
A Lightweight Framework for Regex Verification

[ACM Student Research Competition, PLDI ’17]

Xiao Liu
Advisor: Dinghao Wu

College of Information Sciences and Technology
The Pennsylvania State University, University Park

1. PROBLEM AND MOTIVATION
Regular expressions are widely used in computer programs

for pattern searching and string matching due to the high ef-
fectiveness and accuracy. According to Chapman and Stolee’s
study on regular expression usage, developers are in favor
of regular expressions which are contained in 42% among
nearly 4,000 open-sourced Python projects [5]. Researchers
have also explored applying regular expressions to test case
generations [1, 7, 8, 16], specifications for string constraint
solver [10, 17], and queries for some data mining frame-
work [3]. As a fundamental approach for lexical analysis, it
has been further extended to advanced functions for security
purposes, such as input validation [19] and network intrusion
detection [13]. Despite the popularity, it is still considered
complicated for users, even experienced programmers, due
to the low readability and the hardness to construct cor-
rect ones. Because of the gradually increasing adoptions of
agile software development, requirements and solutions usu-
ally evolve through quick self-organizing, which causes the
software development more error-prone. In this situation,
input validations using regular expressions are constantly
being found inefficient due to errors in the constructed ex-
pressions, resulting in security vulnerabilities [11, 14].

Due in part to their shared use across software engineering
and how susceptible regexes are to errors, many researchers
and practitioners have developed tools to support more com-
prehensible verification. To verify the correctness of regu-
lar expressions, testing is widely adopted. These techniques
solve the problem to some extent but are far from suffi-
cient. In this study, we are interested in enabling end-users
to verify the correctness of regular expressions. We present
a novel lightweight framework that verifies the consistency
between natural language requirements and corresponding
regular expressions using equivalence checking. Incorrect
regular expressions will be detected when inequivalences are
found between the specifications and target expressions. To
justify the novelty of our proposed framework, we build a
prototype tool. To evaluate our idea, we conduct a small-
scale lab study with 4 participants on 10 verification tasks.
Both efficiency and usability are demonstrated.

2. BACKGROUND AND RELATED WORK
To verify the correctness of regular expressions, proposed

approaches in previous studies focus on testing and debug-
ging methods, which solve the problem to some extent but
are far from sufficient. Black-box testing is mostly adopted.
Assisted with online and offline tools, e.g. regex101 [6], de-
velopers can find bugs in regular expressions through a set of

Figure 1: Framework for regex verification

test cases. However, this kind of heavyweight frameworks in-
crease their cognitive load to understand both requirements
and the corresponding regular expressions and it requires
a significant amount of human labor to build test suites.
In addition, it is difficult to determine the test coverage of
these self-generated test cases, especially for negative test
cases and those for testing Kleene stars.

White-box testing is also discussed by a few researchers
and some visualization tools are developed as assistance.
Regular expressions can be visualized, for instance, as a
graph structure [4, 9, 12]. The demonstrated graph will
present the path in a regular expression in a clearer way,
therefore, saves human labor to compose cases and increases
the readability despite the expressions without clear demar-
cation. Fabian et al. [2] also introduced the approach that
provides advanced visual highlighting of matches in a sam-
ple text, which is easy to use and helps understanding regu-
lar expressions. However, these techniques still rely on test
cases where the test set explosion problem still remains.

Naturally, we think of verification techniques which check
the required properties based on mathematical proof but not
dynamic test cases. However, only a few studies have been
done for regular expressions. Existing papers mostly focus
on verification of the syntax level properties. Static pro-
gram analysis techniques like type systems [15] are adopted
for exception detection for regular expressions, e.g. Index-
OutOfBound, at the compile time. According to our knowl-
edge, there is no previous work on verifying semantic level
properties for regular expression.

3. APPROACH AND UNIQUENESS
In this paper, we propose a lightweight verification frame-

work that enables end-users to verify regular expressions
with requirements and specifications as shown in Figure 1.

In this flowchart, each block represents a module and the
modules connected by gray arcs are fundamental processes
in the typical software developments, e.g. waterfall. The
cores of our framework are the Equivalence Checking mod-
ule and the Specification Synthesis module. With the target
regular expression and synthesized specifications also in reg-
ular language, we will perform equivalence checking based
on an analysis of the equivalence between the two regular ex-
pressions to validate whether the specified properties hold
or not and then report to the developers. And to lower the
bar of entry for specification synthesis, a rule-based natural
language processing technique is employed.

Consider the following regular expression for matching a
valid password:

(?!^[0-9]*$)(?!^[a-zA-Z]*$)^([a-zA-Z0-9]{6,10})$

According to the requirements, The password must be be-
tween 8 and 10 characters, contains at least one digit and
one alphabetic character, and must not contain special char-
acters. Therefore, it matches password like enduser101 and
rejects enduser1001.

With the proposed framework, by partitioning the require-
ments and process the natural language descriptions, our
tool will generate four specifications in the regex-like syn-
tax. However, it detects an ambiguity in the requirement
that it is not clear whether the endpoints should be included
or not for the length interval. Therefore, the system will in-
teractively ask the user to specify for including or excluding
endpoints in the first sentence. After the user’s response that
both endpoints are included, a specification will be gener-
ated as follows corresponding to each sentence:

my @spec = (
.{8,10} # 8 to 10 characters, ep include
(?=.*\d) # must contain at least one digit
(?=.*[a-zA-Z]) # must contain one alphabet
(?=[a-zA-Z0-9]*) # must not contain special char
);

With the synthesized specifications and the target regular
expression, equivalence checking will be performed to ana-
lyze the correctness of the target regular expression. It will
detect whether the properties specified by the specification
are hold or not. In this example, results will show Verifi-

cation Failed because of the incorrect length. The results
will be reported to the developer for later debugging.

We not only propose a new approach, but also solve the
ironic problem of regex verification. It’s new because it’s the
first preliminary work that proposes to use natural language
to validate regex. Why ironic? Typical specification lan-
guages are more powerful, or in other words, more compli-
cated than regular languages. So verification of a regex using
a specification in such languages is overkill and potentially
makes things unnecessarily complicated. But if we simply
create another regex according to requirements to act as the
specification, and we’ll simply need to check the equivalence.
However, this solution overlooks the complexity of regular
expressions. Actually a regex can be complicated even reach
a size of 6.2kb [18]. Therefore, it’s necessary to develop new
methods for validating such big and complicated regexes.

4. RESULTS
To demonstrate the functionality and usability of the ver-

ification framework, we build a web-based prototype. We
conducted a lab study with 4 participants on 10 verification

Figure 2: Prototype with a web service

of Test Tester 1 Tester 2 Verifier 1 Verifier 2
1 132s 296s 75s 96s
2 32s 56s 90s 86s
3 fail fail 75s 96s
4 100s 96s 80s 107s
5 80s 60s 90s 78s
6 229s 276s 90s 87s
7 150s 156s 80s 57s
8 73s 96s 58s 67s
9 220s 96s 70s 87s
10 fail fail fail 370s

Table 1: Experimental results

tasks. By analyzing the success rate and time to find errors
in regular expressions using different methods, composing
test suites or using the verification method, we conclude
that our prototype enhances both efficiency and usability.

For this prototype, we care about whether incorrect regu-
lar expressions, those are not consistent with requirements,
can be detected. In addition, is it more efficient than con-
ventional testing methods? A small-scale lab study was
conducted with users who are familiar with the regular ex-
pression testing and will be trained to write accurate re-
quirements with vague descriptions and a limited number
of examples. We collected 10 regular expressions and their
requirements for different domains of uses which are doc-
umented in Table 1 with some well-known vulnerabilities,
such as escape missing and range mismatch. These users
were separated into two control groups and required to try
their best to verify the set of regular expressions with testing
and our verification techniques, respectively. Their perfor-
mance concerning successfulness in detecting incorrect reg-
ular expressions and efficiency (time) for both tools were
recorded. These data quantitatively indicated the function-
ality of the verification technique.

Since the accuracy for the specification synthesis is not
100%, researchers interrupted into the experiment when a
wrong specification is synthesized, but error logs were kept
for accuracy analysis. In another word, we ensured the con-
sistency between the specifications and their corresponding
requirements in the lab study. In this lab study, 10 verifica-
tion tasks were conducted and all of them were detected with
error correctly by users with our verification method, and 8
of them were found with the conventional testing method.
However, we also recorded the time for them to complete the
task which can be seen in Table 1. For Test 2, since these

participants are familiar with IP address testing and the er-
ror is a common one according to their experience, they are
more confident to claim it erroneous in a shorter time. Ex-
cept for Test 2, our verification method performed better
than or as well as the conventional testing method to de-
tect errors especially when there are many options or there
is a range error. In these cases, natural language is more
expressive than test cases that one sentence description can
represent a few or more test cases.

5. CONTRIBUTION & CONCLUSION
We presented a lightweight framework for regex verifica-

tion in this paper. It is based on an equivalence checking
method between formal specifications and the target regu-
lar expressions. To enhance the usability of the proposed
framework, we incorporated a specification synthesis mod-
ule which automatically generates specifications in formal
language from natural language descriptions of the require-
ments. We built a prototype for the proposed framework
and conducted a lab study for evaluation. Our approach
showed an enhancement regarding efficiency and usability.

6. REFERENCES
[1] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B.

Cohen, W. Grieskamp, M. Harman, M. J. Harrold, and
P. Mcminn. An orchestrated survey of methodologies
for automated software test case generation. J. Syst.
Softw., 86(8):1978–2001, Aug. 2013.

[2] F. Beck, S. Gulan, B. Biegel, S. Baltes, and
D. Weiskopf. RegViz: Visual debugging of regular
expressions. In Companion Proceedings of the 36th
International Conference on Software Engineering,
ICSE Companion 2014, pages 504–507. ACM, 2014.

[3] A. Begel, Y. P. Khoo, and T. Zimmermann.
Codebook: Discovering and exploiting relationships in
software repositories. In Proceedings of the 32Nd
ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 125–134,
New York, NY, USA, 2010. ACM.

[4] A. F. Blackwell. See what you need: Helping end-users
to build abstractions. Journal of Visual Languages &
Computing, 12(5):475–499, 2001.

[5] C. Chapman and K. T. Stolee. Exploring regular
expression usage and context in python. In
Proceedings of the 25th International Symposium on
Software Testing and Analysis, ISSTA 2016, pages
282–293, New York, NY, USA, 2016. ACM.

[6] F. Dib. Regex101. https://regex101.com/, 2014.

[7] S. J. Galler and B. K. Aichernig. Survey on test data
generation tools. International Journal on Software
Tools for Technology Transfer, 16(6):727–751, 2014.

[8] I. Ghosh, N. Shafiei, G. Li, and W.-F. Chiang. Jst: An
automatic test generation tool for industrial java
applications with strings. In Proceedings of the 2013
International Conference on Software Engineering,
ICSE ’13, pages 992–1001, Piscataway, NJ, USA,
2013. IEEE Press.

[9] T. Hung and S. H. Rodger. Increasing visualization
and interaction in the automata theory course. In
Proceedings of the Thirty-first SIGCSE Technical
Symposium on Computer Science Education, SIGCSE
’00, pages 6–10, New York, NY, USA, 2000.

[10] A. Kieżun, V. Ganesh, S. Artzi, P. J. Guo,
P. Hooimeijer, and M. D. Ernst. HAMPI: A solver for
word equations over strings, regular expressions, and
context-free grammars. ACM Transactions on
Software Engineering and Methodology,
21(4):25:1–25:28, Nov. 2012.

[11] R. A. Martin. Common weakness enumeration. Mitre
Corporation, 2007.

[12] N. Moreira and R. Reis. Interactive manipulation of
regular objects with FAdo. In Proceedings of the 10th
Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education, ITiCSE
’05, pages 335–339, New York, NY, USA, 2005.

[13] T. B. Project. The bro network security monitor.
https://www.bro.org/, 2015.

[14] E. Spishak, W. Dietl, and M. D. Ernst. A type system
for regular expressions. In Proceedings of the 14th
Workshop on Formal Techniques for Java-like
Programs, FTfJP ’12, pages 20–26, New York, NY,
USA, 2012. ACM.

[15] E. Spishak, W. Dietl, and M. D. Ernst. A type system
for regular expressions. In Proceedings of the 14th
Workshop on Formal Techniques for Java-like
Programs, pages 20–26. ACM, 2012.

[16] N. Tillmann, J. de Halleux, and T. Xie. Transferring
an automated test generation tool to practice: From
pex to fakes and code digger. In Proceedings of the
29th ACM/IEEE International Conference on
Automated Software Engineering, ASE ’14, pages
385–396, New York, NY, USA, 2014. ACM.

[17] M.-T. Trinh, D.-H. Chu, and J. Jaffar. S3: A symbolic
string solver for vulnerability detection in web
applications. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications
Security, CCS ’14, pages 1232–1243, New York, NY,
USA, 2014. ACM.

[18] P. Warren. Mail::rfc822::address: regexp-based address
validation. http://www.ex-parrot.com/˜pdw/
Mail-RFC822-Address.html, 2012.

[19] A. S. Yeole and B. B. Meshram. Analysis of different
technique for detection of sql injection. In Proceedings
of the International Conference & Workshop on
Emerging Trends in Technology, ICWET ’11, pages
963–966, New York, NY, USA, 2011. ACM.

APPENDIX
A. A REGULAR EXPRESSION EXAMPLE
(? : (? : \ r \n) ? [\ t])∗ (? : (? : (? : [ˆ () < >@, ; : \ \ ”. \ [\]
\000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (? = [\ [
”()<>@, ; : \ \ ”. \ [\]])) | ”(? : [ˆ \ ”\ r \ \] | \ \ . | (? : (? : \
r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \
r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\] \000−\031]
+ (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”.
\ [\]])) | ”(? : [ˆ \ ”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t]
)) ∗ ”(? : (? : \ r \n) ? [\ t]) ∗)) ∗@(? : (? : \ r \n) ? [\ t]
)∗(?: [ˆ() <>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r
\n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [([
ˆ\ [\]\ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]) ∗) (? : \ .
(? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\] \000−
\ 0 3 1] + (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; :
\ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n)?

[\ t])∗))∗ | (? : [ˆ () < >@, ; : \ \ ”. \ [\] \000−\031]
+ (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”.
\ [\]])) | ”(? : [ˆ \ ”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t]
)) ∗ ”(? : (? : \ r \n) ? [\ t])∗)∗\ < (? : (? :\ r \n) ? [\ t]
) ∗ (? :@(?:[ˆ() <>@, ; : \ \ ”. \ [\] \000−\031]
+ (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”.
\ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]
) ∗) (? : \ . (? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [
\] \000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (? = [\ [
”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗)) ∗ (? : ,@(? : (? : \ r \n) ? [\ t]
)∗(?: [ˆ() <>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \
n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [([ˆ
\ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]) ∗) (? : \ .
(? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\] \000−\
0 3 1] + (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; :
\ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n)?
[\ t]) ∗)) ∗) ∗ : (? : (? : \ r \n) ? [\ t])∗)? (? : [ˆ () < >@, ; :
\ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z
|(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? : [ˆ \ ”\ r \\] | \ \
. | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [\ t]) ∗) (? : \
. (? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\] \000−
\ 0 3 1] + (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; :
\ \ ”. \ [\]])) | ”(? : [ˆ \ ”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t]
)) ∗ ”(? : (? : \ r \n) ? [\ t]) ∗)) ∗@(? : (? : \ r \n) ? [\ t]
)∗(?: [ˆ() <>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \
n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [([ˆ
\ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]) ∗) (? : \ .
(? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\] \000−\
0 3 1] + (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; :
\ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [
\ t])∗))∗\ > (? : (? :\ r \n) ? [\ t])∗) | (? : [ˆ () < >@, ; : \ ”.
\ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (?= [
\[”()<>@, ; : \ \ ”. \ [\]])) | ”(? : [ˆ \ ”\ r \ \] | \ \ . | (? : (? :
\ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [\ t]) ∗) ∗ : (? : (? : \ r \n
) ? [\ t])∗ (? : (? : (? : [ˆ () < >@, ; : \ \ ”. \ [\] \000−\031]
+ (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”.
\ [\]])) | ”(? : [ˆ \ ”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t]
)) ∗ ”(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t
])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r
\n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? : [
ˆ\”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [
\ t]) ∗)) ∗@(? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”.
\ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (?= [
\[”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t]
)∗(?: [ˆ() <>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r
\n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [(
[ˆ \ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]) ∗)) ∗ | (? : [
ˆ()<>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [
\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? : [ˆ \ ”\ r
\ \] | \ \ . | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [\ t]
)∗)∗\ < (? : (? :\ r \n) ? [\ t]) ∗ (? :@(?:[ˆ()<>@, ; : \ \ ”.
\ [\]\000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (?= [
\[”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t]) ∗ (? :
[ˆ()<>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [
\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r
\ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]) ∗)) ∗ (? : ,@(? : (? : \ r \
n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\] \000−\031]
+ (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”.
\ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]
) ∗) (? : \ . (? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [

\] \000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (? = [\ [
”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗)) ∗) ∗ : (? : (? : \ r \n) ? [\ t]
)∗)?(? : [ˆ() <>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\
r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? : [
ˆ\”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [
\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \

”. \ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [
\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? : [ˆ \ ”\ r
\ \] | \ \ . | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [\ t]
)∗))∗@(? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\]
\000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (? = [\ [
”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t]) ∗ (? :
[ˆ()<>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [
\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r
\ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t])∗))∗\ > (? : (? :\ r \n)?
[\ t]) ∗) (? : , \ s ∗ (? : (? : [ˆ() < >@, ; :\\”.\ [\]\0 0 0 −\0
3 1] + (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \
”. \ [\]])) | ”(? : [ˆ \ ”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t]
)) ∗ ”(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t]
)∗(?: [ˆ() <>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \
n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? : [ˆ
\”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [
\ t]) ∗)) ∗@(? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [
\] \000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (? = [\ [
”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t]) ∗ (? :
[ˆ()<>@, ; : \ \ ”. \ [\] \ 0 0 0 −\ 0 3 1] + (? : (? : (? : \ r \n) ? [\
t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r
\ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t])∗))∗ | (? : [ˆ () < >@, ; :
\ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z
|(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? : [ˆ \ ”\ r \\] | \ \
. | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [\ t])∗)∗\<
(? : (? : \ r \n) ? [\ t]) ∗ (? :@(?:[ˆ()<>@, ; : \ \ ”. \ [\] \0
00 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (? = [\ [
”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t]) ∗ (? :
[ˆ()<>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [
\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r
\ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]) ∗)) ∗ (? : ,@(? : (? : \ r \
n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\] \000−\031]
+ (? : (? : (? : \ r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”.
\ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t]
) ∗) (? : \ . (? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [
\] \000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (? = [\ [
”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗)) ∗) ∗ : (? : (? : \ r \n) ? [\ t]
)∗)?(? : [ˆ() <>@, ; : \ \ ”. \ [\] \000 −\031]+(? : (? : (? :\
r \n) ? [\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? :
[ˆ\”\ r \ \] | \ \ . | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n)?
[\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \
”. \ [\] \000 −\031]+(? : (? : (? :\ r \n) ? [
\ t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | ”(? : [ˆ \ ”\ r
\ \] | \ \ . | (? : (? : \ r \n) ? [\ t])) ∗ ”(? : (? : \ r \n) ? [\ t]
)∗))∗@(? : (? : \ r \n) ? [\ t])∗ (? : [ˆ() < >@, ; : \ \ ”. \ [\]
\000 −\031]+(? : (? : (? :\ r \n) ? [\ t])+ | \Z | (? = [\ [
”()<>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r \ \] | \ \ .) ∗ \]
(? : (? : \ r \n) ? [\ t]) ∗) (? : \ . (? : (? : \ r \n) ? [\ t]) ∗ (? :
[ˆ()<>@, ; : \ \ ”. \ [\] \ 0 0 0 −\ 0 3 1] + (? : (? : (? : \ r \n) ? [\
t])+ | \Z |(?=[\ [”() <>@, ; : \ \ ”. \ [\]])) | \ [([ˆ \ [\] \ r
\ \] | \ \ .) ∗ \] (? : (? : \ r \n) ? [\ t])∗))∗\ > (? : (? :\ r \n)?
[\ t]) ∗)) ∗) ? ; \ s ∗)

