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Abstract. Web services have been greatly threatened by remote exploit code at-

tacks, where maliciously crafted HTTP requests are used to inject binary code to

compromise web servers and web applications. In practice, besides detection of

such attacks, attack attribution analysis, i.e., to automatically categorize exploits

or to determine whether an exploit is a variant of an attack from the past, is also

very important. In this paper, we present SA3, an exploit code attribution analysis

which combines semantic analysis and statistical analysis to automatically cate-

gorize a given exploit code. SA3 extracts semantic features from an exploit code

through data anomaly analysis, and then attributes the exploit to an appropriate

class based on our statistical model derived from a Markov model. We evaluate

SA3 over a comprehensive set of shellcode collected from Metasploit and other

polymorphic engines. Experimental results show that SA3 is effective and effi-

cient. The attribution analysis accuracy can be over 90% in different parameter

settings with false positive rate no more than 4.5%. To our knowledge, SA3 is the

first work combining semantic analysis with statistical analysis for exploit code

attribution analysis.
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1 Introduction

A great number of code injection attacks (e.g., buffer overflow attacks, format string at-

tacks) are used by crafted HTTP requests to compromise different kinds of web services

or web applications. From the CERT [1] and SecurityFocus [2] statistics, the remote

code injection attack is still one of the major attacks these days. In (remote) code injec-

tion attacks, malicious HTTP requests/replies can be forged to inject malicious code by

masquerading as normal requests/replies. Different kinds of shellcode are representa-

tives of exploit code, which can be injected into target services or applications through

network connections. Worms can take advantage of these exploit code for infections

and propagations. In this paper, the exploit code we focus on is remote shellcode which

can be used as the payload of a packet to spread via HTTP requests. Throughout the

paper, we use the terms remote exploit code and shellcode interchangeably.

There are mainly two types of techniques used for shellcode analysis and detec-

tion: the emulation-based approach and statistics-based approach. The emulation based

approach (e.g., [3, 4]) emulates the executions of instruction sequences, and thus shell-

code’s behaviors are exposed in the virtual running environment. However, it is antag-
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onized by many kinds of anti-emulation techniques [5]. For example, drive-by down-

loads web attacks [6], which target memory corruption vulnerabilities, have to prepare

the environment before their successful launch. Improper emulations of the execution

context will lead to incorrect executions of instruction sequences, and thus fail to expose

specific specific behaviors.

Statistical analysis is another promising method used in network intrusion detection

systems including the remote shellcode detection and analysis [7, 8]. The basic idea of

the statistical approach is to extract the distinguished features to differentiate between

the normal packets and various malicious packets. The payload of a packet and the

payload header information (e.g., port number, protocol field) can be used as features

for classification. The disadvantage of the statistical approach is that it usually lacks

clear semantic information correlated with the packets whose contents may result in

malicious behaviors, and therefore it can also be evaded by different kinds of anti-

statistic approaches [7, 8].

From the analysis above, we can see current exploit code detection and analysis

approaches are still quite limited. Meanwhile, lots of shellcode variants appeared in the

past several years according to AV-test’s statistics [9]. Thus in this paper we present

an automatic semantic aware attribution analysis of remote exploits. The significance

of such analysis is that it provides more information about an attack in addition to

detecting the attack. The attribution analysis can be used in, for example, a shellcode

scanner to identify different types of shellcode variants. As far as we know, such shell-

code attribution analysis is still lacking in the literature. Note that Hu et al [10] present

a function-call graph based approach to index the large malware repositories, which

can be viewed as a kind of malware attribution analysis. Our motivation is similar to

theirs, but our work is more specific for shellcode attribution analysis. Compared with

shellcode detection, our work focuses more on automatically categorizing exploits and

determining whether an exploit is a variant of an attack from the past. We believe this

is also important besides telling whether a piece of code is malicious or not.

Exploit code attribution poses several challenges. First, the emulation based ap-

proach cannot be directly applied to this problem because we need quantitative metrics

to measure the distances of different exploit code. Second, we cannot fully rely on the

statistical approach because it is deceptive once the statistical features (e.g., the number

of specific instructions or system calls) fail to reflect the security-critical operations,

which are probably highly related with the shellcode behaviors. Third, how to extract

the semantics which determine the shellcode attribution remains an open question. The

emulation based approach seems a good candidate for extracting the behaviors of dif-

ferent shellcode. However, it can miss trivial differences existed in the behaviors of

different classes of shellcode. For example, self-contained exploit code [4] often ex-

hibits same behaviors by following the routine of “decrypt-loop” mode. Furthermore, if

specific behaviors are absent in the emulation environment, it could produce more false

negatives. Also, the time cost for the emulation based approach is usually very high

compared with static analysis.

Our approach. We present SA3, a novel automatic Semantic Aware Attribution

Analysis of remote exploit code. SA3 first makes semantic analysis on the payload

of packets, and then a Markov-based model is used to model each type of shellcode.
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Specifically, for semantic analysis, we use static data anomaly analysis on the packet

payload; for statistic analysis, we use a two-way of Mixture Markov model. The statis-

tical model is based on the refined exploit code sequences, which are pruned from the

whole code sequences in the framework of static analysis. Once the model is built, any

new code can be fed into the model to get an attribution analysis result.

One important characteristic of our work is that we use the “features” acquired from

semantic analysis for attribution analysis. We present SA3 based on an observation

that the attribution for a piece of exploit code has great correlations with the exploit

code’s semantic characteristics (e.g., the opcode sequence, the instruction sequence)

and also its statistical characteristics (e.g., the number of instructions, the out-degree of

control flow graph). The changes of the semantics also cause the changes of the statistic

exposure in shellcode instructions. This observation motivates us to consider about the

integration of semantic analysis with statistical analysis by taking advantages of both

of them.

Our work stands between the semantic analysis and statistical analysis. Instead of

using dynamic emulation techniques introduced before, our work uses the static data

anomaly analysis by making static analysis on the instruction sequences. The advantage

of this approach is to capture the semantics of the exploit code with moderate time

cost. Also, it will not be attacked by anti-emulation techniques [5]. Compared with

only emulation based approach, our work can also overcome some inherent defects

(e.g., different shellcode may expose similar behaviors) by introducing the statistical

analysis. Compared with only statistical based approach, our analysis is more robust by

incorporating the semantics to avoid “black-box” learning.

Contributions. The main merits of SA3 are listed as follows. To our knowledge,

our approach is the first work to make exploit code attribution analysis by combin-

ing semantic analysis with statistical analysis. Semantic analysis is used for extracting

the semantic-binding code with certain malicious intent. Statistical features can help

to capture the “whole” view of a packet from macroscopic point. These two different

views complement each other. Our evaluation shows that our analysis result is better

than purely statistical approach, which also refutes the conclusion of “impossibility of

modeling polymorphic shellcode [11]” in some degree.

The rest of this paper is organized as follows. First of all, we formalize the problem

in Section 2. Next we show our approach SA3 in Section 3, followed by evaluation in

Section 4. Then we introduce the related work in Section 5. Finally, we conclude the

paper in Section 6.

2 Problem Statement and Analysis

2.1 Problem Formalization

Let I(i ∈ I) be a set of different classes of exploit code; and D(1 ≤ j ≤ D) be the

total number of instances (variants) generated from a certain class. We use Sij to denote

the jth exploit code instance generated from class wi, i.e., Sij ∈ wi. For example, in

reality, a set of different types of exploit code can be generated from different polymor-

phic shellcode engines I = {Clet,CountDown,Pex,Tapion, ...}. Different instances
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Fig. 1: A demonstration of polymorphic shellcode instance

of the same type of exploit code can be generated using complicated obfuscation tech-

niques like polymorphism and metamorphism [12].

Definition 1. Exploit Code Attribution Problem

(1) For lots of exploit code instances Sij , how to generate a profiling for each cate-
gory wi;

(2) For an unknown exploit code s, what is the attribution of s? That is, find i such
that s ∈ wi.

2.2 The Challenge of the Problem

According to the definition of exploit code attribution problem, Problem (1) is a training

problem in shellcode classification and Problem (2) is an recognition problem after a

profiling for each category of exploit code is built. Problem (1) is the key step while

Problem (2) can be easily solved after the learning model is built in Problem (1). These

two problems match well with the standard machine learning problem. Naturally, we

refer to machine learning techniques for a solution.

From above analysis, it seems any statistical approach can work in the context of ex-

ploit code attribution analysis. However, the statistics-based approach may not produce

promising results. Song et al. [11] conclude that it is impossible to model the polymor-

phic shellcode (See Fig. 1 for an example). Polymorphic shellcode accounts the largest

part of the exploit code, and therefore, modeling all of the exploit code (e.g., for at-

tribution analysis) is much more difficult. Next, we will briefly explain why modeling

polymorphic shellcode instances is difficult. The contents of the polymorphic shellcode

instances usually consist of several parts: NOP part (sled), decoder part, encrypted pay-

load part, return address part and padding part (Fig. 1). Modeling the NOP part may

amount to modeling random instructions because many instructions are semantically

equivalent to “NOP.” For example, for the shellcode generated by CLET [13], there are

55 kinds of sled used in the “NOP” part. In the return address part, there are also many

variations of the target address by adding padding bytes before it. In the padding part,

the binary code can be filled in, without influencing the execution results. For obfus-

cation purpose, the padding bytes may have similar distribution to the normal traffic

distribution. In the decoding part, different encryption keys can generate different en-

crypted exploit code. Clearly, due to great varieties in each part of polymorphic exploit

code, the variations for a whole exploit code packet can be even larger. These great vari-

ations may result in, (R1) no fix patterns exposed in a whole packet; (R2) the attribution

analysis process misguided by padding bytes and noisy bytes.

Fig. 2 shows two examples of shellcode varieties. Fig. 2(a) shows a spectral image,

where each pixel represents a byte from a shellcode sequence generated from polymor-

phic engine Pex [14]. Each row is corresponding to a shellcode sequence with 344 bytes
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in length, and totally 100 instances form the image. Similarly, Fig. 2(b) shows the spec-

tral image formed by 100 sequences generated from polymorphic engine CLET [13],

where each row is a shellcode sequence of 168-byte in length. Clearly, these images

demonstrate great varieties of different bytes in exploit code, which imply that the shell-

code attribution analysis is a challenging problem.

�

�

�

�

�

(a)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(b)

�

�

�

�

�

�

�

�

�

(c)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(d)

Fig. 2: Varieties of shellcode instances. (a) Pex (each of 100 instances is 344 bytes);

(b) CLET (each of 100 instances is 168 bytes); (c) Pex refined shellcode after seman-

tic analysis (corresponding to (a), each is 60 bytes); (d) CLET refined shellcode after

semantic analysis (corresponding to (b), each is 60 bytes). Each pixel of the image

represents a byte obtained from a shellcode instance

3 Approach

In Fig. 3, we describe the framework of SA3 . The core modules of SA3 are Seman-
tic Analysis Module, and Statistical Analysis Module. More detailedly, we use Data
Anomaly Analysis in the Semantic Analysis Module and a Two-way Mixture of Markov
Model in the Statistical Analysis Module.

The whole workflow of SA3 can be divided into training stage (with the real line)

and the recognition stage (with the dashed line). First of all, the same type of exploit

code instances are fed into the semantic analysis module, and data anomaly analysis

are conducted on them. We get the refined exploit code instances, which are actually

the instruction sequences pruned of useless instructions. Next, a two-way Mixture of

Markov Model is built on the refined input instruction sequences. We construct a mix-

ture of Markov Model corresponding to each category of exploit code. When a new

exploit code instance comes, it will be first analyzed through the data anomaly analysis
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module. Thus the refined code sequences are distilled as the input to the two-way mix-

ture of Markov Model. The decision result is obtained by attributing the exploit code

sequence to the one with the most fitting value.
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Fig. 3: SA3 flow graph (real line for training stage, dashed line for recognition stage)

Semantic Module. For each category of the input instruction sequences, we prune

semantic-unrelated code existed in the code sequences. Data anomaly analysis is used

to capture the “semantics” of the exploit code through preserving the useful instructions

while pruning the useless ones which are probably containing padding and noisy bytes

in the packets. This module is used for solution of R2 presented in Section §2.2.

Statistical Module. For the pruned instruction sequences, a two-way Mixture of

Markov Model is built for the solution of R1 (Section §2.2). On one hand, it is not very

clear what kind of relationship exists in the instruction sequences. On the other hand,

Markov model is very suitable to model the uncertainty existed in different context.

Thus, we refer to a two-way Mixture Markov model, to model relationships between

the instruction sequences. The property of “two-way mixture model” makes it more

robust and powerful to represent the varieties of different categories of code.

3.1 What Is the Semantics Used in Exploit Code?

Data Anomaly Analysis. We observe that certain control and data flow information

remain invariable to implement certain functions in the exploit code. We call those

control and data flow information as “semantic.” The data anomaly analysis is used to

capture those semantics, because it can preserve the useful instructions by pruning the

useless ones which contain padding and noisy bytes.

First of all, we use disassemble analysis to analyze the input binary instruction se-

quences. In this paper, what we focus on is HTTP message flows. In an HTTP request

message, malicious payload only exists in Request-URI and Request-Body of the whole

flow [15]. We extract these two parts from the HTTP flows for further semantic anal-

ysis. Then we make disassemble analysis on these input sequences. If the disassemble

module finds consecutive instructions in the input sequences, it generates the disas-

semble instruction sequences as output. An instruction sequence is a sequence of CPU

instructions which has only one entry point. A valid instruction sequence should have

at least one execution path from the entry point to another instruction within the se-

quence. Since we do not know the entry point of the code when the code is present in
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the byte sequences, we explore an improved recursive traversal disassemble algorithm

introduced by Wang et al. [15] to disassemble the input instruction sequences. For an

N -byte sequence, the time complexity of disassemble algorithm is O(N).
After disassemble analysis, it may generate zero, one, or multiple instruction se-

quences, which do not necessarily correspond to real code. Next, we distill use-

ful instructions by pruning useless instructions using the technique introduced in

SigFree [15]. Useless instructions are those illegal and redundant byte sequences. By

using the code abstraction, a static analysis technique, we can emulate the executions of

instruction sequences. There are possibly 6 states in the state transition graph generated

from the code sequences. State U represents undefined variable state; state D repre-

sents defined but not referenced variable state and state R represents defined and refer-

enced variable state. The other three abnormal states are defined as follows: state DD
represents abnormal state define-define, state UR represents abnormal state undefine-
reference, and state DU represents abnormal state define-undefine. Basically, the pruned

useless byte sequences correspond to three kinds of dataflow anomalies: UR, DD, DU.

When there is an undefine-reference anomaly (i.e., a variable is referenced before it is

ever assigned with a value) in an execution path, the instruction which causes the “ref-

erence” is a useless instruction. When there is a define-define anomaly (i.e., a variable

is assigned a value twice) or define-undefine anomaly (i.e., a defined variable is later

set by an undefined variable), the instruction that caused the former “define” is also

considered as a useless instruction. Since crafted noisy bytes in the packets typically

do not contain useful instructions, such irrelevant bytes in the packets are filtered out

after the useful instruction extraction phase. The remaining instructions are likely to be

related to the semantics of the code kept in the exploit code sequences.

Here, we further explain our motivation for useful instruction extraction. From our

observations, lots of “useful instructoins” are left invariant across different shellcode in-

stances even after complicated obfuscations (e.g., “junk insertion,” “instruction replace-

ment”). For padding and noisy bytes, they still can be assembled into code sequences.

However, usually it lacks clear meanings and correlated relations for those coincidental

instruction sequences. Thus, they will be pruned after rigorous data flow anomaly anal-

ysis. Moreover, we note that the remaining useful code sequences are more likely to be

similar to those from the same category instead of those from the other categories.

Motivating Example. An example of polymorphic code analysis is shown in Fig.

4. Here the leftmost part is the original packet content in binary, the middle part and

the right part are the disassemble code and its corresponding binary code of the useful

instructions after removing useless ones, respectively. For example, the disassembly

code inc ecx appeared in address 42 is pruned because ecx is defined again in address

4c to produce a define-define anomaly. In address 44, the contents in the memory cell

with address ecx-4A is referenced without being defined beforehand. Thus we prune

this instruction because it produces an undefine-reference anomaly.

Figs. 2(c) and 2(d) show two other examples. Fig. 2(c) gives the spectral image

formed by the remaining instructions of 100 instances corresponding to Fig. 2(a). Sim-

ilarly, Fig. 2(d) gives the spectral image formed by the remaining instructions of 100

instances corresponding to Fig. 2(b). In both images, each pixel represents a byte from

the remaining instructions. Clearly, the lengths of the preserved code sequences are
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Fig. 4: A motivating example to show the procedure of semantic analysis on the input

code sequence

decreased. More importantly, the fixed patterns in the original code sequences are pre-

served while the bytes located in different positions with large varieties are cut off.

From the above polymorphic shellcode example (Fig. 4) and other instances, we find

that the remaining code sequences usually consist of the following features: (F1) getPC:

the code to get the current program counter, usually contains opcode “call” or “fstenv”;

(F2) Iteration: a polymorphic exploit code usually performs iterations over encrypted

shellcode using the operations like loop, rep and the variants of such instructions (e.g.,

loopz, loope, loopnz); (F3) Jump: a polymorphic exploit code is probable to contain

conditional/unconditional branch statements (e.g., jmp, jnz, je); (F4) Decryption: for

the encrypted shellcode, certain machine instructions (e.g., or, xor) are more often to

be found in decryption routines since decryption needs to decrypt the shellcode before

execution. These features are preserved after semantic analysis, which can be further

used for statistical modeling. We believe these features help to capture the category of

shellcode, and they may exist in most of the self-contained exploit code.

It may be attempting to use (F2, F4) as the only feature for category analysis. For-

tunately, we also have other useful instructions preserved except for the features (F1,

F2, F3, F4). This motivates us to use the statistical model for capturing the differ-

ences across various exploit codes as much as possible. For non self-contained code,

not all features (e.g., F2, F1) exist in the shellcode (e.g, code generated from Avoid

UTF8/tolower [4]) because of the absence of GetPC and self-reference operations. In

these cases, the remaining instruction sequences still can be taken as good indicators

for shellcode category analysis since noisy bytes are filtered. The pruned bytes are more

likely to mislead the state-of-the-art statistics-based learning approaches (e.g., N-gram

based learning [16], Markov Chain [8], Support Vector Machine [6]) for category anal-

ysis or detection. Note the length of code sequence can be viewed as the dimensions

for the training code sequences. To prune useless instruction also means to reduce the

dimension of training data This makes the machine learning module much easier and

more accurate by alleviating the difficulty of “curse of dimensionality [17]”.
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3.2 What Is the Statistics Used for Modeling?

Why Use Markov Model? Let Y be the set of single bytes and Y i denote the set of

i-byte sequences. X = Y ∪ Y 2 ∪ Y 3 ∪ Y 4 is the token set in our system because a

token in a useful instruction contains at most four bytes (e.g., “AAFFFFFF”), which

corresponds to the word size of 32-bit systems. A Markov chain [18] is a sequence

of random variables X1, X2, X3, ..., satisfying the Markov property: given the present

state, the future and past states are independent. More formally, probability Pr(Xn+1 =
x|X1 = x1, X2 = x2, ..., Xn = xn) = Pr(Xn+1 = x|Xn = xn), where xi is the

value for each state Xi, and Pr(Xn+1 = x|Xn = xn) is the conditional probability

for transition from state Xn to Xn+1. The possible values of Xi form a countable set S
called the state space of the chain. We observe that there are close relations among the

code tokens in the refined instruction sequences. Markov Chain [18] is a good candidate

to model uncertain dependencies in different contexts. In the context of code sequence

analysis, each token in a sequence can be viewed as a state in a Markov Chain. We

assume a token in a sequence is dependent on the token in front and also the token

next because of the great dependencies existed in the code sequences of the nearest

neighbors. To be exact, the dependency of token xj on xi is the co-occurance of token

xj and xi. If xi appeared in front of xj in the same sequence, we call xj is forward

dependent on xi. Otherwise, if xi appeared after xj in the same sequence, we call xj is

backward dependent on xi. 1-order Markov chain requires the nth token in a chain is

only dependent on the (n − 1)th token. However, in real code segment, the nth token

can be dependent on the (n − 1)th, (n − 2)th, ..., (n − p)th tokens in a sequence, and

also related to (n + 1)th, (n + 2)th, ..., (n + q)th tokens. We do not know what is the

value of p and q beforehand.

In our model we define two kinds of relationships to represent those bidirec-

tional dependence. We call our Markov-derived model as a Two Way Mixture Markov

(TWMM) Model. First, we define the forward dependence, i.e., nth token is depended

on consecutive p tokens in front. Next, we define the backward dependence, i.e., nth

token is dependent on the next consecutive q tokens. Then parameters πi(i = 1, 2) are

used to make a balance between them, where π1 + π2 = 1. Fig. 5 shows an example,

where token 96 is forward dependent on p (p = 2) tokens (83C6, 01) in front, and also

backward dependent on next q (q = 3) tokens (40, 96, 46).

Model Construction. First, we construct a TWMM model for each category of

code sequences. Second, after a new code sequence is fed into the model, we attribute

it to the class with the highest fitting value. However, if the highest fitting value is still

less than a certain threshold, we will attribute it to the normal sequence. Here the fitting

value is the accumulation of probabilities, which reflects the matching score from a

code sequence to the model.
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Next we show how to compute the probability for a code sequence. The probabil-

ity of a code sequence can be decomposed into the product of the probability of each

token in a sequence. For different tokens appeared, there is a transition matrix to label

the probability from one token to another. Hence, p-forward tokens’ transition proba-

bility to a specific token is the probability from front p tokens’ transition probability

to this token. Similarly, q-backward tokens’ transition probability to a specific token

is the probability from next q tokens’ transition to this token. In forward model, the

ith token’s probability is computed through product of the p-forward tokens’ transition

probability to this token. Similarly, in backward model, the ith token’s probability is

computed through the product of the q-backward tokens’ transition probability to this

token. Since the probability is a product of p(Ln − p) values in the forward model, and

a product of q(Ln − q) values in the backward model, where Ln is the length for the

nth code sequence. Therefore, the p(Ln−p) root is needed for computing the sequence

probability in forward model and q(Ln − q) root is needed in backward model.

More formally, let xn,i denote the ith token in the nth sequence, A1(xn,i|xn,j ; θ1)
denote the transition probability from token xn,j to token xn,i in forward model θ1,

A2(xn,i|xn,j ; θ2) denote the transition probability from token xn,j to token xn,i in

backward model θ2. Since the same token can be transferred to different tokens, the

sum of such transition probability should be normalized to 1, i.e.,
∑
xn,i

Ak(xn,i|xn,j ; θk) = 1 (k = 1, 2). (1)

Let g(xn|θ1) and g(xn|θ2) denote the probability for the nth sequence’s matching

scores in the forward model and backward model, respectively. Thus we have

g(xn|θ1) =
⎛
⎝

Ln∏
i=p+1

Ln−p∏
j=i−p

A1(xn,i|xn,j ; θ1)

⎞
⎠

1
(Ln−p)p

(2)

g(xn|θ2) =
⎛
⎝

Ln−q∏
i=1

i+q∏
j=i+1

A2(xn,i|xn,j ; θ2)

⎞
⎠

1
(Ln−q)q

(3)

Next, by combing g(xn|θ1) and g(xn|θ2) in a balanced way, we have Gn to denote

the matching score for nth sequence, i.e.,

Gn =
2∑

k=1

πkg(xn|θk), (4)

where π1 + π2 = 1. To obtain the solution for this model means to estimate the pa-

rameters in Eq. (4). Suppose we have N sequences for each category, thus the object

function G to be optimized is the product of the likelihood for each sequence Gn, i.e.,

G =
N∏

n=1

2∑
k=1

πkg(xn|θk). (5)
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Model Solution. Here we show how to solve Eq.(5). The object function G is to

be maximized to fit the model according to the principle of maximum likelihood esti-

mation [19]. From the point view of optimization techniques, the object function is not

concave in terms of the mixture of two different Markov chains, thus directly setting

the first order derivatives on the likelihood does not work. This model is also different

from the standard mixture model which requires the same format of sub-models in a

mixture model. Thus we use the Expectation Maximum (EM) algorithm [20] to iter-

atively maximize the likelihood function with a gradient descent algorithm. The EM

algorithm usually takes two steps, Expectation Step and Maximization Step. At each

step, the model’s likelihood function is updated in the direction of gradient ascent, and

this process is iterated until the likelihood converges. The monotonic property makes

this approach effective for the solution of many non-convex optimization problems.

Next we show how to train our model with the EM algorithm.

First, we construct the affiliated function [20]

W (Θ,Q) =
N∑

n=1

2∑
k=1

Qnk log
πkg(xn|θk)

Qnk
, (6)

where Qnk works as the hidden variable to denote the weight of data point n in terms

of model k, and
2∑

k=1

Qnk = 1. Since the log function is a concave function, according

to the Jensen’s inequality,1 we have log(
∑

x) ≥ ∑
log x. Thus logG ≥ W (Θ,Q).

The maximization of the object function G in Eq. (5) is equivalent to the maximiza-

tion of Eq. (6) because Eq. (6) is the new lower bound of the likelihood function

to be maximized. Let Θ denote the parameters in the transition probability matrix

Ak(xn,i|xn,j ; θk)(1 ≤ k ≤ 2), Q denote the hidden variable set Qnk. Let Θt and

Qt denote each group of parameters used in the tth iteration in the parameter estima-

tion process. During the maximization step, the object function of Eq. (6) is required to

be monotonically increased. Based on this, we obtain

W (Θt, Qt) ≤ W (Θt+1, Qt) ≤ W (Θt+1, Qt+1), (7)

which can be solved by using the Lagrange Multipliers [21] to find the stationary points

with argmax
Θ

W (Θ,Qt) and argmax
Q

W (Θt+1, Q) satisfied in each step.

Let C(xn,i|xn,j) denote the frequency of token transition from xn,j to xn,i in nth

sequence. Naturally, we use C(·|xn,j) to denote the frequency of the token transition

from xn,j to any tokens in the nth sequence of the model. To solve Eq.(7), we obtain

solutions in Eqs. (8–9). The complete training algorithm is shown in the table below.

Qnk =
πkg(xn|θk)
2∑

k=1

πkg(xn|θk)
, πk =

N∑
n=1

Qnk

N
, (8)

1 For any concave function f(x), if the balanced parameter t satisfies 0 < t < 1, we have

f(tx1 + (1− t)x2) � tf(x1) + (1− t)f(x2).
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Ak(xi|xj ; θk) =

N∑
n=1

Qnk

Ln(Ln−λk)
C(xn,i|xn,j)

N∑
n=1

Qnk

Ln(Ln−λk)
C(·|xn,j)

, λ1 = p, λ2 = q. (9)

Algorithm 1 EM training Algorithm

Input: Instruction sequences I0, I1, I2, ..., In of each category, ε is the parameter used for con-

vergence decision.

Output: Parameters (Θ,Q) for each category.

Procedure:
1: Initialize πk, Ak(xn,i|xn,j ; θk), Qnk(1 ≤ k ≤ 2)
2: Compute the probability for each sequence to obtain W (Θt, Qt) with Eq.(6)

3: update Qnk,πk with Eq.(8); update Ak(xn,i|xn,j) with Eq.(9)

4: if W (Θt+1, Qt+1)−W (Θt, Qt) < ε then
5: The algorithm converges, stop training

6: else
7: goto Step 2

8: end if

The above Markov-derived model has a large state space (232), and thus it seems

impractical for code sequence recognition. Fortunately, lots of tokens never or seldom

appear in the state space, and this gives us the opportunity to greatly decrease the state

space. First, we ignore never appeared tokens and prune seldom appeared tokens by

setting a threshold. It leads to sparse items in the whole state space and very sparse

transition matrices. Second, we use the data structure of hash table for storage of state

transition probabilities in order to reduce the computation cost.

4 Evaluation

We test our system offline on massive polymorphic exploit code packets and on HTTP

normal reply/request traces. First of all, we evaluate our approach on different kinds of

exploit code in terms of false negatives and false positives, and then we compare our

approach with the approach free of any semantic analysis before attribution analysis.

Next, we evaluate our approach in terms of computation time cost. Finally, we discuss

the advantages and limitations of our approach.

The massive polymorphic exploit code packets are generated by the metasploit [14]

framework (e.g., PexFnstenvSub, Pex, ShikataGaNai), and also from polymorphic en-

gines (e.g., CLET [13], ADMmutate [22], JempiScodes [23]). CLET, ADMmutate,

JempiScodes and ShikataGaNai are advanced polymorphic engines which obfuscate

the decryption routines by metamorphism such as instruction replacement and garbage

insertion. CLET uses spectrum analysis to counterattack the byte distribution analysis.

12



Opcodes of the “xor” and “fnstenv” instruction are frequently found in the decryp-

tion routine of PexFnstenvSub and also in getting the values of register of the pro-

gram counter (GetPC). Pex uses xor decoders and relative call to get PC. The normal

HTTP traffic contains 300,000 messages collected for three weeks at seven worksta-

tions owned by seven different individuals in our lab’s computers. To collect the traffic,

a client-side proxy monitoring incoming and outgoing HTTP traffic is deployed un-

derneath the web server. Those 300,000 messages contain various types of non-attack

data including JavaScript, HTML, XML, PDF, Flash and multimedia data, which ren-

der diverse and realistic traffic typically found in the wild. We run our experiments on

a 2.4GHz Intel Quad-Core machine with 2GB RAM, running Windows XP SP2.

4.1 Attribution Analysis Results

First, we evaluate our approach in different parameter settings in terms of different

combinations of p and q. Second, we compare our approach with the approach free of

making any semantic analysis beforehand. Here we do not discuss much about data

anomaly analysis, since they have been well studied in previous researches [15, 24].

Exploit Code Attribution. For each category of exploit code, we generate a cor-

responding TWMM Model, and then the new packets are fed into the model to eval-

uate the false positives and false negatives. We use 5-fold cross validation to train the

model and get the false negatives by matching the packet with the corresponding model.

During the packet attribution phase, a threshold is set to decide the attribution for this

packet. The threshold will both influence the false positives and false negatives in the

ROC curve. As is shown in Fig. 6, for different combinations of p and q, we can get

different results by setting different thresholds. Another factor to influence the attribu-

tion analysis result is the setting of the parameters p and q. There are many choices of

(p, q) combinations since p and q can be freely selected if we do not know any prior

knowledge of the structures of code sequences. It is not realistic to brute-force search all

possible (p, q) combinations. From our observations, for each token, the tokens close in

distance have much more influential power on it. That means p and q can be set to small

numbers. We do not know exactly which is the best to achieve the optimal results. In

our evaluation, tentatively, we select p, q ∈ {2, 4}. From the results on different datasets

in Fig. 6, we can infer that token relevances are different on different datasets. Besides

the parameters which influence the attribution results, the attribution analysis accuracy

varies depending on the “nature” of the exploit code. On all six datasets, the detection

accuracy can reach to above 90% in different parameter settings. This is a good indictor

to show the effectiveness of our approach. The false positive rate is up to 4.5% at most.

We may further bootstrap the misclassified packets to increase the analysis accuracy in

our future work. .

Comparison with Approach without Semantic Analysis. We compare our ap-

proach with the approach free of any semantic analysis beforehand. The same TWMM

model is constructed for the original packets but without any semantic analysis before

the attribution analysis. In the approach without any semantic analysis, the tokens used

are all one-byte tokens because we do not have any prior knowledge about the minimum

semantic cell used in the whole code sequence. Note that the changes of combinations

of (p, q) do not make much difference for detection accuracy and false negative rate in
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Fig. 6: Comparisons of semantic aware approach with the approach without filtering

noises on six data sets: (a) CLET; (b) ADMutate; (c) PexFnstenvSub; (d) JemipiScodes;

(e) Pex; (f) ShikataGaNai.
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our attribution analysis, thus we set p = 2, q = 2 when making a comparison with the

approach without semantic analysis. The results are also shown in Fig. 6. Our semantic

aware approach outperforms the approach without semantic analysis on all six data sets,

and the detection accuracy can be boosted more than 10% on all six data sets with nearly

the same false positives. The promising results show that our semantic aware attribution

analysis is effective and much better than the approach free of semantic analysis.

Table 1: Average Time Cost for Each Packet (millisecond)

Polymorphic engine Training time Decision time
CLet 5,213 7.2

Admutate 4,142 3.2

PexFnstenvMov 3,829 4.5

JempiScodes 2,487 6.8

Pex 3,152 4.1

ShiKataGaNai 7,650 4.3

4.2 Performance Evaluation

Table 1 shows the time cost during the training phase and decision phase. The training

time is the average time cost for each packet used in training, which includes the time

of semantic analysis and also the time used for the training process of statistical model.

The decision time is the average time cost for packet recognition, also including the

time for semantic analysis. The training time cost is high due to the EM algorithm used

in mixture Markov model. The EM algorithm usually needs hundreds times of iterations

before convergence especially when data do not fit a model very well (e.g., exploit code

instances generated from ShiKataGaNai). It also takes time in the semantic analysis

module, but the time cost for semantic analysis is negligible compared with the EM

algorithm in the training process. Fortunately, in order to reduce the time cost, we can

conduct the training process offline before the recognition phase.

4.3 Discussion

Here we further discuss the strengths and limitations of our approach.

Strengths. First of all, our approach can filter noises through semantic analysis in

the code sequences, and thus it has very good noise tolerance. Second, our approach is

very robust to many different kinds of attacks (e.g., coincidental-pattern attacks [25],

the token-fit attacks [26], allergy attacks [27]) due to the semantic analysis module

applied. Moreover, our approach explores the semantic features to the classification

process which leverages the “semantics” to increase attribution analysis accuracy. This

opens a door to combine the semantic analysis with statistical analysis for practical

tasks.

Limitations. First of all, since our semantic module is based on static analysis, we

cannot handle some state-of-the-art code obfuscation techniques (e.g., branch-function
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obfuscation) in the semantic module, which may mislead the feature generations be-

fore statistical analysis. This can be solved by referring to more complicated semantic

aware static/dynamic analysis techniques (e.g., symbolic execution, type inferences).

Secondly, for non-self contained exploit code [4], sometimes we fail to capture the fea-

tures of such code before statistical analysis. The code may mislead the classifier to

make the wrong decision results. This is also a problem that state-of-the-art statistical

learning techniques cannot handle. Finally, during the training phase, it may be diffi-

cult to get many (e.g., 300, 400) training data for each category in a real deployment

environment. The attribution results may decay due to lack of training instances. Fortu-

nately, compared with other models (e.g., Support Vector Machine), Markov model has

stronger recognition ability even with scare training data (e.g., 10, 20). That is why we

use Markov-derived model in our statistical modeling module.

5 Related Work

There is a large body of work in the area of exploit code analysis and detection. We

focus on two areas most related to our work: semantics-based approaches for malware

especially exploit code analysis, and statistics-based approaches for those analysis.

Semantics-based approaches. Malware including exploit code analysis has re-

ceived considerable attention from different research views. Various kinds of seman-

tic techniques have been explored by making static or dynamic analysis on the binary

code for malware detection. Emulation-based approaches [4, 28] can be used to detect

polymorphic shellcode by emulating the code execution to recognize specific behaviors

(e.g., decryption routines) through dynamic analysis. Libemu [3] is another attempt to

achieve shellcode analysis through code emulations. Gu et al. [29] present a new mali-

cious shellcode detection methodology by analyzing snapshots of the processs virtual

memory before input data are consumed. However, these emulation-based techniques

can be antagonized by many anti-emulation techniques [5]. In our work, we use the

static data anomaly techniques introduced in SigFree [15] to extract the semantics from

the malicious code sequences. Another similar work to the semantic module we use

is STIIL [24], which uses static taint and initialization analysis to detect exploit code

embedded in data streams/requests targeting web services. Christodorescu et al. [30]

present a dependency-graph based approach to mining the malicious behaviors present

in a known malware that are not present in a set of benign programs, which can be

used by malware detectors to detect malware variants. Also, Christodorescu et al. [31]

use a trace semantics to characterize the behaviors of malware as well as the program

being checked for infection, and use abstract interpretation to “hide” irrelevant aspects

of these behaviors for malware detection/classification. The motivation of our work is

very similar to these works, but ours is specific to exploit code category analysis, and

more importantly, we present a novel approach for attribution analysis which combines

the semantic analysis with statistical analysis. Spector [32] is a shellcode analysis sys-

tem that uses symbolic execution to extract the sequence of library calls and low-level

execution traces generated by shellcode. TaintCheck [33] exploits dynamic dataflow

and taint analysis techniques to help find the malicious input and infer the properties of
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worms. Kruegel et al. [34] present a technique based on the control flow structural in-

formation to identify the structural similarities between different worm mutations. This

work is close to our technique in that it analyzes the variants of worms, but they target

worms, not exploit code.

Statistics-based approaches. Song et al. [23] study the possibility of deriving a

model for representing the general class of code that corresponds to all possible de-

cryption routines, and conclude that it is infeasible. Our work combines the semantic

analysis and statistical analysis for exploit code attribution analysis, making it robust to

many noise-injection attacks (e.g., allergy attack [27]). Different statistical model have

been explored for intrusion detection systems, e.g., n-gram model [16] used in traffic

anomaly detection, Markov chain model [8] used for web traffic anomaly detection and

support vector machine [6] used for detection of drive-by-downloads attacks. A game-

theoretical analysis on how a detection algorithm and an adversary could adapt to each

other in an adversarial environment is introduced by Pedro et al. [35]. For exploit code

attribution analysis, pure statistical approach may not produce very good results due to

lack of semantic information. Recent work SAS [36] has looked at the combinations

of semantic and statistical analysis to generate signatures for polymorphic worm detec-

tion. In contrast, our work is motivated for exploit code attribution analysis instead of

for polymorphic worm detection, and the statistical model is also different, leading to

different strategies used for classification and detection.

6 Conclusion

In this paper, we present SA3, an automatic exploit code attribution analysis system. On

the testing datasets, our approach outperforms the pure statistics-based approach with

much better accuracy. To our knowledge, this is the first work that combines semantics

and statistics for exploit code attribution analysis.
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