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Abstract
Fuzzing is an increasingly popular technique for testing software functionality and
identifying security weaknesses. Recent research has primarily focused on improving the
effectiveness and efficiency of fuzzing. To make fuzzing more effective, researchers apply
different methods, such as diverse initial seeds, varied mutation strategies, and different
feedback to help produce better test cases. To make fuzzing more efficient, many research
projects design specialized operating systems or parallel fuzzers to speed up the fuzzing
process and accelerate bug detection.

However, there are still some limitations in current fuzzing approaches. Firstly, most
existing approaches, mutation-based and generation-based, have problems in exploring
program states for software that requires structural input, especially when considering
syntax and semantics. Mutation-based fuzzers lack an understanding of the test case
format, often resulting in broken test cases and wasted time. Generation-based ones
do not utilize feedback, such as code coverage, to guide the program state exploration,
leading to repetitive testing of the same part of the code. Secondly, while parallel
fuzzing is widely adopted to speed up bug detection, existing parallel approaches are
built on top of synchronous serial fuzzers and rely on periodic synchronization to enable
collaboration among multiple instances. The serial design of the fuzzer might waste CPU
power due to blocking I/O operations. Additionally, the synchronization of fuzzing states
between multiple instances presents a challenge, as untimely synchronization can result
in suboptimal strategies while synchronizing too frequently creates excessive overhead.

To address the first limitation, we turn our attention to language processors, such
as compilers and interpreters, as they require inputs following specific syntactic and
semantic rules. To effectively fuzz language processors, we are required to not only
generate high-quality test cases for them, but also find a unified way to handle the
different features, such as syntax and semantics, in multiple languages. As our first step,
we focus on Database Management Systems (DBMSs) since they take a domain-specific
language, Structure Query Language (SQL), as input. Empirical study shows that the
syntactic and semantic accuracy of test cases is crucial for detecting bugs in DBMSs,
especially those hidden within complex logic. Therefore, we design a fuzzing framework
called Squirrel that uses a lightweight IR to generate syntactically correct SQL test
cases and utilizes an instantiator to validate the test cases for DBMSs. By conducting
experiments with real-world DBMSs, the results demonstrate that Squirrel not only
produces accurate test cases but also has the ability to detect bugs in deep logic.

Then, we generalize our approaches used for DBMS fuzzing and build a generic
language processor fuzzing framework called PolyGlot. Our framework takes the
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specification of a language as input and casts it to IR’s specification. Test cases are then
transformed into IR statements, removing any language differences, followed by mutations
and validations. Evaluation of PolyGlot shows that it can generate high-quality inputs
to test various language processors and effectively detect bugs.

To address the second limitation, we investigate the current parallel fuzzing architec-
ture and introduce µFuzz, a microservice-based fuzzing framework. µFuzz breaks the
serial fuzzing loops into concurrent services, each with multiple workers, making more
efficient use of CPU power. Besides, µFuzz eliminates the synchronization of fuzzing
states by partitioning the states across different services, allowing for optimal global
decision-making.

Our research focuses on enhancing the current fuzzing approaches in both effectiveness
and efficiency. We design Squirrel and PolyGlot to improve fuzzing effectiveness by
producing high-quality test cases that require structural formats. Moreover, we introduce
µFuzz as the first attempt to improve fuzzing efficiency through the implementation of
microservice architecture. More importantly, we have found 239 newly identified bugs
and got 30 CVEs assigned, demonstrating the practicality of our methods in testing
real-world software.
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Chapter 1 |
Introduction

Security Bugs in software can not only be harmful to users’ experience, but also lead to
serious consequences, for example, attackers can exploit bugs to gain complete or partial
control of user devices or steal sensitive information. To prevent malicious attacks, many
organizations and communities, which implement or use public software and libraries,
invest much effort in detecting and fixing security bugs. In addition, many techniques
are developed to help make software secure, e.g., static analysis, taint analysis and range
analysis.

1.1 Background
Fuzzing is a technique used in software testing that involves running the target software
repeatedly with random inputs. In recent years, fuzzing has been widely adopted as
a software-testing technique to detect security issues [40, 73, 144]. Compared to other
software testing techniques, fuzzing has a significant advantage: it ensures high throughput
while needing less manual effort and pre-knowledge of the target software [138]. Moreover,
fuzzing is verified to be practical enough to detect security issues in critical software and
libraries. For example, Google implemented OSSFuzz [42] and found more than 36,000
bugs in over 550 popular software since 2016.

Previous research on fuzzing has primarily focused on scaling up the approach by
enhancing the internal components, especially the test case generation. Based on how
to produce test cases, state-of-the-art fuzzing can be categorized into two categories:
generation-based and mutation-based. In generation-based approaches, developers create
a formal model that precisely understands the definition of input data [151]. Based on this
model, the fuzzer enumerates all possible inputs to test the software’s functionality and
identify bugs. On the other hand, mutation-based approaches rely on random mutation,
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like bit flip, to create new test cases from existing test cases. The key to producing an
effective test case is making it slightly different from the valid data so it can trigger
unexpected behaviors, such as execution crashes and assertion failures, in the software
instead of making the data too invalid, which will be discarded quickly. Mutation-based
fuzzers also utilize feedback, like code coverage, to guide the exploration of the input
space.

To further improve the fuzzers, researchers also set sight on the scale-out approach,
e.g., adding more fuzzing instances into the fuzzing system and improving collaborating
methods. The scale-out approach such as parallel fuzzing allows us to concentrate
the original multi-group fuzzing resources into one group to improve the efficiency of
exploration further. It optimizes the use of resources and shortens the overall time
required for fuzzing, making it a popular choice in the industry. For instance, Google
utilizes a parallel fuzz infrastructure for continuous integration and delivery (CI/CD)
testing of newly submitted code. [45]

1.1.1 Generation-based fuzzing

Figure 1.1: The workflow of Generation-based fuzzing.

Figure 1.1 shows the workflow of generation-based fuzzing. The process begins with
a specification detailing the file format or protocol, from which test cases are created.
Fuzzers then execute these generated test cases on the target software, discovering any
bugs that exist.

Previous studies have demonstrated that generation-based fuzzing can produce high-
quality test cases for testing complex input-based software, such as compilers and
protocols. For example, CSmith [141] is a generation-based fuzzer for C compilers and it
found over 400 previously unknown compiler bugs.
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Figure 1.2: The workflow of Mutation-based fuzzing.

1.1.2 Mutation-based fuzzing

Figure 1.2 illustrates the process of mutation-based fuzzing. The Fuzzer first selects a
test case from the corpus, a collection of test cases. The mutator then applies pre-defined
strategies, such as bit flipping, to mutate the test case. Next, the fuzzer executes the
mutated test case and gathers feedback from the execution. Finally, it evaluates the test
case based on the feedback and updates the corpus accordingly.

The advantage of mutation-based fuzzing is fast and easy to implement. It requires
a minimal understanding of the input format of the target software. Although the
mutation strategies employed are simple, they can still effectively detect bugs through
feedback-based test case evolution. Recent research has shown that the mutation-based
fuzzing approach is effective in discovering bugs [108].

1.1.3 Parallel fuzzing

Instead of enhancing internal components, parallel fuzzing attempts to concentrate
multi-group computational resources into one fuzzer. The state-of-the-art parallel fuzzing
techniques involve launching multiple fuzzing instances across separate processes and
periodically synchronizing the states between instances by synchronizing the corpus.
Each instance follows the same logic as a standalone fuzzer. For example, it can adopt
a mutation-based serial fuzzing loop that first takes a test case from the corpus, then
mutates it and produce a new test case, and finally runs software with that test case and
collects the feedback. Each instance maintains its own local corpus and states, and when
it receives test cases from other instances’ corpus, it updates its local fuzzing states. This
states synchronization allows one instance to catch up on the latest progress from other
instances. Thus, all instances make contributions to the program state exploration for
detecting bugs.
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The advantage of parallel fuzzing is reducing the time cost of program state exploration,
i.e., it costs less time to detect bugs. Existing projects show that parallel fuzzing is
practical in both industry and academia [19,43,54,92,144].

1.2 Motivation
Fuzzing is an increasingly popular technique to detect software security bugs. Recent
research shows that fuzzing is practical for securing software and productions. Therefore,
companies and organizations invest significant effort in building their fuzzing infrastruc-
ture. For example, Microsoft [80] and Google [43,45] built their fuzzing infrastructure
several years ago.

As fuzzing continues to be widely adopted for identifying security issues, developers
and researchers devote themselves to improving its effectiveness and efficiency. For the
effectiveness aspect, current fuzzing methods are sufficient for trivial software, but they
need to be improved for more complex systems. In particular, software that requires
inputs in structured formats presents a significant challenge for effective testing by
fuzzing, especially for those further require semantic correctness. The language processor
is a typical type of software that requires these features. The language processor can
be divided into the domain-specific processor and the general-purpose processor. A
domain-specific language processor works with a computer language that is targeted to a
particular kind of problem. It can have more features than a general-purpose language in
structure and semantics to match the specific purpose of the usages. One such example is
Database Management Systems, which are integral components of modern data-intensive
systems [55, 77, 85]. Like other complex systems, DBMSs are built with a large codebase
prone to security bugs These security bugs can have serious consequences for both
functionality and the potential for malicious attacks. Unlike other systems, DBMSs
take SQL as input, making it challenging to generate effective test cases. Generally,
DBMSs process a query in four continuous phases: parse, validation, optimization, and
execution. The parse and validation will check the syntax and semantics, respectively. If
any error occurs, the DBMS will immediately terminate the process. Thus, bugs in the
optimization and execution phases are considered deeper and more difficult to detect.

The current state-of-the-art fuzzing methods are ineffective for detecting deep bugs in
DBMSs. Existing research [106] focuses on using generation-based fuzzing approaches to
test DBMSs, and these approaches require developers to provide precise SQL grammar
as the specification to fuzzers so the fuzzer can generate syntactically correct test cases.
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While these approaches enumerate all possibilities based on the grammar, they fail to
effectively detect bugs in DBMSs due to the considerable input space and the limited
number of bugs. Different from generation-based approaches, mutation-based fuzzing
relies on the random mutation to construct new test cases from existing test cases and
utilizes feedback to guide input space exploration. However, it is difficult for mutation-
based fuzzing to construct test cases that can pass the syntactic check as it performs
random mutations on existing test cases. Further, both mutation-based and generation-
based approaches have limited ability to consider semantic correctness since they are
unaware of semantics.

General-purpose language processors, such as compilers and interpreters, also face
challenges in bug detection. These tools translate high-level programming languages into
low-level machine code, and if they contain bugs, they can result in security vulnerabilities
by translating correct programs into incorrect code. For instance, a miscompilation
in the Rust compiler caused a memory vulnerability in compiled software [24]. Like
DBMSs, general-purpose language processors require input that follows the corresponding
grammar and performs syntactic and semantic checks during the compilation process.
This makes it difficult to detect bugs that occur after the correctness checks have been
performed.

Testing general-purpose language processors using existing fuzzing approaches is
challenging. Both generic generation-based and mutation-based fuzzing have limitations.
Generation-based methods can generate test cases that conform to the grammar but
often waste time on grammar enumeration. Mutation-based methods can avoid this
problem, but mutated test cases are unlikely to pass the syntactic checks. In addition,
existing research on testing language processors has employed specialized analyses to
improve test case quality [141]. This makes the fuzzer less generically applicable when
it is highly specialized for a single programming language. However, there are over 700
programming languages [130] with different syntax and semantics, making it difficult
to use a specialized fuzzer to test a different programming language. Considering the
significant engineering work of implementing a language fuzzer(e.g., Fuzzilli [50] consists
of 43k LoC), it is unaffordable to make a specific fuzzer for each language. This presents
a trade-off between higher generic applicability and better test case quality in language
processor fuzzing.

For efficiency, most companies and organizations adopt parallel fuzzing. The state-of-
the-art parallel fuzzing runs multiple fuzzing instances of the same fuzzer and performs
periodic states synchronization so all instances can progress to the exploration. By
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utilizing more resources, a parallel fuzzer can significantly reduce testing time compared
to a single-instance fuzzer.

However, we found there are two limitations in current parallel fuzzing architecture.
First, the CPU can be idle during the fuzzing process because each instance of parallel
fuzzing is designed in a serial manner [54, 144]. For example, the typical pipeline of
AFL-based fuzzers includes test case selection, test case mutation, execution, feedback
evaluation, and looping. During these steps, if I/O blocking occurs, other steps cannot
be activated, causing a decrease in fuzzing performance. This was verified through a
measurement of the CPU usage of fuzzing tcpdump [116] with AFLPlusPlus [54], which
showed only a 70% utilization rate. After a further investigation using strace [29], it
was discovered that tcpdump was waiting for blocking system calls such as poll.

Second, the synchronization between instances is untimely. Although the instance
performs a states synchronization periodically, there are still some time windows between
2 synchronizations. During these time windows, the instance is unaware of the latest
progress made by other instances. Therefore, it use outdated states to make decision,
which can be suboptimal globally. However, too frequent synchronization also brings a
problem that introduces a high overhead.

To improve the effectiveness and efficiency of state-of-the-art fuzzing approaches,
we make efforts to construct high-quality test cases to fuzz DBMSs. We propose a
new fuzzing approach that takes advantage of generation-based and mutation-based
approaches. Our method can improve the syntactic and semantic correctness of the SQL
test cases and adopt the feedback mechanism to promote the evolution of test cases. We
also extend this approach to language processor fuzzing and provide a solution to make
fuzzing with both generic applicable and high-quality test cases. Besides, we redesign the
parallel fuzzing with the microservice architecture, which can eliminate the CPU idle and
allow the fuzzer to make optimal strategies. With our new design, parallel fuzzing can
make better use of CPU power than start-of-the-art approaches to make the exploration.

1.3 Research Goals
In this section, we summarize our research goals and then present an overview of three
research studies in this dissertation. We present our research in three parts:

1. Testing Database Management Systems with Language Validity and Coverage
Feedback.
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2. Generic Language Processor Testing with Semantic Validation.

3. Redesign Parallel Fuzzing using Microservice Architecture.

Our goal is to improve fuzzing in both scale-up and scale-out aspects. For the scale-up,
we attempt to improve certain internal components of current fuzzing and make it more
effective in detecting bugs. Although current fuzzing is practical enough for most of
the software, we still find that testing software which requires a structural input is
challenging, especially for those further require input in specific syntax and semantics,
such as language processors. As shown in the first project, our first step is related
to Database Management Systems. In this project, we investigate the challenges of
testing DBMSs and provide our solution for generating high-quality test cases during
DBMS fuzzing. Following by the DBMSs fuzzing, we expand our approach to general-
purpose language processor fuzzing, achieving both generic applicability and test case
quality. After addressing the weakness in language processor fuzzing, we focus on the
scale-out methods, which can be orthogonal to improving components. We attempt
to enhance the performance of parallel fuzzing by redesigning its architecture using a
microservice architecture, which eliminates the issue of CPU idleness and relieves the
untimely synchronization of states.

1.3.1 Testing Database Management Systems with Language Validity
and Coverage Feedback

The prevalence of Database Management Systems (DBMSs) in our data-driven world has
made their robustness a top priority. Any bugs present in these complex systems can not
only disrupt functionality but also create security bugs leading to serious consequences
such as financial loss and data theft.

Fuzzing is widely adopted to assure the quality of DBMSs. However, state-of-the-
art mutation-based fuzzing struggles to produce syntactically correct test cases, while
generation-based fuzzing cannot explore states effectively. Furthermore, neither approach
can guarantee semantic correctness. Our goal is to address these challenges and find an
effective way to fuzz DBMSs.
Adopt feedback mechanism to guide test cases evolution. The feedback
mechanism, which utilizes metrics such as coverage, helps in evaluating the usefulness
of a test case. If the test case does not produce any new results in coverage, it is
deemed uninteresting and should be discarded. Since generation-based fuzzing does
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not incorporate mutations, it is incompatible with feedback mechanisms. Therefore,
our fuzzing approach will be based on mutation-based techniques to enable a feedback
mechanism.
Improve syntactic correctness. DBMSs perform syntactic checks in parsing and
filter out incorrect SQLs. Our aim is to find deeper bugs in DBMSs, not just the
ones caused by incorrect SQLs that fail syntactic checks. To achieve this, we focus on
generating syntactically correct test cases that can pass the parsing checks. We use
a set of intermediate representations (IR) to help us in this endeavor. The process of
converting the SQL test cases into IR involves translating them into Abstract Syntax
Trees (ASTs) and then lifting them to IR. Further mutations are performed on the IRs
while preserving the syntactic structure to improve the syntax correctness.
Improve semantic correctness. Semantics describes the processes a DBMS follows
when executing a SQL. It is fragile, and any slight violation can result in errors during
executing SQLs, e.g., use a non-existing table name. For this reason, generating semantic
correct test cases is challenging. However, passing the semantic checks is crucial if we want
to detect deep bugs. Our approach uses a process called semantics-guided instantiation
to improve the semantic correctness of test cases. In the semantics-guided instantiation,
we analyze the data dependencies and reconstruct the semantics accordingly. After this
step, the test cases will likely be valid for a DBMS.

1.3.2 Generic Language Processor Testing with Semantic Validation

Language processors are considered as a foundational component of modern software.
Buggy language processors can translate even correct source codes to malfunctional
machine codes, which can cause severe consequences such as memory corruption. For
this reason, the security of language processors is important.

However, testing language processors automatically is nontrivial as they check the
validity of the input test cases. Existing specialized fuzzers are efficient in producing
high-quality test cases for a specific language processor, but they cannot be easily adapted
for other language processors. On the other hand, generic fuzzers are versatile but often
struggle to generate effective test cases. Under this dilemma, our goal is to develop a
language processor fuzzer that has both generic applicability and the ability to generate
effective test cases without sacrificing one for the other one.
Achieve generic applicability. Generic applicability makes fuzzers can be easily
implemented to different language processors. However, current fuzzers are highly
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specialized for specific language processors as they want to generate high-quality test
cases. Our goal is to find an approach that can neutralize differences in the different
programming languages. To achieve this, we define an IR which can carry necessary
syntactic and semantic properties. With a frontend generator, all programming languages
can be cast to our IR. Further operations will be performed on the IR, so that generic
applicability can be achieved.
Improve semantic correctness. Semantic correctness is crucial in fuzzing language
processors as most of the engineering work is behind the validity checks. Researchers
attempt to specialize their fuzzers for higher semantic correctness [50, 84, 141]. Our
goal is to increase the semantic accuracy of language processor fuzzing through the
implementation of a type system and scope system for our Intermediate Representation
(IR). The type system is designed to perform type inference based on semantic properties,
while the scope system helps determine the lifetime of variables. With these systems in
place, the mutated test cases can be validated, reducing semantic errors.

1.3.3 Redesign Parallel Fuzzing using Microservice Architecture

The use of parallelism in bug detection can greatly reduce the time cost by utilizing all
available resources. In theory, with more resources, the detection time can be reduced.
However, current parallel fuzzing models face limitations such as the problem of CPU
idleness during blocking I/O operations, which can negatively impact performance and
lead to low CPU utilization. Additionally, untimely synchronization of states can result
in suboptimal test case selection from the corpus. Our goal is to address these issues
through the implementation of a microservice architecture.
Microservice architecture. Microservice architecture organizes applications in a set
of collaborating services. These services can run concurrently and dynamically switch
when a service gets blocked. As each service is self-contained (i.e., it does not rely on other
services.), there is no need for synchronization between services, and the capability can
be scaled by employing multiple workers for each service. This design aims to eliminate
the limitations present in the current parallel fuzzing model.
Avoid CPU idling. Blocking I/O, which can be caused by system calls or socket
operations, is a common cause of CPU idling. In the traditional parallel fuzzing approach,
the blocking significantly impacts CPU utilization and slows down performance as the
fuzzing loop is serial and nothing can be done during the blocking time. However, by
implementing a microservice architecture, the serial components can run concurrently,
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allowing for continuous progress even during a blocking event. The fuzzing loop is
partitioned into four services: Corpus management, test case generation, test case
execution, and feedback collection, with dependencies still present (e.g., execution relies
on generation outputs). To overcome this, we use output caching to decouple the services
and allow them to run concurrently. When a service becomes stuck, other services can
continue making progress and cache their output. Once the stuck service resumes, it can
use the cached output, eliminating the need to wait for generation and maximizing CPU
utilization.
Avoid untimely states synchronization. In state-of-the-art parallel fuzzing, states
are synchronized through sharing the corpus, but during the time window between two
synchronizations, an instance may make suboptimal decisions in selecting test cases. Our
goal is to relieve the untimely synchronization with microservice architecture. With
microservice architecture, states are divided into services and then further partitioned
into workers. This allows for concurrent progress and direct updates to each worker’s
states, ensuring that decisions are always made with the latest information, and optimal
strategies are chosen globally.

1.4 Thesis Organization
In this thesis, we aim to improve both the effectiveness and efficiency of fuzzing. In
particular, we attempt to improve the quality of test cases and make it easier to implement
a fuzzer for databases management systems and language processors. Additionally, we
redesign the parallel fuzzing model and address several limitations to make it more
efficient. The first work presents an novel approach to test DBMSs, which can achieve
both high syntactic and semantic correctness in generating test cases. In the second work,
we propose a versatile fuzzing framework for all language processors with high language
validity. The third work takes advantage of microservice architecture to redesign the
current parallel fuzzing model.

The rest of the thesis are organized as follows. We present related works of of this
thesis in Chapter 2. In Chapter 3, we outline our novel approach for testing Database
Management Systems. In Chapter 4, we investigate the difficulties in testing language
processors and present a comprehensive solution. Chapter 5 describes the implementation
of the parallel fuzzing model based on microservice architecture. Chapter 6 discusses
current limitations and proposes potential improvements. In Chapter 7, we give out a
conclusion of the entire thesis.
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Chapter 2 |
Related Work

In this chapter, we present recent research related to this thesis. First, we go over several
research of improving the strategies of fuzzing. We will discuss the generic fuzzing and
domain-specific fuzzing approaches. Then we present the research of improving the
efficiency of fuzzing.

2.1 Fuzzing Effectiveness Improvement
Improving the fuzzing effectiveness focuses on enhancing the internal components of a
fuzzer, which can include test case generation, feedback, and seed scheduling. There are
mainly two types to test case generation in fuzzing: generation-based fuzzing [39, 84, 141,
142] and mutation-based fuzzing [76,136,144].

2.1.1 Generation-based Fuzzing

Generation-based fuzzing focuses on testing software that consumes structural inputs [59,
84,95,106,120]. They typically utilize a model that describes the format of the inputs to
generate structural inputs that can reach deeper logic of the software. SQLSmith [106]
uses the SQL grammar and database schemes to generate more valid queries. MoWF [95]
leverages the file format information to fuzz the deeper program code beyond the parser.
Considering the infinite input space, blindly generating test cases is inefficient for exploring
program states. For this reason, some researchers attempt to utilize feedback to guide
test case generation. Apollo [60] measures the difference in execution time to favor
generated SQL queries.

For the software which further requires semantic correctness of input, researchers
propose several approaches to improve the semantic correctness so they can find deep bugs.
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CodeAlchemist [52] proposes semantics-aware assembly to synthesize semantics-correct
javascript test cases. CSmith [141] specializes its analysis for C semantics and produces
completely correct test cases. Dewey et al. uses constraint logic programming to specify
syntactic features and semantic behaviors in test case generation [22, 23], which relies on
symbolic executions and complex constraint programming.

2.1.2 Mutation-based Fuzzing

Mutation-based fuzzing differs from generation-based fuzzing in that it performs mutation
on existing test cases to generate new ones. In this way, the fuzzer can use various
feedback information collected from the execution phase to guide its test case generation.
AFL [144] uses edge coverage to model program states to guide its mutation, which is
highly effective. The mutation strategy, feedback quality, and seed scheduling algorithm
can all influence the performance of mutation-based fuzzers. Adopting the methodology
from generation-based fuzzers, some language processor fuzzers [3] utilize language
grammar to perform constrained mutation. Other fuzzers [14, 114, 143] use symbolic
execution or concolic execution to get through complex program conditions. T-Fuzz [94]
further proposes a way to dynamically transform the program in order to remove
certain checks that are hard for the fuzzer to bypass successfully. To improve feedback
quality, researchers try to find better models for the program states. CollAFL [35]
provides more accurate coverage information by mitigating path collisions in AFL. Some
fuzzers [5, 8,16,34,37,101] use taint analysis to incorporate data flow information into
their coverage metrics. PATA [70] further proposes a path-aware taint analysis by
distinguishing between multiple occurrences of the same constraint. The learning-enabled
fuzzer Neuzz [109] leverages a surrogate neural network to smoothly approximate the
branching behavior of the program in order to generate useful test cases.

Some research attempt add constraints to feedback, so they can guide the priority of
fuzzing direction. AFLGo [10] introduces directed greybox fuzzing with the objective of
reaching a given set of target program locations efficiently. TortoiseFuzz [128] considers
the security impacts indicated by code coverage to prioritize inputs. TaintScope [127]
uses checksum as feedback guidance to help fuzz file segments. SAVIOR [18] prioritizes its
concolic execution towards the locations with potential vulnerabilities. Ijon [4] annotates
the data that represent the internal program states to guide the fuzzer.

Another way is to improve the seed scheduling algorithm [110,147]. AFLFast [12],
MOpt [11], DigFuzz [148] collect information about the test cases and prioritize those
with higher potential to reach new code regions.
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2.2 Fuzzing Efficiency Improvement
Improving fuzzing efficiency aims to make a better use of computational resources,
e.g., CPU and memory. Recent research focus on speeding fuzzing up, which allows
fuzzers to run more executions in the same amount of time with the same fuzzing
strategy [15,26,57,61,88,89,104,126]. There are two typical strategies to improve the
efficiency for fuzzing. Some projects try to speed up the single fuzzing instance by
applying optimizations on it, while other researchers focus on making progress on the
parallel fuzzing to enhance the collaboration between instances.

2.2.1 Improving Efficiency of Single Fuzzer

Improving on the speed of fuzzing is orthogonal to the fuzzing strategy. Various tech-
niques [25,88,90,126] have been proposed to improve the instrumentation of the target
program to reduce its overhead. UnTracer [88] proposes coverage-guided tracing to trace
block coverage only when new ones are discovered. Nagy et al. [90] further extend the idea
of coverage-guided tracing to support edge coverage recording. Odin [126] adopts dynamic
recompilation to prune necessary instrumentation on the fly. RetroWrite [25] uses static
binary rewriting to support high-speed coverage-guided binary-only fuzzing with an
efficient binary-only Address Sanitizer. Researchers have also explored hardware-assisted
feedback-collecting mechanisms. kAFL [105], Honggfuzz [40], and PTrix [19] utilize Intel’s
Processor Trace technology, which enables them to efficiently collect coverage feedback
with minimum overhead. Another well-explored topic is to improve the symbolic execu-
tion speed for hybrid fuzzing. Qsym [143] implements a symbolic execution engine tailed
for fuzzing. Instead of translating the instructions to the intermediate representation
and then executing them symbolically, Qsym tightly integrates the symbolic emulation
with the native execution. SymCC [97] generalizes the idea of Qsym and presents a
compiler that builds concolic execution right into the binary. In this way, the symbolic
execution engine can run natively without any interpretation. Furthermore, utilizing
QEMU, SymQEMU [98] modifies the IR of the target program before it gets translated
into the host architecture, which enables compiling symbolic execution capabilities into
the binary without access to its source code.
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2.2.2 Improving Efficiency on Parallel Fuzzing

Existing works improve the performance of parallel fuzzing also by either improving the
fuzzing strategy [20,69,96,111,129,150] or improving the fuzzing speed [139]. One popular
way to improve the fuzzing strategy is task partitioning. PAFL [69] proposes an efficient
guiding information synchronization method and statically divides fuzzing tasks based on
branching information to reduce the overlap between instances. AFLEdge [129] further
utilizes static analysis to dynamically create mutually exclusive and evenly weighted
fuzzing tasks. Another way to improve the fuzzing strategy is to combine the capabilities
of different fuzzers, which is also called ensemble fuzzing [20] or collaborative fuzzing [51].
The main idea is that different fuzzers might have different strengths on different targets.
We can fuzz the same target with different fuzzers and share their fuzzing progress
to let them help each other and achieve an overall better performance. EnFuzz [20]
designs three heuristics for evaluating the diversity of existing fuzzers and choosing the
most diverse subset to perform ensemble fuzzing through efficient seed synchronization.
Cupid [51] further proposes a collaborative fuzzing framework that can automatically
discover the best combination of fuzzers for a target. One well-known problem of parallel
fuzzing is the bottleneck of the underlying operating system. Xu et al. [139] found that
the fuzzing performance can significantly degrade when running with multiple cores
due to the file system contention and the scalability of the fork system call. Thus,
they proposed three new operating primitives that allow much higher scalability and
performance for parallel fuzzing. The current state-of-the-art fuzzers [40, 54, 73] support
persistent fuzzing mode, which reuses the same process for multiple test cases to reduce
the overhead of forking. Moreover, in-memory test cases [54] are also adopted to reduce
the I/O overhead and file system contention.
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Chapter 3 |
Testing Database Management
Systems with Language Validity
and Coverage Feedback

In this chapter, we propose Squirrel, a novel fuzzing framework that considers both
language validity and coverage feedback to test DBMSs. We design an intermediate
representation (IR) to maintain SQL queries in a structural and informative manner. To
generate syntactically correct queries, we perform type-based mutations on IR, including
statement insertion, deletion and replacement. To mitigate semantic errors, we analyze
each IR to identify the logical dependencies between arguments, and generate queries
that satisfy these dependencies. We also conduct a set of experiments to show Squirrel
has ability to effectively detect deep bugs in DBMSs.

3.1 Introduction
Database Management Systems (DBMSs) play a crucial role in modern data-intensive
systems [30, 65, 86, 100, 112, 115]. However, these systems are prone to bugs that not
only impact their functionality but also provide an opening for malicious attacks. One
particularly dangerous type of bug is the memory error, which can result in the memory
leakage or corruption in running DBMS processes, potentially leading to remote code
execution [21,64], database breaches [32,113], or denial-of-service (DoS) attacks [1,13]. For
example, the massive "Collection #1" data breach that exposed 773 million email addresses
and 21 billion passwords [58] highlights the devastating impact that memory error bugs.
This is of great concern, especially considering the high availability demands of DBMSs,
which can exacerbate the effects of memory error bugs, including the weaponization
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of non-exploitable bugs to launch DoS attacks against centralized data services like
e-commerce websites.

The traditional approach to finding bugs in Database Management Systems (DBMSs)
is generation-based fuzzing [106]. These techniques require a formal model that accurately
represents SQL (Structured Query Language). The testing tools then generate all possible
SQL queries based on this model to verify the functionality of DBMSs or detect bugs
Unfortunately, this method has limited effectiveness due to the even distribution of effort
across all SQL queries. Considering the infinite input space and rare bug-triggering
queries, this brute-force style enumeration approach is ineffective in detecting memory
error bugs in DBMSs.

In recent years, mutation-based fuzzing is a widely adopted technique for detecting
memory error vulnerabilities in software [40, 73, 81, 144]. Unlike generation-based fuzzing
techniques, which require a formal model to generate test cases, mutation-based fuzzing
uses random mutation and feedback (e.g., code coverage) to explore the input space. The
mutation-based fuzzer starts with a seed corpus and randomly mutates existing inputs,
like flipping bits, to create new variants. It runs the target program with these inputs
and identifies abnormal behaviors like crashes and assertion failures. The fuzzer also
records the code path information and prioritizes inputs that trigger new code paths
for the next round of mutation. With a large amount of effort spent on improving the
fuzzing efficiency [42, 88, 140] and effectiveness [17, 36, 68, 94], mutation-based approaches
have successfully found thousands of bugs from popular applications [108].

However, it is challenging to apply mutation-based techniques to test DBMSs, as
DBMSs perform two correctness checks, the syntactic check and the semantic check
before executing an SQL query. Specifically, the DBMS first parses each SQL query to
get its syntactic meaning. If the query has any grammar errors, the DBMS will stop
the execution and immediately bail out with an error message. Otherwise, the DBMS
further checks the query for semantic errors, like using a non-existent table, and will bail
out in any case of semantic errors. After these two checks, the DBMS creates several
execution plans and picks the most efficient one to execute the query. Therefore, to reach
the deep logic of a DBMS, the query should be correct syntactically and semantically.

The current random byte mutation techniques used by fuzzing have difficulty in
generating syntax-correct or semantically-correct inputs. For instance, AFL [144], a widely
used mutation-based fuzzer, is able to produce 20 million queries for SQLite [55] within
24 hours, but only a small portion of these queries were syntax-correct (around 30%) and
semantically correct (around 4%). However, the majority of DBMS code is responsible
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for tasks such as query plan construction, optimization, and execution, with only a small
portion dedicated to syntax and semantic checks. In fact, 20,000 semantically-correct
queries generated by AFL triggered 19,291 code branches in SQLite, while the same
number of syntax-incorrect queries only covered 50.8% (9,809 branches) of the former.
Therefore, current mutation-based fuzzing has limitations in triggering the complex logic
of DBMSs and thoroughly exploring program states.

In this chapter, we introduce a system, Squirrel, to address these challenges so that
we can effectively fuzz DBMSs. The system implements two core techniques: syntax-
preserving mutation and semantics-guided instantiation. To ensure the generated SQL
queries are syntax-correct, an intermediate representation (IR) is utilized to maintain
the query structure and information. Each IR statement contains at most two operands,
and each operand is also another IR statement. Each IR has a structure type that
indicates the syntactic structure (e.g., SELECT a FROM b), and data types (e.g., table
name). Before the mutation, our system strips concrete data from the IR and only keeps
a skeleton of operations. Then, we perform three random mutations, including inserting
type-matched operands, deleting optional operands or replacing operands with other
type-matched ones. The type-based mutation ensures the generated query has the correct
syntax. Next, the system analyzes the expected dependencies between different IR data,
such as the data in a SELECT clause being a column of the table in the FROM clause. The
stripped IR is filled with concrete data that satisfies all expected dependencies, and
translated back into SQL and fed to the DBMS for testing. Squirrel combines the
benefits of the mutation-based fuzzing (i.e., guided exploration) and the generation-based
fuzzing (i.e., high language correctness), and thus can trigger the deep logic of DBMSs
and find severe bugs.

The implementation of Squirrel consists of 43,783 lines of C++ code, primarily
focused on the integration of the syntax-preserving mutation and semantics-guided
instantiation. The code for coverage collection and input prioritization has been adapted
from AFL. The generic design of Squirrel can be utilized with other fuzzers with some
additional engineering efforts.

To understand the effectiveness of our system, we use Squirrel to test four popular
DBMSs: SQLite, MySQL, PostgreSQL and MariaDB. Squirrel successfully found 63
memory error issues within 40 days, including 51 bugs in SQLite, 7 bugs in MySQL and 5
bugs in MariaDB. As a comparison, Google OSS-Fuzz detected 19 bugs from SQLite in
40 months and 15 bugs from MySQL in 5 months [42]. We have responsibly reported all
of these bugs to the DBMS developers and received positive feedback. At the time of
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parse
validation
optimization & execution

Original query
SELECT c2, c6
FROM t1, t2
WHERE t1.c1 = t2.c5

bitflip ‘SELECT’

change table name
Database Management System

syntax error
semantic error

c1 c2
1 alice
2 bob

alice read

t1

After mutation
RELECT c2, c6
FROM t1, t2
WHERE t1.c1 = t2.c5

After generation
SELECT c2, c6
FROM t1, t2
WHERE t1.c1 = t3.c5

c5 c6
1 read
3 writet2

Figure 3.1: Challenges of testing DBMSs. A DBMS takes four steps to process one
SQL query. Among them, parse checks syntactic correctness, and validation examines
semantic validity. Random mutation unlikely guarantees the syntactic correctness, while
grammar-based generation may fail to enforce semantic correctness.

this thesis writing, all bugs have been fixed. We even get CVE numbers for 12 bugs due
to their severe security consequences, like stealing database contents.

We inspect various aspects of fuzzing, and compare Squirrel with other state-of-
the-art tools, including the mutation-based fuzzer AFL and Angora, the generation-based
tool SQLsmith, the structural fuzzer GRIMOIRE and the hybrid fuzzer QSYM. During the
24-hour testing, Squirrel successfully finds nine unique bugs while others detect one or
zero bugs. Squirrel discovers 2.0×-10.9× more new edges than mutation-based tools,
and achieves a comparable result to the generation-based tester SQLsmith. It also gets
2.4×-243.9× higher semantic correctness than other tools. These results demonstrate that
Squirrel is a highly effective tool for detecting memory error issues and outperforms
existing generation-based and mutation-based tools.

3.2 Problem Definition
In this section, we first briefly describe how a DBMS handles SQL queries. Then, we
introduce existing DBMS testing techniques and illustrate their limitations in finding
bugs hidden in the deep logic. Finally, we present our insight to solve this problem.
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3.2.1 Query Processing in DBMS

The processing of SQL queries by modern DBMSs involves four phases: parsing, validation,
optimization, and execution [79], as shown in Figure 3.1. The DBMS starts by parsing
the SQL query to determine its syntactic meaning. The parser breaks the query into
individual tokens and verifies that they conform to the grammar rules. If any syntactic
error is found, the DBMS will immediately terminate the execution and return an error
message to the client. Next, the validation phase checks the semantic correctness of the
query, such as the existence of tables in the database or the unambiguity of columns.
Most semantic errors can be detected in this phase. The query optimizer then constructs
different possible query plans and determines the most efficient one for execution in the
optimization phase. Finally, the chosen plan is executed on the database, and the result
is sent back to the client. The execution will reach the second phase if the query is
syntactically correct and will move to the last two phases only if the query is semantically
correct.
Motivating Example. The “Original query” in Figure 3.1 first joins two tables t1 and
t2, and searches for the rows where the c1 column of t1 is the same as the c5 column of
t2. For each matched row, the query returns the value of c2 and c6. The DBMS finds
that this query passes the syntactic check and the semantic check. It searches in the
database and finally returns “alice read”.

3.2.2 Challenges of DBMS Testing

The two main methods of generating SQL queries for testing DBMSs are generation-based
and mutation-based approaches Generation-based approaches construct syntactically
correct inputs using a precise grammar-model. For example, SQLsmith [106], a popular
DBMS testing tool, generates syntax-correct test cases from the abstract syntax tree
(AST) [125] directly. However, without any guidance, this method cannot efficiently
explore the program’s state space, as many queries are handled in a similar way by
DBMSs. Additionally, the generation-based approach can hardly guarantee the semantic
correctness [52], and queries with incorrect semantics will be filtered out by the DBMS
during the validation. Figure 3.1 shows a query constructed by a generator(After
generation). Although this query is syntactically correct, it cannot be executed because
the table t3 in the WHERE clause does not exist in the current database.

Mutation-based fuzzer modifies existing inputs to generate new ones. The effectiveness
of this approach is improved by utilizing feedback from previous executions to evaluate

19



the priority of the new inputs. If the feedback indicates that a particular input is of
interest, such as triggering a new execution path, the fuzzer will prioritize it for further
mutation. In this way, fuzzers will collect more and more interesting test cases and thus
can explore the program’s state space efficiently. Statistics show that random mutation
with feedback-driven works well in many software. For instance, Google’s feedback-driven
mutation-based fuzzer [73,108] has discovered over 5,000 vulnerabilities. However, this
method is ineffective in handling structured inputs like SQL or JavaScript [125] as
random mutations, unaware of grammar, may result in a syntactically incorrect input.
An example of this is shown in the Figure 3.1 where flipping a bit in the SQL keyword
SELECT leads to an invalid keyword RELECT, causing the DBMS to reject the query in
the parsing phase.

We design evaluation to understand the quality of AFL-generated SQL queries, and
the importance of syntax-correctness and semantics-correctness. Specifically, we use AFL
to test SQLite for 24 hours, which generates 20 million queries. However, only about 30%
of them are syntactically correct, and merely 4% for them can pass semantic checks. We
randomly pick 20,000 semantics-correct queries, and find that they trigger 19,291 distinct
code branches in SQLite. The same number of syntax-incorrect and semantics-incorrect
queries only reach 9,809 and 12,811 branches, respectively. These results show the low
validation rate of AFL-generated queries, and the importance of semantics-correctness for
exploring the program state space.

3.2.3 Our Approach

Our idea is incorporating both syntax-correctness and semantics-awareness into mutation-
based fuzzing to take advantage of the strengths of both generation-based and mutation-
based techniques for testing DBMSs.
Generating Syntax-Correct Queries. We design a new intermediate representation
(IR) to maintain SQL queries in a structural and informative way and adopt type-based
mutations to guarantee the syntactic correctness. Each IR statement simply contains
at most two operands, and therefore our mutation just has to handle two values. Each
statement has an associated grammar type, like SelectStmt for SELECT statement, while
each data has a semantic type, like table name. Our mutation performs type-based
operations, including inserting type-matched operands, deleting optional operands and
replacing operands with type-matched ones. We strip the concrete data from each IR,
like table names, to focus on mutating the skeleton. The IR-based mutation effectively
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Figure 3.2: Overview of Squirrel. Squirrel aims to find queries that crash the
DBMS. Squirrel first lifts queries from SQL to IR; then, it mutates IR to generate
new skeletons; next, it fills the skeleton with concrete operands; finally, it runs the new
query and detects bugs.

preserves the syntactic correctness. Some generation-based tools generate SQL queries
from the AST. However, due to the strict type-constraint and complicated operations,
mutating AST is as challenging as modifying SQL queries.
Improving Semantic Correctness. Since ensuring the semantic correctness of
generated SQL queries is proved to be NP-hard [74], we will try practical solutions to
improve the semantic correctness as much as possible. Existing generation-based tools
define a set of query templates. Each template represents a complete query and contains
specific, static constraints between operands [7]. However, due to the limited human
effort, these frameworks cannot guarantee the expressiveness of their SQL templates.
We tackle this problem through dynamic query instantiation. Given the skeleton of a
syntax-correct SQL query (i.e., without concrete operands), our method first builds its
data dependency graph according to predefined basic rules. For example, the operand of
SELECT can be a column name of the table used in FROM. Then, we try to fill the skeleton
with concrete operands whose relations satisfy the data dependency graph. With the
instantiation, the semantic correctness rate is high enough for testing DBMSs.

3.3 Overview of Squirrel
Figure 3.2 shows an overview of our DBMS testing framework, Squirrel. Given a set of
normal SQL queries, Squirrel aims to find queries that render the execution of DBMSs
crash. A query means a test case and may contain multiple SQL statements. Squirrel
starts with an empty database and requires the query to create the content. Squirrel
achieves its goal with four key components: Translator, Mutator, Instantiator, and SQL
Fuzzer. First, Squirrel selects one query I from a queue that consists of both initial
queries and saved interesting queries. Second, the Translator translates I into a vector
of IRs V . Meanwhile, the Translator strips the concrete values from V to make it a
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1 // l: left child, r: right child, d: data, t: data type
2 V1 = (Column, l=0, r=0, op=0, d="c2", t=ColumnName);
3 V2 = (ColumnRef, l=V1, r=0, op=0, d=0);
4 V3 = (Expr, l=V2, r=0, op=0, d=0);
5 V4 = (Column, l=0, r=0, op=0, d="c6", t=ColumnName);
6 V5 = (ColumnRef, l=V4, r=0, op=0, d=0);
7 V6 = (Expr, l=V5, r=0, op=0, d=0);
8 V7 = (SelectList, l=V3, r=V6, op=0, d=0);
9 // the optional left child can be DINSTRICT

10 V8 = (SelectClause, l=0, r=V6, op.prefix="SELECT", d=0);
11 ...
12 //Unknown type for intermediate IRs
13 Va = (Unknown, l=V8, r=V14, op=0, d=0);
14 Vb = (Unknown, l=Va, r=V25, op=0, d=0);
15 // the optional right child can be an ORDER clause
16 V26 = (SelectStmt, l=Vb, r=0, op=0, d=0);

Figure 3.3: IR of the running example SQL query. The corresponding AST tree is
shown in Figure 3.4.

query skeleton. Our Mutator modifies V through insertion, deletion and replacement
to produce a new IR vector V ′ — V ′ is syntactically correct. Next, our Instantiator
performs data dependency analysis of V ′ and builds a data dependency graph. Then,
the Instantiator selects new concrete values that satisfy the data dependency and fills V ′

with these values. Since the data dependency is satisfied, V ′ is likely to be semantically
correct. Finally, we convert V ′ back to a SQL query I ′ and run the DBMS with I ′. If
the execution crashes, we find an input that triggers a bug. Otherwise, if I ′ triggers a
new execution path of the program, we save it into the queue for further mutation.

3.3.1 Intermediate Representation

We design an intermediate representation (IR) of SQL to facilitate syntax-correct mutation
of queries. This involves converting SQL queries into the IR format, making mutations to
the IR representation, and then converting the mutated IR back to a new SQL query for
execution. Our design of the IR aims to achieve three goals: the IRs can represent any
SQL statements (expressive); the format and operation of IRs are uniform (general);
the translation between IR and SQL is efficient (simple).

The IR is in the static single assignment (SSA) form. A query, or a test case, contains
one or more IR statements. Each statement is an assignment, where the left-hand side is
the destination variable and the right-hand side is either a literal or an operator with
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operands. We add the following fields in IR to store the necessary information.

• ir_type: the type of one IR statement. This type is based on the corresponding
node in the AST, like column type for column names or expr type for expressions.
We also define a special type Unknown to represent intermediate statements that have
no corresponding node in the AST.

• operator: consisting of SQL keywords [121] and mathematical operators [122].
It indicates the operation the IR performs and includes three parts: the prefix
op_prefix, the interfix op_mid and the suffix op_suffix. For example, the IR of
"CREATE trigger BEGIN list END" has prefix CREATE, interfix BEGIN and suffix END.

• left_operand, right_operand: the operands of the IR operator. The operand is
either another IR statement, or can be NULL if the operand is optional or not required.

• data_value: the concrete data the IR carries, like table name t1.
• data_type: data type, like ColumnName for column names.

Figure 3.3 shows the IRs of our motivating example in Figure 3.1 (Original query).
The corresponding AST is given in Figure 3.4. V1 and V4 represent the column names
c2 and c6, which are corresponding to nodes 1 and 4 in Figure 3.4. They do not
contain any operator or operand but have the ColumnName data type and proper data
values. V2 and V5 define references to columns (V1 and V4), and V3 and V6 create
two expressions. Each of them only has one operand. V7 describes the parameter list
of SELECT, including c2 and c6. V8 represents the SELECT clause, which could have
DISTINCT as its left operand (NULL here). SELECT appears before the left operand, so it is
the operator prefix. Since our IR only allows at most two operands, we have to use two
intermediate nodes, Va and Vb, to connect three nodes 8 , 14 and 25 to construct the
IR of SelectStmt. Their ir_types are set to Unknown. Finally, V26 defines the SELECT
statement, which is node 26 in Figure 3.4.

Our IR is just a sequence of assignment statements. This linear representation,
different from tree or graph structures (like AST), helps developers to adopt unified and
simple mutation strategies. We can perform statement insertion, deletion and replacement
while keeping the syntactic correctness.

3.4 Syntax-Preserving Mutation
We classify tokens in an SQL query into two groups based on their functionalities. SQL
keywords and mathematical operators define what operations to be performed, and we
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Figure 3.4: AST of the running example. Squirrel parses the SQL query and
represents it in AST, and finally translate AST to IR.

call these tokens structure. Other tokens specify the targets of defined operations, and
we call them data. Data can be literal that makes basic sense, like a constant value 1, or
can express semantic meaning, like table names.

We observe that changing structure tokens has more impact on the DBMS execution
than that of changing data tokens. The difference comes from two reasons. First, altering
structure will change the operations of the query, and thus trigger different functions, while
a DBMS may use the same logic to handle different literal data. For example, SQLite
takes almost the same path to process query A:"SELECT c FROM t WHERE c=1" and
query B:"SELECT c FROM t WHERE c=10", but uses significantly different code to handle
C:"SELECT c FROM t WHERE c>1". Second, randomly modifying semantic-related data
is likely to generate a semantically incorrect query, which a DBMS will refuse to execute.
For example, replacing c in query A with the column in another table leads to an invalid
query. In either case, random data mutation is less productive than random structure
mutation.

Therefore, we strip data from the query IR and apply mutation mainly on structures.
We leave the data modification in Section 3.5.

3.4.1 Structure-Data Separation

We walk through the IRs to replace each data with a predefined value based on its
type data_type. Specifically, we replace semantic data with string “x”, change con-
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SELECT x,x FROM x,x WHERE x.x = x.x;

V8 = (SelectClause, l=0, r=V6, op.prefix="SELECT”…);
Va = (Unknown, l=V8, r=V14, op=0, d=0);
Vb = (Unknown, l=Va, r=V25, op=0, d=0);
V26 = (SelectStatement, l=Vb, r=0, op=0, d=0);

SELECT x,x FROM x,x WHERE x.x = x.x ORDER BY x;

Vc = (OrderbyClause, …);
V26 = (SelectStatement, l=Vb, r=Vc, op=0, d=0);

SELECT count(x,x) FROM x,x WHERE x.x = x.x;

Vc = (CountClause, …);
V8 = (SelectClause, l=0, r=Vc, op.prefix="SELECT”…);

SELECT x,x FROM x,x;

Vb = (Unknown, l=Va, r=0, op=0, d=0);

Insertion

Replacement

Deletion

Figure 3.5: Mutation strategies on IR programs. We have type-based insertion and
replacement, and deletion of optional operands.

stant numbers to 1 or 1.0 and update all strings to “a”. Therefore, after the separa-
tion, the running example “SELECT c2,c6 FROM t1,t2 WHERE t1.c1=t2.c5” becomes
“SELECT x,x FROM x,x, WHERE x.x=x.x”. Both query A and B become “SELECT x
FROM x WHERE x=1”, while C is changed to “SELECT x FROM x WHERE x>”.
Storing IR in Library. We use a dictionary called IR library to store various IRs.
The key of the dictionary is the IR type, while the value is a list of IRs. IRs in one list
have the same type, and their structures are exclusively different. For example, after
separation, queries A, B, and C have the same SelectStmt type, and they should be
stored in the same list. We remove query B from the list as it shares the same structure
as A. Whenever we need an IR of a certain type, we find the corresponding list from
the dictionary and randomly return one element. As we show in Figure 3.2, Squirrel
accepts seed queries to initialize the IR library. Whenever Squirrel finds that the
generated IR has a new structure, we add it to the corresponding list in the library. We
set a limit on the maximum number of IRs in the library to avoid excessive memory
usage.

3.4.2 Type-Based Mutation

We define a set of type-based mutations to update the left and right operands of an IR
or the IR itself. Our mutation focus on operands as other members of the IR cannot be
easily changed: the operator is closely related to the IR type, like the SELECT operator in
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SelectClause IR, while data_type is decided by its position in the query, like a variable
after "CREATE TABLE" must be a table name. Therefore, our mutations either operate
on the whole IR or modify its operands. Specifically, for each IR v in the IR program we
perform the following mutations with certain probability:

• Insertion adds an IR into an appropriate position of v. If the left child of v is empty,
we randomly pick an IR w from the IR library that shares the same type as v. If
the left child of w is not empty, we use it as the left child of v. The same operation
applies to the right child.

• Replacement changes v or its operands. We first randomly pick one IR w of the
same type as v from the IR library. Then we copy the children of w to v, or we can
replace v with w and update all v’s references to w.

• Deletion removes a v as a whole by simply replacing it with an empty IR. The same
operation can be applied to its children.

Since we essentially manipulate IRs based on their types, the syntactic correctness is
preserved with a high probability. To further improve the syntactic correctness, we
convert the mutated IRs back to an SQL query and perform syntax validation with our
parser. If the parsing succeeds, we conclude that this query has no syntax errors and will
use it in the next stage. Otherwise, we discard the new IRs and try to generate another
one.

Figure 3.5 shows an example of mutating the IRs of our running example to generate
three new queries. Specifically, we insert an ORDERBY clause to the right child of V26; we
replace the right child of V8 with a CountClause, where the new query counts the rows
of the original results; we delete the right child of Vb to effectively remove the WHERE
clause. All three new IRs are syntactically correct.
Unknown Type. As we mention in Section 3.3.1, some IRs have type Unknown as they
do not have corresponding nodes in the AST. We use Unknown type to perform fuzzy
type-matching without searching for concrete types, which may accelerate our query
generation. The syntax validation, which always needs one-time parsing, is unaffected.
However, without accurate type-matching, Squirrel may create some invalid queries.

3.5 Semantics-Guided Instantiation
Semantics-correct queries enable fuzzers to dig deeply into DBMSs’ execution logic and
discover bugs effectively. However, generating semantics-correct test cases is an unsolved
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CREATE TABLE x1 (x2 INT, x3 INT)
CREATE TABLE x4 (x5 INT, x6 INT)
CREATE TABLE x7 (x8 INT, x9 INT)
SELECT x10, x11 FROM x12, x13 WHERE x14.x15 = x16.x17

Data Type Relation

x1, x4, x7 CreateTable

x1 x4 x7

x12 x13

x14 x16

x2,x3 x5,x6 x8,x9

x15

x10,x11

x17

isAnElement

isA

x2, x3 CreateColumn
x5, x6 CreateColumn
x8, x9 CreateColumn

x10, x11 UseFromColumn
x12, x13 UseAnyTable
x14, x16 UseFromTable

x15 UseTableColumn
x17 UseTableColumn

Figure 3.6: Data dependency example. This example consists of three new CREATE
statements and our running example. In Relation, we show two types of relations:
isAnElement (dashed line) and isA (solid line).

challenge for fuzzing programs that take structured, semantics-binding inputs [74].
Previous research shows that 90% of the test cases generated by jsfunfuzz [84], a state-of-
the-art JavaScript fuzzer, are semantically invalid [52]. Similar problems also exist in
DBMS testing.

We propose a data instantiation algorithm to improve the semantic correctness of
generated SQL queries. As mentioned in Section 3.4, after mutation the IR program
is a syntax-correct skeleton with data stripped. Our instantiator first analyzes the
dependency between different data, and fill the skeleton with concrete values that satisfy
all dependencies. After the instantiation, the query has a high chance to be semantically
correct.

3.5.1 Data Dependency Inference

Data dependency describes the relationship between semantic-binding data. Any unsat-
isfied dependency will make the query fail semantic checks. Figure 3.6 shows the data
dependencies among four SQL statements, including three CREATE statements and our
motivating example. Our syntax-correct mutation has replaced each variable with x. To
distinguish different x, we assign an index to each of them. These four statements contain
two types of relationships: one defines A is an element of B (isAnElement), shown as
gray-dashed lines like x2 is a column of x1; another describes that A can be B (isA),
shown as black-solid lines like x12 can be x1.
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We define a set of rules to automatically infer dependencies between data in the
query. These rules follow two principles. The lifetime principle requires us to create
SQL variables before using them, and stop using a variable after its deletion. The
customization principle requires us to consider the data types, scopes and operations to
determine the relationship. We need to refine data types mentioned in Section 3.3.1 to
accurately describe data dependencies.
Data Type. We refine each data type so that it not only describes the semantic
meaning but also reflects the usage context. Database elements in different statements,
even with the same basic type, can have different dependencies. Based on the lifetime
principle, we include the define/use information into the data type, to indicate whether
the element is a new definition or use of an existing one. For example, a table in a
CREATE TABLE clause will have CreateTable type, while the table in a FROM clause will
have UseTable type. Based on the customization principle, we also include the scope
of the data to show where to find the potential candidate values. For example, a table
in a FROM clause can be any defined table, thus having type UseAnyTable, while the
table in a WHERE clause must be one of the tables in the FROM clause, thus having the
UseFromTable type. The refined data type of a variable is determined by its position in
the AST. Therefore, Squirrel identifies and sets the data types during the query parse
and translation.

Figure 3.6 shows the refined type for each IR data. For example, x1 is a newly defined
table and thus has type CreateTable. x2 and x3 have type CreateColumn. x12 has
type UseAnyTable as it can be any defined table (x1, x4, x7), while x14 can only be
tables listed in the FROM clause. x10 can be any column of tables in FROM, while x15 can
only be the column of table x14.
Data Relation Rule. With refined data types, we can further define data relation
rules that can help automatically infer data dependencies. A relation rule is a tuple
(α, β, γ, S) of four elements: α is the relation target and β is the relation source; γ

defines the relationship; S denotes the scope of the relationship, including intraStmt
for relations in the same statement, interStmt for relations across multiple statements,
any for any instance while nearest for the element with the shortest path according to
the Define-Use chain. We define eight general rules for all DBMSs, one extra rule for
SQLite, two extra rules for MySQL, two extra for MariaDB and one for PostgreSQL. For
example, the relation rule (UseFromTable, UseTableColumn, isAnElement, nearest)
means the data of type UseTableColumn is an element of the nearest data within the
same statement that has type UseFromTable. In Figure 3.6, we can infer the relationship
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One possible relation Data Value

x1 x4 x7

x12 x13

x14 x16

x2,x3 x5,x6 x8,x9

x15

x10

x17

isAnElement

isA
x11

x1, x12, x14 v1
x2, x15 v2
x3, x10 v3

x4, x13, x16 v4
x5, x17 v5
x6, x11 v6

x7 v7
x8 v8
x9 v9

CREATE TABLE v1 (v2 INT, v3 INT)
CREATE TABLE v4 (v5 INT, v6 INT)
CREATE TABLE v7 (v8 INT, v9 INT)
SELECT v3, v6 FROM v1, v4 WHERE v1.v2 = v4.v5

Figure 3.7: Instantiation of IR structure. We create one concrete dependency graph
from the dependencies of Figure 3.6, replace all place-holder x and finally get one concrete
new query.

between x15 and x14 with this relation rule.
Dependency Graph. With data types and relations, Squirrel automatically
constructs a dependency graph G = {V, E} for each mutated IR program. Each node
in V is an IR data and its data type. Each edge in E describes one relationship from
the edge source to the target. If a data type potentially depends on two or more data
types, we randomly choose one to avoid circular dependency. Also, if there are multiple
candidate values for the dependent type, Squirrel randomly picks one to establish the
edge. In this way, every node in the graph has at most one parent, and the dependency
graph is formed as one tree or several trees.

Figure 3.7 shows one possible dependency graph constructed from Figure 3.6. For ex-
ample, we choose x1 as the dependency of x12, although it can be any one of (x1, x4, x7)
according to Figure 3.6. Based on different choices, we can create multiple concrete data
dependency graphs for each mutated IR. There are some details not shown in the figure,
like x10 should be one of x2 and x3. Squirrel handles these implicit dependencies
properly.

3.5.2 IR Instantiation

Squirrel instantiates the query by filling in concrete data. algorithm 1 shows our
instantiation algorithm. For each tree in the dependency graph, we sort its nodes
based on the breadth-first search and the statement order, which guarantees the lifetime
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Algorithm 1: Semantic Instantiation
Input : graph: The dependency graph of the IR program
Output : sqlQuery: A SQL query that can be executed by DBMS. Empty if error

1 Procedure Instantiation(graph)
2 dataMap ← map();
3 relationMap ← map();
4 for each tree T ∈ graph do
5 for each node N ∈ T do
6 if N.data is literal then
7 N.data ← Random predefined or generated data ;
8 else if N has no parent then
9 if N.datatype is Definition then

10 N.data ← GenerateUniqueString();
11 dataMap[N.datatype].insert(N.data) ;
12 else if N.datatype is Use then

// Use before definition
13 if dataMap[N.datatype] is empty then return Null ;

// Some predefine name, like Function name
14 else
15 N.Data ← anyone ∈ dataMap[N.datatype] ;
16 else
17 return Null ;
18 else
19 pN ← The parent node of N;
20 if N.datatype is Definition then
21 N.data ← GenerateUniqueString();
22 dataMap[N.datatype].insert(N.data) ;
23 relationMap[pN.data].insert(N.data);
24 else if N.datatype is Use then
25 if N.type is the same as pN.type then
26 N.data ← pN.data; ;
27 else if relationMap[pN.data] is not empty then
28 N.data ← anyone ∈ relationMap[pN.data];
29 else
30 return Null ;
31 else
32 N.Data ← pN.data;
33 Delete pN.data from dataMap and relationMap;
34 return sqlQuery ← Tranlate the instantiated IR program to a SQL query;

correctness. For literal data like integers, we set it to a random value or one from a
predefined value set (line 5). For semantic-binding data, we fill in appropriate, valid
names. During the process, we maintain two maps: dataMap tracks unique names with
different types, while relationMap maps each element to its dependency. If the current
node has no dependency (line 6), it either defines a new variable, where we create a new
unique string as its name (line 7-9), or is a predefined term, like a function name (line
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10-13). If the current node has a parent, we know that it has some dependencies (line
15-27): if the current node creates a new variable, we simply generate a unique string
for it (line 16-19); if the current node uses a variable, we check the relationMap to find
a proper value for it (line 22-23). Finally, we translate the IR program back into an
SQL query and return. If the process fails because of unsatisfiable dependency, the IR
program will contain semantic errors.

Figure 3.7 shows the result of instantiation the in Data and Value column, and the
final SQL query. Squirrel assigns v1 to x1 as it is a CreateTable without dependency.
Due to the statement order, we process x2 and x3 next and allocate names v2 and
v3 for them, respectively. We handle x4-x9 in a similar way. For x12, it is with type
UseAnyTable and has a dependency on x1, so based on line 23 of algorithm 1, we assign
x1’s name v1 to x12. Other data can be instantiated in the same way.

3.6 Implementation

Table 3.1: Code size of Squirrel components, totally 43,783 LoC.

Module Translator Mutator Instantiator Fuzzer Others

Language C++/Bison/Flex C++ C++ C++ C++/Make
LoC 32,947 4,572 1,880 2,208 2,176

We implement Squirrel with 43,783 lines of code. Table 3.1 shows the breakdown
of different components.
AST parser. We develop a general AST parser that can handle the common features
of various DBMSs and customize the parser for each DBMS to support implementation-
specific features. Our implementation utilizes Bison 3.3.2 and Flex 2.6.4 and follows the
grammar specification in official DBMS documentation While we support most of the
specification’s grammars related to database manipulation, we leave out parts related
to administrative functionalities. In this way, we can focus on testing those grammars
related to database manipulation.
Fuzzer. We build Squirrel on top of AFL 2.56b, and replace its mutator with our
syntax-preserving mutator and semantics-guided instantiator. Whenever an interesting
test case is discovered, we store its stripped IRs into the IR library. We drop the database
after each query to minimize the interplay between different queries.
Effort of Adoption. The effort of adopting Squirrel to other DBMSs could be
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DBMS-dependent. First, we should customize the general parser to support the unique
features of the target DBMS. Second, we will write semantic relation rules according to the
grammar. Third, if the DBMS runs in client-server mode (e.g., MySQL and PostgreSQL),
we need to implement a client for it. In our cases, it took one of our author one day to
customize the parser, and less than six hours to implement the semantic rules and the
client for each DBMS we tested. We believe it should take no more than two days to
adopt Squirrel to another DBMS.

3.7 Evaluation
We applied Squirrel on real-world relational DBMSs to understand its effectiveness
on finding memory error bugs. Specifically, our evaluation aims to answer the following
questions:

• Can Squirrel detect memory errors from real-world production-level DBMSs?
(Section 3.7.1)

• Can Squirrel outperform state-of-the-art testing tools? (Section 3.7.2)
• What are the contributions of language correctness and coverage-based feedback in

DBMS testing? (Section 3.7.3)

Benchmarks. We select three widely used DBMSs for extensive evaluation, including
SQLite [55], PostgreSQL [99], MySQL [85]. We also test MariaDB [77] with Squirrel just
for finding bugs. We compile them with default configurations and compilation options.
We compare Squirrel with five fuzzers, including the mutation-based fuzzers AFL [144]
and Angora [17], the hybrid fuzzer QSYM [143], the structural fuzzer GRIMOIRE [9] and
the generation-based fuzzer SQLsmith [106]. We try to run as many tests as possible,
but as shown in Table 3.2, we encounter several compatibility issues. As MySQL requires
a client to send the query (i.e., C/S mode), QSYM, Angora and GRIMOIRE cannot test it
directly. SQLsmith does not officially support MySQL due to the lack of interfaces [107].
PostgreSQL supports both C/S mode and single mode, and we can use QSYM to test it in
the single mode. However, GRIMOIRE cannot compile PostgreSQL successfully to a single
static binary; Angora can compile it but cannot run the binary. We are actively seeking
potential solutions.
Seed Corpus. We obtain seed inputs from the official Github repository of each DBMS,
where the unit tests usually cover most types of queries. All six fuzzers in our evaluation,
except for SQLsmith (which does not need any initial inputs.), use the same seeds.
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Table 3.2: Compatibility between fuzzers and DBMSs. MySQL only permits C/S
mode, which is not supported by the last three fuzzers. SQLsmith does not support
MySQL’s grammar. QSYM supports fuzzing PostgreSQL in the single mode, GRIMOIRE
cannot compile it, while Angora cannot run it.
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SQLite ✔ ✔ ✔ ✔ ✔ ✔

PostgreSQL ✔ ✔ ✔ ✔ (single) ✗ (execute) ✗ (compile)
MySQL ✔ ✔ ✗ (interface) ✗ (C/S) ✗ (C/S) ✗ (C/S)

Setup. We perform our evaluation in a Ubuntu 16.04 system, on a machine that has
Intel Xeon CPU E5-2690 (2.90GHz) with 16 cores and 188GB RAM. We use afl-clang
with llvm mode to instrument tested DBMSs, and adopt edge-coverage for the feedback.
Considering the large codebase of DBMSs, we use a bitmap with 256K bytes to mitigate
the path collision issue [36]. Angora uses a 1024K-byte bitmap, the default size by design.
For bug detection, due to the time limit and the implementation progress, we have run
Squirrel to test SQLite for 40 days, MySQL and PostgreSQL for 11 days, and MariaDB
for 1 day. For other evaluations, we run each fuzzing instance (fuzzer+DBMS) for 24
hours and repeat the process five times. Each fuzzing instance runs separately in a docker
with one CPU and 10G memory. We report the average results to reduce the random
noise and provide the p-values in Table 3.4.

3.7.1 DBMS Bugs

Squirrel has successfully detected 63 bugs from tested DBMSs, including 51 bugs
from SQLite, 7 from MySQL, and 5 from MariaDB. We have responsibly reported all the
bugs to the corresponding DBMS developers and have received their positive feedback.
At the time of this thesis writing, all bugs have been fixed, and 12 got CVE numbers due
to the severe security consequences. As a comparison, the OSS-Fuzzer project launched
by Google [42] have extensively tested the first three DBMSs, and found 19 bugs from
SQLite in three years, 15 bugs from MySQL in four months and no bugs from PostgreSQL.
We inspect the MySQL bugs detected by OSS-Fuzzer and find that all of them happen
at the very beginning of MySQL’s logic: before the parsing phase. The proof-of-concepts
(PoC) are not even valid SQL queries but just some random bits. Therefore, we believe
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our fuzzer can find bugs from DBMSs more effectively.

CREATE TABLE v0 (v1);

CREATE TABLE v2 (v3);

CREATE TRIGGER r1 AFTER INSERT ON v0 BEGIN INSERT INTO v0 (v1) 
VALUES (99); END;

CREATE TABLE v2 (v3 PRIMARY KEY NOT NULL) ;
CREATE VIEW v2 AS SELECT v1+9, v1+3 FROM v0;

CREATE VIEW v2 AS SELECT DISTINCT v1+3, v1+9 FROM v0;
CREATE VIEW v2 AS SELECT * FROM v0 WHERE v1 
IN (SELECT * FROM v0 ORDER BY v1);

CREATE VIEW v2 AS SELECT * FROM v0 WHERE v1 
IN (SELECT DISTINCT * FROM v0 ORDER BY v1); 

SELECT * FROM v0; 
SELECT DISTINCT * FROM v0;

SELECT DISTINCT * FROM v0 NATURAL JOIN v2;

T1 T8T7T6T5T4T3T2 Fuzzing Mutations
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Figure 3.8: Mutations to trigger the 11-year old bug. Squirrel takes eight steps,
including four insertions and four replacements to produce the bug-triggering query from
the original one.

Bug Diversity. The 63 bugs cover almost all common types of memory errors, showing
that Squirrel can improve DBMS security from a variety of aspects. In particular,
buffer overflows and use-after-free bugs are commonly believed to be exploitable, whereas
Squirrel found 12 bugs and 2 bugs, respectively. Squirrel also detected 33 assertion
failures from SQLite, which indicate that the executions reach unexpected states. Even
worse, assertion checks are disabled in the released binary, which may lead to severe
security problems. For example, in case study 3, an assertion failure results in a severe
use-after-free vulnerability.

1 CREATE TABLE v0 (v1);
2 CREATE VIEW v2 AS SELECT * FROM v0 WHERE v1
3 IN ( SELECT DISTINCT * FROM v0 ORDER BY v1);
4 SELECT DISTINCT * FROM v0 NATURAL JOIN v2;

Listing 3.1: Case Study 1: 11-Year-Old Bug

Case Study 1: An 11-Year-Old Bug. Squirrel detected a bug introduced to
SQLite 11 years ago (PoC in Listing 3.1), which lies in an optimization routine of the
IN clause. Specifically, isCandidateForInOpt checks various conditions to determine
whether the subquery inside the IN clause can be optimized or not. One of these checks
should make sure the subquery does not have any GROUP BY clause. As the SQL grammar
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does not allow GROUP BY in an IN clause, the developers “were unable to find a test case
for”1 this condition, and thus converted the check “into an assert() by check-in [...] (2009-
05-28)”. The assertion is disabled in the released version of SQLite. Squirrel found
that if two queries with DISTINCT are joined by NATURAL JOIN, SQLite will internally
set the GROUP BY property to these queries. When such queries are used in an IN clause,
it will make the previous assertion fail. However, the released SQLite will continue the
optimization incorrectly, and may lead to wrong query results.

Squirrel found this 11-year-old bug within 14 minutes through only eight mutations.
Figure 3.8 shows the eight steps for Squirrel to generate the bug-triggering query
from a benign one. We denote Tn as the nth mutation. The original query contains
three CREATE statements: the first CREATE does not have to change; the second CREATE
is changed five times with three insertions (T1, T5 and T8) and two replacements (T4

and T7); the last CREATE is changed three times with two replacements (T2 and T6) and
one insertion (T3). Each round of mutation provides a new syntactical structure, and
keeps both syntactical and semantic correctness. The final query satisfies the conditions
for failing the assertion, as SQLite will put the last SELECT into the IN of the second
statement, which makes the subquery of IN contain two naturally joined SELECTs.

1 CREATE TABLE v0 (v1 char);
2 INSERT INTO v0 VALUES ('1');
3 CREATE TABLE v2(v3 text);
4 INSERT INTO v2 VALUES ("1" *147) , ("2"*42) , ("3"*37);
5 DROP TABLE v2;
6 INSERT INTO V0 SELECT ZIPFILE (v1 , NULL) FROM v0;
7 INSERT INTO V0 SELECT ZIPFILE (v1 , NULL) FROM v0;
8 INSERT INTO V0 SELECT ZIPFILE (v1 , NULL) FROM v0;
9 SELECT HEX(v1) FROM v0;

Listing 3.2: Case Study 2: Database leakage

Case Study 2: Database Leakage. Squirrel identified a heap-based buffer overread
vulnerability (PoC in Listing 3.2), which allows attackers to read arbitrary data in the
memory space. This bug entitles attackers to potentially access all databases stored in the
SQLite DBMS. As SQLite is widely used as a multi-user service, attackers can retrieve
the data of other users, which by default they have no access. Even if the database is
explicitly deleted by its owner, attackers can still steal it from its memory residue. Other
than stealing databases, this bug also enables attackers to read sensitive-critical informa-
tion that may allow attackers to build further attacks, like remote code execution. For

1Quote from the message of the fix commit.
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example, reading the code page address will help attackers bypass randomization-based
defenses, while leaking the stack canary will make stack buffer-overflow exploitable again.

1 CREATE TABLE v0 (a);
2 CREATE VIEW v2 (v3) AS WITH x1 AS ( SELECT * FROM v2);
3 SELECT v3 AS x, v3 AS y FROM v2;

Listing 3.3: Case Study 3: UAF from assertion

Case Study 3: Assertion Failure Leading to Use-After-Free. We inspected
several assertion failures and found one (PoC in Listing 3.3) finally leads to a high-
severity use-after-free bug (score 7.5/10). An assertion affirms that a predicate is
always true whenever the execution reaches the assertion point. Otherwise, the developer
considers the program running into an unexpected state. This bug makes SQLite fail
a pParse->pWith assertion, as pWith is a dangling pointer due to a failed creation of a
circular view. In the debug mode, SQLite will terminate the execution after the assertion
failure. However, the released binary disables all assertions. Given the bug-triggering
input, SQLite will keep running in the unexpected state and finally trigger the use-after-
free bug.

1 CREATE TABLE v0 ( v1 INTEGER PRIMARY KEY ) ;
2 INSERT INTO v0 ( v1 ) VALUES ( 0 )
3 ON CONFLICT DO NOTHING ;
4 CREATE VIRTUAL TABLE v2
5 USING rtree (v5 UNIQUE ON CONFLICT ABORT , v4 , v3);
6 SELECT 'a' FROM v0
7 LEFT JOIN v2 ON v4 = 10 OR v5 = 10 ;
8 SELECT * FROM v0 , v0 WHERE v1 = v1 AND v1 = 1;

Listing 3.4: Case Study 4: Bug exists for 1 day

1 CREATE TABLE v0 (v1 DOUBLE CHECK (( v1 IN (NULL))),
2 v2 UNIQUE AS(v1 >v1)) ;
3 INSERT INTO v0
4 VALUES (10) ON CONFLICT DO NOTHING ;
5 SELECT 10.100000 , 10 FROM v0
6 CROSS JOIN v0 USING (v1) ;

Listing 3.5: Case Study 4: Bug exists for 1 hour

Case Study 4: Fuzzing as Regression Test. Squirrel can effectively find newly-
introduced bugs, and thus can be used for rapid regression test. For example, Listing 3.4
only exists for less than one day before we found it. PoC in Listing 3.5 got detected,
reported and even fixed in just one hour after its existence. The commit introducing
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Table 3.3: Distribution of SQLite bugs found by fuzzers. We perform the evaluation
for 24 hours, repeat for 5 times and report the average results. We update SQLite binary
per-hour to fix identified bugs.
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SQLite NULL Ptr Deref ✔ ✔ ✗ ✔ ✗ ✗ ✔ ✔

SQLite Use-After-Free ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLite Buffer Overflow ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLite Buffer Overflow ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLite NULL Ptr Deref ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLite Stack Overflow ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLite NULL Ptr Deref ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLite NULL Ptr Deref ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SQLite Buffer Overflow ✔ ✗ ✗ ✗ ✗ ✗ ✗ ✗

this bug was intended to fix another issue related to the generated column functionality.
However, the fix was not completely correct and thus introduced a new problem in the
USING clause. These two cases show that Squirrel can do fast and effective regression
testing for DBMSs.

3.7.2 Comparison with Existing Tools

We compare Squirrel with five other advanced fuzzers to evaluate its efficacy in testing
DBMSs and identify its strengths and weaknesses. Figure 3.9 shows our evaluation
results, including the number of unique crashes, the number of unique bugs, the number
of new edges, the syntax correctness and the semantic correctness.

The p-values of our evaluations are shown in Table 3.4. Most of the p-values are
less than 0.05, which means the differences between Squirrel’s results and others’
are statistically significant. We will discuss exceptional high p-values case by case.
Unique Crashes. We use the edge-coverage map to evaluate the number of unique
crashes and present the results for SQLite in Figure Figure 3.9a. We exclude PostgreSQL
and MySQL as only Squirrel finds few crashes in MySQL, and none of the other fuzzing
instances find any crashes within 24 hours. While Squirrel detects the first crash in
four minutes and finds around 600 unique crashes, AFL takes 32 minutes to detect the
first crash and collects 30 unique crashes, and QSYM discovers 13 crashes, while the other
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Table 3.4: P-values of Squirrel v.s. other fuzzers. P-value less than 0.05 (shown in
green) means the result is statistically significant.

v.s. Fuzzer DBMS Coverage Syntax Semantics Crash Bug
SQLite 0.00609 0.00609 0.00609 0.00609 0.00198
PostgreSQL 0.00609 0.000167 0.00225 - -AFL
MySQL 0.00596 0.00609 0.00609 - -

SQLsmith SQLite 0.00545 0.00609 0.00609 0.00374 0.00198
PostgreSQL 0.989 0.999 0.000166 - -

Angora SQLite 0.00609 0.00609 0.00609 0.00374 0.00198
GRIMOIRE SQLite 0.00583 0.00374 0.00374 0.00374 0.00198

SQLite 0.00405 0.00405 0.00405 0.00377 0.00198QSYM PostgreSQL 0.00583 0.000166 0.0181 - -

!semantic
SQLite 0.00609 0.0183 0.00609 0.00557 0.00198
PostgreSQL 0.00609 0.198 0.0181 - -
MySQL 0.00596 0.996 0.00609 - -
SQLite 0.00609 0.00609 0.00609 0.00485 0.00198
PostgreSQL 0.00609 0.000167 0.000421 - -!feedback
MySQL 0.00596 0.0718 0.338 - -

three fuzzers do not find any crashes.
The evaluation results reveal that although advanced fuzzing tools have been de-

veloped, they do not significantly improve performance compared to AFL. In fact, in
some instances, these tools have even reported fewer unique crashes. This outcome can
be explained by the stochastic nature of the fuzzing process and the rigorous semantic
constraints necessary for adequately testing DBMS systems.
Unique Bugs. We map each crash with the corresponding bug by referring to the
official patches. In SQLite, the 600 crashes found by Squirrel only are identified to
two bugs, while the 30 crashes detected by AFL and the 13 found by QSYM belong to the
same bug. Since the small number of bugs is not statistically useful, we take a different
strategy to get more bugs: after every hour, we check the detected crashes (if any), map
them to real bugs and patch them to avoid future similar crashes. We show the result of
the new strategy in Figure 3.9b. By using this method, Squirrel is able to discover
more bugs (from two to nine). AFL and QSYM can only find one bug within one hour, and
have no progress even with the patching. Table 3.3 shows the distribution of detected
bugs, where the only bug found by AFL and QSYM is also covered by Squirrel.
New Edges. Compared to mutation-based fuzzing tools, Squirrel can discover
2.0×-10.9× more new edges, indicating its effectiveness in exploring new program paths.
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Additionally, our evaluation shows that Squirrel achieves similar results to SQLsmith,
a generation-based fuzzer, regarding edge coverage. Figure 3.9c, f and i show the increase
of new edges of SQLite (S), PostgreSQL (P) and MySQL (M), respectively. Squirrel
outperforms other fuzzers in eight comparisons out of nine: it collects 6.6× (S), 4.4×
(P) and 2.0× (M) more new edges than AFL, 7.7× (S) more than SQLsmith, 3.6× (S)
and 10.9× (P) more than QSYM, 2.3× (S) more than Angora, and 3.3× (S) more than
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Figure 3.9: Comparison with existing tools. Figures a-k show the bugs numbers
of fuzzing SQLite, new edges, the syntax correctness, and the semantic correctness for
fuzzing each DBMS

GRIMOIRE. All tested fuzzers show comparable performance, except for SQLsmith on
PostgreSQL, where Squirrel detects 89.3% new edges compared to SQLsmith. This
result is an expected result since SQLsmith is designed to the specific grammar of
PostgreSQL. The corresponding p-value in Table 3.4 is larger than 0.05 due to the
slightly better performance of SQLsmith on PostgreSQL.
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Syntax Validity. Squirrel achieves 1.8×-20.9× higher syntax correctness than
mutation-based tools, and gets a comparable result to SQLsmith. Figure 3.9d, g and j
show the change of syntactic validity during testing SQLite (S), PostgreSQL (P) and
MySQL (M), respectively. Squirrel achieves 1.8× (S), 11.5× (P) and 2.5× (M) higher
syntax correctness than AFL, 6.1× (S) higher than SQLsmith, 2.4× (S) and 20.9× (P)
higher than QSYM, 2.8× (S) higher than Angora, and 2.9× (S) higher than GRIMOIRE.
The exception comes from fuzzing PostgreSQL with SQLsmith, where Squirrel achieves
97.1% syntactic validity of that by SQLsmith. Again, we believe the reason is that
SQLsmith is highly customized for the specific grammar of PostgreSQL. For example,
SQLsmith only achieves 12.7% syntax correctness in fuzzing SQLite, while getting almost
100% syntax accuracy when fuzzing PostgreSQL. The p-value of Squirrel vs SQLsmith
on PostgreSQL is more than 0.05 due to the similar results.

Table 3.5: The absolute number of generated test cases for the evaluated
fuzzers in 24 hours. We categorize them into three groups: one with syntax error,
one with syntax correctness and semantic error, and one with syntax correctness and
semantic correctness.

Fuzzer DBMS Syntax-error Semantics-error Correct Total
SQLite 1,627,034 10,561,457 5,696,308 17,884,799
PostgreSQL 7,287 188,055 25,762 221,104Squirrel
MySQL 50,728 77,750 28,314 156,792

AFL
SQLite 29,731,018 12,576,971 1,496,807 43,804,796
PostgreSQL 3,604,530 245,226 57,166 3,906,922
MySQL 185,102 42,332 1,478 228,912
SQLite 20,205,598 2,891,250 58,351 23,155,199SQLsmith PostgreSQL 3,752 821,485 394 825,631

Angora SQLite 14,540,639 3,866,102 654,526 19,061,267
GRIMOIRE SQLite 4,799,412 886,471 581,500 6,267,383

QSYM SQLite 8,652,045 2,805,585 385,028 11,842,658
PostgreSQL 78,161 1,350 1,832 81,343
SQLite 24,443,355 15,754,468 809,209 19,008,012
PostgreSQL 9,591 184,441 3,174 197,206!semantic
MySQL 17,140 165,175 15,370 197,685

!feedback
SQLite 19,415,174 8,146,566 27,368 27,589,108
PostgreSQL 29,283 26,678 174 56,135
MySQL 66,695 26,746 19,974 113,415

Semantic Validity. Squirrel achieves 2.4×-243.9× higher semantic correctness than
other tools. Figure 3.9e, h and k show the trend of semantic validity during testing
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SQLite (S), PostgreSQL (P) and MySQL (M), respectively. Squirrel achieves 8.3× (S),
7.0× (P) and 27.0× (M) higher semantic correctness than AFL, 125.4× (S) and 243.9×
(P) higher than SQLsmith, 8.8× (S) and 4.7× (P) higher than QSYM, 8.3× (S) higher than
Angora, and 2.4× (S) higher than GRIMOIRE. Interestingly, although SQLsmith performs
slightly better on testing PostgreSQL with respect to new edges and syntax correctness,
Squirrel achieves significantly higher accuracy on semantics. Another worth-noting
observation is that AFL actually generates more correct inputs for PostgreSQL than
Squirrel (2.2×, see Table 3.5), but still achieves lower edge coverage. This indicates that
larger numbers of correct queries or higher correct rates cannot guarantee the exploration
of more program states. One extreme example is to keep using the same correct query,
which will have more executions (no generation overhead) and 100% correctness. But
apparently, it will lead to no increase in code coverage. The strength of Squirrel stems
from both the syntax-preserved mutation, which generates queries of various structures,
and the semantics-guided instantiation, which infers semantic relationships between
arguments to assist query synthesis.

Squirrel outperforms all mutation-based tools, even if they are augmented with
taint analysis or symbolic execution, or consider structural information. It achieves
comparable results to SQLsmith, which is customized for PostgreSQL. More importantly,
Squirrel detects significantly more bugs than other tools.

3.7.3 Contributions of Validity and Feedback

We conducted unit tests to evaluate the impact of different factors in Squirrel on
the fuzzing process. Specifically, we disabled each factor individually, including syntax-
preserving mutation, semantic-guided instantiation, and coverage-based feedback, and
measured various aspects of the fuzzing process. The results are presented in Fig-
ure 3.10. In Squirrel!semantic, we only disabled semantic-guided instantiation, while in
Squirrel!feedback , we only disabled coverage-based feedback. Squirrel!syntax

!semantic disabled
both semantic-guided instantiation and syntax-correct mutation, making it identical to
AFL. However, since our semantics-guided instantiation requires syntax-correct queries,
we could not create a version that only disabled mutation. We did not include the
all-disabled setting, which would represent the dumb mode of AFL.

The p-values of our evaluations are shown in Table 3.4. Most p-values are less than
0.05, showing that the differences between Squirrel’s results and others’ are statistically
significant. We will explain exceptional p-values higher than 0.05.
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(e) SQLite semantic

Unique Crashes. Figure 3.10a shows the number of unique crashes found in SQLite
by each setting. Similarly, we skip the results of PostgreSQL and MySQL due to the small
number of crashes during the 24-hour evaluation. The full-featured Squirrel achieves
the best results in both the first-crash time and the total number of crashes. First,
Squirrel finds the first crash within four minutes. Without semantic-guided instan-
tiation, Squirrel!semantic takes 60× more time to detect the first crash (261 minutes).
Interestingly, Squirrel!syntax

!semantic, which directly uses AFL’s random mutation, finds the
first crash within 32 minutes — worse than Squirrel, but better than Squirrel!semantic.
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(f) PostgreSQL new edges

0 4 8 12 16 20 24
0

20

40

60

80

100

sy
nt

ax
va

lid
(%

)

(g) PostgreSQL syntax
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(h) PostgreSQL semantic
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(j) MySQL syntax
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(k) MySQL semantic

Figure 3.10: Contributions of Validity and Feedback. Figures a - k show the
bugs numbers of fuzzing SQLite, new edges, the syntax correctness, and the semantic
correctness for fuzzing each DBMS.

Considering that the latter runs 220 queries per second while the former can execute 507
(i.e., 1.3× faster), we believe the advantage of Squirrel!syntax

!semantic over Squirrel!semantic

mainly comes from the faster generation speed. Squirrel!feedback takes 700 minutes to
find the first crash. The total number of unique crashes follows the same pattern, where
Squirrel, Squirrel!semantic, Squirrel!syntax

!semantic and Squirrel!feedback detect 600, 30, 10
and 3 crashes, respectively. The results above show that all three factors of Squirrel
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contribute critically to crash detection. Further, coverage-based feedback plays the most
important role, while syntax-only testing cannot beat AFL.
Unique Bugs. We adopt the same strategy to measure the unique bugs, where we
patch the detected bug after each hour. Figure 3.10b shows the results. The full-featured
Squirrel finds nine unique bugs, while other variants (!feedback and !semantic) only
detect one unique bug which is covered by Squirrel.
New Edges. Figure 3.10c, f and i demonstrate an (almost) consistent pattern of
finding new edges for SQLite, PostgreSQL and MySQL: Squirrel > Squirrel >

Squirrel!syntax
!semantic >Squirrel!feedback . The coverage-based feedback helps achieve 2.0×

more new edges for fuzzing SQLite, PostgreSQL and MySQL. Additionally, the syntax-
correct mutation enables Squirrel to find 1.0×-1.5× more edges than AFL, while
semantic-guided instantiation improves the number by 0.3×-1.7×. Therefore, improving
the syntax or semantic correctness of queries helps to achieve more diverse states of the
DBMS. These results are presented in Figure 3.10.
Syntax Validity and Semantic Validity. Figure 3.10d, g and j show the syntax
changes during the tests of three DBMSs, while Figure 3.10e, h and k show the semantic
changes. The validity of Squirrel is generally the highest, while AFL achieves the lowest.
This result is reasonable because Squirrel is specifically designed to improve language
validity, while AFL randomly mutates SQL queries. However, the figures contain some
interesting anomalies. First, we notice that in Figure 3.10d and g, Squirrel!semantic

achieves syntax accuracy that is comparable to Squirrel. This suggests that enhancing
semantic correctness does not necessarily lead to an increase in syntax correctness.
However, since it removes shorter queries, the instantiation procedure can reduce syntax
correctness, as seen in Figure 3.10j. Although shorter queries are more likely to be
syntactically correct, our instantiator cannot correct their semantics. For example,
SELECT a FROM b is semantically incorrect as no table b exists. As SQLsmith performs
similarly or even better than Squirrel, the p-values for PostgreSQL and MySQL are
larger than 0.05.

The second anomaly is observed in Figure 3.10j, where Squirrel!feedback achieves
similar semantic correctness as Squirrel, suggesting that feedback has no impact on
MySQL’s semantic correctness. However, further analysis reveals that Squirrel!feedback

produces highly divergent semantic correctness results, with two of the five experiments
achieving over 40% correctness and the other three with less than 10We find that the
initial seeds in MySQL are smaller than those in SQLite and PostgreSQL. The smaller
initial seeds in MySQL may cause Squirrel!feedback to generate correct but simple and
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repetitive inputs. Although the p-values in Table 3.4 are larger than 0.05 (caused by
the randomness of MySQL results), Figure 3.10i shows that Squirrel generates more
diverse query structures than Squirrel!feedback and finds more execution paths with
similar semantic correctness.

In summary, Squirrel benefits from syntax, semantics, and feedback to discover
more memory errors in DBMSs. Among these factors, coverage-based feedback has the
most significant impact, while syntax and semantics have varying effects. The interplay
of all three factors determines the final result.
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Chapter 4 |
Generic Language Processor Test-
ing with Semantic Validation

In this chapter, we propose PolyGlot, a generic fuzzing framework that generates
high-quality test cases for exploring processors of different programming languages.

4.1 Introduction
Language processors [132], such as compilers and interpreters, are crucial components in
modern software development. They are responsible for converting programs written in
high-level languages to machine code that can be executed by the hardware. Ensuring
the correctness of language processors is essential as it guarantees that the compiled code
is semantically consistent with the source code. Buggy language processors can translate
even correct programs to malfunctional codes, which might lead to security problems.
For instance, a miscompilation of memory-safe programs can result in memory-unsafe
binaries [24,49], leaving the system vulnerable to security breaches. Similarly, vulnera-
bilities in interpreters can lead to denial-of-service (DoS) attacks, sandbox escape, or
remote code execution (RCE) [93,103,145], providing attackers with unauthorized access
to the system. Furthermore, these defects can propagate to other translated programs,
including other language processors, resulting in a chain reaction of vulnerabilities [117].

However, traditional software testing methods are often inadequate for identifying
bugs in language processors due to the strict requirements for input syntax and semantic
validity. This makes it challenging to automatically test and identify errors in the
translation logic, because even minor errors in the input code can cause the language
processor to terminate execution, making it difficult to explore deeper into the translation
process.
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Recent works on software testing, such as grey-box fuzzing, try to meet these re-
quirements to effectively test language processors [9, 40, 42, 62, 143, 144]. Originally,
structure-unaware mutation [40,143,144] can hardly generate syntax-correct test cases;
advanced fuzzers [50,56] adopt higher-level mutation in the abstract syntax tree (AST)
or the intermediate representation (IR) to preserve the input structures. Alterna-
tively, generation-based fuzzers leverage a precise model to describe the input struc-
ture [41,84,106], and thus can produce syntax-correct test cases from scratch. To further
improve the semantic correctness, recent fuzzers adopt highly specialized analyses for
specific languages [93,141,149].

However, when a fuzzer is highly customized for a specific language, it loses its ability
to be applied generically. As a result, users cannot use the same specialized fuzzer
to test a different programming language, and they have to develop a new one from
scratch. However, considering the large number (over 700 currently [130]) of programming
languages and the complexity (e.g., CSmith [141] consists of 80k lines of code) of language-
specific fuzzers, which can consist of tens of thousands of lines of code, it is not feasible to
implement a specific fuzzer for each language. Therefore, current fuzzers face a dilemma:
if they prioritize high semantic validity, they sacrifice their generic applicability, and if
they maintain their generic applicability, they cannot ensure the quality of the test cases.

In this thesis, we introduce PolyGlot, a fuzzing framework designed to produce
semantically valid test cases that thoroughly evaluate processors of different programming
languages. To achieve versatility, we implement a uniform intermediate representation (IR)
that mitigates syntax and semantics disparities between programming languages. Given
the BNF grammar of a language, PolyGlot generates a frontend that translates source
code into the IR. Moreover, users can provide semantic annotations that describe scopes
and types of definitions within the language, such as functions, defined variables, and
composite types. In this thesis, we use variables and definitions interchangeably. These an-
notations will produce semantic properties in IR during translation. For example, the BNF
grammar of functions in C is <func := ret-type func-name arg-list func-body>.
We can give annotations such as "func defines a new function" and "func-body creates
a new scope". In this way, the language differences between programming languages are
unified in the IR.

To achieve high language validity, we develop two techniques, the constrained mutation
and the semantic validation, for test case generation. The constrained mutation retains
the grammar structure of the mutated test cases, which helps preserve their syntactic
correctness. Further, it tries to maintain the semantic correctness of the unmutated part
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of the test case. For example, it avoids mutating the statement "int x = 1;" in a C
program in case the rest of the program uses x, which otherwise introduces the error of
using undefined variables. Since the syntactic correctness of a test case is preserved, and
the semantic correctness of the unmutated part is still valid, the only thing left is to fix
the potential semantic errors in the mutated part. The mutated part could introduce
semantic errors because it might bring in invalid variables. To fix the errors, we replace
these invalid variables according to the rules of scopes and types. For example, our
mutation may insert a statement "unknownVar + 1;" into the mutated program P which
only defines two variables, num of type integer and arr of type array. We should replace
unknownVar with num because addition by 1 requires the variable to have an integer type.
Our semantic validation utilizes the semantic properties of IR to collect type and scope
information of variables in the test case and integrates them in the symbol tables. These
symbol tables describe the types, scopes and the names of every variable. The semantic
validation then utilizes them to replace invalid variables with valid ones in the mutated
code, which greatly improves the semantic correctness (up to 6.4× improvement in our
evaluation.

The implementation of PolyGlot consists of approximately 7,016 lines of C++
and Python code, which primarily handle intermediate representation (IR) generation,
constrained mutation, and semantic validation. At present, PolyGlot can handle 9
programming languages, and it can be easily adapted to support additional languages.

We evaluate the effectiveness of PolyGlot by testing it on 21 popular compilers and
interpreters for 9 programming languages, resulting in the discovery of 173 previously
unknown bugs. As of the writing of this thesis, 113 of these bugs have been addressed with
18 assigned CVEs. Our experiments indicate that PolyGlot is superior to state-of-the-
art general-purpose fuzzers, such as AFL, QSYM, and Nautilus, in generating high-quality
test cases (with up to a 100× improvement in language validity), exploring program
states (with up to a 30× increase in new paths discovered), and identifying vulnerabilities
(with 8× more unique bugs detected). Furthermore, we compare PolyGlot with
language-specific testing tools, such as CSmith for C and DIE for JavaScript, and our
results show that PolyGlot is more effective in exploring program states.

4.2 Problem
This section commences with a brief overview of how language processors deal with input
programs, along with the ways in which syntax and semantic errors can halt this process.

49



Subsequently, we outline the restrictions and difficulties faced by current fuzzing tools
when it comes to testing language processors. We then summarize the typical semantic
errors that arise in test cases generated by fuzzers. Finally, we present our approach to
address this issue.

4.2.1 Language Processors

Language processors convert programs written in high-level languages into low-level
machine codes. For example, compilers translate the whole program into machine codes,
while interpreters translate one statement at a time.
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Figure 4.1: Workflow of language processors. Given a high-level source-code program,
a language processor checks it for syntactic and semantic errors. If none, the processor
translates the program into low-level machine code.

Language processors perform syntax and semantic checks on the input program, and
any errors can lead to the termination of program execution. The process of language
processing is illustrated in Figure 4.1. At an early stage of processing, the frontend checks
for syntax errors. Afterward, the backend checks for semantic errors, which cannot be
detected by the parser. Only programs that are semantically correct can be considered
valid and processed successfully.

We show a C program in Figure 4.2a and a JavaScript program in Figure 4.2b. If
we add the statements that start with "+", we introduce errors in the program. For
example, line 6 in Figure 4.2a and line 6 in Figure 4.2b introduce syntax errors, and
the parser detects these errors and bails out. Line 7–8 in Figure 4.2a and line 11–12 in
Figure 4.2b contain semantic errors which will be caught by the backend optimizer or
translator.
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1 struct S { int d; } s;
2 int a, c;
3 int main() {
4 short *e, b[3] = {1, 2, 0};
5 e = b;
6 + e = b // missing ’;’
7 + e = s; // mismatch type
8 + e = res; // undef var
9 do{c += *(e++);} while(*e);

10 int res = c;
11 return res;
12 }

(a) An example C program

1 function opt(x){return x[1];}
2 let arr = [1, 2];
3

4 if(arr[0]) {let arr2=[1, 2]};
5 // ig is a wrong keyword
6 + ig(arr[0]) {let arr2=[1, 2]};
7 arr[1] += "1234";
8

9 for(let idx=0; idx<100; idx++)
10 opt(arr);
11 + for(let idx=0; idx<100; idx++)
12 + opt(arr2); // undef var

(b) An example JavaScript program

Figure 4.2: Running examples. Figure 4.2a shows a program written in C, a statically
typed programming language. If we replace line 5 with one of line 6–8, we get different
errors as stated in the comments. Similarly, Figure 4.2b shows a program written in
JavaScript, a dynamically typed language, which allows more type conversion.

4.2.2 Limitations of Current Fuzzers

Fuzzing is a popular technique for discovering software bugs and vulnerabilities [42,44,144],
but current fuzzing has limitations in testing language processors. General-purpose
mutation-based fuzzers [16, 40, 143, 144] randomly flip input bits or bytes, without
considering input structure, which makes it difficult for them to generate syntactically
correct inputs. To address this limitation, recent works use higher-level mutations in
AST or IR to ensure syntactic correctness [56,125]. On the other hand, generation-based
fuzzers [84, 106] generate inputs based on a model or grammar, which allows them to
create structurally correct inputs more effectively than random bitflip mutation-based
fuzzers. While they have shown advantages in passing syntactic checks, they often dismiss
the semantic correctness of generated test cases, which may result in missed bugs in
the optimization or execution code of language processors. We conducted a preliminary
experiment to investigate the impact of semantic correctness on fuzzing effectiveness. By
compiling the code snippet in Figure 4.2a with the optimization flag "-O3" in gcc-10, we
observed that it covers 56,725 branches. In contrast, the invalid variants of the code that
start with "+" only trigger less than 27,000 branches, as they are rejected during or right
after parsing due to their syntactic errors.

Researchers have attempted to improve the semantic correctness of their fuzzers
through various methods [50, 93, 141, 149]. CSmith [141] performs heavy analysis to
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generate valid C programs without undefined behaviors. JavaScript fuzzers [50,93] take
into account the expression types to avoid generating semantically incorrect test cases.
Similarly, Squirrel constructs the data dependency of SQL to produce valid queries
for testing DBMSs. Unfortunately, these methods are highly specific to a particular
programming language, which means that users must expend significant effort to apply
them to new programming languages. This can be impractical and time-consuming,
particularly considering the numerous real-world programming languages [130].

Recent language-based fuzzers [3, 56] try to generate correct test cases for different
languages. LangFuzz [56] replaces every variable in the mutated code randomly while
Nautilus [3] uses a small set of predefined variable names and relies on feedback guidance
to improve semantic correctness. However, these strategies are only effective in testing
languages that allow more implicit type conversion, such as JavaScript and PHP.

4.2.3 Common Semantic Errors

We manually analyzed 1,500 invalid test cases generated by existing fuzzers for different
programming languages [3,84,93] and identified four common types of semantic errors.
Two of them are related to the scope of variables and functions while the other two relate
to the types of variables and expressions. These errors violate the common rules of types
and scopes on definitions and are language-independent.
Undefined Variables or Functions. Variables or functions should be defined
before they can be used. Otherwise, the behaviors of the program can be undefined or
illegitimate. For example, line 8 of Figure 4.2a uses an undefined variable res and C
compilers refuse to compile the code.
Out-of-scope Variables or Functions. In a program, variables or functions have
their scopes, which determine their visibility. We cannot use an out-of-scope invisible
variable or function. For example, arr is visible at line 10 of Figure 4.2b, while arr2 is
not since its scope is within the if statement at line 4.
Undefined Types. Many programming languages allow users to define custom types,
such as class in JavaScript and struct in C. Like variables, such types should be
defined before their instances can be used.
Unmatched Types. Usually, assigning a value to a variable of incompatible type or
comparing incompatible types introduce semantic errors. In some cases, programming
languages allow type conversions, which convert mismatched types to compatible ones
explicitly or implicitly. For example, e of type pointer of short and s of type S are
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not compatible in C, so line 7 of Figure 4.2a introduces an error. Line 7 of Figure 4.2b is
correct because in JavaScript numbers can convert to strings.

4.2.4 Our Approach

We aim to create a generic fuzzing framework that generates semantically correct inputs to
test different language processors. We separate the goal into two steps. First, we convert
the programming languages into a uniform IR which allows us to perform standardized
mutation and analysis independent of the underlying programming language’s syntax
and semantics. Second, we constrain our mutation to generate new test cases, which
might contain semantic errors, and then we perform semantic validation to fix these
errors.
Neutralizing Difference in Programming Languages. To neutralize differences
in syntax and semantics among programming languages, we design an intermediate
representation (IR) that maps language-specific features into a uniform format. Given
the BNF grammar of a language, we can generate a frontend to translate a source program
into an IR program. The IR program contains IR statements and preserves the source
program’s syntactic structures, facilitating easy translation back to the original source.
Users can describe language scopes and types on top of target programming language by
using a simple annotation format, which is encoded into the IR’s semantic properties.
With the IR, we can perform mutation or analysis regardless of the language’s underlying
grammar and semantics.
Improving Language Validity. We improve the language validity with constrained
mutation and semantic validation. Our mutation approach is designed to preserve
two critical aspects of the program: the syntactic correctness of the entire program
and the semantic correctness of the unmutated part. First, we preserve the syntactic
correctness of the test case by mutating the IRs based on their IR types that correspond
to the underlying grammar structures. For instance, when replacing an IF statement (in
the form of IR), we substitute it with another IF statement instead of a function call
expression. Second, our constrained mutation approach involves mutating only IRs with
local effects to maintain the semantic correctness of the unmutated code. These IRs do
not contain any definitions or introduce new local scopes. An example of such an IR is
line 7 in the JavaScript code in Figure 4.2b, which only uses the variable arr without any
new definition. Without line 7, the rest of the program is still valid. Therefore, assuming
the initial test case is correct, a mutated variant produced by constrained mutation only
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Figure 4.3: Overview of PolyGlot. PolyGlot aims to discover bugs that crash
language processors. PolyGlot accepts the BNF grammar, semantic annotations, and
seeds from users as input. First, the frontend generator generates an IR translator that
converts a source program to an IR program. Second, the constrained mutator mutates
the IR program to get new ones, which might contain semantic errors. Next, the semantic
validator fixes the semantic errors. Finally, the fuzzer runs validated programs to detect
bugs.

has potential semantic errors in the mutated part, which might use invalid variables.
To fix these errors systematically, our semantic validation first utilizes IR’s semantic
properties to collect type and scope information of the mutated test case. We integrate
the collected information into the symbol tables, which contain the types, scopes and
names of every definition. These symbol tables guide PolyGlot to properly replace
variables’ invalid usages. Afterward, the validated test cases should be correct and are
helpful for thoroughly fuzzing language processors.

4.3 Overview of PolyGlot
Figure 4.3 shows an overview of PolyGlot. Given the BNF grammar, semantic
annotations and initial test cases of the targeted programming language, PolyGlot aims
to find inputs that trigger crashes in the language processor. First, the frontend generator
generates an IR translator using the BNF grammar and the semantic annotations
(Section 4.4). Then, for each round of fuzzing, we pick one input from the corpus. The
IR translator lifts this input into an IR program. Next, the constrained mutator mutates
the IR program to produce new syntax-correct ones, which might contain semantic
errors (Section 4.5). Afterward, the semantic validator tries to fix the semantic errors in
the new IR programs (Section 4.6). Finally, the IR program is converted back to the
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form of source code and fed into the fuzzing engine. If the test case triggers a crash,
we successfully find a bug. Otherwise, we save the test case to the corpus for further
mutation if it triggers a new execution path.

4.4 Frontend Generation
To ensure our approach is applicable across multiple programming languages, we

generate a translator via our frontend generation. This translator converts a source
program into an IR program, thereby lowering the level of mutation and analysis from
language-specific source code to a uniform IR.

In Figure 4.4, we show the IR (Figure 4.4a) of a simple C program to demonstrate how
the BNF grammar (Figure 4.4b) and semantic annotations (Figure 4.4c) help construct
the IR statements. Each symbol in the BNF grammar generates IRs of a unique type
(e.g.,, symbol <func-def> generates ir9 of type FuncDef). The original source code
is stored in the op or val of the IRs (e.g.,, the val of ir2 stores the name main). We
provide users with predefined semantic properties for describing variable types and scopes.
The generated IRs will carry these properties as described in the annotations (e.g.,, ir9
has property FunctionDefinition). Users can easily utilize the BNF grammar and
semantic annotations to describe the syntax and semantics of a programming language
in a specific manner.

4.4.1 Intermediate Representation

Our IR is a uniform representation that captures both the syntax and semantics of the
source program. It consists of an order, a type, an operator, a value, up to two operands,
and a list of semantic properties. The IR order corresponds to the statement order in
the source code, while the type corresponds to the symbol in the BNF grammar. The
IR operator and the IR value store the information of original source code. All the IRs
are connected by the IR operands, which are also IRs. These parts carry the syntactic
structures, while the semantic properties describe the semantics of the source program,
as discussed below.
Syntactic Structures. Any modifications on IRs will not break the syntactic structures
as yyntactic structures retain all the grammar information of the source program. As we
see earlier, certain IR statements store a small piece of the source code (e.g.,, a function
name is stored in an IR of type FuncName). Also, the IR statements are connected in a
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1 //IR<type, left, right, op, val
2 // [, semantic_property]>
3 ir0<Type, NIL, NIL, NIL, "int">
4 ir1<RetType, ir0, NIL, NIL, NIL>
5 ir2<FuncName, NIL, NIL, NIL,
6 main", [FunctionName]>
7 ir3<Literal, NIL, NIL, NIL, 12>
8 ir4<Literal, NIL, NIL, NIL, 23>
9 ir5<BinaryExpr, ir3, ir4, "+", NIL>

10 ir6<Ret, ir5, NIL, "return", NIL>
11 ir7<FuncBody, ir6, NIL, "{ }", NIL,
12 [FunctionBody, NewScope]>
13 ir8<NIL, ir1, ir2, "()", NIL>
14 ir9<FuncDef, ir8, ir7, NIL, NIL,
15 [FunctionDefinition]>
16 ir10<Program, ir9, NIL, NIL, NIL>

(a) IR program for
"int main() { return 12+23;}".

1 <program> ::=
2 (<global-def> | <func-def>)*
3 ...
4

5 <func-def> ::=
6 (<ret-type> <func-name>
7 "(" <func-arg>? ")" <func-body>)
8

9 <ret-type> ::= <type>
10

11 <type> ::=
12 ("int" | "short" | ...)
13

14 <binary-expr> ::=
15 <literal> "+" <literal>
16 ...

(b) Part of the BNF grammar for
C programs.

1 { "Comment1": "Scopes and composite types",
2 "func-def":["FunctionDefinition"],
3 "func-name":["FunctionName"],
4 "func-body":["FunctionBody", "NewScope"],
5

6 "Comment2": "Types and conversion rules",
7 "BasicType": ["int", "short", "..."],
8 "ConversionRule": [
9 {"short": ["int", "..."]}

10 ],
11

12 "Comment3": "Type inference rules",
13 "TypeInference":{
14 "+": { "left": "long", "right": "long",
15 "output":"long"} }
16 }

(c) Part of semantic annotations for the grammar in Figure 4.4b. It is in JSON format.

Figure 4.4: An example IR program with its corresponding BNF grammar
and semantic annotations. The IRs in Figure 4.4a have corresponding symbols in the
BNF grammar in Figure 4.4b. The semantic annotations in Figure 4.4c describe what
semantic properties the symbols in the BNF should have, which will be reflected in the

semantic_property in IRs.
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directed way that forms a tree view of the source program. By performing an in-order
traversal of the IR program, we can reconstruct the original source program.
Semantic Properties. Semantic properties capture the semantics about the scopes and
types of definitions. They tell us which IRs belong to variable definitions. Additionally,
for scopes, they tell which IRs create new scopes so that we can decide the visibility of
the variables within the scopes. For types, they describe the predefined and user-defined
types in a language and their type conversion rules. They also describe the expected
operand types and the output type of operators, which perform mathematical, relational,
or logical operations and produce a result.

For example, ir9 in Figure 4.4a has the semantic property FunctionDefinition,
indicating that it relates to a function definition. Line 14-15 in Figure 4.4c describe the
inference rule for the operator "+", which accepts two operands of type long and outputs
a result of type long. Assuming number literals are of type long, we know 11 + 12
produces a result of long.

4.4.2 Generating IR Translator

To generate a translator, users should provide the BNF grammar, which describes the
unique syntax, and semantic annotations, which capture the specific semantics of a
language. The language information of these two files is embedded into the syntactic
structures and semantic properties of IR respectively. First, the frontend generator
treats every different symbol in the grammar as a different object. Then it analyzes the
semantic annotations to decide which symbols should have what semantic properties.
Finally, it generates for each object unique parsing and translation methods, which parse
the source code and generate IRs with required semantic properties. These generated
methods composite an IR translator.

4.5 Constrained Mutation
As the first step towards language validity, we apply two rules to constrain our mutation
on an initially correct test case to preserve its syntactic correctness (Section 4.5.1) and
the semantic correctness of its unmutated part (Section 4.5.2). The former is the base
for semantic correctness, and the latter makes it possible to gain language validity by
fixing the semantic errors in the mutated part.
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4.5.1 Rule 1: Type-Based Mutation

This rule performs three different mutation strategies based on the IR types. Insertion
inserts a new IR (e.g.,, IRs from another program) to the IR program. This includes
inserting an IR that represents an element to a list and inserting an IR to where it is
optional but currently absent. Deletion performs the opposite operation of insertion. For
example, in C, a statement block is a list of statements, and we can insert a statement
to the block. Also, we can delete an optional ELSE statement after an IF statement.
Replacement replaces an IR with a new one of the same type. For example, we can replace
an addition expression with a division expression as they are both of type EXPRESSION.

Since the IR type reflects the grammar structures of underlying source codes, this
rule helps preserve the syntactic correctness of the mutated test cases.

4.5.2 Rule 2: Local Mutation

This rule requires us to only mutate IRs with local effects. Changes in these IRs will not
invalidate the semantic correctness of the rest of the program. PolyGlot handles two
types of IRs with local effects as follows.
IRs that Contain No New Definitions. These IRs do not define any variables,
functions, or types, so the rest of the program will not use anything defined by them.
Even if these IRs get deleted, the rest of the program will not be affected. For example,
line 7 in Figure 4.2b only uses the variable arr and does not define anything. If we delete
this line, the program can still be executed.
IRs that Create Scopes. These IRs can contain new definitions, but these definitions
are only visible within the scope created by the IRs. For example, the for statement at
line 9 of Figure 4.2b creates a new scope. idx is defined and only valid within this new
local scope. Therefore, mutating the for statement as a whole will not affect the rest of
the program.

With these two rules, our constrained mutation produces syntax-correct test cases.
These test cases might contain semantic errors. According to local mutation, the semantic
errors are introduced by the mutated part, which might use invalid variables from other
test cases. Next, we will fix all these errors to get a semantically correct test case.
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4.6 Semantic Validation

1 struct S { int d; } s;
2 int a, c;
3 int main() {
4 short *e, b[3] = {1, 2, 0};
5 e = b;
6 do{
7 c += *(e++);
8 } while(*e);
9 int res = c;

10 return res;
11 }

1 struct S { int d; } s;
2 int a, c;
3 int main() {
4 short *e, b[3] = {1, 2, 0};
5 e = b;
6 if(FIXME >= FIXME){
7 //struct X z;
8 FIXME += FIXME;
9 }

10 int res = c;
11 return res;
12 }

(a) Left: A pre-mutate program. Right: A mutated program that needs to be validated

Name TID OID
s 4 1
a 1 2
c 1 2

main 5 3

TID Type

1 int

2 short

3 short *

4 Type:struct
Name: S

Member: int d

5 Type: function
Name: main
Arg: None

Return type: int

Name TID OID
d 1 1

Name TID OID
e 3 4
b 3 4

res 1 14
Name TID OID

Scope TreeType map

ID:1 Line: 1-16

Global Scope

ID:2 Line: 1

Structure body

ID:3 Line: 3-16

Function body

ID:4 Line: 10-13

IF statement

Symbol Table

Symbol Table

Symbol Table

Symbol Table

(b) The type map, scope tree and its the symbol tables of the program in Figure 4.5a

Figure 4.5: A mutated variant of Figure 4.2a and its semantic information
collected by the semantic validator. As shown in Figure 4.5b, the type map contains
the types used in the program while the scope tree and symbol table indicate the definition
and lifetime of a variable.

In the second step towards language validity, we address semantic errors in the
mutated portion of the test case by replacing invalid variables with valid ones. To do this,
we must first determine the available variables within the proper scope, to avoid using
undefined or out-of-scope variables. Additionally, we need to ensure the appropriate use
of these variables by matching their types, avoiding the use of variables with unmatched
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or undefined types.
Therefore, our semantic validation relies on two components: type system that

collects type information of variables (Section 4.6.1) and scope system that collects scope
information (Section 4.6.2). After collecting the necessary information about types,
scopes, and names of every definition in the test case, we integrate it into the symbol
tables. These symbol tables are then utilized by the semantic validation process to
replace the invalid expressions with correct ones, resulting in a semantically valid test
case, as shown in Section 4.6.3.

4.6.1 Type System

In programming languages, types include predefined ones such as int in C, and user-
defined ones such as class in JavaScript [131]. We call the former basic types and the
latter composite types. Basic types are limited so they can be completely described with
semantic annotations, but composite types cannot as they are specific to test cases. To
collect precise type information, we need to handle both basic types and composite types.
Therefore, PolyGlot utilizes the type system to construct composite types on demand
and infer types of variables or expressions.
Type Map. As the collected type information will be used frequently, we maintain
them in a type map for easy and fast access. The key of the map is a unique id for the
type, and the value is the structure of the type. This map stores all the basic types of a
language and the composite types used in the current test case. For example, Figure 4.5a
and Figure 4.5b show a mutated program and its type map. We can see that type id 5
refers to a function type whose name is main and return type is int. As composite types
are specific to a test case, we remove them from the map each time we finish processing
a test case to avoid using types defined in other programs.
Composite Type Construction. Currently, the type system supports the construction
of three composite types: structures, functions, and pointers. These types consist of
several components. For example, a function consists of a function name, function
arguments, and return value.

To construct a composite type, the type system walks through the IR program to find
IRs related to composite type definitions by checking their semantic properties. When it
finds one, it searches for the required components for this definition. Then type system
creates a new type with the collected components and stores it in the type map.
Type Inference. The type system of PolyGlot can infer the type of a variable
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or an expression, and we handle different cases for each of them. We handle both the
variable definition and variable use. For a variable definition, we check whether it has
an explicit type. If so, the type system searches the name of the type in the type map.
Then it returns the corresponding type id when the names match. Otherwise, we infer
the type of a variable from its assigned expression, which will be discussed in the next
paragraph. For example, in C, "int y;" explicitly states that the variable y is of type
int. In JavaScript, "let z = 1.0;" does not state a type for z, but we can infer
from expression 1.0 that z is of floating-point number type. For variable use, we just
look for the variable name in the symbol tables (Section 4.6.2), which contains the type
information of variables, and return its type.

To infer the type of an expression, we first check whether it consists of a simple
variable or literal. If it is a variable, it must be a variable use, which has been handled
above. If it is a literal, we return its type as described in the semantic annotations.
For an expression with operands and operators, we first recursively infer the types of
the operands as they are also expressions. As discussed in Section 4.4.1, the semantic
properties describe the expected operand types and the output type of the operator. If
the inferred operand types can match or convert to the expected types, we return the
corresponding result type.

Our type inference has limitations in dynamically typed programming languages,
where the types might be undecidable statically. For example, the type of x in line 1 of
Figure 4.2b is not determined because JavaScript can call the function with arguments
of any type. If we simply skip the variables whose types cannot be inferred, we might miss
useful variables. Therefore, we define a special type called AnyType for these variables.
Variables of AnyType can be used as variables of any specific type. Using AnyType might
introduce some type mismatching, but it can improve the effectiveness of PolyGlot in
dynamically typed programming languages.

4.6.2 Scope System

The visibility of variables within a program is determined by the scope system, which
partitions the program into different scopes. Variables gain visibility automatically based
on the scope in which they are declared. Afterward, we integrate the type information
collected by the type system and the scope information into symbol tables. The symbol
tables contain all the necessary information of variables for fixing the semantic errors.
Partitioning IR Program With A Scope Tree. A program has a global scope
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where variables are visible across the program. Other scopes should be inside existing
ones. This forms directed relations between scopes: variables in the outer scope are
visible to the inner scope, but not vice versa. Therefore, we build a directed scope tree
to describe such relations. In the scope tree, the global scope is the root node, and other
scopes are the child nodes of the scopes that they are inside. As the semantic properties
of IR tell which IRs create new scopes, we create a new node of scope when we find such
an IR. We assign each node a unique id and label the IR, along with their children IRs
(i.e.,, their operands), with this id to indicate that they belong to this scope. In this way,
we partition the IR program into different scopes in the tree. A variable is visible to a
node if the variable is in any node along the path from the root node to the given node.

Figure 4.5b shows the constructed scope tree of Figure 4.5a. "Line" means the IRs
translated from these lines belong to the scope or the children of the scope. Scope 1 is
the global scope, which is the root node. Scope 2 and 3 are created by the structure
body of S and function body of main respectively and they are child nodes of scope 1.
Variables in scope 1 and 3 are visible to scope 4 as they are in the same path.
Symbol Table. We integrate the collected information of types and scopes by building
symbol tables which contain the names, scopes, defined orders, and types of variables.
They describe what variables (names) are available at any program location (scopes and
defined orders) and how they can be used (types).

Figure 4.5b shows symbol tables of each scope for Figure 4.5a. Variables s, a, c
and function main are defined in scope 1, the global scope, and d is defined in scope
2 which is the scope for structure body. There is no definition in the IF statement so
its symbol table is empty. TID is the type id of the variable, which corresponds to the
TID in the type map. OID is the defined order of variables and we currently use the line
number as OID for easy demonstration. A variable is visible at a given location (i.e.,, line
number) if its scope is the ancestor node of the scope of the location and if it is defined
before the location.

4.6.3 Validation

With the symbol tables, we can fix the semantic errors in the mutated test case. We call
this process validation. We replace every invalid variable with the special string FIXME
to indicate that this is an error to be fixed, as shown in Figure 4.5a.

Specifically, we first remove any IRs that use user-defined types in the mutated part
in case we cannot find the definition of these types. Then, for each FIXME in the mutated
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code, we replace it with a correct expression. We generate the expressions with the
variables in the symbol tables according to their types and scopes. For example, in
Figure 4.5a, the original for statement is replaced by an if statement during mutation
(line 6-10). The if statement contains a user-defined structure without definition (line
8), so we remove line 8. Finally, we replace the FIXMEs with generated expressions.
Generating Valid Expressions. PolyGlot generates four types of expressions: a
simple variable, a function call, an element indexed from an array, and a member accessed
from a structure. In Figure 4.5a, "a", "main()", "b[1]", "s.d" are all examples of
generated expressions.

First, PolyGlot infers the type of expressions containing FIXME and tries to figure
out what type of expressions should be used for replacement. It adopts a bottom-up
approach: it assigns AnyType to each FIXME, and converts AnyType to a more specific
type when it goes up and encounters concrete operators. For example, we want to fix
the two FIXMEs in the expression "FIXME >= FIXME" in line 10 of Figure 4.5a. We assign
AnyType to both of them. Then we go up the expression and encounter the operator
">=", which accepts numeric types as operands, such as int and short, and outputs a
result of type bool. As the operands are FIXME of AnyType, which can be used as any
other specific type, we convert the type of FIXME to numeric types. Now PolyGlot
needs to generate two expressions of numeric types to replace the two FIXMEs.

Second, PolyGlot checks the symbol tables to collect all the available variables. It
walks through the symbol tables of all the visible scopes in scope tree, from the global
scope to the scope of the expression with FIXME, and collect the variables defined before
the to-be-validated expression.

Third, we enumerate the possible expressions we can generate from these variables
and categorize them by types. For example, from the definition s in line 1 in Figure 4.5a,
we can generate the expressions s and s.d. They are of different types so they belong to
different categories.

Finally, PolyGlot randomly picks some expressions of the required type to replace
FIXMEs. If every FIXME of a test case can be replaced by a proper expression, the
validation succeeds. The validated test case should be semantically correct and we feed
it to the fuzzer for execution. If the validation fails (e.g.,, there is no definition for a
specific type), we treat the test case as semantically invalid and discard it.

One possible solution to fix FIXME >= FIXME at line 11 in Figure 4.5a is "b[1] >= s.d",
where we replace the FIXMEs with "b[1]" of type short and "s.d" of type int. short
and int are of different numeric types, but short can be converted to int. Therefore,
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Table 4.1: Lines of code on different components of PolyGlot, which sum up
to 7,016 lines. As we build our fuzzer on AFL, we only calculate the code that we add
into AFL, which is 285 lines in the fuzzer component.

Module Language LOC
Frontend Generator C++ 367

Python 1,473
Constrained Mutator C++ 1,273
Semantic Validator C++ 3,313
Fuzzer C++ 285
Others C++/Bash 305
Total C++/Python/Bash 7,016

b[1] and s.d can be compared by >= though they are of different types.

4.7 Implementation
We implement PolyGlot with 7,016 lines of code. Table 4.1 shows the breakdown.
Frontend Generation. We extend the IR format proposed in [149] by introducing
semantic properties that are generated based on user-provided annotations The frontend
generator generates a parsing and a translation method from code templates written in
C++ for each symbol in the BNF grammar. Then, we use Bison [33] and Flex [28] to
create a parser with the parsing methods, and these components are compiled together
to form an IR translator.
Scope Tree Construction. The scope system maintains a stack of scopes to construct
the scope tree. The scope in the stack top indicates the current scope. First, it generates
the global scope as the root and pushes it in the stack. Next, it walks through IRs in the
IR program, labeling each IR with the id of the scope in the stack top. Meanwhile, it
checks the semantic properties of the IR. If the scope system meets an IR that creates a
new scope, it creates one. It sets the new scope as the child node of the scope at the
stack top and pushes it to the stack. After processing the children of the IR, the system
pops the scope from the stack to complete the partitioning of the IRs.
Builtin Variables and Functions. To improve the diversity of the generated
expressions, PolyGlot allows users to optionally add predefined builtin variables and
functions of the tested programming language. These builtin variables and functions are
written in the source format and added along with the initial seed corpus. PolyGlot
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then analyzes these test cases and collects them as definitions. These definitions will be
added into the symbol table of the global scope of every generated test case and thus
used for expression generation.
Complex Expression Generation. To introduce more code structures in the test
cases, we allow semantic validation to generate complex expressions. Since we have
the symbol tables and the inference rule of operators, we can chain simple expressions
with operators. For example, with the symbol tables in Figure 4.5b, we can generate
complex expressions such as (a + b[1]) » c, which is chaining three simple expressions
(a, b[1], c) with three operators (+, (), »). We first randomly pick an operator and
then recursively generate expressions of the types of its operands. Afterward, we simply
concatenate them to get a complex expression.
Fuzzer. We build PolyGlot on top of AFL 2.56b. We keep the fork-server mechanism
and the queue schedule algorithm of AFL and replace its test case generation module
with PolyGlot’s. PolyGlot also makes use of AFL’s QEMU mode, which can test
binary without instrumentation. Since many programming languages are bootstrapping,
which means their language processors are written in themselves, it is difficult or time-
consuming to instrument these processors. Using AFL QEMU mode can greatly save time
and effort.
User Inputs for Adoption. To apply PolyGlot to a programming language, users
need to provide: the BNF grammar, the semantic annotations and the initial corpus of
test cases. The BNF grammars of most programming languages are available from either
the official documents of the languages or open-source repositories [2]. The semantic
annotations should describe symbols that relate to definitions, symbols that create new
scopes, basic types of the languages, and the inference rules of operators. We provide
a template of semantic annotations in JSON format so users can easily adjust them
according to their needs. Users are free to choose the corpus that fits the tested processor.
In our case, it took one of our authors 2-3 hours to collect the amentioned inputs for one
language and 3-5 hours to refine them to fit in PolyGlot.

4.8 Evaluation
Our evaluation aims to answer the following questions:

• Can PolyGlot generally apply to different real-world programming languages and
identify new bugs in their language processors? (Section 4.8.2)
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Table 4.2: 21 compliers and interpreters of 9 programming languages tested
by PolyGlot. # refers to the TIOBE index, a measurement of the popularity for
programming languages [118], and - means that language is not within top 50. * in
Version means the git commit hash. #Bug shows the number of reported bugs, confirmed
bugs and fixed bugs from left to right.

# Language Target Version LOC(K) #Bug
GCC 10.0 5,956 6/5/11 C Clang 11.0.0 1,578 24/3/2

4 C++ G++ 10.0 5,956 4/4/2
Clang++ 11.0.0 1,578 6/0/0
V8 8.2.0 811 3/3/2
JSCore 2.27.4 497 1/1/1
ChakraCore 1.12.0 690 9/4/0
Hermes 0.5.0 620 1/1/1
mujs 9f3e141* 15 1/1/1
njs 0.4.3 78 4/4/0
JerryScript 2.4.0 173 5/5/4
DukTape 2.5.0 238 1/1/1

7 JavaScript

QuickJs 32d72d4* 89 1/1/1

8 R R 4.0.2 851 4/4/4
pqR 5c6058e* 845 3/1/0

9 PHP php 8.0.0 1,269 35/27/22
10 SQL SQLite 3.32 304 27/27/27

lua 5.4.0 31 12/12/1241 Lua luajit 2.1 88 2/2/2
- Solidity solc 0.6.3 192 16/16/16
- Pascal freepascal 3.3.1 405 8/8/8

Sum 9 21 173/136/113

• Can semantic validation improve PolyGlot’s fuzzing effectiveness? (Section 4.8.3)
• Can PolyGlot outperform state-of-the-art fuzzers? (Section 4.8.4)

4.8.1 Evaluation Setup

Benchmark. To evaluate the genericity of PolyGlot, we test 21 popular processors
of nine programming languages according to their popularity [118] and variety in do-
mains (e.g.,, Solidity for smart contracts, R for statistical computation, SQL for data
management). We show the target list in Table 4.2. To understand the contributions
of our semantic validation, we perform an in-depth evaluation on the representative
processors of four popular languages (two statically typed and two dynamically typed):
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1 struct S { int d; } s;
2 int a, c;
3 int main() {
4 short *e, b[3] = {1, 2, 0};
5 for (a = 0; a < 39; a++)
6 e = b;
7 switch (c){
8 while(--a){
9 do{

10 case 7:
11 c += *(e++);
12 }
13 while (*e);
14 }
15 }
16 int d = 3;
17 return 0;
18 }

(a) PoC for case study 1

1 struct S { int d; } s;
2 int a, c;
3 int main() {
4 short *e, b[3] = {1, 2, 0};
5 for (a = 0; a < 39; a++)
6 e = b;
7 if(c == 7){
8 do{
9 do{

10 c += *(e++);
11 }
12 while (*e);
13 }
14 while(--a);
15 }
16 int d = 3;
17 return 0;
18 }

(b) Logically equivalent program

Figure 4.6: PoC and its logically equivalent program for Case Study 1. The
code in line 7 to 15 should not be executed because the value of c is 0. However, the
development branch of Clang crashes when compiling the PoC with "-O3".

Clang of C, solc of Solidity, ChakraCore of JavaScript and php of PHP. We also use
these four processors to conduct the detailed evaluation to compare PolyGlot with
five state-of-the-art fuzzers, including three generic ones (the mutation-based AFL, the
hybrid QSYM, the grammar-based Nautilus) and two language-specific ones (CSmith of
C and DIE of JavaScript).
Seed Corpus and BNF Grammar. We collect seed corpus from the official GitHub
repository of each language processor. Additionally, we collected 71 and 2,598 builtin
functions or variables for JavaScript and PHP respectively from [83] and [67] using
a crawler script. We feed the same seeds to AFL, QSYM, DIE and PolyGlot as
initial corpus. Nautilus and CSmith do not require seed inputs. The BNF grammar
PolyGlot uses is collected and adjusted from ANTLR [2]. The official release of
Nautilus only supports the grammars of JavaScript and PHP, so we further provide
the grammars of C and Solidity to Nautilus.
Environment Setup. We perform our evaluation on a machine with an AMD EPYC
7352 24-Core processor (2.3GHz), 256GB RAMs, and an Ubuntu 16.04 operating system.
We adopt edge coverage as the feedback and use AFL-LLVM mode [144] or AFL-QEMU
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mode to instrument the tested applications. We enlarge the bitmap to 1024K-bytes to
mitigate path collisions [35]. Each tested target is compiled with the default configuration
and with debug assertion on. We additionally patch ChakraCore to ignore out-of-memory
errors, which can be easily triggered by valid test cases, like large-array allocations or
recursive function calls, to avoid lots of fake crashes and false invalid test cases in language
correctness. For new bug detection, due to the limited computation resource, we tested
the 21 targets for different duration, summing up to a total period of about three months.
For other evaluations, we run each fuzzing instance (one fuzzer + one target) for 24h
and repeat this process five times. Each fuzzing instance is run separately in a docker
with 1 CPU and 10G RAM. We perform Mann-Whitney U test to calculate the P-values
for the experiments and provide the result in Table 4.4.

4.8.2 Generic Applicability and Identified Bugs

To evaluate the generic applicability of PolyGlot, we applied it on 21 representative
processors of 9 programming languages to see whether PolyGlot can thoroughly test
them and detect bugs. We only use about 450 lines of BNF grammar and 200 lines
of semantic annotations on average for each of the 9 programming languages. As also
mentioned in Section 4.7, it only took one of our authors about 5-8 hours to apply
PolyGlot on each of the tested programming language.
Identified Bugs. As shown in Table 4.2, PolyGlot has successfully identified 173
bugs in the 21 tested processors of 9 programming languages, including 30 from C, 10
from C++, 26 from JavaScript, 35 from PHP, 16 from Solidity, 27 from SQL, 14 from
LUA, 7 from R and 8 from Pascal. All the bugs have been reported to and acknowledged
by the corresponding developers. At the time of this thesis writing, 113 bugs have been
fixed and 18 CVEs are assigned. Most of these bugs exist in the deep logic of the language
processors and are only triggerable by semantically correct test cases. In the following
case studies, we discuss some of the representative bugs to understand how PolyGlot
can find these bugs and what security consequences they cause.
Case Study 1: Triggering Deep Bugs in Clang. PolyGlot identifies a bug in the
loop strength reduction optimization of Clang. Figure 4.6a shows the Proof-of-Concept
(PoC), and Figure 4.6b shows its logically equivalent program for understanding the
semantics of the PoC easily.

Figure 4.7 shows the process of how PolyGlot turns the benign motivating example
(Figure 4.2a) into the bug triggering PoC. After each round of mutation, all the definitions
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Figure 4.7: The process of how PolyGlot generates the PoC for Case Study
1. We perform three rounds of mutation and validation on the motivating example of
Figure 4.2a. Each round of mutation introduces new code structures (e.g.,, the first
replacement introduces a for statement), and each round of validation generates correct
expressions to fix the semantic errors.

are intact, and new code structures are introduced. Each round of validation produces a
semantically correct test case. With new code structures and semantic correctness, the
mutated test case keeps discovering new execution paths, which encourages PolyGlot
to keep mutating it. And we get the bug triggering PoC after 3 rounds of mutation
and validation. The PoC might look uncommon to programmers, but its syntax and
semantics are legitimate in C. Therefore, the PoC shows that PolyGlot can generate
high-quality inputs to trigger deep bugs in language processors.

1 function handler(key, value) {
2 new Uint32Array(this[8] = handler);
3 return 1.8457939563e-314;
4 } //1.8457939563e-314 is the floating point
5 //representation of 0xdeadbeef
6 JSON.parse("[1, 2, 3, 4]", handler);

Figure 4.8: PoC that hijacks control flow in njs. njs crashes with RIP hitting
0xdeadbeef. The bug is assigned with CVE-2020-24349.

Case Study 2: Control Flow Hijacking in njs. PolyGlot identified many ex-
ploitable bugs, including the one shown in Figure 4.8, which leads to control flow hijacking
in njs. In JavaScript, when JSON parses a string, it accepts a handler to transform the
parsed values. In the PoC, JSON.parse first parses the string "[1, 2, 3, 4]" into an
array of four integer elements, which is denoted by arr. Then, the handler at line 1 runs
on each of the four elements and replaces them with 1.8457939563e-314. It also modifies
arr, which is referred by this in line 2. Assigning a new element of type function
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1 <?php
2 $a = ’x’;
3 str_replace($a , array () , $GLOBALS );
4 ?>

Figure 4.9: PoC that triggers an invalid memory write in PHP interpreter.
This kind of bug does not involve dangerous functions and can be used to escape PHP
sandboxes.

to arr changes the underlying memory layout of arr. After the handler processes the
first element, the memory layout of arr has changed. However, it is undetected by njs
and causes a type confusion. njs still uses the old layout and mistakenly treats the
first processed element, which is a user-controllable number, as a function pointer. njs
then calls that function and control flow hijacking happens. If an attacker controls the
JavaScript code, he can utilize this bug to achieve RCE.
Case Study 3: Bypassing PHP Sandbox. The PHP bugs found by PolyGlot can
be used to escape PHP sandboxes Figure 4.9. PHP sandboxes usually disable dangerous
functions like "shell_exec" to prevent users from executing arbitrary commands. The
PoCs of our PHP bugs do not involve these functions. Therefore, they are allowed to run
in PHP sandboxes such as [91,133], causing memory corruption and leading to sandbox
escape [6, 48,82].

We show the PoC of one of our bugs in Figure 4.9, which only uses a commonly-used
and benign function str_replace. It triggers an out-of-boundary memory write and
crashes the interpreter. With a well-crafted exploiting script, attackers can modify the
benign function pointers to dangerous ones. For example, we overwrite the function
pointer of echo to shell_exec. Then calling echo("ls"), which should simply print the
string "ls", becomes shell_exec("ls"). In this way, attackers can escape the sandbox
and produce more severe damages. Actually, the security team of Google also considers
bugs in PHP interpreter as highly security-related [44]. Therefore, our bugs in PHP
interpreters, though not assigned with CVEs, can lead to severe security consequences.

4.8.3 Contributions of Semantic Correctness

To understand the contributions of semantic correctness in fuzzing language proces-
sors, we perform unit tests by comparing PolyGlot and PolyGlot-syntax which is
PolyGlot without semantic validation. We compare them in three different metrics:
the number of unique bugs, language validity, and edge coverage. We evaluate the
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Table 4.3: Distribution of bugs found by evaluated fuzzers. We perform the
evaluation for 24 hours and repeat it five times. We report the bugs that appear at least
once. "-" means the fuzzers are not applicable to the target. PolyGlot-st refers to
PolyGlot-syntax.

Target

Type
SF: segmentation fault
AF: assertion failure
UAF: use-after-free
SBOF: stack buffer overflow P
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clang AF in parser ✗ ✗ ✔ ✗ ✗ ✗ -
clang AF in parser ✗ ✗ ✗ ✔ ✗ ✗ -
clang AF in code generation ✔ ✗ ✗ ✗ ✗ ✗ -
clang SF in optimization ✔ ✗ ✗ ✗ ✗ ✗ -
ChakraCore SF in JIT compilation ✔ ✗ ✗ ✗ ✗ - ✗

ChakraCore AF in JIT compilation ✔ ✗ ✗ ✗ ✗ - ✗

php UAF in string index ✔ ✗ ✗ ✗ ✗ - -
php SF in setlocale ✔ ✔ ✗ ✗ ✗ - -
php SF in zend API ✔ ✔ ✗ ✗ ✔ - -
php SBOF in header callback ✔ ✗ ✗ ✗ ✗ - -
solc SBOF in recursive struct ✔ ✗ ✗ ✗ ✗ - -

number of unique bugs as it can better reflect bug finding capabilities of the fuzzers than
the number of unique crashes [62]. For language correctness, we consider a test case
as semantically correct as long as it can be compiled (for compilers) or executed (for
interpreters) without aborting errors. For example, if a C program uses an uninitialized
variable, GCC might still successfully compile the program, so we treat it as a correct
test case. This method will treat some semantically incorrect test cases as correct ones
(e.g.,, inputs containing undefined behaviors). We plan to mitigate this problem in future
work. We should notice that PolyGlot-syntax without IR mutation is basically AFL,
and we leave the comparison in the next section (Section 4.8.4). Unique Bugs. We
manually map each crash found by each fuzzer in 24 hours to its corresponding bug, and
show the result in Table 4.3. PolyGlot-syntax finds only two bugs in PHP, which are
covered by the nine bugs PolyGlot finds in the four targets. We check the PoCs of
the two PHP bugs and find the bugs are triggered by a single function call to a specific
built-in function. While PolyGlot generates such function calls in correct test cases,
PolyGlot-syntax generates them in incorrect ones. These function calls happen to be
at the beginning of the PoCs of PolyGlot-syntax. Since the PHP interpreter parses
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Figure 4.10: Rate of language correctness of inputs generated by evaluated
fuzzers for 24h. "Correct" means the inputs can be successfully executed or compiled
by the language processors. "Syntax error" means the inputs contain syntactic errors.
"Semantic error" means the inputs are valid syntactically but not semantically. "Unsup-
ported" mean the fuzzer is not applicable to the target.

and executes one statement per time, the bugs are triggered before the interpreter detects
errors in later statements. This shows that both PolyGlot and PolyGlot-syntax

can identify bugs triggerable by simple statements in the PHP interpreter. However,
only PolyGlot detects deeper bugs in optimization in Clang and ChakraCore because
those bugs can only be triggered by semantically correct test cases.
Language Validity. We show the details of language correctness in Figure 4.10.
Compared with PolyGlot-syntax, PolyGlot improves the language validity by 50%
to 642%: 642% in Clang, 88% in ChakraCore, 54% in php, and 50% in solc. The
result shows the semantic validation greatly improves the semantic correctness of the
test cases. The difference in the degree of improvement results from the complexity and
the accuracy of the BNF grammar of the language. In PolyGlot, C and JavaScript
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Figure 4.11: Edge coverage found by evaluated fuzzers for 24h. We repeat the
experiments 5 times. The solid dot lines represent the mean of the result and the shadow
around lines are confidence intervals for five runs.

have 364 and 462 lines of BNF grammar, while PHP and Solidity have 802 and 745
respectively. Also, the BNF grammar is a superset of the real grammar the processor
accepts. The mutator generates more test cases that cannot be validated due to lower
accuracy in the grammar of PHP and Solidity. For example, we can use a combination
of the keywords {"pure", "view", "payable"} to describe a function in Solidity as
long as the same keyword does not appear twice. However, in BNF it is described as
(pure|view|payable)* and then "pure pure" is legal according to the grammar. Such
errors will be treated as semantic errors and cannot be fixed by PolyGlot currently.
Code Coverage. PolyGlot identifies 51%, 39%, 23%, 31% more edge paths
than PolyGlot-syntax in Clang, ChakraCore, php, and solc respectively. We show
the trend of edge coverage in 24h in Figure 4.11. The increase is higher in Clang and
ChakraCore than the rest two because Clang and ChakraCore perform heavy optimization
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(e.g.,, ChakraCore has JIT compilation). With more semantically correct test cases,
PolyGlot can reach deeper logic to explore the optimization and compilation code.
As shown in Table 4.5, PolyGlot-syntax executes about 2× as fast as PolyGlot,
but it still achieves lower coverage. This result shows the semantically correct test cases
generated by PolyGlot are more effective in exploring the deep program states.

Overall, PolyGlot outperforms PolyGlot-syntax in the number of unique bugs,
language validity, and code coverage. As they use the same mutation strategies, they
generate test cases with similar code structures. Under this condition, higher language
validity further improves the fuzzing performance in various dimensions, showing the
importance of semantic correctness in testing deep logic.

4.8.4 Comparison with State-of-the-art Fuzzers

We also compare PolyGlot with five state-of-the-art fuzzers to further understand
its strengths and weaknesses in testing language processors, including the mutation-
based fuzzer AFL, the hybrid fuzzer QSYM, the grammar-based fuzzer Nautilus, and two
language-specific fuzzers CSmith and DIE.
Unique Bugs. PolyGlot successfully identifies nine bugs in the four targets in
24 hours: two in Clang, two in ChakraCore, four in php and one in solc, as shown in
Table 4.3. AFL and QSYM only identify one bug in clang respectively. Nautilus detects
one in the php interpreter, which is also covered by PolyGlot. CSmith and DIE find
no bugs in 24 hours. The bugs found by AFL and QSYM exist in the parser of Clang.
We check the PoCs and find them invalid in syntax: the bugs are triggered by some
unprintable characters. PolyGlot does not find such bugs because its goal is to find
deeper bugs with valid test cases. In fact, it does find bugs in the optimization logic of
Clang such as the one in Case Study 1 (Figure 4.6a), proving its effectiveness in finding
deep bugs.
Language Validity. Compared with the three general-purpose fuzzers (AFL, QSYM, and
Nautilus), PolyGlot improves the language validity by 34% to 10,000%, as shown
in Figure 4.10. Compared with the language-specific fuzzers, PolyGlot gets 53% and
83% as much as that of CSmith and DIE respectively. We investigate the result and find
the reasons as follows. AFL and QSYM do not aim to improve the language validity as
PolyGlot does. Nautilus uses a small number of fixed variable names and relies on
name collision to generate correct input, which turns out to be less effective. CSmith
and DIE perform much heavier and more specialized analyses than PolyGlot in one
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Table 4.4: P-values of PolyGlot v.s. other fuzzers. We use Mann-Whitney U test
to calculate the P-values. P-values less than 0.05 mean statistical significance. The result
of nearly all the experiments is statistically significant except for the language correctness
compared with CSmith and DIE.

v.s. Fuzzer Target Coverage Correctness Bugs
Clang 0.00596 0.00545 0.00198
ChakraCore 0.00609 0.00583 0.00198
php 0.00609 0.00609 0.00520PolyGlot-st

solc 0.00609 0.00596 0.00198

AFL

Clang 0.00596 0.00545 0.00279
ChakraCore 0.00609 0.00583 0.00325
php 0.00609 0.00609 0.00325
solc 0.00609 0.00596 0.00198
Clang 0.00609 0.00485 0.00325
ChakraCore 0.00609 0.00609 0.00325
php 0.00609 0.00609 0.00325QSYM

solc 0.00609 0.00596 0.00198

Nautilus

Clang 0.00609 0.00558 0.00198
ChakraCore 0.00609 0.00609 0.00198
php 0.00609 0.00609 0.00485
solc 0.00609 0.00558 0.00198

CSmith Clang 0.00609 0.998 0.00198
DIE ChakraCore 0.00596 0.996 0.00198

specific language and thus achieve higher validity in that language.
Code Coverage against General-purpose Fuzzers. As shown in Figure 4.11,
PolyGlot identifies 230% to 3,064% more new edges than the three compared general-
purpose fuzzers: up to 442% more in Clang, 542% more in php, 1,543% more in
ChakraCore, and 3,064% more in solc. If we look at the execution speed of AFL,
QSYM, and Nautilus Table 4.5, we can see that they all execute faster than PolyGlot.
There are several reasons that might lead to the performance gap. First, PolyGlot
puts more effort in analyzing mutated test cases and fixing semantic errors so its test
case generation takes more time. Second, test cases of higher semantic correctness lead to
longer processing time, because language errors cause the execution to bail out early. As
we see earlier, the test cases PolyGlot generates have a higher rate of language correct-
ness and thus lead to slower execution. However, PolyGlot still achieves much higher
coverage, showing that PolyGlot can generate high-quality test cases to effectively
explore program states with a reasonable loss in efficiency of test case generation.
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Table 4.5: Execution speed of different fuzzers on the four tested programs
within 24 hours. We repeat the experiment five times and report the average result.
The number represent "Executions/Second".

Fuzzer Clang ChakraCore php solc

PolyGlot 5.39 5.56 20.55 20.08
PolyGlot-syntax 10.15 9.09 57.73 47.96
AFL 24.29 35.38 102.71 103.71
QSYM 10.39 10.60 37.94 52.95
Nautilus 40.59 66.37 115.07 185.24
CSmith 0.34 - - -
DIE - 4.90 - -

Code Coverage against Language-specific Fuzzers. As shown in Figure 4.11,
PolyGlot finds 863% more edges than CSmith in Clang and 46% more than DIE in
ChakraCore. We should notice that CSmith and DIE actually have higher rate of language
validity (Figure 4.10). We analyze the results and find the following reasons. First, both
CSmith and DIE execute more slowly than PolyGlot Table 4.5. This is because CSmith
and DIE adopt heavier and more complex analyses than PolyGlot (e.g.,, CSmith has
80k lines of code). Also, as discussed before, higher language validity may lead to slower
execution. Second, CSmith generates test cases randomly without utilizing guidance, so
it might generate similar test cases to keep exploring the same program logic. To confirm
our speculation, we perform extra evaluations by comparing CSmith and PolyGlot in
the same conditions: we disable the feedback guidance of PolyGlot, which is denoted
by PolyGlot-nofeedback, as CSmith has no guidance; we randomly collect 5,000 test
cases generated by PolyGlot-nofeedback and CSmith to eliminate the effect of different
execution speeds. We measure the language validity and code coverage in Clang and
repeat the process five times. PolyGlot-nofeedback gets 63.8% of language validity,
while CSmith keeps its 100% correctness. 5,000 test cases of PolyGlot-nofeedback

and CSmith identify 672 and 1809 edges respectively. The results show our assumption
that higher language validity helps explore more program states is still valid, but there
are other aspects that also affect the code coverage of fuzzing (e.g.,, feedback guidance,
execution speed, code structures of test cases).

Overall, PolyGlot outperforms the three compared general-purpose fuzzers in the
evaluated metrics and also outperforms the language-specific testing tools in the number
of bugs and edge coverage. The fuzzing effectiveness of PolyGlot comes from both
its constrained mutation and semantic validation. The mutation introduces various
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new code structures, while the validation further improves the quality of the test cases.
Considering its generic applicability, we believe PolyGlot can save huge development
efforts from developers and boost the testing of language processors.
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Chapter 5 |
Redesign Parallel Fuzzing using
Microservice Architecture

In this chapter, we redesign parallel fuzzing with microservice architecture and propose
the prototype µFuzz.

5.1 Introduction
In recent years, fuzzing has become a popular technique for detecting security bugs in
software testing [10,50,141,144]. Compared to other program analysis techniques, fuzzing
is efficient and requires less manual effort and prior knowledge of the target software.
Its effectiveness in detecting security issues in complex and real-world programs has
been demonstrated [42, 144]. This has led to a significant investment in fuzzing by many
companies, such as Google’s Clusterfuzz project [43], which has found over 36,000 bugs.

Researchers have proposed various optimizations to improve the internal compo-
nents [66,87] of fuzzing, including grammar-based, adaptive or unified mutators [27,75,
134, 149], heavy program analysis techniques [9, 97, 101, 114, 143], priority adjustment
algorithms [12,124,146], and feedback mechanisms [31,88,123]. The aim is to increase
the performance of a single fuzzing instance.

Parallel fuzzing is another area of focus, aimed at making full use of resources and
detecting more bugs in a shorter time. State-of-the-art parallel fuzzing approaches
launch multiple fuzzing instances in separate processes and periodically synchronize
their progress. Each instance follows the logic of a single-instance fuzzer, with its own
fuzzing states and inputs, but benefits from the synchronization with other instances
in exploring the program state space for bugs. Since parallel fuzzing shows its ability
to shorten time cost of bug detection, companies such as Google have deployed parallel
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fuzzing infrastructure for continuous integration and continuous deployment (CI/CD)
testing [45].

However, two limitations exist that prevent scalability in the present parallel fuzzing
architecture. First, the existing architecture is based on single-instance fuzzers whose
fuzzing logic may not be well suited for parallel fuzzing. These single-instance fuzzers
have a serial, synchronous loop where input generation and consumption must be done
in order. If a procedure (such as test case execution) within the loop becomes blocked,
for example due to file reading and writing, the whole instance is hindered. The CPU
assigned to the fuzzing instance will be idle until the blocking operation is completed.
With parallel fuzzing, multiple instances are run simultaneously and the synchronization
process increases I/O, making instances more likely to become stuck and leading to a
waste of CPU power. To fully utilize the computational power, we need to reuse idle
CPU. However, simply launching more instances to handle the idle CPU, such as 32
instances on a 16-core machine, results in frequent context switches between the fuzzing
instances, which decreases the fuzzing performance.

The second limitation in the current parallel fuzzing architecture is the inefficiency
of synchronization. The synchronization process periodically updates the local fuzzing
states of each instance to ensure they have the latest information to make globally optimal
choices. However, the updates are not timely enough, meaning that each instance must
rely on local information to make decisions during the time between two consecutive
synchronizations. This can result in suboptimal decisions and reduced fuzzing efficacy
over time. Increasing the frequency of synchronization could address this issue, but it
would also come with heavy overhead and decreased fuzzing efficiency, as demonstrated
in previous research [139].

To overcome the limitations of the current parallel fuzzing architecture, it is necessary
to redesign the fuzzing tools to minimize the impacts of synchronization and serialization.
A solution is found in the microservice architecture [102], which divides tasks into separate,
independently functional services that can run concurrently. This allows for computing
resources to be efficiently utilized, as CPU can switch to other services when one service is
blocked. Additionally, each service retains its own state and only communicates minimal
information with other services, allowing them to make globally optimal decisions most
of the time.

We introduce µFuzz, a parallel fuzzing framework that utilizes microservice architec-
ture, to achieve our goals. To implement this new architecture, we divided the existing
serial fuzzing loop into four microservices: corpus management, test case generation,
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test case execution, and feedback collection. Each microservice can run independently
and schedule parallel workers. This effectively addresses the CPU idling issue since the
microservices are loosely coupled, so they can replace the blocked service for execution,
thus reducing idle time. Specially, our framework allows each microservice to complete
its task as much as possible before switching to another one to minimize context switch
overhead. Additionally, we implement an output cache mechanism to reduce the coupling
between the services (e.g., test case generation and consumption services), allowing them
to continue making progress even if one gets stuck. This enables consumer services to
retrieve results from the cache if the producer service is blocked, allowing them to make
progress even when a service is stuck.

To address the issue of untimely synchronization, µFuzz utilizes two levels of state
partitioning. First, the global state is divided among the microservices in µFuzz according
to their functionalities which allow each service to handle its states locally. For instance,
the feedback collection service is responsible for evaluating code coverage and updating
the coverage bitmap, so states of coverage bitmap will be stored in it. Second, within each
service, individual workers handle separate parts of the service state, and the combined
state of all workers constitutes the overall state of the service. These partitions eliminate
the state synchronization among different services and workers and enable each service
worker to use up-to-date information to make globally optimal decisions.

We implement µFuzz in 9,534 lines of Rust code, which consists of the concurrent
infrastructure (i.e.,, the asynchronous runtime) and the fuzzer. The concurrent infrastruc-
ture is built on top of Tokio [119], a well-tested asynchronous runtime library. For the
fuzzer, we adopt the fork-server execution, havoc mutation, and edge coverage feedback
from AFLplusplus-4.01c, and use a simple round-robin algorithm that favors test cases
finding more new code for seed selection.

To understand the effectiveness of our new design, we evaluate µFuzz on popular
benchmarks, including Magma [53] and FuzzBench [78]. We compared µFuzz with
the state-of-the-art parallel fuzzers, including AFLplusplus, AFLEdge and AFLTeam, and
found µFuzz can explore 57% more program states and 67% more bugs on average in 24
hours. Besides, our experiments show that µFuzz can make progress in the existence
of blocking I/O with its concurrent design, and its state partition helps improve code
coverage by 96% and bug detection by 47%. Moreover, we evaluated µFuzz and found
three new bugs on well-tested real-world programs.
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Figure 5.1: The state-of-the-art parallel fuzzing approach. The fuzzer spawns mul-
tiple instances and runs them in parallel. Each instance is self-contained and functionality-
complete. They maintain their own local fuzzing states, such as the corpus and coverage
bitmap. Most of the time, the instances work independently as if there were no other
instances. Occasionally, the instances perform corpus synchronization with each other to
share their fuzzing progress.

5.2 Problem
In this section, we provide a brief overview of the current state-of-the-art parallel fuzzing
methods. We then discuss the limitations of these methods and how a microservice
architecture can address these limitations. Finally, we give out our novel approach to
addressing the problem.

5.2.1 How Existing Parallel Fuzzing Works

To improve testing of complex programs under time constraints [45,63], many fuzzers [16,
40, 54, 73, 144] support parallel fuzzing to enhance performance. In state-of-the-art
approach, multiple instances of the same fuzzer run independently on multiple CPU cores
and periodically synchronize the corpus (representing the fuzzing progress) with each
other to catch up on the latest progress made by one instance. As shown in Figure 5.1,
each instance maintains a local seed corpus. Each instance runs independently most of
the time, only periodically checking and copying seeds from other instances that trigger
new code.

Advanced parallel fuzzing approaches either run instances of different fuzzers to
combine their capability [20,51,92] or further optimize the corpus distribution strategy
by partitioning the synchronized corpus among instances to avoid duplicated fuzzing
efforts [69,96,129].
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Fuzzing State. Synchronizing the corpus can enhance fuzzing because the corpus is
a crucial component of the fuzzing state, which represents the minimum information
required to depict the overall fuzzing progress of an instance. This state may include
the corpus, the average execution time of the test case, the seeds of the random number
generator, and other relevant details.

5.2.2 Limitation of Existing Approaches

Existing parallel fuzzing approach involves running multiple fuzzing instances on different
CPU cores, each maintaining its own local state. The instances periodically synchronize
the state to catch up on each other’s progress. However, this approach has two weaknesses:
(1). It aggravates the problem of CPU idling due to the serial design of the underlying
fuzzer. (2). It leads to suboptimal performance as the global fuzzing state cannot be
synchronized to each instance efficiently and in a timely manner.
CPU Idling due to Blocking I/O. Existing fuzzers organize their components in
a serial synchronous loop [40, 54, 144]. The fuzzing pipeline, such as in AFLplusplus,
involves a sequence of steps (selecting a test case, mutating it, executing it, and checking
the feedback) that run in a serial manner. If any of these steps, particularly the execution
phase, is blocked by input/output (I/O) operations, the CPU cannot perform other
tasks, leading to idle time. Therefore, such a design might suffer from performance
degradation in the existence of I/O. I/O can come from two sources. First, the tested
program involves heavy blocking I/O (e.g., a compression application might do heavy
file I/O.). During the execution phase, the fuzzing loop can get stuck, waiting for the
I/O to complete. Since the fuzzing loop is synchronous, the CPU cannot perform other
tasks, such as test case mutation, but wait, resulting in the CPU idling. For example, we
measured the CPU usage of fuzzing tcpdump with AFLplusplus and found that the CPU
usage was only 70%. We checked the system calls made by tcpdump using strace [29]
and found that tcpdump was waiting for blocking system calls such as poll to return.
Second, synchronizing the state between multiple instances of a fuzzer during parallel
fuzzing can result in heavy file I/O and negatively impact performance. For example,
in the case of AFLplusplus, each instance periodically checks and updates its corpus
with others in a shared folder, which can lead to excessive file locking and copying and
thus decrease the performance [139]. While adding more instances to the same CPU
(i.e., oversubscription) may seem like a solution, it can lead to higher CPU usage but not
necessarily better performance due to resource contention and excessive context switching

82



101 102 103 104

Corpus Synchronization Frequency Per Hour
6

7

8

9

10

11

Ed
ge

 C
ov

er
ag

e 
(K

)

Figure 5.2: Code coverage of 10 AFLplusplus instances testing QuickJS with
different synchronization frequency in an hour.

without a properly calibrated task scheduler.
Fuzzing State Not Timely Synchronized. The instances maintain their local
fuzzing states and perform periodic synchronization. During the time between two
synchronizations, they continue to fuzz using the potentially outdated states and a locally
optimal strategy, which may not be globally optimal. On the other hand, too frequent
synchronization introduces a high overhead which can result another negative impact on
performance [139].

We did a quick experiment to verify our hypothesis. The experiment used AFLplusplus
to fuzz QuickJS [71], a popular JavaScript engine, using OSS-Fuzz benchmark [42]. The
experiment compared fuzzing with a single instance for ten hours and ten instances
in parallel for one hour The metrics measured were edge coverage and the number of
interesting test cases selected for fuzzing. The results showed that when fuzzing with
a single instance for 10 hours, about 13,700 new program paths were discovered and
80% of the interesting test cases were further used for fuzzing. However, when fuzzing
with ten instances in parallel for 1 hour, only 6,700 new program paths were discovered,
which was 49% of the coverage of a single instance. About only 40% of the test cases are
further selected for fuzzing. We assume the fuzzing strategy of the single-instance fuzzer
is optimal. It is believed that the decreased performance of the parallel instances is due
to duplication of work on similar test cases and use of suboptimal strategies. Similar
results are also found in [129].

To determine if the performance gap was caused by synchronization delay, we varied
the synchronization frequency of AFLplusplus while measuring the effect on code coverage.
More specifically, we ran QuickJS with ten AFLplusplus instances for one hour by setting
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their synchronization frequency per hour from 2 (AFLplusplus’s default setting) to 40,000
(which performs synchronization after every test case execution). The result is shown in
Figure 5.2. When the frequency was too low (i.e., untimely synchronization), the code
coverage was also low, while when it was high, the code coverage dropped significantly
due to the high overhead of synchronization. However, even at the best frequency, the
performance was still much worse than that of single instance fuzzing. This indicates
that changing the frequency of synchronization alone is insufficient to address the issue.

From the above discussion, we want a parallel fuzzing framework that supports
concurrency to effectively leverages the CPU power and performs timely state synchro-
nization with minimal overhead to ensure optimal fuzzing strategy. However, this is not
feasible with the current monolithic serial approach of existing fuzzers, and a different
architecture is necessary.

5.2.3 Microservice Architecture

We find microservice architecture [102] fits parallel fuzzing well and can potentially
mitigate its current limitations. First, the microservice architecture organizes applications
into a collection of small, independent services that work collaboratively and concurrently.
In order to facilitate parallel fuzzing, we can break down the serial fuzzing loop and put
them into these concurrent services, and thereby we can run other services if one gets
stuck. Second, the services are self-contained (i.e., it does not rely on others to finish its
job) if each of them focuses on a single complete functionality of fuzzing. Thus, there
is no need for state synchronization between services. Third, inside a service, we can
easily scale the capability by creating multiple instances and partitioning the service
data among the instances. For parallel fuzzing, we can create multiple workers inside
a service to achieve parallelism and partition the fuzzing state it maintains among the
workers. And these workers do not need to synchronize with each other because their
states have no overlap. We only need to ensure that the workers can work independently
using their local states and still achieve a globally optimal result.

5.2.4 Our Approach

We aims to design a parallel fuzzing framework that leverages concurrency to maximize
CPU utilization, even with the presence of blocking I/O, while still maintaining optimal
performance. This is accomplished through two steps: redesigning the fuzzing frame-
work with microservice architecture migration and partitioning the fuzzing state. The
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microservice architecture brings concurrency to the framework, allowing it to fully utilize
CPU power in the existence of I/O. Partitioning the fuzzing state allows each instance to
use a locally optimal strategy while still achieving globally optimal performance without
the need for synchronization.
Redesign with Microservice Architecture. We divide the traditional serial fuzzing
process into four distinct services, each responsible for a specific task: corpus management,
test case generation, test case execution, and feedback collection. The fuzzing state
is also partitioned into these services, so that each service only requires its specific
partition to make decisions, and thus can be self-contained. Although these services are
interdependent, with each producing outputs for the others to consume and vice versa,
we use output caching to decouple the production and consumption processes. This
allows the services to run concurrently, even when one service is blocked by I/O. The
cached outputs can be directly consumed by the stuck service when it becomes available,
which allows us to more effectively utilize CPU power in the presence of blocking I/O.
Partition the Fuzzing State. The first level of fuzzing state partition has been
achieved by decomposing the monolithic structure. As a result, each service now maintains
its own individual fuzzing state. However, if the state is shared by multiple workers,
state synchronization among them becomes necessary. To avoid this, we further partition
the state among the workers within each service. We use two guiding principles in our
partitioning strategy. Firstly, each partition of the state should be complete in terms of
functionality, which means the worker should be able to perform its task without relying
on the states of other workers. Secondly, by each worker adopting its locally optimal
strategy, it is expected that the accumulation of individual results will lead to a globally
optimal outcome. This enables the workers to operate independently without the need
for synchronization. With only one global and distributive fuzzing state, changes to the
state are directly applied to the workers’ states. As a result, workers always fuzz using
the most up-to-date global state and make the optimal decisions. This eliminates the
issues associated with periodic synchronization, including high overhead or significant
synchronization lag. For instance, the feedback collection service manages a bitmap
for measuring code coverage. Instead of maintaining a single, global bitmap, we have
partitioned the bitmap into multiple sub-bitmaps, with each worker managing a unique
sub-bitmap. When new feedback is received from the execution service, it is sent to each
worker, who only needs to examine the part of the feedback relevant to its sub-bitmap,
without synchronizing to other workers.
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Figure 5.3: Overview of µFuzz. Instead of running multiple fuzzing instances and
performing periodic synchronization, µFuzz breaks the traditional monolithic architecture
into a microservice one. The new architecture consists of four self-contained services,
each maintaining a partition of the fuzzing state. The services are loosely dependent on
each other using output caching. As described in Figure 5.4, inside each service, we run
multiple workers to exploit parallelism.

5.3 Design
The overview of µFuzz is presented in Figure 5.3. We first break down the traditional
serial fuzzing loop into four services (Section 5.3.1). This division separates the fuzzer’s
responsibility and state into different services, so it eliminates the need for state synchro-
nization between them. These self-contained services are the candidates for concurrency.
Next, we utilize output caching to allow concurrent running of services (Section 5.3.2)
while achieving maximum parallelism with load balancing (Section 5.3.3). Then, we
partition the fuzzing state among workers to avoid synchronization while still getting an
optimal result (Section 5.3.4). Finally, we connect the services together with zero-copy
communication (Section 5.3.5) to achieve efficient parallel fuzzing.

5.3.1 From Monolith to Microservice

As the first step to support concurrency and reduce CPU idling due to blocking I/O,
we break the monolithic serial fuzzing loop into multiple services. We use the following
guidelines from the microservice architecture for the breakdown. First, each service
should be micro and focus only on one core functionality of the fuzzing. Second, the
services should be self-contained, which means they should not rely on the states of other
services to function. If any part of the fuzzing state is used by a service, then it should
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Figure 5.4: The internal structure of a service in µFuzz. Each service has a fuzzing
state, an input queue dispatcher, an output caching queue, and some workers. The
fuzzing state is partitioned into the workers. The input queue dispatcher accepts from
other services and dispatches them to the workers. The workers handle the inputs in
parallel and send the results to the output caching queue. The consumer services can
fetch these results whenever they are ready.

be maintained by the service. As a result, we classify four core functionalities from the
fuzzing loop and break them into four services, which are listed below:
Corpus Management Service. It is responsible for performing test case scheduling
and maintaining a corpus of interesting test cases and their associated metadata (e.g.,,
performance scores). The corpus can include those finding new code coverage and those
that trigger new bugs, etc. Based on the metadata of the test cases, the scheduling
algorithm chooses some from the corpus that can help test case generation.
Test Case Generation Service. It produces new test cases to fuzz the target
program, either by starting from scratch or by modifying existing ones. It can use the
BNF grammar to generate structured inputs or employ bit-flipping techniques to generate
new variants from existing test cases.
Execution Service. The execution service runs the generated test cases on the target
program and collects relevant feedback, such as code coverage, crashes, and timeouts.
Feedback Collection Service. It collects the feedback from the execution service and
classifies whether they are interesting or not. This information can be used to decide
whether a test case should be added to the corpus. It can also generate fuzzing statistics
in different metrics for other services to improve their strategies. For example, it can
calculate how many good test cases are generated from a specific seed and report that to
the corpus management service. The corpus management service can then utilize the
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statistics to update the performance scores of the corresponding test cases and fine-tune
its scheduling algorithm.

We see these services are dependent on each other and form a loop: each service
consumes some outputs from other services and also produces some for them. These
services still need to run in a serial way due to once one service gets stuck, the overall
progress stops. To address this issue and reduce CPU idling, we need to decouple the
services further, as explained in the next section.

5.3.2 Concurrency by Output Caching

We enable the concurrent operation of services that both produce and consume data by
implementing an output caching queue between them. This decouples the production
and consumption of each service, allowing them to run independently. When a service
generates results, it first sends them to the output queue instead of directly to the
consumer service. If the consumer service is temporarily occupied, the producer service
can continue generating more results that are cached in the queue. Once the consumer
service becomes available again, it can retrieve the cached results directly from the output
queue. This approach not only enables multiple services to run concurrently but also
allows others to continue making progress even if one service is temporarily blocked.
Congestion Control. Output caching can result in the overproduction of outputs by
a producer service, which can cause the service to monopolize CPU cores and prevent
other services from consuming the cached outputs. For example, the corpus management
service can keep selecting test cases for mutation and send them to the queue. And
the test case generation service can not consume them since all the CPU cores are busy
running the corpus management service.

To prevent unlimited output generation and ensure that other services have the
opportunity to run, we implement congestion control by setting a maximum limit on
the number of cached results in the queue. When the output queue is full, the producer
service will pause and allow other services to run. This keeps a dynamic balance between
production and consumption and enables the fuzzing process to progress smoothly.

5.3.3 Parallelism by Load Balancing

To fully utilize the computation power of multiple cores, each service of µFuzz can have
multiple workers in parallel. To achieve maximum parallelism, the number of workers
should be the same as the number of cores, and we perform load balancing with an input
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dispatcher to keep all workers busy.
The input dispatcher maintains a first-in-first-out queue of idle workers and adopts

two strategies of load balancing: "first come, first served" and dynamic input partitioning.
We define a worker as idle if it is ready to process input but not currently processing
any. Such workers notify the input dispatcher to put them into the back of the queue
in order. Whenever an input arrives, the input dispatcher tries to pop an idle worker
out of the queue and dispatch the input to it, which is "first come, first served." If the
queue is empty, which means all workers are busy, the input dispatcher will wait for a
worker to become idle. This strategy works well for most cases. However, the sizes of
the incoming inputs are not fixed, and sometimes they can be very large. If we simply
dispatch an input to one worker, it might result in one worker processing a large input
while other workers are idle. To avoid this situation, we further perform dynamic input
partition before dispatching. If the arrived input is larger than a threshold value and
there are more than one idle workers, we partition the input evenly based on the number
of idle workers and dispatch each partition to an idle worker. With the two strategies,
we can achieve maximum parallelism by keeping the workload of each worker balanced
dynamically.

5.3.4 Avoid Synchronization by State Partition

As the result in Figure 5.2 shows, if the fuzzing instances maintain their local states
and rely on periodic synchronization, we end up with suboptimal performance due to
either synchronization lagging or high overhead. Therefore, we avoid synchronization by
partitioning the fuzzing state. Afterward, we maintain only one global state but in a
distributive way.

We already perform the first level of state partition by breaking the fuzzing loop into
microservices. We further perform the second level inside each service. More specifically,
we partition the state among the workers in a way that each worker maintains a unique
and functionality-complete partition. Every worker only needs its own part of the state
to finish its job. The workers do not need state synchronization with each other. Besides,
the partition enables us to achieve an overall optimal result by simply accumulating the
results from the workers. In this way, the workers can run independently.

We categorize the fuzzing states into two types. The first type has a known fixed
size before the fuzzing starts. For example, the feedback collection service maintains a
bitmap for recording code coverage. The size of the bitmap is fixed and configured by
the users. The second type has an unknown variable size. For example, the seed corpus
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is part of the fuzzing state and grows as we fuzz. Due to these different characteristics,
we perform static partition for the first type and dynamic partition for the second, as
described below.
Static State Partition. For the fuzzing state of fixed size, we partition it statically
and evenly among the workers. Therefore, we know which worker maintains which
partition in advance. When new inputs arrive, the input dispatcher partition the inputs
based on the partition boundary and dispatch them to the corresponding workers. For
example, suppose that we have a 1000-byte bitmap and 10 workers in the feedback
collection service. By static partition, each worker should maintain 100 bytes (e.g., the
first maintains byte 0 to byte 99, and the second maintains byte 100 to 199). When the
execution service generates new bitmap information, the information is partitioned and
dispatched to different workers in the feedback collection service. By accumulation, if
none of the workers in the feedback collection service find new bits, the executed test
case is considered uninteresting and otherwise interesting.
Dynamic State Partition with Tagging. For the fuzzing state of variable size, we
cannot predict the size in advance to perform static partition. Instead, we use dynamic
partition: whenever a new part of the state is generated, we partition it evenly and
distribute it to the workers. Since the new state is randomly distributed, the partition in
each worker should have similar data distribution as the global state. This is important
because most fuzzing strategies are randomized ones, which means their performance
is not dependent on the size or the specific values of the underlying data but on their
distribution. Therefore, a fuzzing strategy that is optimal for the global state should also
be optimal for the partitioned state. For example, if the corpus management service has
25 workers and maintains a corpus of 1000 interesting test cases. 500 of the test cases
are considered as good (i.e.,, they can potentially trigger more new codes), and the other
500 are bad. By uniformly random partition, each worker is expected to maintain 20
good test cases and 20 bad test cases. If the test case selection strategy for the global
state is to first explore the good test cases and then the bad ones, then every worker just
independently follows this strategy to achieve the same expected result.

One problem with dynamic partition is that there is no partition boundary. It is
difficult for the input dispatcher to figure out how to dispatch the inputs. For example,
the feedback collection service can send some performance reports of the evaluated test
cases to the corpus management (e.g., the test case X generates 20 new test cases that
trigger new code coverage) for fine-tuning the scheduling algorithm. The input dispatcher
of the corpus management service cannot figure out which worker maintains the test case
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X and should receive such inputs easily. If we maintain the global knowledge of which
worker maintains which test cases, it will be too much overhead as the corpus size grows.
Therefore, for dynamic state partition, we assign each worker a unique ID and tag the
states it maintains with the ID. Such tagged IDs will remain in all intermediate outputs
that are related to the states (i.e.,, the test cases sent out by the corpus management
will contain the IDs of the workers maintaining them.). Since the number of workers can
be known in advance, the input dispatcher can dispatch the inputs based on the ID.

5.3.5 Zero-Copy Communication

As mentioned before, we break down the fuzzing loop into several services that consume
and produce data for each other. However, this can cause high communication overhead
due to the large amount of data being passed. To reduce this overhead, we have designed a
safe zero-copy mechanism that uses shared memory and pointer passing. This mechanism
ensures safe access to data across services and requires only a constant size of data to be
passed, regardless of the amount of generated output. For example, passing a pointer to
1,000 bytes of generated data only requires eight bytes on an x64 system, rather than
copying the entire data.
Pointer Passing with Shared Memory. Instead of asking both the producer and
consumer service to unnecessarily allocate memory to store and copy the data from one
to the other, we create shared memory between the services and pass the pointers to
the shared memory. After the shared memory is set up, the producer service writes
its outputs directly to the shared memory. To "pass" the data to the consumer, the
producer simply passes a pointer to the data and the size of the data to the output
queue. Afterward, the consumer can fetch the pointer and the size to perform accurate
data access. In this way, regardless of the output size, we only need to pass the small
constant-size pointers and integers.
Unique Ownership for Safe Access. Shared memory can introduce a safety issue
since multiple services can access it simultaneously, leading to race conditions. To ensure
safe memory access, we wrap the pointers with unique ownership. This ensures that only
one service can access the underlying shared memory at a time. This is reasonable since
the consumer should only access the output after the producer has finished generating it,
and the producer has no need to access its output afterward.
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Table 5.1: Line of codes of different components of µFuzz, which sum up to
9,534 lines.

Module Language LOC
Concurrent Runtime Rust 1,980
Corpus Management Rust 759
Testcase Mutation Rust 1,604
Fork-Server Execution Rust 1,453
Feedback Collection Rust 1,169
Others Rust/Protobuf 2,569
Total Rust/Protobuf 9,534

5.4 Implementation
We implement µFuzz in 9,534 lines of code. Table 5.1 shows the breakdown.
Concurrent Runtime. We use Tokio as the concurrent runtime of µFuzz. The
runtime is responsible for efficient task scheduling. Each worker in the services of µFuzz
is run as a task in the runtime. As users configure the number of workers, the number of
total tasks is fixed. In this way, we avoid the overhead of unnecessary task creation. We
maintain a double-ended queue of unfinished tasks to execute. If the runtime is looking
for a task to run, it pops one from the front of the queue. When a service receives inputs,
its workers will get notified, and µFuzz will try to put them in front of the queue, which
allows them to be picked up for execution sooner. After a worker finishes its work, we
put it at the back of the queue so that workers from other services have a chance to
run. To avoid unnecessary service switching, when a service receives inputs, it processes
as many of them as possible. If all the inputs are processed or the service gets stuck,
µFuzz will move to the next service with inputs to be processed.
Corpus Management. The corpus management service maintains a corpus of test cases
and their performance scores used in the test case selection algorithm. The performance
score of a test case reflects how many interesting variants it has generated. When a test
case is added to the corpus, we assign it an initial score and adjust it according to the
feedback. For example, if a mutated variant of a test case triggers a new code path, the
score of the test case is increased. For test case selection, we sort the test cases by scores
and select them in descending order with random skipping.
Test Case Generation. µFuzz uses AFLplusplus’s havoc mutation as its test case
generation, which performs unstructured bit flip and byte modification on existing test
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cases. Since test case generation and execution are in separate services, sending the
mutated test cases one by one to the execution service will result in too much service
switching, considering the fuzzing speed. Instead, we mutate each test case multiple
times and send the new variants in bulk to the execution service to reduce the overhead.
We also skip the deterministic stage and only perform the havoc stage as AFLplusplus’s
parallel fuzzing mode does.
Execution. The execution service adopts the popular fork-server approach [54,144].
Each worker in the execution service has its own fork server. When a worker receives an
input to execute, it feeds the input into the fork server and requests a fork. The forked
process executes the target binary with the test case as input and generates the code
coverage and execution status (e.g.,, crash, timeout).
Zero-Copy Communication. We run all services of µFuzz in the same process
to share the address space. In this way, zero-copy communication can be achieved by
simple pointer passing. We use Rust’s std::sync::Arc, a thread-safe reference-counting
pointer, to wrap our data. We achieve unique ownership by ensuring that the reference
counter of the pointer is always one, which means only one owner can operate on the
underlying memory.

5.5 Evaluation
Our evaluation aims to answer the following questions.

• Can µFuzz outperform state-of-the-art parallel fuzzers? (Section 5.5.2)
• Can µFuzz’s microservice architecture and state partition improve fuzzing perfor-

mance? (Section 5.5.3)
• Can µFuzz find new bugs in real-world programs? (Section 5.5.4)

5.5.1 Evaluation Setup

Benchmark. We use the state-of-the-art benchmark Magma [53] to evaluate µFuzz.
The measured metrics include bug detection capability and code coverage. Due to the
time and resource limit, we rank the programs in Magma by the number of inserted bugs
and test the top six programs: Poppler, SQLite, openssl, sndfile,libxml2, PHP. We
use the corpus from Magma for all the targets and run them through AFLplusplus’s test
case minimizers to remove redundant ones. We compare µFuzz with three state-of-the-
art fuzzers: AFLplusplus [54], AFLTeam [96], and AFLEdge [129]. AFLplusplus is the
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most popular fork of AFL with various improvements and is still actively maintained.
AFLTeam and AFLEdge are the most recent and the open-source advanced parallel fuzzers,
which focus on partitioning fuzzing tasks to different instances and are good comparison
for µFuzz’s state partition. AFLEdge and AFLTeam work by integrating with existing
single-instance fuzzers. Therefore, we run AFLTeam and AFLEdge on top of AFLplusplus
for a fair comparison.
Environment Setup. We perform our evaluation on three machines, each with an
Ubuntu 18.04 operating system, an Intel Xeon CPU E5-2680 v3 processor with 48 visual
cores and 256GB memory. For bug detection, we calculate the number of bugs with
Magma, which assigns a unique bug ID to all its inserted bugs and prints a log whenever
a bug is triggered. Due to the randomness in fuzzing, we further apply Magma’s survival
analysis to convert bug triggering time to bug survival time, which is the expected time a
bug remains undiscovered. A smaller survival time indicates a fuzzer can find the bug in
shorter time. We instrument the tested programs to test edge coverage with hit counters.
For the code coverage and bug detection experiments, we run the fuzzers with 40 fuzzing
instances on 40 cores inside docker for 24 hours and repeat the process five times. For
µFuzz, we run 40 workers for each service but still use only 40 cores which is the same
as the other fuzzers. We report the average results to reduce the random noise.

5.5.2 Comparison against existing fuzzers

We compare µFuzz against three state-of-the-art fuzzers to understand its strengths
and weaknesses in parallel fuzzing, including the de facto AFLplusplus and the two
most recent parallel fuzzers, AFLEdge and AFLTeam. Since µFuzz’s seed scheduling
algorithm is different from AFLplusplus’s, we also compare with AFLplusplus-M, which
is AFLplusplus with µFuzz’s seed scheduling algorithm, to see whether performance
improvement is due to our seed scheduling. We also want to understand whether increasing
the synchronization frequency of existing fuzzers can improve fuzzing as a simple solution.
Therefore, we add a comparison with AFLplusplus-F, which is AFLplusplus performing
synchronization every 30 seconds instead of 30 minutes. We use 30 seconds because we
find by experiments that it has lower overhead and achieves almost the same coverage as
that of a shorter synchronization interval. We compare these fuzzers in two metrics: bug
detection (the number of triggered bugs and their survival time) and edge coverage.
Bug Detection. As shown in Table 5.2, µFuzz finds 12 bugs in 24 hours, while
AFLplusplus, AFLEdge, AFLTeam, AFLplusplus-M, and AFLplusplus-F find only 8, 8, 6,
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Table 5.2: Bug Detection Results in 24 Hours.

Targets Bug ID µFuzz AFLplusplus AFLEdge AFLTeam AFLplusplus-F
PDF010 12h56m 19h18m 22h13m 05h31m 13h13m
PDF016 01m40s 16m40s 01m40s 16m40s 01m40sPoppler

PDF021 05h22m ∞ ∞ ∞ ∞
SND017 01h24m 03h34m 02h51m 02h46m 16m45s

sndfile
SND020 01h24m 04h15m 02h51m 02h46m 02h50m
XML002 12h57m ∞ ∞ ∞ ∞
XML003 02h46m ∞ ∞ ∞ ∞
XML009 16m40s 02h46m 02h46m 02h46m 02h46m
XML012 15h13m ∞ ∞ ∞ 20h45m

libxml2

XML017 01m40s 16m40s 01m40s 01m40s 01m40s
SQL002 02h46m 10h34m 07h28m ∞ 03h16m

SQLite
SQL018 02h46m 02h52m 05h14m ∞ 03h40m

Total Bugs Found 12 8 8 6 9

Targets Bug ID AFLplusplus-M µFuzz-S µFuzz-SM
PDF010 18h19m ∞ ∞
PDF016 01m40s 03h21m 03h25mPoppler

PDF021 ∞ ∞ ∞
SND017 16m40s 02h46m 01h25m

sndfile
SND020 02h50m 02h46m 01h25m
XML002 ∞ ∞ ∞
XML003 ∞ ∞ ∞
XML009 02h46m 03h06m 03h31m
XML012 ∞ 20h07m 22h38m

libxml2

XML017 16m40s 02h48m 02h46m
SQL002 07h53m 06h19m 09h14m

SQLite
SQL018 ∞ 03h33m 07h10m

Total Bugs Found 7 8 8

7, and 9 bugs, respectively. All the nine bugs found by other fuzzers are also covered
by µFuzz, and µFuzz found seven of them within the shortest time. Three of the
bugs (PDF201, XML002, XML003) are only found by µFuzz. AFLplusplus finds one more
bug than AFLplusplus-M, meaning that the seed scheduling of µFuzz might not be
as good as AFLplusplus’s in bug detection. However, µFuzz can still find more bugs
quickly, thanks to the microservice design and state partition. We plan to adopt the
advanced seed scheduling algorithm of AFLplusplus to further improve the performance
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Figure 5.5: Edge coverage found by evaluated fuzzers with 40 cores for 24h.
AFLplusplus-F and AFLplusplus-M are AFLplusplus with a synchronization per 30
seconds and µFuzz seed scheduling, respectively. µFuzz-S removes state partitioning
from µFuzz, and µFuzz-SM further removes concurrency.

of µFuzz. Additionally, AFLplusplus-F finds all the eight bugs found by AFLplusplus
and one more. Out of the 8 common bugs, AFLplusplus-F finds six of them faster. This
shows that higher synchronization does help improve the bug detection capability of
AFLplusplus because the fuzzing instances can catch up with the latest progress earlier.
Code Coverage. As shown in Figure 5.5, on average µFuzz identifies 23%, 45%, 102%,
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Table 5.3: Line of source codes and the number of inserted bugs of the tested
six targets. Larger code spaces usually result in more complex programs.

Target Poppler SQLite openssl sndfile libxml2 PHP
LOC 342K 320K 695K 66K 457K 1,488K
Bug Num 22 20 20 18 17 16

88%, and 33% more new edges than AFLplusplus, AFLEdge, AFLTeam, AFLplusplus-M,
and AFLplusplus-F respectively on the six targets. We can see from Table 5.3 that
the improvement of µFuzz against the second-best fuzzer is related to the complexity
of the targets. If the programs have larger code bases and more program states to
explore , µFuzz can achieve much higher code coverage than the second-best fuzzer
(e.g., 40% more in Poppler and 37% more in PHP than AFLplusplus). Otherwise, if the
programs are small and fuzzers can achieve saturated coverage in a short time, then the
improvement of µFuzz is not apparent (10% more in openssl than AFLplusplus and
6% less in sndfile than AFLplusplus-F). Another thing we see is that AFLplusplus
has higher code coverage than AFLplusplus-M, which shows that the simple scheduling
algorithm of µFuzz is not as good as AFLplusplus’s in input space exploration. This
means the improvement of µFuzz does not come from its scheduling algorithm but
its new architecture and state partition. We notice that AFLEdge and AFLTeam have
worse performance than AFLplusplus. We carefully investigated their source code and
execution status and found that they both run their partition algorithms at a fixed time
interval (i.e., every hour). The algorithms aggregate the fuzzing progress of all their
instances (e.g., the corpus of all instances) and then perform partitioning, which requires
heavy analysis. However, since we are running the experiment with 40 instances and
the total size of the corpus is large, the analysis can take a long time to finish. For
example, we find that it takes AFLEdge more than three hours to finish one round of
partitioning on PHP. By the time it finishes, the fuzzing has made three more hours’
progress and the partition results might not be optimal anymore. Interestingly, we notice
that the coverage of AFLplusplus-F is higher than AFLplusplus at the beginning (i.e.,
in the first few hours) but lower in the end. We investigate the results and find the
following reasons. When the fuzzing starts, the corpus is small and the input space is
not well explored. An instance might find a bunch of interesting test cases, but cannot
explore all of them timely. Under this situation, faster synchronization allows other
instances to catch up with the progress and help explore the interesting test cases. A
small corpus also allow the instances to synchronize with low overhead. However, as the
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code coverage is about to be saturated, there are not as frequent progress updates as in
the beginning and AFLplusplus-F still synchronizes frequently. Every time an instance
wants to synchronize with another’s corpus, it has to walk through the directory to see
whether there are any new test cases. Since the corpus has grown bigger, such operations
become more expensive, so the fuzzing speed of AFLplusplus-F goes down, resulting in a
slower increase in code coverage. If we further check the bug triggering time in Table 5.2,
we can see that seven out of the 9 bugs found by AFLplusplus-F are within the first four
hours. This is when faster synchronization is still beneficial for fuzzing.

Overall, µFuzz outperforms the three compared parallel fuzzers AFLplusplus, AFLEdge,
AFLTeam, and their variants in both bug detection and code coverage. The fuzzing effec-
tiveness of µFuzz comes from both its concurrent design and state partition.

5.5.3 Contribution of Microservice Architecture and State Partition

We compare µFuzz with µFuzz-S, which is µFuzz with blocking synchronization but
without state partition, to understand their contributions in parallel fuzzing. Since
µFuzz-S introduces blocking I/O, we further compare it with µFuzz-SM, which is
µFuzz-S without concurrency and runs services synchronously. More specifically, every
worker in µFuzz-S maintains a copy of the global state. Whenever there are state
updates, µFuzz-S will propagate the updates to all its workers synchronously. The
workers cannot handle new inputs until the state update is finished.
Bug Detection. µFuzz successfully identifies 12 bugs in the targets in 24 hours, while
both µFuzz-S and µFuzz-SM finds only 8. As shown in Table 5.2, µFuzz finds all the
bugs that are found by µFuzz-S and µFuzz-SM much faster, spending 46.6% and 53.7%
less of the time respectively. Although µFuzz-S and µFuzz-SM found the same eight
bugs, µFuzz-S found five of them faster. We checked the fuzzing speed of these fuzzers
to investigate the cause of the performance gap. We found that although µFuzz-S has
blocking synchronization, its fuzzing speed has no significant difference from that of
µFuzz, which has no blocking synchronization. This is because the concurrency allows
µFuzz-S to run other services during the state updates; thus its overall progress will not
be blocked. However, the fuzzing speed of µFuzz-SM is only 91% of µFuzz-S on average.
This means that in µFuzz-S, when some services get blocked during synchronization, the
other services cannot take over the CPU and utilize the computation power. Therefore,
we can have two conclusions: First, with concurrency, the fuzzer continues to make
progress in the existence of blocking I/O and thus well utilizes the CPU power. Second,
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with state partition, µFuzz can find more bugs faster.
Code Coverage. As shown in Figure 5.5, µFuzz finds 96% and 117% more edge than
µFuzz-S and µFuzz-SM respectively in the six targets on average. From Figure 5.5, we
find that the coverage increase of µFuzz is much faster than µFuzz-S until the coverage
is saturated. We checked the execution status and found that workers in the corpus
management service of µFuzz-S tend to select duplicated test cases for mutation. This is
because the workers have the exact same state as each other and use the same scheduling
algorithm. Such duplication can slow down fuzzers’ exploration. µFuzz-SM has the
worst performance because it not only suffers from the aforementioned duplication but
also slower fuzzing speed due to blocking I/O.

Overall, µFuzz outperforms µFuzz-S and µFuzz-SM in both bug detection and code
coverage. Both the microservice architecture and state partition contribute to µFuzz’s
strengths. The concurrent design allows µFuzz to make progress in the existence of
blocking I/O. State partition allows all the workers to work independently and still
achieves an overall optimal result.

5.5.4 Identified New Bugs

Since we do not propose any new fuzzing strategy but help the existing strategies parallel
more efficiently, we only ran some preliminary experiments to fuzz some programs from
OSS-Fuzz for a short time. Yet we still find three new bugs in these well-tested programs,
showing that µFuzz is applicable in real-world fuzzing. We do not use Magma for new
bug detection because Magma uses the fixed old version of the programs to insert bugs
stably. The three identified bugs include one logical error and two memory-corruption,
of which one has been fixed and one acknowledged by the developers at the time of
writing. We are confident in µFuzz since it has better performance than existing fuzzers
according to our evaluation.
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Chapter 6 |
Discussion

In this chapter, we discuss several limitations of our presented works and provide potential
solutions for them.

6.1 Squirrel

DBMS-Specific Logic. Although our design of Squirrel is DBMS-agnostic, we
find that utilizing program-specific features improves testing result. First, each DBMS
implements a dialect of SQL, which is either almost the same as the official one, like
SQLite [55], or significantly different in many features, like PostgreSQL [99]. Due to
this reason, Squirrel works well on SQLite (51 bugs), but only triggers few bugs
in PostgreSQL, MySQL and MariaDB. We can implement more accurate grammar of
different SQL dialects to improve our fuzzing efficacy. Second, DBMSs may adopt extra
checks before executing the query. For example, we find that PostgreSQL requires type
correctness between all operands, and comparisons between integers and floating points
are not allowed. SQLite does not check anything but will automatically perform type-
casting during the execution, while MySQL only gives a warning for mismatched types.
We can implement the type consistency relation in our semantics-guided instantiation
for testing PostgreSQL.
Alternative Feedback Mechanisms. Recent software testing practice widely adopts
code coverage to guide mutation-based fuzzing [40,73,144]. However, during our evalua-
tion, we find potentially harmful code coverage that hinders the generation of semantics-
correct queries. Especially, at the beginning of testing grammar-incorrect queries trigger
many new branches in the fault-handling code. The coverage-based feedback guides
Squirrel to focus on these inputs instead of the original semantics-correct queries.
Recent works for fuzzing language compilers and interpreters mention a similar observa-
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tion [52,137]. We can investigate this problem and develop solutions to mitigate it, like
dropping inputs that trigger new branches in short executions.

6.2 PolyGlot

Inconsistent Grammar. PolyGlot generates test cases according to the provided
grammar. However, it still generates syntactically incorrect test cases because a BNF
grammar is usually a superset of the real grammar that DBMSs and language processors
accept. For example, in C we can use "(int|long|void)+ identifier" to describe
the grammar of variable definitions, where "+" means one or more. The "+" is intended
for types like long int and short int, but invalid types like long void and void int
are also valid according to the BNF grammar, which introduces incorrect test cases.
To address this problem, we plan to adopt techniques that infer accurate grammar in
runtime [46, 47]. Alternatively, we can try machine learning techniques to infer the
accurate input grammar from test cases [38,72,135].
Specific format BNF grammar. Currently, PolyGlot relies on a BNF grammar
which must be conflict-free for LR(1) parser, one-token lookahead, since Bison is an
LR(1) parser. Unfortunately, not all BNF grammars are conflict-free for LR(1) parser.
For this reason, it is time-wasting to eliminate conflicts in BNF grammar. As a solution,
we can adopt other parsers which use more than 1 token of lookahead,e.g., LL(k) parser.
Thus, we can construct an unambiguous parser from BNF grammar.
More Relaxed Mutation. PolyGlot restricts its mutation to preserve language
correctness. However, this restriction limits the possible definitions and code structures
because we hardly mutate IRs with definitions. We plan to relax the constraints in the
following ways. First, we can generate and insert new definitions into the test cases.
This can enrich the possible definitions of the test cases and bring more code structures.
Second, we can perform test case minimization to remove definitions that are not used in
the program. This also increases the possibility of mutation. For example, an IR might
not be mutable because it contains a definition. If the definition is not used and removed
during minimization, the IR becomes mutable.
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6.3 µFuzz

Collaborative Fuzzing. The current implementation of µFuzz does not support
collaborative fuzzing, which combines all kinds of different fuzzers to get a higher overall
fuzzing performance. This is because µFuzz now assumes that each service maintains one
united global state and each worker inside the service maintains one partition of the state.
However, different fuzzers can have different fuzzing states for the same functionality
and µFuzz cannot distinguish workers of different states inside a service. For example,
grammar fuzzers might maintain a corpus in the form of abstract syntax trees (AST)
instead of a binary stream. Suppose we combine a grammar-based mutation along with a
bit-level mutation in µFuzz. In that case, the input dispatcher of the test case generation
service might wrongly dispatch an AST test case to a worker of bit-level mutation. We
plan to try two ways to support collaborative fuzzing with µFuzz. First, we can tag
both the data of service communication and the workers. Moreover, we restrict the input
dispatcher to only dispatch inputs to workers with matching tags. In this way, a service
can maintain different types of workers and different states. Another way is that we can
use µFuzz as a base fuzzer for existing collaborative fuzzing approaches. For example,
we want to combine 20 instances of a bitflip fuzzer and 10 instances of a grammar fuzzer.
Then we can implement both fuzzers in µFuzz, and then use them as the base fuzzers
in the existing collaborative fuzzing framework such as ClusterFuzz [43].
Distributed Fuzzing. Currently, µFuzz is implemented as a multithreaded program,
which allows all threads to share the same memory space so that they can share data
efficiently. µFuzz can easily be extended to support distributed fuzzing in two ways.
One way is to run one µFuzz on each machine and perform state synchronization by
connecting services with remote procedure calls (RPC), which is the state-of-the-art
approach. For example, we can run µFuzz on different machines and connect their
corpus management to synchronize the corpus and connect their feedback collection to
synchronize the code coverage bitmap. More importantly, although state synchronization
over the network can cause slow I/O, µFuzz will not be affected by this kind of I/O thanks
to its concurrency design. If one service need to wait for the network communication to
complete, the other services can still run and make individual progress. Another way
is to utilize the microservice architecture to run different services on different machines
and communicate over the network with adding input caching to each service. In this
way, each service can keep fetching the result from other services into the input cache
and running the workers to consume the inputs concurrently. As long as we warm up
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each service by filling enough results in the input cache before fuzzing, each service can
run without waiting for network I/O.
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Chapter 7 |
Conclusion

In this thesis, we present three of our works to enhance the effectiveness and efficiency of
fuzzing. In the first two works, we focus on improving the quality of test cases that require
syntactic and semantic correctness. Specifically, in the first work, we investigate current
challenges in testing Database Management Systems and propose Squirrel to generate
valida SQL queries. We define an IR that represents the syntactic components and carries
the necessary semantic information. Then we build a dependency graph according to the
semantic information and perform a semantic instantiation to validate the test cases. We
evaluated Squirrel on four popular DBMSs: SQLite, MySQL, MariaDB and PostgreSQL,
and found 51 bugs in SQLite, 7 in MySQL and 5 in MariaDB. Squirrel achieves at least
3.4 times improvement in semantic correctness than that of current mutation-based and
generation-based fuzzers, and triggers up to 12 times of improvement in code coverage
than current mutation-based fuzzers. The results show that Squirrel is effective in
testing database management systems.

Followed by the first work, we propose PolyGlot which can achieve both generic
applicability and high quality for generic language processors fuzzing. We neutralize
the differences in languages by casting their specification to the specification of IR.
Then we perform constrained mutation and semantic validation on the IR statements to
generate valid test cases. In our evaluation, We applied PolyGlot on 21 processors
of 9 languages and successfully identified 173 new bugs. Besides, our evaluation shows
PolyGlot is more effective in testing language processors than existing fuzzers with up
to 30 times improvement in code coverage.

Our third work focuses on improving efficiency in parallel fuzzing. We identified
two weaknesses in state-of-the-art parallel fuzzing: the CPU idle issue of blocking I/O
and untimely state synchronization. To address these two weaknesses, we propose
µFuzz. µFuzz adopts the microservice architecture, which enables each service to run
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concurrently and reduces the burden of synchronization. The loosely coupled structure of
microservices allows µFuzz to replace the blocked service and schedule parallel workers
effectively, improving CPU utilization. µFuzz has two levels of state partition that
eliminate the need for state synchronization among different services and workers and
allow each service worker to make globally optimal decisions. Our evaluation shows
µFuzz is more effective in parallel fuzzing than existing fuzzers with 57% improvement
in code coverage and 67% improvement in bug detection on average in 24 hours. Besides,
µFuzz finds three new bugs in well-tested real-world programs.
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