our work has implications
on the applicability of adversarial attacks for undermin-
ing NLP-based inference threats and improving privacy
protection in practice.

In summary, this paper has the following major
contributions:

• We explore a novel perspective of protecting data pri-
vacy on social media, where we take advantage of the
vulnerability of machine learning, and introduce ad-
versarial attacks to forge latent feature representa-
tions and mislead attribute inference attacks.

• We design a new text-space adversarial attack AaaD
for user attribute protection. In AaaD, the con-
straints conformable to text-space attacks are first
defined; guided by that, we iteratively perturb the
input text using the constructed word candidates
chained by an upgraded population-based optimiza-
tion to generate the adversarial texts, which are valid
to humans but misclassified by the inference model.

• We conduct comprehensive experiments on two social
media data sets to evaluate the performance of AaaD
on attribute obfuscation and privacy effectiveness.

2 Methods and Technical Solutions

In this section, we first define the problem (i.e., inference
model, adversarial attack as defense, and constraints),
and then dive into technical details of AaaD.

2.1 Problem Statement In social media environ-
ment, users tend to post text data for sharing; such text
data may indicate their sensitive information, and thus
easily expose the users to the attackers who can access
the texts and infer the private attributes of interest to
fulfill the harmful intents [26]. In this work, we assume
that the attackers would take advantage of the implicit

Gender Inference

Original tweet – Gender label: Male; Confidence: 52.82%

I quite like the look of the joker. It's something we haven't seen before.

Adversarial tweet – Gender label: Female; Confidence: 86.60%

I quite love the look of the jokor. It's something we haven't seen before.

Figure 1: Attribute obfuscation by AaaD.

information from text data to train NLP-based models
so as to achieve their inference goals.

Inference threat model. We put our work under
the practical black-box setting, where the devised ad-
versarial attack is not aware of the threat model ar-
chitecture, parameters, or training data, but capable
of querying the threat model with text inputs and re-
trieving the output predictions for the attributes and
their confidence scores [1]. Without loss of generality,
we denote social media text data D to be of the form
D = {di, yti}ni=1 of n texts, where each text d ∈ D
is associated with a ground-truth label yt ∈ Yt for
an attribute t ∈ T ; Yt is the label set of the at-
tribute t and T is the attribute set. For instance, T
has different possible values, which is specified as T =
{gender, age, location,political view, · · · }, while for gen-
der attribute, Yt = {0:male, 1:female}. To facilitate
an NLP-based inference model l using text implicit in-
formation, each text d has to be mapped into a k-
dimensional feature vector x = φ(d) where φ is a feature
learning function such that the predicted label of text
x can be derived from arg maxi∈Yt li(x), while li(x) is
the confidence score of the attribute t’s i-th label.

Adversarial attack as defense. Given an inference
attack target (i.e., one attribute to infer), we formulate
text-space adversarial attacks as defenses that attempt
to automatically perturb the texts to obfuscate that at-
tribute and prevent threat models from correctly identi-
fying their private attribute values. As aforementioned,
we consider the black-box setting such that our formu-
lation is applicable to evade a wide range of attribute
inference models. Formally, for an original text x, the
purpose of a text-space adversarial attack is to modify
x with assigned label yt to a text x̂ that is classified

to any other label ŷt ∈ Yt, ŷt 6= yt through adding a
perturbation δ, the objective function of which can be
defined as follows:

(2.1) f(x + δ) = lyt(x + δ)−max
i 6=yt
{li(x + δ)}

Clearly, x is classified as a member of ŷt if and only if
f(x+δ) < 0 [22]. The majority of methods [3, 8, 20, 16]

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited



intuitively perform a gradient-based adversarial attack
in the general feature space by solving the following
optimization problem:

δ∗ = arg min
δ∈Rk

f(x + δ)

s.t. ‖δ‖p < ε and f(x + δ) < 0
(2.2)

However, gradients computed from the feature space are
hard to define in text space due to its discrete prop-
erty; also in black-box settings, it is impossible to com-
pute gradients since the model parameters are not ob-
servable. Therefore, gradient-driven adversarial attack
methods cannot be directly applied to text space. In ad-
dition, to formulate a feasible text-space adversarial at-
tack, we have to comply with some essential constraints
on the modification of the texts. To this end, in the
following subsection, we identify the main types of con-
straints on the text-space transformations so that the
perturbation δ satisfying such constraints will lead to
a valid adversarial example to defend against attribute
inference attacks for our problem.

Text-space attack constraints. Misleading the at-
tributes of a text can be achieved with different levels
of adversarial perturbations [23]. For instance, we can
simply copy the words from others with different at-
tribute labels for impersonation, or heavily obfuscate
the source text for evasion. These adversarial attacks,
however, suffer from semantic loss, generate implausible
text, and have a noticeable effect on a human viewer.
As such, we define a set of constraints to guide our text-
space adversarial attack and clarify its strengths.

• End-to-end learnability. The major requirement in
text-space adversarial example generation task is to
enforce adversarial attacks to be performed from text
space to text space rather than feature space. More
specifically, the adversarial attacks should follow the
transformation flow D → D, where d 7→ d̂ takes an
original text d and generates an adversarial version d̂.

• Semantic preservability. The semantic preservability
requires that the original text d and the adversarial
text d̂ express the consistent semantic meaning to
humans. Generally, distance metric over the feature
space is used to limit the perturbation range [21],
but there is no guarantee that small distance in
the feature space preserves semantics for texts [6].
To address this issue, semantics can be evaluated
at both text and word levels: for text level, the
edit distance between d and d̂ should limit to small
word operations made to d; for word level, a fine-
tuned word embedding space could ensure semantic
similarity between d and d̂.

• Text plausibility. The text plausibility requires that
the generated adversarial example d̂ is valid to hu-

mans. In this respect, artifacts, which easily reveal
that an adversarial text is invalid, will not be in-
cluded. However, due to its fast-sharing and informal-
writing property, social media may tolerate words
with small misspellings or typos, which are still read-
able and plausible to humans.

• Attack automaticity. The attack automaticity re-
quires that the perturbations are performed automat-
ically without human intervention. This implies that
possible changes to d should not include any hand-
crafted transformations or need re-engineering on dif-
ferent datasets. In this way, the adversarial attack can
be reusable without extra updates.

2.2 Overview of Proposed Method AaaD The
described threat model and attack constraints pose
unique challenges to the design of our attack AaaD: (1)
we consider black-box setting to formulate AaaD that is
not aware of the inference model it tries to mislead but
can query it for predicting confidence score, and (2) we
follow the constraints to construct a sequence of plausi-
ble perturbations to automatically craft the adversarial
text with preserved semantics. To this end, we propose
to perturb the text tokens directly with guidance of the
misclassification of the target attribute, which naturally
satisfies the end-to-end learnability requirement. As the
latent representations using word embedding can better
encode the implicit information from texts than charac-
ters and the search space of possible changes over words
is much smaller than characters, in our attack, we focus
on perturbing the texts at word-level. For the word-level
perturbations, we use edit distance metric in terms of
the number of word changes to control the size of mod-
ifications. As such, we can update the feature-space
adversarial attacks in Eq. (2.2) to a new text-space op-
timization problem as follows:

δ∗ = arg min
δ∈W

f(φ(d+ δ))

s.t. d̂ = d+ δ, s(d̂, d) < ε and f(φ(d̂)) < 0
(2.3)

where + implies the high-level word change, s(d̂, d) de-

notes the number of different words between d̂ and d,
and W is the set of plausible and semantic-preserving
word candidates for perturbation. Based on Eq. (2.3),
AaaD proceeds with a sequence of word perturbations,
where each perturbation takes the current text d, re-
places a chosen word with the optimized candidate, and
generates a new version d̂ such that d and d̂ are seman-
tically equivalent, until the attribute label is changed or
the maximum allowed perturbation ε is reached. Note
that, since all these operations and optimizations do not
require manual intervention, and all the candidate con-
structions and word perturbations are performed on the
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Figure 2: Overview of our proposed AaaD.

fly, we can accordingly ensure the automaticity for our
proposed attack.

2.3 Technical Solutions Alzantot et al. [1] pro-
posed to generate semantically similar adversarial texts
by iteratively evolving candidate perturbations towards
better solutions through a population-based optimiza-
tion algorithm, where, however, random population
sampling at each iteration makes the perturbation pro-
cedure inefficient, and none of the visually similar word
candidates have been considered. On the contrary, Gao
et al. merely applied character transformations to gen-
erate adversarial texts, which not only ignores word
perturbations of semantic similarity but also is com-
putationally expensive [6]. Different from these exist-
ing methods, we consider the social media property
and elaborate our algorithm based on both semantically
and visually similar word candidates for perturbations
to force inference models to misbehave faster. More
specifically, the realization of our text-space adversarial
attack involves three building blocks: (1) select ready-
to-perturb word, (2) construct semantically and visually
similar candidates for each selected word, and (3) deter-
mine the best candidate for replacement. An overview
of our attack strategy is illustrated in Figure 2. We dis-
cuss the technical details of these building blocks in the
following separate subsections.

2.3.1 Selecting Ready-to-perturb Word To re-
duce the vast random search space of possible words
encountered by the original population-based adversar-
ial attack proposed in [1], we would like to first score the
importance of words to guide the population sampling
to touch the important words and thus expedite the ad-
versarial text generation. Since the black-box setting
does not allow us to compute the partial derivative of
the confidence score regarding the predicted attribute
label at each input word to approximate the word im-
portance, one feasible way is to directly measure the ef-
fect of the word by removing it from the text [14, 6], and
then compute the confidence score difference before and
after removing a word to specify its importance. Specif-
ically, we assume the input text d = (w1, w2, · · · , wm),

and the scoring function that determines the importance
of i-th word in d can be denoted as:

rwi
(d, yt) = lyt(w1, w2, · · · , wm)

− lyt(w1, · · · , wi−1, wi+1, · · · , wm)
(2.4)

Eq. (2.4) implies that the greater the contribution of
a word to attribute prediction, the more likely we are
to modify it to mislead inference models. Considering
the fact that there exist some stop words (e.g., to, the,
a, it, etc.) or irrelevant words in a text that make
little sense to tamper with, we further use softmax
function to normalize the importance scores to serve
as word selection probabilities for population sampling.
In this regard, we give priority to modifying the more
important words in the sentences.

2.3.2 Constructing Word Candidates In order to
satisfy the constraints that the generated adversarial
text should retain semantic equivalence with the original
text and visually hurt little to human understanding
on social media text contents, we consider two types of
word candidates for perturbation: semantically similar
candidates and visually similar candidates.

Semantically similar candidates. We obtain a set of
words by searching the nearest neighbors of the ready-
to-perturb word according to the distance in word em-
bedding space. Here we define a threshold η to filter out
candidates with distance greater than η such that the
semantic preservability requirement could be less vio-
lated. GloVe is a context-aware word embedding space
[21], but it tends to coalesce the notions of semantic
similarity and conceptual association and thus fails to
distinguish synonyms from antonyms [18]. Examples
of such anomalies can be seen in Table 1, where words
such as “high” and “low”, and “similar” and “different”
are deemed similar in GloVe embedding space; replac-
ing such words with each other would completely change
the semantics of the text. By contrast, counter-fitting
embedding provided by Mrkšić et al. [18] leverages syn-
onym and antonym relations to fine-tune GloVe vectors
(shown in Table 1), which is a better choice for our
problem. Therefore, we use counter-fitting embedding
to search for the nearest neighbors for the given word.

Visually similar candidates. Apart from legitimate
candidates derived from vocabulary, we also expand
the candidate pool with slightly transformed words.
The reasons behind this are that (1) social media,
as a fast-sharing and informal-writing environment, is
highly misspelling-tolerant, where satiric or deliberate
misspellings are not uncommon; (2) words with small
character changes are imperceptibly to human eyes and
have no significant impact on semantics [24]; and (3)
would also very likely enforce the selected word to be out
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Table 1: Nearest neighbors for target words using
different embeddings: antonym and synonym example
pairs are highlighted as red and blue respectively

Embedding high red similar

GloVe
low blue same

higher yellow different
highest purple particular

Counter-fitting
highest rojo equivalent
supreme flushed same
higher cardinal like

of dictionary with “unknown” embedding such that the
output classification may change [6, 14]. To guarantee
the text plausibility, we restrict that only small changes
can be performed on the original word to create visually
similar candidates, and those transformed words will
not be selected for a second perturbation. We present
different word transformation methods as follows: (1)
add a space or a random character into the word; (2)
remove a random character from the word; (3) swap
any two adjacent characters; (4) substitute a character
in the word with a random character. Note that, both
the first and last positions in the original word will not
be modified for better perturbation invisibility.

2.3.3 Determining Best Candidate for Replace-
ment Based on the constructed word candidates, we
can observe that the semantically similar candidates
may not be always used in the same contexts (e.g., “red”
and “flushed” in Table 1). To address this issue, we pro-
ceed with filtering out those candidates that do not fit
within the context by using Google language model [4]
to further ensure the semantic correctness. The rest are
then integrated with all the misspellings to form the
final candidates. Afterwards, we choose the best can-
didate among them that will maximize the confidence

score of the target attribute label ŷt (ŷt 6= yt) predic-
tion when it replaces the ready-to-perturb word in d.
Then we perturb the text with the optimal candidate
and generate a new text as a population member.

2.3.4 Population-based Optimization Equipped
with three building blocks, we can formulate a perturba-
tion subroutine that accepts an input text (either per-
turbed or original), perturbs one selected word, and gen-
erates a perturbed-version text towards the misclassifi-
cation of the target attribute. In this way, we are ready
to generate a set of these perturbations for the given
text. We aim to minimize the number of word pertur-
bations, which makes the adversarial text less likely to

be perceived. Therefore, instead of using greedy-based
procedure [6, 14], we follow the work presented in [1]
and leverage population-based optimization to chain the
word perturbations together such that our adversarial
attack as defense target in the text space is reached.

The population-based optimization performs by
sampling the population at each iteration, searching for
those better population members that achieve better
performances, and taking them as “parents” to produce
the population for next iteration [1]. The population at
each iteration is called generation. Given an input text
d, the sampled population P0 is initialized as N per-
turbed texts created by performing perturbation sub-
routine N times on different selected words in d. At
generation g (g ≥ 0), the confidence score of each popu-
lation member for predicting the target attribute label

ŷt (ŷt 6= yt) is computed. If the predicted attribute

label of a population member is equal to ŷt, the op-
timization is complete and such population member is
returned as a successful adversarial text d̂; otherwise,
pairs of population members from Pg are sampled ac-
cording to their confidence scores, where each pair of
them synthesizes a “child” text in a crossover way, such
that N “child” texts are generated. Accordingly, the
new population Pg+1 is sampled by performing pertur-
bation subroutine on these N “child” texts. After that,
the optimization procedure moves to next generation
g + 1. Different from the prior work, we improve the
success rate of population samplings by choosing those
ready-to-perturb words of high importance scores, while
visually similar candidates introduced further expedite
the adversarial example generation. Through the pro-
posed AaaD, we can turn text-space adversarial attacks
into defense against the attribute inference attacks, and
thus protect the social media data privacy.

3 Empirical Evaluation

3.1 Experimental Setup
Datasets. We test our method on two social media
datasets: user gender tweets and blog authorship corpus
[25], which are good representatives for social media
data as tweets and blogs are posted by various users,
and can be easily accessed by attackers to uncover their
private attributes. Specifically, user gender tweets are
collected from Kaggle1. We filter out those with gender
confidence score less than 0.5, and thus obtain 13, 926
tweets with two genders (female and male). For blog
data, it consists of 19, 320 documents, each of which
contains the posts by a single user. In our experiments,
we extract 25, 176 blogs with two attribute inference

1https://www.kaggle.com/crowdflower/twitter-user-gender-

classification
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settings: (1) gender (female and male), and (2) age
(teenagers (age between 13-18) and adults (age between
23-45)). Note that, age-groups 19-22 are missing in
the original data. For tweets and blogs, we randomly
split them into training and testing datasets. The data
statistics are summarized in Table 2.

Threat model for attribute inference attacks.
To show our black-box method AaaD is effective, we
perform our experiments on a well trained word-level
LSTM since it is one of the most popular and feasible
neural networks to address NLP problems, which can
be easily built by the attackers to perform attribute
inferences. The LSTM network contains 250 hidden
units, where the dimension of each hidden unit is
128, and the dropout rate is 0.3. We use the pre-
trained GloVe [21] model to map each word into a 300-
dimensional embedding space. To conduct inference
attacks, the training texts are fed to the model for
training first and then the trained model is used to
predict private attributes over the testing texts. The
inference accuracy for Twitter-gender, blog-gender, and
blog-age is 62.25%, 69.20%, and 72.92%, relatively close
to the state-of-the-art results on each dataset.

Text-space adversarial attack baselines. We com-
pare AaaD with two other state-of-the-art text-space
adversarial attack methods. Both methods use the same
black-box setting. They can be specified as follows:

• Genetic attack [1]: this attack uses population-based
optimization algorithm to generate semantically sim-
ilar adversarial examples, where population sampling
is performed in a random way at each generation.

• WordBug [6]: this attack scores the word impor-
tance, and perturbs the words in the descending or-
der regarding word importance score using word mis-
spellings; to be comparable, we measure the effect of
each word by removing it from the text.

Parameter setting. We use euclidean distance as dis-
tance metric to construct semantic-similar candidates
from embedding space, where the distance threshold is
set to η = 0.5 to filter out those less similar ones, and
the size of candidate pool for each word is set as 8 (we
choose the best one for replacement). The iteration size
I = 20. Also, we remove half of semantically similar
candidates (i.e., 4 in this setting) using Google language
model. We limit the maximum allowed word perturba-
tions to 25% of the text length. We further evaluate its
impact on attack performance in Section 3.4.

3.2 Evaluation of AaaD In this section, we vali-
date the effectiveness of AaaD over well-trained infer-
ence models to defend against attribute inference at-

Table 2: Comparing statistics of the two datasets

Dataset Attribute #Posts #Training #Testing

Twitter Gender 13,926 9,763 2,450
Blog Gender, Age 25,176 17,623 7,553

Table 3: Evaluation of AaaD via inference accuracy (%)

Inference
Population Size

- N = 5 N = 10 N = 15 N = 20

Twitter-gender 62.25 18.50 17.94 15.64 15.61
Blog-gender 69.20 10.86 9.58 8.21 8.21
Blog-age 72.92 21.88 20.01 18.59 21.44

tacks. We perturb the correctly classified text exam-
ples from the testing datasets of three attribute set-
tings to evaluate our algorithm AaaD under different
population sizes. In particular, we test the results of
our generated adversarial texts with population size
N ∈ {5, 10, 15, 20} respectively against different infer-
ence attacks. The experimental results are shown in
Table 3. As we can see from the results, AaaD drasti-
cally decreases the accuracy of the state-of-the-art in-
ference models and achieves the goal of obfuscating the
attributes and protecting social media text data pri-
vacy. When N = 15, our method reduces the accuracy
of the Twitter-gender inference attack from 62.25% to
15.64%; for the larger and longer blog data, we degrade
inference accuracy of gender and age from 69.20% to
8.21% and from 72.92% to 18.59%. Generally, when we
enlarge the population size, the success rate of gener-
ating adversarial samples increases while the required
perturbation number tends to go up as well. However,
due to the perturbation limit for each text, the actual
attack performance might not always improve for larger
population size. For example, the inference accuracy
for three settings either slightly decreases or stays flat
when N changes from 15 to 20. As such, we use N = 15
throughout the following evaluations.

3.3 Comparisons with Other Text-space Ad-
versarial Attacks We also compare AaaD with Ge-
netic attack [1] and WordBug [6]. Specifically, we ran-
domly sample 50% of correctly classified examples from
the testing tweets and blogs to measure the perfor-
mance of attacks. The comparative results are illus-
trated in Table 4, where Genetic attack achieves better
attack success rate than WordBug while WordBug per-
turbs less words; and AaaD outperforms both baselines
with slightly higher perturbation number than Word-
Bug. From the results, we can observe that (1) pro-
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Table 4: Comparisons of different text-space attacks

Inference Metric (%) Genetic WordBug AaaD

Twitter-
gender

Success Rate 58.06 38.96 78.98
Median Ptb 13.48 8.33 11.11
Mean Ptb 15.83 10.34 12.14

Blog-gender
Success Rate 83.97 56.04 88.29
Median Ptb 7.05 3.38 5.03
Mean Ptb 9.94 5.93 8.89

Blog-age
Success Rate 68.33 52.02 75.91
Median Ptb 12.31 10.32 9.38
Mean Ptb 13.37 9.81 11.89
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Figure 3: Evaluation on maximum allowed perturbation
(ε) via cumulative distribution of attack success rate.

jecting an important word into “unknown” may enforce
inference models to misbehave, while ignoring seman-
tically similar candidates would also miss good evasion
chances, and (2) leveraging word importance to facili-
tate population-based optimization expedites adversar-
ial example generation. When we look into the gener-
ated adversarial texts, we find that WordBug fails in
most of those adversarial texts with more modifications
required, and hence obtains a small perturbation num-
ber on average in results. By contrast, AaaD either
converts those failed texts from Genetic and WordBug
to adversarial examples, or decreases the number of re-
quired perturbations, which significantly advances the
text-space adversarial attack with respect to effective-
ness and efficiency. Thus, we conclude that AaaD is
feasible in a real social media environment on attribute
obfuscation and privacy effectiveness.

3.4 Parameter Evaluation In this set of experi-
ments, we conduct the parameter analysis of how dif-
ferent choices of ε (i.e., maximum allowed word pertur-
bations) will affect the performance of AaaD, since ε
significantly reflects the similarity between the gener-
ated adversarial texts and the original texts, and thus
has direct impact on the semantic preservability and
plausibility of the adversarial texts. We use the cu-
mulative distribution function (CDF) of attack success
rate regarding the number of ε to illustrate the evalua-
tion results. From the results shown in Figure 3, we can

observe that as ε increases, the attack success rate in-
creases as well because of the larger modification space,
but the mean sentence semantics quality would decease.
Actually, using AaaD, most of the generated adversarial
texts manage to evade the inference models after per-
turbing very few words in the texts. More specifically,
for Twitter-gender inference, about 64% of the success-
ful adversarial texts perturb only one word, while this
ratio increases to 88% when ε ≤ 3; for blog-gender infer-
ence, the ratios are 39% and 73% when ε ≤ 1 and ε ≤ 3
respectively; for blog-age inference, these two ratios are
30% and 59%. All these results imply that (1) AaaD
enables most of adversarial texts to be similar to the
original texts; (2) the number of perturbations relatively
relies on the length of the texts: the average lengths for
twitter-gender, blog-gender and blog-age are 14, 36 and
54 respectively, while the average perturbations are 1.7,
3.2, and 6.5 for the corresponding inference tasks, where
we can also see that age attribute seems more difficult
to be obfuscated.

3.5 Qualitative Analysis
Case study. In this section, we present some of our
generated adversarial texts in Table 5. We can have a
straightforward insight that AaaD perturbs important
words in an either semantic or visual-similar replace-
ment manner towards the opposite attribute target. For
instance, “recognize” and “last” are replaced with “re-
coqnize” and “final” in a tweet that changes the gender
from female to male; AaaD also performs four pertur-
bations in a blog that modify “awarded”, “torn”, “of-
fer”, and “would” to “allotted”, “hesitant”, “offar”, and
“ought” respectively to enforce a misclassification on
gender with high confidence score; for blog-age setting,
the perturbations are “just” 7→ “exclusively”, “school”
7→ “schkool”, “boring” 7→ “tiresome”, “hard” 7→ “chal-
lenging”, and “stupid” 7→ “foolish”. All these pertur-
bations meet our designed constraints and successfully
mislead the inference attack models.

User study. We further ask 15 volunteers to simu-
late the real-world social media scenarios to review the
adversarial texts generated by AaaD. Our user study
is composed of two parts: (1) testing the plausibility,
where volunteers are given 100 (half original and half
adversarial) texts randomly selected from three infer-
ence settings to evaluate if they are readable to them;
(2) investigating the semantic preservability, where vol-
unteers are given 50 sample pairs consisting of the origi-
nal texts and their adversarial versions without knowing
orders to evaluate their semantic similarity with 4 scales
from 1 (very different) to 4 (very similar). The results
are consistent to our experimental observations. The
plausibility rates are (84.67±4.11)% and (82.53±3.22)%
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Table 5: Examples of generated adversarial texts for different inference settings

Classifier:Twitter-gender. Original label: female (confidence=86.72%).New label: male (confidence=53.36%)
I didn’t recognize recoqnize him till the last final moment when she looks at him from the window.
Classifier: Blog-gender. Original label: female (confidence=93.39%). New label: male (confidence=72.28%)
So I get home today and there is a letter from the Dubya telling me that I have been awarded allotted 5000 in
student aid for this year. Omigod! That’s more than I thought I would get. I am so torn hesitant I really want to
take advantage of this but I want to stay here now. I have to see what is willing to offer offar. I have to contact
financial aid and do a comparison. It might be better considering I would ought save an out of state fee.
Classifier: Blog-age. Original label: teens (confidence=96.46%). New label: adults (confidence=61.11%)
My head is like a 8 year old’s finger painting. It’s just exclusively a buncha colors and hues all smeared up and
stuff, so anyways school schkool is off to a really boring tiresome start. Oh well, at least I won’t have to work
very hard challenging uhhhhh..Hm either. There’s a lot going on or hardly anything at all. Ok this post is really
stupid foolish and it doesn’t make any sense so I’m gonna call it quits before I look even more stupid than I
usually do.

Age

Gender

…

Teens

Adults

…

Figure 4: Example of attribute obfuscation service.

on the original and adversarial texts, which imply that
the perturbations introduced by AaaD barely hurt peo-
ple’s perception. The average semantic similarity score
is 2.99± 0.30, which indicates that the perceived differ-
ence is also small. This user study further validates the
rationality of AaaD.

4 Discussion

Applications. In practice, AaaD can apply to an at-
tribute obfuscation service provided on social media
client side. For example, as illustrated in Figure 4,
AaaD is developed as an API that is integrated into
Twitter posting and editing systems to allow users to
choose the adversarial text according to their target at-
tribute (i.e., age) and text content. Once users give
privileges to this replacement, the posting data will be
obfuscated and updated on behalf of the users. Simi-
larly, AaaD can also serve to exhaustively obfuscate the
social media data before making it publicly available.

Limitations. Our approach also poses some limita-
tions which we discuss as follows. (1) The lack of
the ground truth on real social media systems disables
AaaD from generating the adversarial texts in a real-
time fashion. To this end, we may need to first rec-
ognize the targets to facilitate better attribute protec-

tion. (2) The inference attackers could leverage more
robust learning paradigms (e.g., adversarial training,
misspelling correction) to reveal attributes and thus de-
grade AaaD. We acknowledge this limitation and leave
the investigation on this arms race as our future work,
yet it does not impact the general validity of our new
insight on the adversarial attacks for attribute obfusca-
tion and protection, as robust models could always be
evaded by more sophisticated adversarial techniques.

5 Related Work

Anonymization paradigms [26, 2] have been conven-
tionally developed to anonymize and protect user iden-
tifiable information on social media, while machine
learning based inferences [19, 7] can easily utilize non-
anonymous data to re-identify users. Some promising
defense methods have been thus presented to allevi-
ate such inference attacks, such as differential privacy
[28], deep data obfuscation [13], and game-theoretic op-
timization [27, 10], but they are still suffering from
limitations of either cost-expensive, large utility loss,
or introducing additional privacy concerns. Recently,
the vulnerabilities of machine learning are starting
to be leveraged as defenses against inference attacks
[10, 19, 26, 11], which have delivered great potentials.
However, most of these works aim to combat inference
attacks over continuous data, while only very few of
them perform on text data. Differently, our work fo-
cuses on more challenging text data, and advances the
existing text-space adversarial attacks [1, 6, 14] by new
candidate construction and optimization procedure.

6 Conclusion

In this paper, we cast social media privacy protection
problem as an adversarial attack formulation problem
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to defend against attribute inference attacks. We in-
vestigate text data for our problem and present a text-
space adversarial attack AaaD, where a sequence of con-
strained yet plausible perturbations are formulated to
craft the adversarial texts and chained by an upgraded
population-based optimization algorithm. We conduct
experimental studies on real-world social media datasets
to evaluate the performance of AaaD, which validate its
effectiveness against inference attacks. Despite the chal-
lenges and limitations, we believe that our work has im-
plications on the applicability of adversarial attacks for
attribute obfuscation and privacy protection in practice.
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L. Rojas-Barahona, P.-H. Su, D. Vandyke, T.-H. Wen,
and S. Young, “Counter-fitting word vectors to linguis-
tic constraints,” arXiv:1603.00892, 2016.

[19] S. J. Oh, M. Fritz, and B. Schiele, “Adversarial image
perturbation for privacy protection a game theory
perspective,” in ICCV, 2017, pp. 1491–1500.

[20] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha,
and A. Swami, “Practical black-box attacks against
machine learning,” in AsiaCCS, 2017, pp. 506–519.

[21] J. Pennington, R. Socher, and C. D. Manning, “Glove:
Global vectors for word representation,” in EMNLP,
2014, pp. 1532–1543.

[22] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cav-
allaro, “Intriguing properties of adversarial ml attacks
in the problem space,” arXiv:1911.02142, 2019.

[23] E. Quiring, A. Maier, and K. Rieck, “Misleading
authorship attribution of source code using adversarial
learning,” in USENIX Security, 2019, pp. 479–496.

[24] G. Rawlinson, “The significance of letter position in
word recognition,” IEEE AESM, 22, pp. 26–27, 2007.

[25] J. Schler, M. Koppel, S. Argamon, and J. W. Pen-
nebaker, “Effects of age and gender on blogging.” in
AAAI Symposium: CAAW, 2006, pp. 199–205.

[26] R. Shetty, B. Schiele, and M. Fritz, “A4nt: author
attribute anonymity by adversarial training of neural
machine translation,” in USENIX Security, 2018, pp.
1633–1650.

[27] R. Shokri, “Privacy games: Optimal user-centric data
obfuscation,” PETS, 2015 (2), pp. 299–315, 2015.

[28] T. Wang, J. Blocki, N. Li, and S. Jha, “Locally differ-
entially private protocols for frequency estimation,” in
USENIX Security, 2017, pp. 729–745.

[29] S. Yu, Y. Vorobeychik, and S. Alfeld, “Adversarial
classification on social networks,” in AAMAS, 2018,
pp. 211–219.

[30] Y. Zhang, M. Humbert, T. Rahman, C.-T. Li, J. Pang,
and M. Backes, “Tagvisor: A privacy advisor for
sharing hashtags,” in WWW, 2018, pp. 287–296.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited


