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ABSTRACT

Web services have been greatly threatened by remote exploit code attacks, where maliciously crafted HTTP requests are
used to inject binary code to compromise web servers and web applications. In practice, besides detection of such attacks,
attack attribution analysis (i.e., to automatically categorize exploits or determine whether an exploit is a variant of an attack
from the past) is also very important. In this paper, we present SA3, a novel exploit code attribution analysis that combines
semantics-based analysis and statistical modeling to automatically categorize given exploit code. SA3 extracts semantic
features from exploit code through data anomaly analysis and then attributes the exploit to an appropriate class on the
basis of our statistical model derived from a Markov model. We evaluate SA3 over a comprehensive set of shellcode
collected from Metasploit and other polymorphic engines. Experimental results show that SA3 is effective and efficient.
The attribution analysis accuracy can be over 90% in different parameter settings with false positive rate no more than
4.5%. The novelty of SA3 is that it combines semantic analysis with statistical modeling for exploit code attribution analysis.
Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A great number of code injection attacks (e.g., buffer
overflow attacks, format string attacks) are used by crafted
HTTP requests to compromise different kinds of web
services or web applications. From the CERT [1] and
SecurityFocus [2] statistics, the remote code injection
attack is still one of the major attacks these days. In remote
code injection attacks, malicious HTTP requests/replies
can be forged to inject malicious code by masquerading
as normal requests/replies. Different kinds of shellcodes
are representatives of exploit code, which can be injected
into target services or applications through network con-
nections. Worms can take advantage of these exploit code
for infections and propagations. In this paper, the exploit
code we focus on is remote shellcode, which can be used
as the payload of a packet to spread via HTTP requests.
Throughout the paper, we use the terms remote exploit
code and shellcode interchangeably.

There are mainly two types of techniques used for
shellcode analysis and detection: the emulation-based
approach and statistics-based approach. The emulation-
based approach (e.g., [3,4]) emulates the executions of
instruction sequences, and thus, shellcode’s behaviors
Copyright © 2012 John Wiley & Sons, Ltd.
are exposed in the virtual running environment. However,
it can be antagonized by many kinds of anti-emulation
techniques [5]. For example, drive-by-downloads web
attacks [6], which target memory corruption vulnerabilities,
have to prepare the environment before their successful
launch. Improper emulations of the execution context will
lead to incorrect executions of instruction sequences and
thus fail to expose specific behaviors.

Statistical analysis is another promising method used
in network intrusion detection systems including the
remote shellcode detection and analysis [7,8]. The basic
idea of the statistical approach is to extract distinguished
features to differentiate between normal packets and
various malicious packets. The payload of a packet and
the payload header information (e.g., port number, proto-
col field) can be used as features for classification. The
disadvantage of the statistical approach is that it usually
lacks clear semantic information correlated with the
packets whose contents may result in malicious behaviors,
and therefore, it can also be evaded by different kinds of
anti-statistic techniques [7,8].

From the aforementioned analysis, we can see that
current exploit code detection and analysis techniques
still have limitations. Meanwhile, lots of shellcode variants
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appeared in the past several years according to AV-test’s
statistics [9]. Thus, in this paper, we present an automatic
semantic aware attribution analysis of remote exploits.

Attribution analysis presented in this paper is to solve
the problem of automatically categorizing exploits and
determining whether an exploit is a variant of an attack
from the past. The attribution analysis can be used in, for
example, a shellcode scanner to identify different types of
shellcode variants. We give more formal definition of
attribution analysis problem in Section 3. The significance
of this work is that it provides more information about an
attack in addition to detecting the attack. We believe that
this is also important besides telling whether a piece of
code is malicious or not.

As far as we know, such shellcode attribution analy-
sis is still lacking in the literature. Note that Hu et al.
[10] present a function-call graph-based approach to
index the large malware repositories, which can be
viewed as a kind of malware attribution analysis. Ma
et al. [11] present a methodology for inferring the
phylogeny (i.e., evolution tree) of remote code injection
exploits. Our motivation is similar to theirs, but the
differences are also very clear: (1) our work is more
specific for exploit code attribution analysis, and (2)
we emphasize the combinations of semantics and statis-
tics for solving the attribution analysis problem, which
has not been done before.

Exploit code attribution poses several challenges. First,
the emulation-based approach cannot be directly applied to
this problem because we need quantitative metrics to mea-
sure the distances of different exploit code. Second, we
cannot fully rely on the statistical approach because it is
deceptive once the statistical features (e.g., the number of
specific instructions or system calls) fail to reflect the secu-
rity-critical operations, which are probably highly related
with the shellcode behaviors. Third, how to extract the
semantics, which determine the shellcode attribution,
remains an open question. The emulation-based approach
seems a good candidate for extracting the behaviors of dif-
ferent shellcode. However, it can miss trivial differences
that existed in the behaviors of different classes of shell-
code. For example, self-contained exploit code [4] often
exhibits same behaviors by following the routine of
“decrypt-loop” mode. Furthermore, if specific behaviors
are absent in the emulation environment, it could pro-
duce more false negatives. Also, the time cost for the
emulation-based approach is usually very high compared
with static analysis.

1.1. Our approach

We present SA3, a novel automatic semantic aware attribu-
tion analysis of remote exploit code. SA3 first makes
semantic analysis on the payload of packets, and then, a
Markov-based model is used to model each type of shell-
code. Specifically, for semantic analysis, we use static data
anomaly analysis on the packet payload; for statistic
analysis, we use a two-way of mixture Markov model.
The statistical model is based on the refined exploit code
sequences, which are pruned from the whole code sequences
in the framework of static analysis. Once the model is built,
any new code can be fed into the model to get an attribution
analysis result.

Our approach is based on an observation that certain
control and data flow information is preserved in exploit
code. Thus, in our work, we use the preserved semantic-
related “features” obtained from semantic analysis
module for attribution analysis. We note that the attribu-
tion for a piece of exploit code has great correlations
with the exploit code’s semantic characteristics (e.g.,
the opcode sequence, the instruction sequence) and also
its statistical characteristics (e.g., the number of instruc-
tions, the out-degree of control flow graph). The changes
of the semantics also cause the changes of the statistic
exposure in shellcode instructions. These observations
motivate us to consider about the integration of semantic
analysis with statistical analysis by taking advantages of
both of them.

Our work stands between the semantic analysis and
statistical analysis. Instead of using dynamic emulation
techniques introduced before, our work uses the static
data anomaly analysis by making static analysis on the
instruction sequences. The advantage of this approach is
that it can capture the semantics of the exploit code with
moderate time cost. Also, it does not suffer from attacks
by anti-emulation techniques [5]. Compared with only
emulation-based approach, our work can also overcome
some inherent defects (e.g., different shellcode may
expose similar behaviors) by introducing the statistical
analysis. Compared with only statistics-based approach,
our analysis is more robust by incorporating the semantics
to avoid “black-box” learning.
1.2. Contributions

The main merits of SA3 are listed as follows. The novelty
of our work is that it combines semantic analysis with
statistical modeling for exploit code attribution analysis.
Semantic analysis is used to extract the semantic-binding
code with certain malicious intent. Statistical features can
help capture the “whole” view of a packet from macro-
scopic point. These two different views complement each
other. Our evaluation shows that our analysis result is
better than purely statistical approach, which also refutes
the conclusion of “impossibility of modeling polymorphic
shellcode [12]” in some degree.

The rest of this paper is organized as follows. First, we
introduce the related work in Section 2. Then, we formalize
the problem in Section 3. Next, we present our approach
SA3 in Section 4, followed by the detailed introduction
of semantic module and statistical module in Sections 5
and 6. In Section 7, we evaluate our approach by
experiment and discuss about the advantages and dis-
advantages of our method. Finally, we conclude the paper
in Section 8.
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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2. RELATED WORK

There is a large body of work in the area of exploit code
analysis and detection. We focus on two areas most related
to our work: semantics-based approaches for malware espe-
cially exploit code analysis and statistics-based approaches
for malware analysis.

2.1. Semantics-based approaches

Malware including exploit code analysis has received
considerable attention from different research views. Vari-
ous kinds of semantic techniques have been explored by
making static or dynamic analysis on the binary code for
malware detection. Emulation-based approaches [4,13]
can be used to detect polymorphic shellcode by emulating
the code execution to recognize specific behaviors (e.g.,
decryption routines) through dynamic analysis. Libemu
[3] is another attempt to achieve shellcode analysis through
code emulations. Gu et al. [14] presented a new malicious
shellcode detection methodology by analyzing snapshots
of the processs virtual memory before input data are
consumed. However, these emulation-based techniques
can be antagonized by many anti-emulation techniques [5].
In our work, we use the static data anomaly techniques
introduced in SigFree [15] to extract the semantics from
the malicious code sequences.

Christodorescu et al. [16] presented a dependency-graph-
based approach to mining the malicious behaviors present in
a known malware that are not present in a set of benign
programs, which can be used by malware detectors to detect
malware variants. Also, Christodorescu et al. [17] used trace
semantics to characterize the behaviors of malware as well
as the program being checked for infection and used abstract
interpretation to “hide” irrelevant aspects of these behaviors
for malware detection and classification. However, these
template-based approaches, which use some unification pro-
cess between the program variables and malware symbolic
variables, can only handle a limited set of obfuscations com-
monly used by malware writers. What we have presented
here is specially tailored to classifying polymorphic code,
which is orthogonal to malware classification in the sense
that the obfuscated payload could be from an arbitrary
known or unknown family of malware.

Another similar work to the semantic module we use is
STIIL [18], which uses static taint and initialization analy-
sis to detect exploit code embedded in data streams and
requests targeting web services. Spector [19] is a shellcode
analysis system that uses symbolic execution to extract the
sequence of library calls and low-level execution traces
generated by shellcode. TaintCheck [20] exploits dynamic
dataflow and taint analysis techniques to help find the
malicious input and infer the properties of worms. Kruegel
et al. [21] present a technique based on the control flow
structural information to identify the structural similarities
between different worm mutations. This work is close to
our technique in that it analyzes the variants of worms,
but they target worms, not exploit code.
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
2.2. Statistics-based approaches

Song et al. [12] studied the possibility of deriving a model for
representing the general class of code that corresponds to all
possible decryption routines and concluded that it is infeasi-
ble. Our work combines the semantic analysis and statistical
analysis for exploit code attribution analysis, making it robust
to many noise-injection attacks (e.g., allergy attack [22]).

Ma et al. [11] analyzed the diversity of remote code injec-
tion exploits by inferring the phylogeny (i.e., evolution tree)
of them. They use agglomerative clustering techniques to
capture the inter-family and intra-family relationships of dif-
ferent exploits. Our work is different from their work in three
respects: (1) our work emphasizes the extraction of code
semantics before measuring the distances of different exploit
code (a major contribution of our work), whereas they use
canonical string representation in the Exedit/Edit distance
for inferring the phylogeny; (2) our work profiles the exploits
into a certain category based on the trained supervised learn-
ing model while they use an unsupervised agglomerative
clustering model, and thus, the statistical models are totally
different; and (3) we extract the code semantics from data
anomaly analysis, whereas they use control flow graph to
generate structure distance, still quite different.

Different statistical model have been explored for
intrusion detection systems, for example, N-gram model
[23] used in traffic anomaly detection, Markov chain model
[8] used for web traffic anomaly detection, and support
vector machine [6] used for detection of drive-by-downloads
attacks. A game-theoretical analysis on how a detection
algorithm and an adversary could adapt to each other in an
adversarial environment is introduced by Pedro et al. [24].

For exploit code attribution analysis, pure statistical ap-
proach may not produce very good results because of the
lack of semantic information. Recent work SAS [25,26]
has looked at the combinations of semantic and statistical
analysis to generate signatures for polymorphic worm
detection. In contrast, our work is motivated for exploit code
attribution analysis instead for polymorphic worm detection,
and the statistical model is also different, leading to different
strategies used for classification and detection.
3. PROBLEM STATEMENT AND
ANALYSIS

This section first gives the formal definition of exploit
code attribution problem and then analyzes the challenge
of this problem.

3.1. Problem formalization

Let I be a set of different classes of exploit code and d be
the total number of instances (variants) generated from
a certain class. We use sij to denote the jth exploit code
instance generated from class wi, that is, sij2wi, wi2 I.
For example, in reality, a set of different types of exploit
code can be generated from different polymorphic shellcode
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engines I={CLET, CountDown, Pex, Tapion, . . .}. Different
instances of the same type of exploit code can be generated
using complicated obfuscation techniques such as polymor-
phism and metamorphism [27].

Definition. Exploit Code Attribution Problem

(1) For lots of exploit code instances sij, how is profiling
for each category wi be generated?

(2) For an unknown exploit code s, what is the attribution
of s? That is, find i such that s2wi.

3.2. Challenges

According to the definition of exploit code attribution
problem, Problem (1) is a training problem in shellcode
classification and Problem (2) is a recognition problem
after a profiling for each category of exploit code is built.
Problem (1) is the key step, whereas Problem (2) can be
easily solved after the learning model is built in Problem (1).
These two problems match well with the standard
machine learning problem. Naturally, we refer to machine
learning techniques for a solution.

With the above analysis, it seems that any statistical
approach can work in the context of exploit code attribution
analysis. However, the statistics-based approach may not
produce promising results. Song et al. [12] concluded that it
is impossible tomodel the polymorphic shellcode (see Figure 1
for an example). Polymorphic shellcode accounts the largest
Figure 1. A demonstration of pol

(a)

(b)

Figure 2. Varieties of shellcode instances. (a) Pex (each of 100 instanc
Pex refined shellcode after semantic analysis (corresponding to (a), eac
analysis (corresponding to (b), each shellcode is 60bytes). Each pixel o
part of the exploit code, and therefore, modeling all of the ex-
ploit code (e.g., for attribution analysis) is muchmore difficult.

Next, we will briefly explain why modeling polymorphic
shellcode instances is difficult. The contents of the poly-
morphic shellcode instances usually consist of several parts:
no operation (NOP) part (sled), decoder part, encrypted
payload part, return address part, and padding part (Figure 1).
Modeling the NOP part may amount to modeling random
instructions because many instructions are semantically
equivalent to “NOP.” For example, for the shellcode generated
by CLET [28], there are 55 kinds of sled used in the “NOP”
part. In the return address part, there are also many variations
of the target address by adding padding bytes before it. In
the padding part, the binary code can be filled in, without
influencing the execution results. Because of obfuscation, the
padding bytes may have similar distribution to the normal
traffic distribution. In the decoding part, different encryption
keys can generate different encrypted exploit code.

Clearly, because of great varieties in each part of poly-
morphic exploit code, the variations for a whole exploit
code packet can be even larger. These great variations
may result in the following:

(R1) No fixed patterns exposed in a whole packet.
(R2) The attribution analysis process misguided by padding

bytes and noisy bytes.

Figure 2 shows two examples of shellcode varieties.
Figure 2(a) shows a spectral image, where each pixel
ymorphic shellcode instance.

(c) (d)

es is 344bytes); (b) CLET (each of 100 instances is 168bytes); (c)
h shellcode is 60bytes); (d) CLET refined shellcode after semantic
f the image represents a byte obtained from a shellcode instance.

Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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represents a byte from a shellcode sequence generated from
polymorphic engine Pex [29]. Each row is corresponding to
a shellcode sequence with 344 bytes in length and totally
100 instances form the image. Similarly, Figure 2(b) shows
the spectral image formed by 100 sequences generated from
polymorphic engine CLET [28], where each row is a shell-
code sequence of 168bytes in length. Clearly, these images
demonstrate great varieties of different bytes in exploit
code, which imply that the shellcode attribution analysis
is a challenging problem.
4. OUR APPROACH

In this section, we present our approach SA3, an exploit
code attribution analysis—profiling malware into class
and identifying the malware class of a given malware.
We emphasize the combinations of semantic analysis with
statistical analysis. Semantic analysis is based on identify-
ing control and data flow behaviors of malware. Statistical
behavior is based on measuring the distance (similarity
metric) between the code on known malware and the code
of a potential malware. The operator used to combine the
semantic and statistical analysis is union/summation. Next,
we give more detailed introduction of our method.

4.1. Framework

In Figure 3, we describe the framework of SA3. The
core modules of SA3 are semantic analysis module
and statistical analysis module. More specially, we use
data anomaly analysis in the semantic analysis module
and a two-way mixture Markov (TWMM) model in the
statistical analysis module.

The whole workflow of SA3 can be divided into the
training stage (with the real line) and the recognition stage
(with the dashed line). First of all, the same type of exploit
code instances are fed into the semantic analysis module,
and data anomaly analysis is conducted on them. We get
the refined exploit code instances, which are actually the
instruction sequences after useless instructions are pruned.
Next, a TWMM model is built on the refined input instruc-
tion sequences. We construct a mixture Markov model
corresponding to each category of exploit code. When a
new exploit code instance comes, it will be first analyzed
through the data anomaly analysis module. Thus, the
refined code sequences are distilled as the input to the
Figure 3. SA3
flow graph (real line for training

Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
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TWMM model. The decision result is obtained by attribut-
ing the exploit code sequence to the one with the most
fitting value.

4.1.1. Semantic module.
For each category of the input instruction sequences, we

prune semantic-unrelated code existed in the code sequences.
Data anomaly analysis is used to capture the “semantics” of
the exploit code through preserving the useful instructions
while pruning the useless ones, which probably contain
padding and noisy bytes in the packets. This module is used
for solution of R2 presented in Section 2.2.

4.1.2. Statistical module.
For the pruned instruction sequences, a TWMMmodel is

built for the solution of R1 (Section 2.2). On one hand, it is
not very clear what kind of relationship exists in the instruc-
tion sequences. On the other hand, Markov model is very
suitable to model the uncertainty existed in different context.
Thus, we refer to a TWMM model, to model relationships
between the instruction sequences. The property of “two-
way mixture model” makes it more robust and powerful in
representing the varieties of different categories of code.

4.2. Relations to semantics-based approach
and statistics-based approach

So far we have mentioned (1) a data anomaly-based seman-
tic module and (2) a Markov model-based statistical module
used for code attribution analysis. Our approach is the union
of the aforementioned two modules. Actually, each module
can be viewed as an independent method and used for
exploit code (attribution) analysis.

For semantic module, there are many alternatives for
exploit code analysis, for example, control-flow graph-
based approach [16], data-anomaly-based approach [18],
and system-call-based approach [19]. Here, we adopt the
data anomaly analysis because it is an efficient and effec-
tive way to capture the semantics of exploit code through
static analysis. Note that the aforementioned semantics-
based method has extracted the semantics from code; it,
however, cannot be used directly for code attribution anal-
ysis because of the lack of statistical measurement. It must
be combined with statistical metric (e.g., edit distance [11])
to compute the similarities of different exploit code. This is
one reason leading to a natural combination of semantic
analysis with statistical analysis.
stage, dashed line for recognition stage).
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For statistical module, there are also many alternatives for
code similarities analysis, for example, naive-distance-based
approach [11], N-gram model [23], and support vector
machine [6]. Here, we present a two-way Markov model to
capture the subtle variations among exploits within each
family and great diversities across different families. Another
reason why we use this model is that it can be easily adapted
to deal with variable-length sequences with good perfor-
mance. Note that this statistics-based method can be directly
applied for exploit code attribution analysis either on the
original exploit code or on the analyzed/refined exploit code
sequences after semantic extraction. In the evaluation part,
we make a comparison of the aforementioned two cases
and show the effectiveness of semantic analysis before
applying the statistical model.

Next, we will illustrate the semantic module (Section 5)
and statistical module (Section 6) used in our approach in
great detail.
5. DATA ANOMALY ANALYSIS TO
CAPTURE CODE SEMANTICS

In this section, we introduce the semantic module used in
SA3. To be exact, we use data anomaly analysis to capture
code semantics.

The key observation is that certain control and data flow
information remain invariable to implement certain func-
tions in the exploit code. We call those control and data flow
information as “semantics.” The data anomaly analysis is
used to capture those semantics because it can preserve
the useful instructions by pruning the useless ones, which
contain padding and noisy bytes.

First of all, we use disassemble analysis to analyze the
input binary instruction sequences. In this paper, what we
focus on is HTTP message flows. In an HTTP request
message, malicious payload only exists in Request-URI
and Request-Body of the whole flow [15]. We extract
these two parts from the HTTP flows for further semantic
analysis. Then, we make disassemble analysis on these
input sequences. If the disassemble module finds consec-
utive instructions in the input sequences, it generates the
assembly instruction sequences as output.

An instruction sequence is a sequence of CPU instruc-
tions, which has only one entry point. A valid instruction
sequence should have at least one execution path from
the entry point to another instruction within the sequence.
Because we do not know the entry point of the code when
the code is present in the byte sequences, we explore an
improved recursive traversal disassemble algorithm intro-
duced by Wang et al. [15] to disassemble the input instruc-
tion sequences. For an N-byte sequence, the time complexity
of this disassemble algorithm is O(N).

After disassemble analysis, it may generate zero, one, or
multiple instruction sequences, which do not necessarily
correspond to real code. Next, we distill useful instructions
by pruning useless instructions using the technique intro-
duced in SigFree [15]. Useless instructions are those illegal
and redundant byte sequences. By using the code abstraction,
a static analysis technique, we can emulate the executions
of instruction sequences.

There are six possibly states in the state transition graph
generated from the code sequences. State U represents an
undefined variable state; state D represents a defined but
not referenced variable state and state R represents a
defined and referenced variable state. The other three
abnormal states are defined as follows: state DD represents
an abnormal state define–define, state UR represents an
abnormal state undefine–reference, and state DU represents
an abnormal state define–undefine. Basically, the pruned
useless byte sequences correspond to three kinds of dataflow
anomalies: UR, DD, and DU. When there is an undefine–
reference anomaly (i.e., a variable is referenced before it is
ever assigned with a value) in an execution path, the instruc-
tion that causes the “reference” is a useless instruction.
When there is a define–define anomaly (i.e., a variable is
assigned a value twice) or define–undefine anomaly (i.e., a
defined variable is later set by an undefined variable), the
instruction that caused the former “define” is also considered
as a useless instruction. Useful instructions are those instruc-
tions left after rigorous data anomaly analysis (as we
mentioned earlier: undefine–reference anomaly, define–
define anomaly, and define–undefine anomaly).

Because crafted noisy bytes in the packets typically do
not contain useful instructions, such irrelevant bytes in
the packets are filtered out after the useful instruction
extraction phase. The remaining instructions are likely to
be related to the semantics of the code kept in the exploit
code sequences.

Next, we further explain our motivation for useful
instruction extraction. From our observation, lots of
“useful instructions” are left invariant across different
shellcode instances even after complicated obfuscations
(e.g., junk insertion, instruction replacement). For padding
and noisy bytes, they still can be assembled into code
sequences. However, usually, it lacks clear meanings and
correlated relations for those coincidental instruction
sequences. Thus, they will be pruned after rigorous data
flow anomaly analysis. Moreover, we note that the remain-
ing useful code sequences are more likely to be similar to
those from the same category instead of those from the
other categories.
5.1. Motivating example

An example of polymorphic code analysis is shown in
Figure 4. Here, the leftmost part is the original packet
content in binary; the middle part and the right part are
the disassemble code and its corresponding binary code
of the useful instructions after removing useless ones,
respectively. For example, the disassembled code inc ecx
appeared in address 42 is pruned because ecx is defined
again in address 4c to produce a define–define anomaly.
In address 44, the contents in the memory cell with address
ecx-4A is referenced without being defined beforehand.
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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Thus, we prune this instruction because it produces an
undefine–reference anomaly.

Figure 2(c) and (d) shows two other examples. Figure 2(c)
gives the spectral image formed by the remaining instructions
of 100 instances corresponding to Figure 2(a). Similarly,
Figure 2(d) gives the spectral image formed by the remaining
instructions of 100 instances corresponding to Figure 2(b). In
both images, each pixel represents a byte from the remaining
instructions. Clearly, the lengths of the preserved code
sequences are decreased. More importantly, the fixed patterns
in the original code sequences are preserved, whereas the
bytes located in different positions with large varieties are
cut off.

From the aforementioned polymorphic shellcode
example (Figure 4) and other instances, we find that
the remaining code sequences usually consist of the
following features: (F1) GetPC: the code to get the
current program counter, usually contains opcode “call”
or “fstenv”; (F2) Iteration: a polymorphic exploit code
usually performs iterations over encrypted shellcode
using the operations such as loop, rep, and the variants
of such instructions (e.g., loopz, loope, loopnz); (F3)
Jump: a polymorphic exploit code usually contains
conditional/unconditional branch statements (e.g., jmp,
jnz, je); (F4) Decryption: for the encrypted shellcode,
certain machine instructions (e.g., or, xor) are more
often to be found in decryption routines because shell-
code needs to be decrypted before execution. These
features are preserved after semantic analysis, which
can be further used for statistical modeling. We believe
that these features can help capture the category of shell-
code, and they may exist in most of the self-contained
exploit code.

It may be attempting to use (F2, F4) as the only feature
for category analysis. Fortunately, we also have other
useful instructions preserved except for the features (F1,
F2, F3, F4). This motivates us to use the statistical model
for capturing the differences across various exploit codes
as much as possible.

For non-self-contained code, not all features (e.g., F2,
F1) exist in the shellcode (e.g., code generated from Avoid
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
UTF8/tolower [4]) because of the absence of GetPC and
self-reference operations. In these cases, the remaining
instruction sequences still can be taken as good indicators
for shellcode category analysis because noisy bytes are
filtered. The pruned bytes are more likely to mislead the
state-of-the-art statistics-based learning approaches (e.g.,
N-gram based learning [23], Markov Chain [8], support
vector machine [6]) for category analysis or detection.
Note that the length of code sequence can be viewed as
the number of dimension for the training code sequences.
It is essential to prune useless instruction in order to reduce
the dimension of training data. This makes the statistical
module much easier and more accurate by alleviating the
difficulty of “curse of dimensionality” [30].
6. MARKOV-MODEL TO CAPTURE
THE CODE SIMILARITIES

In this section, we briefly introduce the statistical model
used in SA3. To be exact, we use a two-way of mixture
Markov model to capture the code similarities. We first
introduce the reason why we use this model. Then, we
describe the construction of this model. Finally, we derive
an algorithm to solve our model.

6.1. Why Markov model?

Let Y be the set of single bytes and Yi denote the set of
i-byte sequences. X =Y ∪ Y2 ∪ Y3 ∪ Y4 is the token set in
our system because a token in a useful instruction contains
at most 4 bytes (e.g., “AAFFFFFF”), which corresponds to
the word size of 32-bit systems. A Markov chain [31] is a
sequence of random variables X1, X2, X3, . . ., satisfying the
Markov property: given the present state, the future and
past states are independent. More formally, probability Pr
(Xn+ 1 = x|X1 = x1,X2 = x2, . . .,Xn= xn) = Pr(Xn+ 1 = x|Xn= xn),
where xi is the value for each stateXi, and Pr(Xn+1 = x|Xn= xn),
is the conditional probability for transition from state Xn to
Xn+1. The possible values of Xi form a countable set S,
called the state space of the chain.
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We observe that there are close relations among the
code tokens in the refined instruction sequences. Markov
Chain [31] is a good candidate to model uncertain depen-
dencies in different contexts. In the context of code
sequence analysis, each token in a sequence can be viewed
as a state in a Markov Chain. We assume that a token in a
sequence is dependent on the token in front and also the
token next because of the great dependencies that existed
in the code sequences of the nearest neighbors.

To be exact, the dependency of token xj on xi is the
co-occurrences of token xj and xi . If xi appeared in front of xj
in the same sequence, we can say that xj is forward dependent
on xi. Otherwise, if xi appeared after xj in the same sequence,
we can say that xj is backward dependent on xi. One-order
Markov chain requires the nth token in a chain is only depen-
dent on the (n� 1)th token. However, in real code segment,
the nth token can be dependent on the (n� 1)th, (n� 2)th,
. . ., (n� p)th tokens in a sequence, and also related to
(n+1)th, (n+3)th, . . ., (n+ q)th tokens. We do not know
what is the value of p and q beforehand.

In real exploit code, one instruction may be dependent
on both tokens that appeared in the front or the back. In
order to capture both forward and backward relationships,
we define two kinds of relationships (forward dependency
and backward dependency) in our model. We call them
“bidirectional dependence.” Our Markov-derived model
is named as TWMM model.

First, we define the forward dependence; that is, the
nth token is depended on consecutive p tokens in front.
Next, we define the backward dependence; that is, the
nth token is dependent on the next consecutive q tokens.
Then, parameters pi(i = 1, 2) are used to make a balance
between them, where p1 + p2 = 1. Parameter p plays a role
to balance the two dependencies. Moreover, by utilizing
the statistical optimization theory, the optimized p can
be found automatically.

Figure 5 shows an example, where token 96 is forward
dependent on p (p= 2) tokens (83C6, 01) in front and also
backward dependent on next q (q= 3) tokens (40, 96, 46).
6.2. Model construction

First, we construct a TWMM model for each category of
code sequences. Second, after a new code sequence is fed
into the model, we attribute it to the class with the highest
fitting value. However, if the highest fitting value is still
less than a certain threshold, we will attribute it to the
normal sequence. Here, the fitting value is the accumulation
of probabilities, which reflects the matching score from a
code sequence to the model.
Figure 5. Explanation of depe
Next, we show how to compute the probability for a
code sequence. The probability of a code sequence can
be decomposed into the product of the probability of each
token in a sequence. For different tokens appeared, there is
a transition matrix to label the probability from one token
to another. Hence, p-forward tokens’ transition probability
to a specific token is the probability from front p tokens’
transition probability to this token. Similarly, q-backward
tokens’ transition probability to a specific token is the
probability from next q tokens’ transition to this token.

In forward model, the ith token’s probability is com-
puted through product of the p-forward tokens’ transition
probability to this token. Similarly, in the backward model,
the ith token’s probability is computed through the product
of the q-backward tokens’ transition probability to this
token. The probability is a product of p(Ln� p) values in
the forward model and a product of q(Ln� q) values in
the backward model, where Ln is the length for the nth
code sequence. Therefore, the p(Ln� p) root is needed
for computing the sequence probability in forward model,
and q(Ln� q) root is needed in backward model.

More formally, let xn,i denote the ith token in the nth
sequence, A1(xn,i|xn,j; θ1) denote the transition probability
from token xn,j to token xn,i in forward model θ1, and A2

(xn,i|xn,j; θ2) denote the transition probability from token
xn,j to token xn,i in backward model θ2. Because the same
token can be transferred to different tokens, the sum of
such transition probability should be normalized to 1,
that is,

X
xn;i

Ak xn;i xn;j; θk
�� � ¼ 1 k ¼ 1; 2ð Þ�

(1)

Let g(xn|θ1) and g(xn|θ2) denote the probability for the
nth sequence’s matching scores in the forward model and
backward model, respectively. Thus, we have

gðxn θ1j Þ ¼
YLn
i¼pþ1

YLn�p

j¼i�p

A1ðxn;i xn;j; θ1
�� � !

1
Ln�pð Þp (2)

gðxn θ2j Þ ¼
YLn�q

i¼1

Yiþq

j¼iþ1

A2ðxn;i xn;j; θ2
�� � !

1
Ln�qð Þq (3)

Next, by combing g(xn|θ1) and g(xn|θ2) in a balanced
way, we have Gn to denote the matching score for nth
sequence, that is,
ndence in Markov model.

Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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Gn ¼
X2
k¼1

pkg xn θkj Þ;ð (4)

where p1 + p2 = 1. To obtain the solution for this model
means to estimate the parameters in Eqation (4). Sup-
pose that we have N sequences for each category; thus,
the object function G to be optimized is the product of
the likelihood for each sequence Gn, that is,

G ¼
YN
n¼1

X2
k¼1

pkg xn θkj Þð (5)

6.3. Model solution

Now, we show how to solve Equation (5). The object
function G is to be maximized to fit the model according
to the principle of maximum likelihood estimation [32].
From the point view of optimization techniques, the object
function is not convex in terms of the mixture of two dif-
ferent Markov chains, thus directly setting the first order
derivatives on the likelihood does not work. This model
is also different from the standard mixture model, which
requires the same format of sub-models in a mixture model.
Thus, we use the Expectation Maximum (EM) algorithm
[33] to iteratively maximize the likelihood function with a
gradient descent algorithm.

The EM algorithm usually takes two steps, expectation
step and maximization step. At each step, the model’s like-
lihood function is updated in the direction of gradient
ascent, and this process is iterated until the likelihood
converges. The monotonic property makes this approach
effective for the solution of many non-convex optimization
problems. Next, we show how to train our model with the
EM algorithm.

First, we construct the affiliated function [33]

W Y;Qð Þ ¼
XN
n¼1

X2
k¼1

Qnklog
pkgðxn θkj Þ

Qnk
(6)

where Qnk works as the hidden variable to denote the weight

of data point n in terms of model k, and
P2

k¼1Qnk ¼ 1 .
Because the log function is a concave function, according
to the Jensen’s inequality,† we have log(

P
x)≥

P
logx.

Thus, logG≥W(Y,Q). The maximization of the object
function G in Equation (5) is equivalent to the maximization
of Equation (6) because Equation (6) is the new lower bound
of the likelihood function to be maximized.

LetY denote the parameters in the transition probability
matrix Ak(xn,i|xn,j; θk)(1≤ k≤ 2) and Q the hidden variable
set Qnk. Let Y

t and Qt denote each group of parameters
used in the tth iteration in the parameter estimation
†For any concave function f(x), if the balanced parameter t satisfies
0< t< 1, we have f (tx1+ (1� t)x2)⩾ t f(x1) + (1–t) f(x2).
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process. During the maximization step, the object function
of Equation (6) is required to be monotonically increased.
With this, we obtain

W Yt;Qtð Þ≤W Ytþ1;Qt
� �

≤W Ytþ1;Qtþ1
� �

(7)

which can be solved by using Lagrange multipliers [34] to
find the stationary points with arg maxY W Y;Qtð Þ and
arg maxQ W Ytþ1;Q

� �
satisfied in each step.

Let C(xn,i|xn,j) denote the frequency of token transition
from xn,j to xn,i in the nth sequence. Naturally, we use
C(�|xn,j) to denote the frequency of the token transition
from xn,j to any tokens in the nth sequence of the model.
To solve Equation (7), we obtain solutions in Equations (8)
and (9). The complete training algorithm is shown in
Algorithm 1.

Qnk ¼ pkgðxn θkj ÞP2
k¼1

pkgðxn θkj Þ
; pk ¼

PN
n¼1

Qnk

N
(8)

Akðxijxj; θkÞ ¼

XN
n¼1

Qnk

Ln Ln � lkð ÞCðxn;i xn;j
�� �

XN
n¼1

Qnk

Ln Ln � lkð ÞCð� xn; j
�� � ;

l1 ¼ p; l2 ¼ q

(9)
Algorithm 1. EM training Algorithm

Input: Instruction sequences I0,I1,I2, . . .,In of each category, e
is the parameter used for convergence decision.
Output: Parameters (Y,Q) for each category.
Procedure:
1: Initialize pk,Ak(xn,i|xn,j; θk),Qnk(1≤k≤2)
2: Compute the probability for each sequence to obtain W(Yt,Qt)
with Equation (6)
3: Update Qnk, pk with Equation (8); update Ak(xn,i|xn,j) with
Equation (9)
4: if W(Yt+1,Qt+1)�W(Yt,Qt)< e then
5: The algorithm converges, stop training
6: else
7: goto step 2
8: end if

The aforementioned Markov-derived model has a large
state space (232), and thus, it seems impractical for code
sequence recognition. Fortunately, lots of tokens never or
seldom appear in the state space, and this gives us the
opportunity to greatly reduce the state space. First, we
ignore never appeared tokens and prune seldom appeared
tokens by setting a threshold. It leads to sparse items in
the whole state space and very sparse transition matrices.
Second, we use the data structure of hash table for storage
of state transition probabilities in order to reduce the
memory and computation cost.
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7. EVALUATION

We test our system offline on massive polymorphic exploit
code packets and on HTTP normal reply/request traces.
First of all, we evaluate our approach on different kinds
of exploit code in terms of false positives and false
negatives, and then, we compare our approach with the
approach free of any semantic analysis before attribution
analysis. Next, we evaluate our approach in terms of
computation time cost. Finally, we discuss the advantages
and limitations of our approach.

The massive polymorphic exploit code packets are gener-
ated by theMetasploit [29] framework (e.g., PexFnstenvSub,
Pex, ShikataGaNai) and also from polymorphic engines
(e.g., CLET [28], ADMutate [35], JempiScodes [36]).
CLET, ADMutate, JempiScodes, and ShikataGaNai are
advanced polymorphic engines that obfuscate the decryption
routines by metamorphism such as instruction replacement
and garbage insertion. CLET uses spectrum analysis to
counterattack the byte distribution analysis. Opcodes of the
“xor” and “fnstenv” instruction are frequently found in the
decryption routine of PexFnstenvSub and also in getting
the values of the program counter register (GetPC). Pex uses
xor decoders and relative call to get PC.

The exploit codes are sufficiently different from each
other in terms of their semantics. The normal HTTP traffic
contains 300 000 messages collected for 3weeks at seven
workstations owned by seven different individuals in our
lab. To collect the traffic, a client-side proxy monitoring
incoming and outgoing HTTP traffic is deployed underneath
the web server. Those 300 000 messages contain various
types of non-attack data including JavaScript, HTML,
XML, PDF, Flash, and multimedia data, which render
diverse and realistic traffic typically found in the wild. We
run our experiments on a 2.4-GHz Intel Quad-Core machine
with 2-GB RAM, running Windows XP SP2.
7.1. Attribution analysis results

First, we evaluate our approach in different parameter settings
in terms of different combinations of p and q. Second, we
compare our approach with the approach free of making
any semantic analysis beforehand. Here, we do not discuss
much about data anomaly analysis because they have been
well studied in previous researches [15,18].
7.1.1. Exploit code attribution.
For each category of exploit code, we generate a

corresponding TWMM Model, and then, the new packets
are fed into the model to evaluate the false positives and
false negatives. We use fivefold cross validation to train
the model and get the false negatives by matching the
packet with the corresponding model. During the packet
attribution phase, a threshold is set to decide the attribution
for this packet. The threshold will both influence the false
positives and false negatives in the receiver operating
characteristic curve. As shown in Figure 6, for different
combinations of p and q, we can get different results by
setting different thresholds.

Another factor to influence the attribution analysis
result is the setting of the parameters p and q. There are
many choices of (p, q) combinations because p and q can
be freely selected if we do not know any prior knowledge
of the structures of code sequences. It is not realistic to
brute-force search all possible (p, q) combinations.

From our observations, for each token, the tokens
close in distance have much more influential power on
it. That means p and q can be set to small numbers. We
do not know exactly which is the best to achieve the
optimal results. In our evaluation, we tentatively choose
p, q2 {2, 4}.

From the results on different datasets in Figure 6, we
can infer that token relevances are different on different
datasets. Besides the parameters that influence the attri-
bution results, the attribution analysis accuracy varies
depending on the “nature” of the exploit code. On all six
datasets, the detection accuracy can reach to above 90%
in different parameter settings. This is a good indictor to
show the effectiveness of our approach. The false positive
rate is up to 4.5% at most. We may further bootstrap the
misclassified packets to increase the analysis accuracy in
our future work.
7.1.2. Comparison with approach without
semantic analysis.

We compare our approach with the approach free of
any semantic analysis beforehand. The same TWMM
model is constructed for the original packets but without
any semantic analysis before the attribution analysis. In
the approach without any semantic analysis, the tokens
used are all 1-byte tokens because we do not have any
prior knowledge about the minimum semantic cell used
in the whole code sequence.

Note that the changes of combinations of (p, q) do not
make much difference for detection accuracy and false
negative rate in our attribution analysis; thus, we set p= 2,
q= 2 when making a comparison with the approach
without semantic analysis. The results are also shown in
Figure 6. Our semantic aware approach outperforms the
approach without semantic analysis on all six data sets,
and the detection accuracy can be boosted more than
10% on all six data sets with nearly the same false posi-
tives. The promising results show that our semantic aware
attribution analysis is effective and much better than the
approach with no semantic analysis.
7.1.3. Across category testing.
In the previous subsections, each exploit code is tested

against its own category to obtain accuracy. In order to
have a more complete assessment of our approach, we
also carry out the experiments across categories and
report the false negatives here. Similar to the previous
experiments, we try different parameter settings, and we
tentatively set p, q2 {2, 4}.
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/sec
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Figure 6. Comparisons of semantic aware approach with the approach without filtering noises on six data sets: (a) CLET; (b) ADMutate;
(c) PexFnstenvSub; (d) JemipiScodes; (e) Pex; (f) ShikataGaNai.
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Confusion matrix is a specific table layout that allows
visualization of the performance of a classification algo-
rithm. Each column of the matrix represents the instances
in a predicted class, while each row represents the instances
in an actual class. The (j, i) element of a confusion matrix
shows the percentage of instances from category i is labeled
as category j. Clearly, the diagonals of the confusion matrix
(i.e., (i, i) element) indicate the percentages of the correctly
labeled instances, whereas the off-diagonals indicate the
percentages of incorrectly labeled instances.

Figure 7(a–d) shows the confusion matrices on different
combinations of parameters of p and q. The color bar here
shows the value scales (0–100%) of confusion matrices.
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
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For demonstration purpose, each color is corresponding
to a value for an element of a confusion matrix. For
example, the red color means that the value is large
(approaching 100%), and the blue color means that the
value is small (approaching 0%). We use Figure 7(a) to
further illustrate the meanings of the confusion matrix.
For the first column, the values of confusion matrices are
[91.2%, 1.8%, 1.76%, 1.74%, 1.77%, 1.73%]. This is
corresponding to the six categories used in our evaluation.
This column is “CLET.” According to our definition, in the
predicted results of the actual exploits from category
“CLET,” 91.2% are labeled as “CLET,” whereas 1.8% are
labeled as ADMutate, 1.8% are labeled as PexFnStenvSub
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Figure 7. Comparisons of confusion matrices on different parameter settings. Six rows/columns are corresponding to the results
obtained from CLET, ADMutate (ADMu), PexFnstenvSub (PexFn), JemipiScodes(Jem), Pex, ShikataGaNai(ShiKa). (a) p=2, q=2;

(b) p=2, q=4; (c) p=4, q=4; (d) without filtering.
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(PexFn), and so on. Moreover, 91.2% is the true positive for
category “CLET,” and [1.8%,1.76%,1.74%,1.77%,1.73%]
are the false negatives for the exploits from category “CLET”
mislabeled as the other five categories.

Clearly, the diagonals of all confusion matrices are very
strong. For the off-diagonal elements, the largest false nega-
tives are produced between category PexFnstenvSub and
Pex, which is 8.2% when p=2, q=2. There are also false
negatives produced among categories CLET, ADMutate,
and JemipiScodes, which is 4.3% at most when p=2,
q=2. Similar to the previous results, different combinations
of (p, q) also influence the false negatives. Note that there is
a tradeoff between the false positives and false negatives. In
our approach, we tune parameters to reduce the false posi-
tives as much as possible, and therefore, the false negatives
are a little higher here.

7.1.4. Byte entropy-based approach for category
analysis.

Statistical test (e.g., entropy test) is proposed for detect-
ing packed or encrypted malware. Here, we also use the byte
entropy test [37] to measure the randomness of the distribu-
tion of the bytes in different exploits. We use the entropy
Entropy Xð Þ ¼ �
X
X

Pr xð ÞlogPr xð Þ; (10)

where X is the exploit sample and Pr(x) is the probability
Pr(X = x).

In our experiments, we measure the byte entropy of
different shellcode instances. We examine the entropy
values to distinguish among the exploits from different
categories. The mean and standard deviations of the byte
entropy scores are listed in Table I. The mean scores for
exploits from different categories are very similar. For
example, the mean score (4.798) for exploits from cate-
gory Pex can fall well within one standard deviation of
those from the other category (PexFnstenvMov), which
is 4.803� 0.015 (i.e., 4.788–4.818).

With these results, the byte entropy test is unable to
distinguish the exploits from different categories. This
indicates that simple statistical test does not work for
the category analysis problem. In our approach, we use
semantic aware statistical model to make a differentiation
of them.
Security Comm. Networks (2012) © 2012 John Wiley & Sons, Ltd.
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Table I. Byte entropy results.

Polymorphic engine Mean Variance

CLET 4.486 0.052
ADMutate 4.422 0.063
PexFnstenvMov 4.803 0.015
JempiScodes 4.723 0.014
Pex 4.798 0.126
ShiKataGaNai 4.982 0.272
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7.2. Performance evaluation

Table II shows the time cost during the training phase and
decision phase. The training time is the average time cost
for each packet used in training, which includes the time
of semantic analysis and also the time used for the training
process of statistical model. The decision time is the
average time cost for packet recognition, also including
the time for semantic analysis.

The training time cost is high as a result of the use of the
EM algorithm in the mixture Markov model. The EM
algorithm usually needs hundreds of iterations before con-
vergence especially when data do not fit a model very well
(e.g., exploit code instances generated from ShiKataGaNai).
It also takes time in the semantic analysis module, but the
time cost for semantic analysis is negligible compared with
the EM algorithm in the training process. Fortunately, in
order to reduce the time cost, we can conduct the training
process offline before the recognition phase. The recognition
phase is very efficient.

7.3. Discussion

Here, we further discuss the strengths and limitations of
our approach.

7.3.1. Strengths.
First of all, our approach can filter noises through seman-

tic analysis in the code sequences, and thus, it has very good
noise tolerance.

Second, our approach is very robust to many different
kinds of attacks (e.g., coincidental-pattern attacks [38],
the token-fit attacks [39], and allergy attacks [22]) due to
the semantic analysis module applied. Moreover, our
approach explores the semantic features to the classification
Table II. Average time cost for each packet (ms).

Polymorphic engine Training time Decision time

CLET 5213 7.2
ADMutate 4142 3.2
PexFnstenvMov 3829 4.5
JempiScodes 2487 6.8
Pex 3152 4.1
ShiKataGaNai 7650 4.3
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process, which leverages the “semantics” to increase attribu-
tion analysis accuracy. This opens a door to combine the
semantic analysis with statistical analysis for practical tasks.

Finally, during the training phase, it may be difficult to
get many (e.g., 300, 400) training data for each category
in a real deployment environment. The attribution results
may decay because of the lack of training instances.
Fortunately, compared with other models (e.g., support
vector machine), Markov model has stronger recognition
ability even with scare training data (e.g., 10, 20). That is
why we use Markov-derived model in our statistical
modeling module.
7.3.2. Limitations.
First of all, because our semantic module is based on

static analysis, we cannot handle some state-of-the-art code
obfuscation techniques (e.g., branch-function obfuscation)
in the semantic module, which may mislead the feature
generations before statistical analysis. This can be solved
by referring to more complicated semantic aware static/
dynamic analysis techniques (e.g., symbolic execution,
type inferences).

Secondly, for non-self-contained exploit code [4] and
complicated obfuscated metamorphic exploit code, some-
times we fail to capture the features of such code before
statistical analysis. The code may mislead the classifier
to make the wrong decision results. This is also a prob-
lem that state-of-the-art statistical learning techniques
cannot handle.

Finally, our semantic module based on static analysis is
simplistic. It does not take branch into consideration while
pruning exploit code. The define–define anomaly, for
example, mentioned in Section 3 is very likely to be one
variable being assigned differently in two branches.
Simply pruning either one of the two definitions may lead
to inaccuracy. In other words, a better static analytic module
including control flow and data flow analysis can be used to
strengthen the robustness of the semantic module.
8. CONCLUSION

In this paper, we present SA3, an automatic exploit code
attribution analysis system. The novelty of SA3 is that it
combines semantic analysis with statistical modeling for
exploit code attribution analysis.

We use data anomaly analysis to extract the seman-
tics from the exploit code sequences. We also derive a
novel Markov model to modeling the pruned exploit
code sequences. These two analysis help to capture the
characteristics of the exploit code used for exploit code
attribution analysis.

The comprehensive experiments show that our approach
outperforms the pure statistics-based approach with much
better accuracy. Our evaluation results also refute the
conclusion of “impossibility of modeling polymorphic
shellcode [12]” in some degree.
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