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ABSTRACT Different compilers and optimization levels can be used to compile the source code. Revealed
in reverse from the produced binaries, these compiler details facilitate essential binary analysis tasks,
such as malware analysis and software forensics. Most existing approaches adopt a signature matching
based or machine learning based strategy to identify the compiler details, showing limits in either the
detection accuracy or granularity. In this work, we propose NeuralCI (Neural modeling-based Compiler
Identification) to infer these compiler details including compiler family, optimization level and compiler
version on individual functions. The basic idea is to formulate sequence-oriented neural networks to process
normalized instruction sequences generated using a lightweight function abstraction strategy. To evaluate the
performance of NeuralCl, a large dataset consisting of 854,858 unique functions collected from 19 widely
used real-world projects is constructed. The experiments show that NeuralCI achieves averagely 98.6% accu-
racy in identifying the compiler family, 95.3% accuracy in identifying the optimization level, 88.7% accuracy
in identifying the compiler version, 94.8% accuracy in identifying the compiler family and optimization level,
and 83.0% accuracy in identifying all compiler components simultaneously, outperforming existing function

level compiler identification methods in terms of both detection accuracy and comprehensiveness.

INDEX TERMS Software forensics, binary code analysis, compiler identification, neural network.

I. INTRODUCTION

In the software production process, diverse toolchains and
toolchain settings can be adopted to transform the source
code to the final binary. For example, different compilers like
GCC and Clang as well as different compiler options like
00-03 can be used by the developers, in consideration of the
stability and performance issue, the size requirement on the
produced binary and their familiarity with the tools. Besides,
it is also a common practice to apply various kinds of code
obfuscation techniques [31], [32] and packers [30], [41] in
the binary production process, with which developers protect
the core algorithms and codes from being easily reverse
engineered [13], [43], while malware writers use them to hide
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malicious part in the binary from being easily detected by
security analysis tools [20], [33].

Usually, binaries produced with these different toolchains
and toolchain settings exhibit significant differences when
viewed in a straight way [37], [38], [51]. These differences
just indicate that toolchain footprints are preserved during the
translation process from source code to binary code, enabling
the possibility of revealing the toolchain and toolchain setting
choices made during the production process of a binary.
This task, which in the literature is called binary program
provenance analysis, provides ways to spy on the specifics of
the binary production process. As its major subtask to focus
on the compilation phase, compiler identification attempts to
infer from a piece of binary code the compiler-related details
such as the specific compiler family, the optimization options,
etc., which can facilitate essential binary analysis tasks such
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as malware analysis and software forensics. For example,
in the scenario of software plagiarism detection, where the
source code of the plaintiff program is generally accessible,
we can eliminate the interference of different compiler set-
tings to the similarity analysis by recompiling the source code
with the same compiler settings identified from the defendant
binary program.

Overall, there have been relatively few works conducted
on compiler identification, which mainly fall into two cate-
gories: signature matching based methods [6]-[8] and learn-
ing based methods [27]-[29], [39]. The former, implemented
in several reverse engineering tools like IDA [6] and PEiD [8],
performs whole program level identification via matching
against a corpus of generic and rigid signatures. The draw-
backs to these kinds of methods are the stringent expertise
in constructing a good enough compiler-specific signature
as well as their coarse identification granularity. The latter
formulates compiler identification as a machine learning task,
which trains models to capture compiler-specific patterns,
and infer the compiler details on previously unseen bina-
ries. For such kinds of methods, syntactic or structural fea-
tures are extracted based on artificially defined templates,
such as idioms [29] which are short sequences of instruc-
tions with wildcards, or graphlets [28] which are small sub-
graphs within the CFG (Control Flow Graph). As typical
feature engineering based methods, their effectiveness, to a
large extent, depends on the quality of expert-defined
feature extraction templates, where more domain-specific
knowledge is required.

Inrecent years, tremendous successes have been witnessed
of applying natural language processing techniques and deep
learning models to various program analysis tasks [16], [23],
[34], [45], [48], which leverage many layers of non-linearities
to capture invariances from transformation in the raw input
space, and have thus automatically boosted the semantic rich-
ness for the learned representations. Inspired by these great
successes, in this paper, we attempt to adopt some of the most
popular neural network structures to achieve fast and accurate
fine-grained compiler identification on function level. Specif-
ically, we feed typical convolutional neural network (CNN)
and recurrent neural network (RNN) based structures with
normalized assembly instruction sequences to train classifi-
cation models for inferring the compiler families, the opti-
mization levels, and the compiler versions. Our intuition
is based on the observation that co-occurring instructions
together with their orderings in short instruction sequences
form good enough signals of distinguishing different compil-
ers or optimization levels, which can be substantially captured
by neural models. Our main contributions are summarized as
following:

« We propose to reveal fine-grained compiler details
for individual functions by designing a lightweight
function abstraction strategy and leveraging typical
sequence-oriented neural networks. It alleviates the task
complexity and human bias impacts by handing over the
professional process of extracting and selecting features

VOLUME 9, 2021

significant for compiler identification from the domain
experts to the less human intervened neural networks.

« We elaborate two neural network structures CNN and
RNN to solve compiler identification problem. The for-
mer contains three variations (i.e., one naive and two
attention augmented ones), and the latter contains four
variations (i.e., one naive and three attention augmented
ones). All of them are implemented in a tool called
(Neural modeling based Compiler Identification).

o We construct a large dataset consisting of 854,858 unique
functions by processing a set of diverse real world
projects, and systematically evaluate and compare the
performance of the proposed methods with respect to
revealing compiler family, optimization level, com-
piler version, and compiler setting combination respec-
tively. The experimental evaluation shows that Neu-
ralCI achieves promising performance of reveal-
ing these fine-grained compiler details and outper-
forms existing function level compiler identification
methods in both detection performance and com-
prehensiveness. Our dataset and source code imple-
mentation of NeuralCl have been made public at
https://github.com/zztian007/NeuralCI to facilitate fur-
ther researches.

The rest of this paper is organized as follows: Section II
formulates the problem to solve and our design overview.
Section III and Section IV describe in detail the con-
siderations and designs of the function abstraction and
the neural network models respectively. The dataset con-
struction and experimental evaluations are presented in
Section V. Section VI mainly discusses the limitations of our
method. Section VII summarizes the related works. Finally,
Section VIII concludes.

Il. PROBLEM DEFINITION AND DESIGN OVERVIEW

A. PROBLEM OVERVIEW

The goal of compiler identification is to reveal in reverse
from the final produced binary the compiler-related details
applied in processing the program source code. The feasi-
bility of this task lies in the usually significant differences
imposed by different compiler and optimization settings.
Such differences across homogenous binaries, which drive
and meanwhile bother massive binary code similarity anal-
ysis researches, just indicate that the different mechanisms,
heuristics and design choices within certain compilers will
ultimately manifest on their outputs, providing evidence of
program provenance.

To give a more intuitive sense of the differences, Figure 1
lists the corresponding binary codes produced with several
different compiler and optimization settings from a simple
C function. Take the binary code in Figure 1(b) (compiled
with gcc 4.7 and the generally recommended optimization
level O2) as the base, we compare it against the binary code
generated with every other compiler setting using the binary
code comparison tool Bindiff. The detected similarity scores
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int mul_inv(int a, int b){ 00000000004005A0 <mul_inv>:

intb0=b,t, ; 400500  cmp esi,1

!"t x0=0,x1=1; 4005A3 mov  eax, edi

if{b==1)return 1; 4005A5  jz  <mul_inv+50h>

while (> 1) { 4005A7  cmp edi 1
4005AA  jle <mul_inv+50h>

t=b,b=a%b,a=t;

4005AC mov  ecx, esi
t=x0,x0=x1-q*x0,x1=t;

4005AE mov r8d,1
4005B4 xor edi, edi
400586  jmp <mul_inv+25h>
4005C0 mov  edi, r9d
4005C3 mov  ecx, edx
4005C5 mov  edx, eax
4005C7 mov  r9d, r8d
4005CA mov  r8d, edi
4005CD sar edx, 1Fh
4005D0 idiv ecx
4005D2 imul eax, edi
4005D5 sub  r9d, eax
4005D8 cmp  ecx, 1
4005DB mov  eax, ecx
4005DD jg  <mul_inv+20h>
4005DF add esi, edi
4005E1 test edi, edi
4005E3 cmovs  edi, esi
4005E6 mov  eax, edi
4005E8 retn

4005F0 mov  edi, 1
4005F5 mov  eax, edi
4005F7 retn

}
if (x1 < 0) x1 += b0;

'
'
'
|
|
|
|
|
|
q=a/b; i
|
|
|
|
|
|
return x1; |

|

|

(a) A C function that computes the
modular multiplicative inverse

! 0000000000400580 <mul_inv>: H
| 4005B0  cmp esi, 1 !
| 400583 mov  eax, edi 1
1 4005B5 jz  <mul_inv+58h> :
| 400587 cmp  edi, 1 |
1 4005BA jle  <mul_inv+58h> H
| 4005BC  mov ecx,esi '
1 4005BE mov  r8d, 1 H
1 4005C4  xor edi edi 1
1 4005C6  jmp  <mul_inv+25h> H
1 4005D0  mov edi, rod '
: 4005D3 mov  ecx, edx 1
| 4005D5  cdg !
: 4005D6 mov  r9d, r8d 1
1 4005D9 mov  r8d, edi ! . .
1 40050C  idiv ecx ! (b) Compiled with gec 4.7 and 02
1 4005DE imul eax, edi |

| 4005E1  sub r9d, eax 1

| 4005E4  cmp ecx, 1 |

: 4005E7 mov  eax, ecx ]

1| 4005E9  jg  <mul_inv+20h> |

| 4005EB  add esi, edi 1

| 400SED test edi, edi |

; 4005EF cmovs  edi, esi :

: 4005F2 mov  eax, edi 1

1 4005F4 retn :

| 4005F8  mov edi,1 I

1 4005FD mov  eax, edi :

| 4005FF  retn 1

(e) Compiled with gce 6.5 and O2

0000000000400510 <mul_inv>:
400510 mov  eax, edi

000000000040051A <mul_inv>:
40051A push rbp

400512 mov  ecx, 1 400518 mov  rbp, rsp

400517 cmp  esi, 1 40051E mov  [rbp-24h], edi
40051A  jz  <mul_inv+4Eh> 400521 mov  [rbp-28h], esi
40051C mov r8d_ 1 400524 mov  eax, [rbp-28h]

400522 cmp  eax, 2 400527 mov  [rbp-0Ch], eax

400525  jl <mul_inv+3Dh> 40052A mov  [rbp-14h], 0

1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1
| 400527  xor edi, edi 1 } 400531 mov [rbp-10h], 1 i
I 400529 mov  ecx, esi 1 1 400538 cmp  [rbp-28h], 1 :
2 | H N :
| 400528 nop dword ptr [rax+rax+00h] 1 H 4ggsgc jnz - <mul_inv+72h> I
' 1
1400530 mov r9d,edi ! Lo mov e o |
1 400533 cdq 1 1 200525 Jmp - <mul [_|2V+24;] :
. 1 1 mov  eax, [rbp-;
1400534 idiv ecx H | 200048 d P '
1 400536 imul eax, r9d ' ' mov edx, eax !
1 40053A  mov edi,r8d i | 40054A  sar edx, 1Fh i
| 40053D sub  edi, eax I 1 40054D idiv  [rbp-28h] I
! 1
: 40053F cmp  ecx, 1 : : 400550 mov  [rbp-8], eax H
| 400542 mov  r&d, rod 1 1 400553 mov  eax, [rbp-28h] :
| 400545  mov  eax, ecx | | 400556 mov  [rbp-4], eax |
I 400547 mov  ecx, edx 1 1 400559 mov  eax, [rbp-24h] :
v 1
| 400549 jg  <mul_inv+20h> | } 40055C  mov  edx, eax 1
1 400548 jmp <mul_inv+43h> ! 1 400SSE. - sar edx, 1Fh i
: 40054D mov  rod, 1 H | 400561 idiv [rbp-28h] |
400564 bp-28h], ed: !
: 400553 mov  ecx, r9d : : mov  [rbp ], edx I
1 400556  sar ecx, 1Fh ' | 400567 mov  eax, [rbp-4] 1
: 400559 and  ecx, esi : : 40056A mov  [rbp-24h], eax :
| 400558 add  ecx, rod H | 40056D mov  eax, [rbp-14h] Il
7 1
: 40055E mov  eax, ecx : : 400570 mov  [rbp-4], eax i
| 400560 retn i 1 400573 mov  eax, [rbp-8] 1
1 ! | 400576 imul eax, [rbp-14h] |
Lo 1 40057A mov  edx, [rbp-10h] 1
: 40057D mov  ecx, edx :
(¢) Compiled with clang 3.8 and 02 1 40057F sub  ecx, eax !
: 400581 mov  eax, ecx |
1 400583 mov  [rbp-14h], eax :
| 400586 mov  eax, [rbp-4] \
1 400589 mov  [rbp-10h], eax :
| 40058C cmp  [rbp-24h], 1 \
1 400590 jg  <mul_inv+2Bh> !
| 400592 cmp  [rbp-10h],0 H
: 400596 jns  <mul_inv+84h> :
1 400598 mov  eax, [rbp-0Ch] 1
! 400598 add  [rbp-10h], eax |
1 40059E mov  eax, [rbp-10h] 1
! 4005A1  pop rbp |
1 4005A2 retn :
1

(d) Compiled with gece 4.7 and O0

FIGURE 1. An example of C function from http://rosettacode.org/wiki/Modular_inverse#C, and its corresponding assembly codes under different

compiler settings.

are 0.76, 0.23, and 0.98 respectively for the binary code
pairs (lb, 1c), (1b, 1d) and (l1b, le) (we use (lb, lc) to
denote the pair of binary codes shown in Figure 1(b) and
Figure 1(c) for the sake of simplicity), illustrating notable
yet varying impacts on the produced binaries via changing
the compiler family, compiler optimization level or even the
compiler version.

More specifically, it can be observed that the compiled
binaries are distinguishing in the length of their function
bodies, the specific instructions and instruction combinations
used, as well as their instruction orderings. As depicted
in Figure 1(b) and Figure 1(d), where the same compiler yet
different optimization levels are adopted, the most significant
impact on the produced binaries is observed for this short
program. The code in Figure 1(d) where no optimization is
applied, contains the well-known function prologue of push
rbp and mov rsp, rbp that saves the caller’s stack frame, and
epilogue of pop rbp and retn that appears at the end of a
function for restoring the stack and registers to the state before
the function is called, while the code in Figure 1(b) does
not use the stack at all but begins with some accesses to the
function arguments passed in register esi and edi. If functions
generated by the compiler gcc with OO setting were known
to almost invariably begin with the typical prologue and end
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with the typical epilogue, while other compiler settings hardly
ever did so, then the existence of such typical instruction
combinations will serve as significant features to identify
compiler optimization settings.

Likewise, as illustrated in Figure 1(b) and Figure 1(c),
where two different compilers gcc and clang with the same
optimization level are applied, the generated function bodies
are of the same length, but different instructions including
both operators and operands being adopted to achieve the
same functionality. For example, for judging the condition
a > 1, gee utilizes cmp edi, 1 and jle, while clang adopts
another instruction combination of cmp eax, 2 and jI. In addi-
tion, differences are shown in the instruction layouts. For
example, the starting instruction cmp esi, 1 in Figure 1(b)
that judges the condition b == 1 is arranged as the third
instruction in Figure 1(c). The least differences are observed
between the codes in Figure 1(b) and Figure 1(e), where two
different gcc versions are applied to process the source code.
As it shows, their binary codes are almost identical, except
that Figure 1(b) adopts the combination of two instructions
mov edx, eax and sar edx, 1Fh to accomplish the same goal
(setting all the bits in edx to the value of the highest bit in
eax) as the single instruction cdq adopted in Figure 1(e).
Despite not being as remarkably impactful as the compiler
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0000000000012150 <png_colormap_compose>:

mov  rdx, cs:png_sRGB_delta_ptr

mov  rcx, cs:png_sRGB_delta_ptr

0000000000012000 <png_colormap_compose>

121A6  jz  <png_colormap_compose+AOh>

H 1
' 1
1 12150 mov  [rsp-28h], rbx 121AF  shr  eax, OFh !
| 12155 mov  [rsp-20h], rbp 121B2  mov  rcx, cs:png_sRGB_base_ptr H
1 1215A  mov  ebx, rod 121B9  and esi, 7FFFh !
11215 mov [rsp-18h], r12 121BF  movzx edx, byte ptr [rdx+rax] H
: 12162 mov  [rsp-10h], r13 121C3 movzx eax, word ptr [rcx+rax*2] :
1 12167 mov  rbp, rdi 121C7  imul edx, esi 1
| 1216A  mov [rsp-8], r14 121CA  shr  edx, OCh H
1 1216F mov  rl3d, r8d 121CD add  edx, eax I
: 12172 sub  rsp, 28h 121CF movzx eax, dh H
1 12176 mov  ri2d, ecx 12102 mov  rbx, [rsp+28h-28h] !
: 12179 call decode_gamma 121D6 mov  rbp, [rsp+28h-20h] :
1 12176 mov  esi, r13d 121DB mov  r12, [rsp+28h-18h] 1
: 12181 mov  rdi, rbp 121E0 mov  rl3, [rsp+28h-10h] :
| 12184 mov edx, ebx 121E5  mov  rl4, [rsp+28h-8] H
, 12186  mov rl4d, eax 121EA  add rsp, 28h |
112189 call decode_gamma 121EE retn !
1 "

! 1218F  mov edi OFFh 121F0  shl eax,8 1
: 12193 sub edi, r12d 121F3 add  esi, eax :
1 12196 imul  eax, edi 121F5  mov  eax, esi 1
112199 imul rl4d, ri2d 121F7  shr  eax, 10h H
1 1219D cmp  ebx, 2 121FA lea eax, [rsi+rax+8000h] 1
: 121A0 lea esi, [rax+r14] 12201 shr eax, 10h :
1 121A4 mov  eax, esi 12204  jmp <png_colormap_compose+82h> 1
' 1
' 1
' 1

(a) Compiled with gec 4.7 and O2

1208E pop rl2
12090 pop ril3
12092 pop rl4
12094 retn

(b) Compiled with gce 6.5 and 02

! 1
! 1
: 12000 push ri4 12047 shr edx, OFh 1
112002 push r13 1204A and eax, 7FFFh :
: 12004 mov  rl4d, r8d 1204F pop  rbx :
: 12007 push r12 12050 pop encoding i
1 12009 push rbp 12051 movzx ecx, byte ptr [rex+rdx] :
: 1200A  mov 13, rdi 12055  pop alpha I
1 12000 push  rbx 12057 pop display :
: 1200E mov ebp, r9d 12059 pop  background i
112011 mov  ri2d, ecx 12058 imul eax, ecx H
: 12014 call decode_gamma 1205E mov  rex, cs:png_sRGB_base_ptr I
112019  mov edx, ebp 12065  movzx edx, word ptr [rex+rdx*2] H
: 12018 mov  esi, rl4d 12069 shr  eax, 0Ch 1
1 1201E  mov rdi, r13 1206C  add eax, edx H
: 12021 mov  ebx, eax 1206E movzx eax, ah I
: 12023 call decode_gamma 12071 retn :
1 12028 mov  edx, OFFh 12078 shl  edx, 8 :
: 1202D sub edx, ri2d 12078 add  eax, edx 1
1 12030 imul  eax, edx 1207D mov  edx, eax :
| 12033 imul ebx, ri2d 1207F  shr  edx, 10h '
1 12037 add  eax, ebx 12082 lea eax, [rax+rdx+8000h] :
| 12039 cmp ebp,2 12089  pop rbx 1
11203C  mov edx, eax 1208A  shr  eax, 10h H
: 1203E jz  <png_colormap_compose+78h> 1208D pop rbp :
! 1
! 1
! 1
! 1
! 1
1

FIGURE 2. The assembly codes for function pngcolormapcompose (from the libpng library) that are produced with two different compiler versions.

family and optimization level act on the produced binaries,
compiler version can also enforce significant changes to the
produced binary codes, where Figure 2 just gives one such
representative example taken from our constructed dataset.

From the discussions above, we can see that clues for
inferring the compiler-related settings are well implied in
their produced binaries. Yet these clues are scattered all over
the binary, and generally subtle and trivial, making them
difficult to be systematically abstracted and refined to achieve
effective and efficient detection without a deep and laborious
large-scale analysis from domain experts. Thus, the manu-
ally identified clues or features can either be insufficient or
even contrary to what intuition might suggest. For instance,
the well-known push rbp and mov rsp, rbp prologue seems
to be a good indicator for determining the compiler settings
adopted, which, however, turns out not to be in the top ranked
idioms [28], [29].

Traditional machine learning based methods generally
extract extremely large amount of features with artificially
defined templates, and reduce them with certain feature selec-
tion strategies to ensure scalability. Without a comprehen-
sive understanding on the characteristics of the binary code,
the compiler and the programming language, the manually-
crafted feature extraction and selection strategies tend to
either capture massive irrelevant and redundant features
that make the whole compiler identification approach non-
scalable, or fail to extract subtle yet significant ones that lead
to unreliable identification results. Inspired by the tremen-
dous successes and superior feature learning power of deep
learning in various program analysis tasks [16], [23], [34],
[45], [48], [51], in this work, we resort to typical neural
network structures to automatically capture and select the
scattered, subtle yet significant features that manifest com-
piler settings, so as to achieve less human intervened yet
effective and efficient fine-grained compiler identification.
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B. PROBLEM DEFINITION
We formally define the compiler identification task we are
going to solve as follows.

Definition 1 (Fine-Grained Compiler Identification):
Given an individual function f in its binary form and stripped
of debug and symbol information, we infer from it the com-
piler settings D adopted in the compilation phase that pro-
duces it, with a set of models M which are sought in a
learning way.

The fine-grain in Definition 1 that we want to achieve
reflects in two aspects. Firstly, the object to be operated on is
an individual function rather than a whole program [6], [12],
[39], [45]. We refer to the individual function as an indepen-
dent function, about which we know nothing else (such as its
adjacency functions in the call graph) but just the function
itself. It does not distinguish between compiler-related [27]
or user-defined functions, which means a compiler-related
function (i.e. compiler helper/utility functions) can also be
an individual function. Secondly, the compiler settings D to
be revealed contain more elements including the compiler
family, optimization level, compiler version or combinations
of them (such as both compiler family and optimization
level) than simple compiler family [23], [29] or optimization
level [14]. That is, when we say a model m € M infers com-
piler optimization level, we know in prior the compiler family
of the binary to be detected. For example, given a binary
function f compiled with gcc, we would choose the model
trained on gcc-compiled (with different optimization levels)
samples to identify whether it is compiled with optimization
level OO0 or O2. When we say a model m € M infers both
compiler family and optimization level, such a model can
determine simultaneously whether f is compiled with gcc and
O1 or clang and O3. Apparently, depending on the specific
component in D to be revealed, the difficulty of training
an accurate model m € M varies, as different amounts
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Neural Models for Classification

Ground Truth
ggzzigsf Function Abstraction Neural Networks op tini(z);r;ir)(jrllei:jgig\i rsion
l Predicted Output
I;i;\gggil Function Abstraction Trained Models — Op tinﬁzzijri:gfg\i rsion

FIGURE 3. The basic framework of NeuralCI.

of clues or footprints are preserved in the finally produced
binaries under different compiler settings. Intuitively and as
confirmed in our experimental evaluations, the difficulty of
learning an model that accurately works for compiler identifi-
cation increases in the order My < M, < My < Mompo,
where My, M,, M, denote the models trained for
detecting compiler family, optimization level, and compiler
version solely, and M ompo denotes the model for detecting
compiler setting combinations.

C. OUR DESIGN OVERVIEW

The overview of our designed NeuralCl to solve the above
discussed compiler identification problem is depicted in
Figure 3, which consists of two phases: the training phase
(upper figure), and the detection phase (lower figure). The
training phase includes three steps. As a deep learning-based
method, the first step is to construct a high-quality dataset
comprised of labeled functions which will be discussed in
Section III. The second step takes each raw function as
input and outputs a normalized instruction sequence via a
lightweight abstraction strategy implemented in the func-
tion abstraction module. Then these normalized sequences
together with their ground truth labels are fed into the neural
network-based classification module to train compiler iden-
tification models. The detection phase reads in an individual
function, processes it with the function abstraction and uti-
lizes the trained models to produce predictions. In the follow-
ing sections, we discuss the details of the function abstraction
module and the neural network-based classification module,
respectively. Table 1 shows some important notations used in
this paper.

Ill. FUNCTION ABSTRACTION

A function must be represented in certain forms such that it
can be processed for further analysis [16], [23], [34], [48],
[51]. The typical ways include using the raw byte sequence,
the assembly instruction sequence, or the control flow graph
[23] to depict a function. As discussed in Section II-A and
many existing works [12], [37], [38], [51], different compiler
settings generally produce distinguishable assembly instruc-
tions in their specific instruction contents, orderings, and
combinations. Also, as indicated by the outstanding com-
piler family identification accuracy in [28], short assembly
instruction sequences successfully capture compiler-related
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TABLE 1. Notations.

Notation| Description

A function

An assembly instruction

The word embedding vector of an instruction

A plain feature matrix corresponding to an instruction sequence
Dimension of e

The query matrix as specified in Transformer’s attention

The key matrix as specified in Transformer’s attention

The value matrix as specified in Transformer’s attention

A scaling factor as specified in Transformer’s attention

An attention vector

The concatenated hidden state vector of the BiGRU layer

An external context vector specified in the query-based attention
Element-wise sigmoid function

Qg :mé<k©&>@ SR
S w»

features. Thus, in this work we choose to use the assem-
bly instruction sequence within the function body as the
representation of each function and use IDA Pro for the
parsing.! That is, a function f is represented as a sequence
Sy = {ins1,ins2, - - - , ins,}, where n denotes the number of
instructions within the function, and each assembly instruc-
tion ins; consists of an opcode (i.e. mnemonic) and an ordered
list of operands. Also, the sequence ensures that Vi,j €
[1,n], addr (insj) > addr (ins;) if j > i, where addr (ins;)
returns the address of ins;.

However, many existing binary analysis tasks [23], [51]
suggested that it is unwise to work directly on raw assembly
instructions. For our case, we want to capture features reflect-
ing the compiler details rather than the function functionality.
Using all instructions as they appear exactly in the functions
may immerse us in too many details of the functionalities,
which may accordingly increase the complexity of represen-
tation learning and decrease the embedding quality (as too
many different instructions are preserved) in the instruction
embedding phase, and distract the attention of successive
neural network training as well. On the other hand, excessive
normalization to the instructions will introduce a mass of
unintentional human bias, and lead to the loss of certain subtle
yet significant features, such as the instance of the different
ways of gcc and clang adopted to handle the a > 1 predicate.

1We assume a reliable way to identify function and instruction boundaries,
as well as correct parsing of each instruction, by using the best commercial
reverse engineering tool IDA Pro. The correct disassembly of binaries is still
a complex and open problem but beyond the scope of this paper.
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To this end, we choose to process the raw instructions with
a lightweight abstraction strategy. Specifically, we perform
normalization on each assembly instruction in a function with
the following rules:

o The mnemonics remain unchanged.

o All registers in the operands remain unchanged.

o All base memory addresses in the operands are substi-
tuted with the symbol MEM.

« All isolated immediates’ with absolute values below
certain threshold (which is set to 5,000 in current design)
remain intact, while in all other cases the immediates in
the operands are substituted with the symbol /MM.

The first two rules are devised in consideration of the
significant differences caused by different compiler settings
to the instructions’ operators and operands of register type,
which apparently form good indicators (thus should not be
weakened) for inferring the settings. The third rule is to omit
meaningless displacements that appear solely in the operand
of the mov instruction for direct addressing. For instance,
the instruction “mov ebx, [0 x 3435422 ] will be transformed
to “mov ebx, MEM” according to the first three rules. The
fourth rule is to avoid considering those unnecessary details
while still retain subtle yet significant ones. For example,
as shown in Figure 1(d) where the first several instructions
“mov [rbp-24h], edi; mov [rbp-28h], esi; mov eax, [rbp-
28h]” perform stack operations, there is no need for us to
care about the specific positions of the stack variables to
be set or accessed, and the fourth rule enables us to ignore
them by simplifying these instructions to “mov [rbp-IMM],
edi; mov [rbp-IMM], esi; mov eax, [rbp-IMM]” . Meanwhile,
the isolated immediate and threshold setting help us capture
subtle clues as discussed in the previous case of gcc and clang
when handling the predicate. Together with rule 1 and rule 2,
rule 4 will transform the gcc instruction combinations ““‘cmp
edi, I; jle 4005C5” to “cmp edi, I; jle IMM’’, and the clang
instruction combinations ‘“‘cmp eax, 2; jl 40054D to “cmp
eax, 2; jl IMM” .

IV. NEURAL MODELS FOR COMPILER IDENTIFICATION
A. INSTRUCTION EMBEDDING
As we adopt a learning model for detecting compiler set-
tings, the normalized assembly instruction sequences must
be transformed to numerical vectors such that they are able
to be fed as inputs to the subsequent classifiers. Since our
design chooses to leverage the advanced deep neural net-
works to grasp significant compiler-setting-related patterns,
the straightforward BoW (bag of word) representation fails to
work. As such, we use word embedding to distribute a vector
for each unique instruction first, based on which the whole
instruction sequence can then be modeled and represented.
There are several word embedding choices that can be
leveraged for our application, of which the one-hot encoding
has been widely deployed. It represents each unique word by

2When there is nothing else but an immediate in the operand, we refer to
this immediate as isolated.
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a n-dimensional vector, with the i dimension being set to
1 and all other dimensions being set to 0, where i is the index
of the word in the vocabulary of size n. This technique is com-
putationally intractable as the generated vectors are too sparse
(the same dimension as the size of the whole vocabulary) and
generally needs to do joint-learning with subsequent neural
networks, making the learnt word semantics significantly
task-specific. In this respect, NeuralCI leverages the popular
skip-gram model [24] to learn more compact vector represen-
tations that carry instruction co-occurrence relationships and
lexical semantics in an independent and unsupervised man-
ner, so as to make the learnt vectors reusable in other binary
analysis tasks [16], [19], [48], [51]. Specifically, we treat each
basic block as a sentence and each normalized instruction
within the basic block as a word, and feed all basic blocks
from our binary collection to the skip-gram model to learn
for each unique instruction a d-dimensional vector, by mini-
mizing the loss of observing an instruction’s neighborhood
(within a window w) conditioned on its current embed-
ding. The objective function of skip-gram can be defined

as [26]:
arg min
gmin ),
—w=j<w, i

— log p(insij|¢(ins;)), ey

where ¢(ins;) is the current embedding of e;. We train the
embedding model for 100 epochs with the learning rate
of 0.001 and context window size w of 5.

B. NEURAL NETWORK MODELS

Based on the instruction embeddings learned by skip-gram,
it is promising to explore different schemes such as max-
pooling, averaging or concatenation to aggregate the embed-
dings for each normalized instruction sequence, and then
feed it to any classification model for compiler identifica-
tion. However, it still faces the following two limitations:
(1) skip-gram assigns each instruction a static embedding
vector, which is not context-aware to different sequences it
interacts with; this may fail to learn the compiler-related
features; (2) since instruction sequences are abstracted from
functions, they may not only enjoy local instruction cor-
relations, but also global or long-range instruction depen-
dency; in this respect, it calls for sequence learning models to
better capture the expressive compiler-specific patterns and
features from instruction sequences for compiler identifica-
tion. As advanced neural network structures, both CNN and
RNN have boosted the state-of-the-arts in sequence learning.
As such, in this work, NeuralCI attempts both CNN and RNN
models to learn the semantic and structural information of
instruction sequences and leverages these advances to iden-
tify their compiler settings.

1) CNN-BASED MODELS

CNN is known to learn the local correlations with shared
weights and utilize pooling mechanism to greatly reduce the
number of parameters needed to find important local patterns.
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FIGURE 4. The architecture of our CNN-based models in NeuralCI.

In other words, CNN is able to attend those frequently
co-occurring instructions in the short sequences. In our
model formulation, we further take advantage of different
kernel-size filters to thoroughly extract interacted salient
features among different instruction grams to capture the
behaviors of compilers.

The structure of our CNN-based models is shown in
Figure 4. On the basis of instruction embedding, each instruc-
tion sequence is first transformed into a raw feature matrix
A € R!*? where [ is the sequence length,? and d is the
instruction embedding dimension.

A=[€],e2,"‘,gi,"',el]T, (2)

where ¢; € R? is the corresponding embedding of ins; in
the sequence. Then, in the convolutional layer, £ convolu-
tional filters with shape n x d are adopted for convolution
operations on the raw feature matrix A, obtaining a new
feature matrix ¢ € RC="+Dxk \where n denotes the kernel
size. To extract different views of feature patterns, we con-
volute A by different kernels of size 2, 3 and 4 (analogy
to 2, 3 and 4 instruction grams respectively), which are
then passed through 1D-maxpooling layer for dimensionality
reduction. The resulting representations are finally concate-
nated through a dense layer to be fed to a softmax layer for
compiler prediction.

Impressed by the performance gains of integrating
attention into neural network structures in many natural
language processing (NLP) tasks, we further attempt intro-
ducing an attention layer between the input layer and the
convolution layer as depicted in Figure 4. In our case,
the intuition of introducing such an attention layer is to
capture long term contextual information and correlation
between non-consecutive instructions. Specifically, NeuralCI
implements two kinds of attentions, including the scaled
dot product attention and an additive attention, which are
originally used to estimate the relevance between hidden
vectors.

3The actual number of instructions varies across functions, with some
of them containing instructions more or less than /. As existing works do,
we either zero-pad or truncate that sequence to length /.
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The scaled dot product attention is the attention mechanism
proposed in the famous Transformer [42], which computes
attentions simultaneously with matrix operations:

Attention(Q, K, V) ft <QKT) %4 3)
ention(Q, K, V) = softmax ,
A dy

where Attention(Q, K, V) € R!>4v ig the attention matrix
in which each row g; is a d,-dimensional attention vector
for the corresponding row in the input matrix, Q € R/*%,
K € R™ and V e R™*% are three matrices derived by
multiplying the input matrix with weight matrices, and /dj
is a scaling factor to ensure more stable gradients.

The additive attention mechanism we adopt is the one
originally used to enhance sequence tagging [50], based on
which we calculate a context vector g; for each (instruction)
embedding e; in matrix A as:

I
gi=) aj-e “
j=1
exp (Bij)
s G )
Y >rexp (Biy)
Bij = o (Wehij+b;), (6)
h,',j = tanh (er,' + W\;ej + bx) s (7)

where, B;; captures the correlation between the instruction
embedding ¢; and ¢;; «;; is the attention weight normal-
ized with Softmax function so as to ensure o;; > 0 and
Zj a;j = 1; o is the element-wise sigmoid function; Wy, W,
and W, are respectively the weight matrices corresponding to
e, ej and their non-linear combinations; b, and b, are the bias
vectors.

For both attention mechanisms, NeuralCI concatenates the
vectors output from the attention layer with the initial embed-
ding vectors as a new representation to be further processed
with the convolution and subsequent layers. For simplicity,
we use Neuralgfw\,, Neural‘z?wv, and Neural’éﬁN to specify
the base CNN, the enhanced CNN with scaled dot prod-
uct attention and the enhanced CNN with additive attention
throughout the experimental evaluations.
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2) RNN-BASED MODELS

RNN is known to learn the sequential dependency, and
strict to align the positions and contexts for the instances in
the input sequences. By capturing long range dependencies
between the instructions in a sequence, RNN can produce a
comprehensive and contextualized latent vector representa-
tion for the entire instruction sequence. In consideration of
the vanishing/exploding gradient issue faced by naive RNN,
NeuralCI employs the Gated Recurrent Unit (GRU) [15], [17]
in the current design to alleviate the problem. Figure 5 depicts
the basic structure of our RNN-based models. Similar to the
CNN-based models, the matrix A composed of instruction
embeddings forms the input, which is read through a GRU
cell such that various non-linear transformations are per-
formed to generate a hidden vector state &; at each timestep i.
Improved over GRU, bidirectional GRU (BiGRU), which
leverages two GRU cells reverse to each other to process the
sequence, captures both the previous and the future timestep
features via forward and backward states. Therefore, Neu-

Instruction Embeddings BiGRU Attention Layer Dense & Softmax Layers

I Y I B I O I
I
O

Instruction Embeddings BiGRU

Attention Layer

(©)

FIGURE 5. The architecture of our RNN-based models in NeuralCl.

Dense & Softmax Layers
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ralCI adopts the BiGRU structure to jointly capture both
the forward and backward sequential dependency and global
contextual information in the instruction sequence, so that the
hidden state vector /; at timestep i can be concatenated as:

hi=[his i ®)

After forward and backward reading the entire input
sequence, in Figure 5(a) the hidden states /; corresponding to
the last timestep will act as the latent vector representation in
our naive RNN model, which is then fed to subsequent dense
and Softmax layers for predication. During the training pro-
cess, the training loss is adopted to measure the correctness
of sequence learning and compiler prediction. Also, dropout
is applied to prevent the neural network from overfitting.

Alternatively, as illustrated in Figure 5(b) and 5(c), Neu-
ralCI also attempts introducing an attention layer between
the GRU layer and the dense layer on the basis of our naive
RNN model, in the sense of attending to partial informative
instructions (that are potentially more important for compiler
identification) rather than focusing on all instructions equally.
In Figure 5(b), NeuralCI aggregates the attention vectors
produced by either of the two attention mechanisms discussed
in CNN-based models) with an average pooling* operation,
generating a single informative vector representation for a
sequence. Besides these two attention mechanisms, as shown
in Figure 5(c), NeuralCI also incorporates another kind of
attention mechanism [46] which introduces an external con-
text/query vector u,, to compute for each word (embedding)
in a sentence an importance weight and then compute a
weighted sum of the word embeddings based on the impor-
tance weights as the sentence’s vector representation. For our
application, we compute a vector for the instruction sequence
with this attention mechanism as follows:

[
g= i hi ©)
i=1

T
o = exp (,Bl ?W) ’ (10)
Zi eXp (ﬂ, :U«w)
Bi = tanh (W h; + by) (1

where, «; is the normalized attention weights through Soft-
max function; W, is the weight matrix corresponding to A;, by
is the bias vector, both of which are to be jointly learned with
the context vector u,, during the training process. The same
as the naive RNN, the latent vector produced with either of
the three attention mechanisms is further fed to subsequent
dense and Softmax layers for compiler prediction. Also,
to get these RNN models distinguishable, we use Neuralg‘}U,
NeuralSG%U, Neural‘gDRU and Neural ggU (the most impressive
characteristic of the third attention mechanism is the intro-
duction of an external query vector, thus we call it QUery-
based-attention for short) to depict them for simplicity in the
following experimental evaluations.

4Max pooling also works without obvious difference in performance
compared with average pooling.
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V. EXPERIMENTS AND EVALUATION

A. DATASET CONSTRUCTION

To evaluate the performance of NeuralCI, we collected
19 widely used C/C++ open source projects (including
binutils 2.32, busybox 1.31.0, ccv 0.7, coreutils 8.31, curl
7.65.3, ffmpeg 4.2.1, Freelmage 3.17.0, gdb 8.2, git 2.22.0,
gs12.6, zIib 1.2.11, libhttpd 2.0, libpng 1.6.34, openmpi 3.1.1,
openssl 1.1.1c, postgresql 10.4, sqlite 3.22, valgrind 3.15, and
vim 8.1) as the basics to construct the dataset. To be specific,
we process these projects with the following steps:

o Three different compilers involving multiple versions
including GCC (4.7, 4.8, 4.9, 5.5, 6.5, 7.4), Clang
(3.8, 5.0) and ICC 19.0, as well as varying compiler
optimization levels (00, O1, 02, O3) are used as the
toolchain settings to compile each project.

o IDA Pro is then used to identify and extract functions
from each binary. Also, we get rid of trivial functions
(functions containing just a few instructions, such as the
stub functions) that are meaningless to analyze. We con-
sider functions containing less than 10 instructions as
trivial in our current setting.

o During the training phase, to avoid neural models seeing
functions that are really similar to the ones in the testing
phase, which, if not properly coped with, can inflate the
performance metrics, we only keep unique functions.
Specifically, a function is considered redundant if it has
the same normalized instructions as others. Then we
label each remaining function with the compiler settings
used to compile the binary that the function resides in.

With these settings, we finally construct a dataset com-
prised of totally 854,858 unique functions from 4,810 bina-
ries’ with an average of about 260 instructions within a
function. The distribution of the function sizes is depicted
in Figure 6, where 50% of functions contain less than
100 instructions, and nearly 90% of functions contain less
than 500 instructions.

B. IMPLEMENTATION DETAILS AND

EXPERIMENTAL SETTINGS

We have implemented NeuralCl as a prototype tool. It utilizes
IDA Pro for the parsing of binaries to obtain functions and
their raw assembly instructions. The function abstraction
module is implemented in Java, and the neural modeling
module is implemented using Python and Tensorflow frame-
work. The skip-gram implementation provided in gensim [4]
is used to generate instruction embedding vectors, with the
embedding size d setting to 100. The maximum length / for an
instruction sequence is set to 500, which ensures to cover the
complete semantics of nearly 90% functions in our dataset.
The number of convolution filters in the CNN-based models
is set to 128, and so is the dimension of the GRU hidden state
vectors.

5Tt should be noted that not every project can be successfully compiled
under every compiler setting. Also, the successful compilation of different
projects produce varying number of binaries.
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FIGURE 6. Distribution of the function sizes.

For experimental settings, we randomly split the dataset
into training, validation and testing sets according to a per-
centage of 80%, 10% and 10% respectively. The neural net-
work models are trained with a Tesla V100 GPU card using
a batch size of 128, initial learning rate 0.001 (we divide
the learning rate by 10 when the validation loss has stopped
improving for at least 5 epochs), and the Adam optimizer. For
each epoch, the training samples are shuffled and accuracy
on the validation set is calculated. Also, the EarlyStopping
mechanism is leveraged to stop the training after the epoch
when the validation accuracy rate no longer rises, so as
to avoid over-fitting, non-convergence and other problems.
Finally, we take the model with the best accuracy as the final
model to be further evaluated on the testing set with respect
to performance metrics including accuracy, precision, recall
and f1-score.

C. EVALUATION

In the following parts, we evaluate the performance of Neu-
ralCI on identifying the compiler family, optimization level,
compiler version and compiler setting combination respec-
tively, and report the comparative results across the neural
network models as well as against existing function level
methods that support the detection of corresponding compiler
settings. Note that the accuracy values in Table 2, 3, 5, 6, 7,

TABLE 2. Compiler Family Identification Results.

Model Accuracy Precision Recall F1
Neural 23, 98.5% 0.985 0.985 0.985
Neural?R, 98.5% 0.985 0.985 0.985
Neurald% 98.5% 0.985 0.985 0.985
NeuralZ3, , 98.6% 0.987 0.986 0.986
Neural?h, , 98.7% 0.987 0.987 0.987
Neural 4R, 98.6% 0.986 0.986 0.986
Neural 5, 98.6% 0.986 0986  0.986
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TABLE 3. Optimization Level Identification Results.

Condensed Model GCC Clang ICC
ode

levels Accuracy Precision Recall F1  Accuracy Precision Recall F1  Accuracy Precision Recall F1
Neuralglsw\, 98.6% 0.987 0986 0986  91.5% 0.914 0915 0914  959% 0.960 0.959 0.959
Neuralfj?\w 98.7% 0.987 0987 0987 91.8% 0.918 0918 0918  95.7% 0.957 0.957 0.957
2-Levels: Neumlé]’\j]N 98.7% 0.987 0987 0987 91.8% 0.918 0918 0918  95.7% 0.958 0.957 0.958
O, Neuralgfw 98.8% 0.988 0.988 0988  90.8% 0.909 0.908 0.908  95.1% 0.953 0.951 0.952
On NeuralégU 98.8% 0.988 0988 0988  91.2% 0913 0912 0913 95.3% 0.954 0.953 0.953
NeuralggU 98.2% 0.982 0982 0982  90.4% 0.902 0.904 0.903 95.0% 0.950 0.950 0.950
Neuralg}q\w 98.8% 0.988 0.988 0988  91.4% 0.916 0914 0915 95.9% 0.960 0.960  0.960
Neural*g’]ij 98.9% 0.989 0989 0989  91.0% 0911 0910 0911 96.0% 0.960 0.960  0.960
3 Level Neuralé]D\,N 98.9% 0.989 0989 0989  91.7% 0.919 0917 0918  95.5% 0.955 0.955 0.955

-Levels:

00 Neuralg%U 98.7% 0.987 0988 0987  92.5% 0.927 0925 0926  96.3% 0.965 0.963 0.963
ol ’ Neural%%u 98.8% 0.989 0988 0988  91.3% 0.916 0913 0914  94.9% 0.949 0.949  0.949
o ’ Neural%%U 98.8% 0.988 0.988 0988  91.6% 0.919 0916 0917  95.7% 0.958 0.957 0.957
i NeuralggU 98.8% 0.989 0988 0988  92.1% 0.925 0921 0922  95.6% 0.957 0.956  0.956
NeuralggU 98.8% 0.988 0.988 0988  92.0% 0.923 0.920 0.921 95.5% 0.955 0.955 0.955

and 8 all refer to the total accuracy, and the precision,
recall, and fl-score values in these tables all refer to the
weighted-average precision, recall and f1-score respectively.

To be specific, let k be the class label, {c1, c2, -+, ck}
be the numbers of samples with respect to each class, and

{¢]. ¢, -+, ¢} be their numbers of correctly classified sam-
ples by a classifier. The total accuracy can be defined as:
k
1 C
Accuracy = ZZ_I ! (12)
Dim1 Ci

Let {p17p2’ et ’pk}7 {r19 rp, .-, rk} and {flast tee afk} be
the precision, recall and fl-score values computed with

respect to the k classes respectively. The weighted-average
precision, recall and fl-score can be defined as:

k
Precision = Z kc—lpi (13)
i=1 Zj:l ¢Gj
k .
Recall =y ——r, (14)
i=1 Zj:l ¢Gj
Fl Xk: A (15)
= —
i=1 Z;;lcf

1) PERFORMANCE OF IDENTIFYING COMPILER FAMILY

In this experiment, we take the compiler family that each
function is compiled with as the ground-truth, and get the
NeuralCI models trained and evaluated by adopting the
experimental settings as described in Section V-B. As it
shows in Table 2, the NeuralCI models achieve rather high
accuracy and fl-score in identifying the compiler family.
Also, there exist no obvious performance differences between
the NeuralCI models, among which NeuralSG%U exhibits the
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TABLE 4. Precision and Recall Values Before and After Separating Out
01 From O,.

3-Level Case 2-Level Case

Metrics
00 01 On Oy, On
Precision 0.999 0.938 0.816 0.923 0.845
Recall 0.968 0.890 0.910 0.948 0.781

best performance with an accuracy of 98.7% and fl-score
of 0.987 for the compiler family identification task.

2) PERFORMANCE OF IDENTIFYING OPTIMIZATION LEVEL
In this experiment, the optimization levels of certain compil-
ers are taken as the ground-truth to train and evaluate Neu-
ralCI. We do not use the default 4-level optimization option
setting, but adopt the same strategy as provided in works [27],
[28] that condenses the 4 optimization levels to 2 classes ‘low’
and ‘high’, considering the findings presented in existing
studies [27], [28] that it is difficult to distinguish between
02 and O3 compiled binaries. That is, O0 and O1 will be
considered as the low optimization class as denoted by Or,
while O2 and O3 will be considered as the high optimization
class as denoted by Oy. In addition to this problem simpli-
fication strategy, we also test the performance of the models
with a 3-level splitting way that condenses the optimization
levels to OO0, O1 and Oy.

The data summarized in Table 3 shows: 1) The NeuralCI
models exhibit relatively good detection results in the either
2-level or 3-level optimization condensation case, with little
performance differences observed across the models still.
2) Surprisingly, NeuralCI performs equally or even better
on the 3-level optimization option identification task than
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TABLE 5. Compiler Version Identification Results.

Model GCC (Major) Clang ICC (Minor)
ode
Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

Neuralg;qu 94.4% 0.944 0944  0.944 84.2% 0.844 0.842  0.839 77.8% 0.782 0.778  0.779
Neural%’?wv 94.4% 0.943 0944  0.943 84.1% 0.841 0.841  0.839 77.0% 0.776 0.770  0.771
Neuralé][\’w 94.4% 0.944 0.944  0.944 84.1% 0.841 0.841  0.839 76.9% 0.774 0.769  0.770
Neuralg%U 93.7% 0.937 0.937  0.936 82.3% 0.821 0.823  0.821 74.7% 0.748 0.747  0.747
Neural%%U 94.0% 0.940 0.940  0.940 82.3% 0.821 0.823  0.821 75.4% 0.754 0.754  0.754
Neuralégy 93.7% 0.937 0.937  0.937 82.4% 0.823 0.824  0.822 74.7% 0.747 0.747  0.747
NeuralggU 93.8% 0.938 0.938  0.938 83.3% 0.834 0.833  0.834 74.7% 0.747 0.747  0.747

TABLE 6. Results for Identifying Compiler Family and Optimization Level
Simultaneously.

TABLE 7. Results For Identifying Compiler Family, (Major) Version and
Optimization Level Simultaneously.

Case Model Accuracy Precision Recall F1 Case Model Accuracy Precision Recall F1
NeuralZ3,  94.5% 0.944 0.945 0944 NeuralZ3,  83.1% 0.834 0.831  0.829
Neural2R,  94.8% 0.948 0.948  0.948 Neural?R,  83.0% 0.830 0.830  0.828
2-Levels: NeuraléﬁN 94.8% 0.948 0948  0.948 2-Levels: NeuraléﬁN 83.1% 0.832 0.831 0.829
OL, NeuralZ3,,  94.3% 0.943 0.943  0.943 oL, NeuralZ3,,,  81.5% 0.815 0.815  0.815
On Neural?D,,  94.6% 0.945 0.946  0.945 On Neural?D,,,  83.2% 0.833 0.832  0.832
Neural{B,,  95.0% 0.950 0950  0.950 Neural{D,,  82.9% 0.829 0.829  0.829
Neural®,, — 95.0% 0951 0950  0.950 Neural®,, — 82.6% 0.826  0.826 0.824
NeuralB3,,  94.8% 0.948 0948  0.948 NeuralB3,,  83.6% 0.838 0.836  0.833

S. S
3 Levels Neural?R,  95.0% 0.950 0950  0.949 2 Levels: Neural?R  83.7% 0.840 0.837  0.833
00 " Newral3Ry  94.6% 0.946 0.946  0.946 00 " NewraldR,  83.8% 0.842 0.838  0.835
01’ NeuralZ3,,,  94.9% 0.950 0.949  0.949 01’ NeuralZ3,,,  83.6% 0.838 0.836  0.833
o ' Neural?h,;  95.1% 0.952 0.951  0.951 o ' Neural?D,,  82.7% 0.827 0.827  0.826
H H

Neural{2,,  94.9% 0.950 0949  0.950 Neural{D,,  82.4% 0.829 0.824  0.820
Neural®y,, — 95.1% 0952 0951  0.951 Neural®,, — 83.2% 0831 0832 0831

2-level task for some models. As the most obvious example,
the largest difference is observed when applying Neuralé%u
to identify the optimization option for Clang, where accu-
racies of 92.1% and 90.4% are achieved in the 2-level and
3-level case respectively. Table 4 gives their detailed pre-
cision and recall values with respect to each optimization
level correspondingly. As it shows, by splitting O1 separately
out of Or, the recall of identifying Oy drastically increases
from 0.781 to 0.910, indicating that many Oy samples which
are falsely classified as belonging to O in the 2-level case
are now correctly classified again. Meantime, some samples
actually belonging to O1 are now falsely classified as Oy,
causing the precision of identifying Oy to decrease from
0.845 to 0.816, and the relatively low recall value of 0.89 for
the newly separated class Ol. This matches the common
sense that binaries compiled with O1, O2 or O3 are more
similar to each other than to binaries compiled with O0 where
no optimization is applied. 3) The performance of NeuralCI
in identifying optimization level varies across compilers, with
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the best and worst performance (about a margin of 7% in
accuracy) observed on GCC and Clang respectively, indicat-
ing that the differences introduced by different optimization
levels of GCC to the produced binaries seem more obvious.
Also, the varying detection difficulty of compiler optimiza-
tion levels implies that different compilers adopt different
ways of defining their optimization levels.

3) PERFORMANCE OF IDENTIFYING COMPILER VERSION

Identifying the specific compiler version used to compile a
function is intuitively more challenging. Table 5 summarizes
the detection results of NeuralCI applied on GCC and Clang
that both contain multiple versions in our dataset. As it shows,
varying performance of NeuralCI is observed on different
compiler family, where better accuracies ranging from 93.7%
to 94.5% are achieved on the major versions of GCC com-
pared with the accuracies observed on Clang that range from
82.3% to 84.3%. It suggests that varying rates of “‘churn”
across versions are exhibited in different compiler families,
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with GCC producing significantly more varied code between
major versions than Clang. Moreover, we evaluate whether
NeuralCl is capable of identifying minor compiler versions
(GCC 4.7, 4.8 and 4.9). As it shows in the right columns of
Table 5, the accuracies are much lower compared with the
accuracies achieved in the major version identification case,
which conforms to the common sense that more changes are
generally introduced across the major version releases than
across the minor version releases of a program. The fairish
detection accuracies indicate that NeuralCI can capture very
subtle yet significant features which may otherwise be missed
by artificially crafted feature extraction and selection strate-
gies. Again, no apparent gaps are observed across the neural
network models in NeuralCI.

4) PERFORMANCE OF IDENTIFYING COMPILER SETTING
COMBINATION

Detecting compiler setting combinations from a binary can be
generally achieved by jointly applying multiple models, each
of which targets a different part of the settings. For example,
to determine both the compiler family and the optimization
level for a binary function, we can firstly use the trained
model for compiler family identification to detect the family
that compiles the function, and then use the optimization
level identification model corresponding to the identified
family to further detect the optimization level. An alternative
way is to train a single model that can detect these settings
simultaneously. To check if NeuralCI is competent with this
challenging task, we evaluate its performance of identifying
compiler family and optimization level altogether first. As the
results depicted in Table 6 show, all the models in NeuralCI
exhibit relatively good and similar detection performance.
Further, Table 7 reports the results of NeuralCI in identify-
ing all compiler setting combination® simultaneously, where
accuracies ranging between 81.5% and 83.8% are observed
across different models.

5) COMPARISONS WITH EXISTING METHODS

In this section, we compare NeuralCI with existing meth-
ods including Idioms [29] and Graphlets [28] that support
compiler identification on individual functions. Specifically,
we implement three methods based on the ORIGIN [10]
code shared on github that extract idiom or graphlet features
from binary functions, select significant ones via mutual
information computation, and train classifiers with the sup-
port vector machine (SVM)’ on the selected idiom fea-
tures, the graphlet features, and both of them, producing
three models for each specific compiler identification task,
which we denote as IDM, GRA, and IDM-GRA respec-

OWe report the results on the major compiler versions, considering that
NeuralCI does not perform so good on identifying compiler minor versions
(as shown in Table 5).

TBesides the SVM model, CRF model which incorporates the adjacency
between functions is also adopted in the compared works [29] and [28].
Yet it assumes a sequence of functions rather than treating each function
independently, we only compare with their SVM-based model that operates
on each independent function.
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tively. Similarly, we choose the top 20,000 features with
the highest mutual information scores as significant features
and use linear SVMs considering their good performance on
high-dimension data sets. Despite that, due to the natural
properties of SVM, these methods still fail to scale to our
whole dataset by either consuming the whole memory or the
training never ends. To deal with that, we randomly select
100,000 samples from the whole dataset, taking 80% of them
as the training data and the rest as the test data. We repeat
the above process using 10-fold cross validation® to obtain
averaged evaluation results.

Table 8 summarizes the experimental results, where the
values in the column NeuralCI report the best performance
achieved by our models. As it shows, NeuralCI outperforms
the other methods comprehensively in terms of detection
accuracy, precision, recall, f1 and f0.5 values in almost every
compiler identification task, except the task of identifying
compiler ICC’s optimization level where IDM-GRA outper-
forms NeuralCI by a small margin.

VI. DISCUSSION

Similar to existing binary analysis methods that work on the
function level, NeuralCI also assumes the reliable acquisition
of functions from the binaries to be analyzed. In this paper,
we select the state-of-the-art commercial reverse engineering
tool IDA Pro for parsing, in consideration of its performance
and wide application in the binary analysis domain. Alter-
natives, such as Binary Ninjia [2], Radare2 [9], Dyninst [3],
Angr [1], etc., are also compatible with NeuralCI. But in
general, correct parsing of binaries is still a complex and open
issue. To ensure a more reliable way of obtaining functions,
NeuralCI might benefit from recent advances that adopt deep
learning to identify functions from binaries [34].

In addition to the impacts from the limitations of binary
parsing tools, NeuralCI may also suffer from various kinds
of code obfuscations [18], [31] enforced on the code to be
analyzed. On one hand, code obfuscation techniques such as
compression and encryption [41] may disable the analysis
at the first step, as they interrupt the correct parsing and
extraction of functions from binaries, which is the funda-
mental basis for NeuralCI and other function-level compiler
identification methods. On the other hand, code obfuscation
techniques, such as instruction replacement, dead code inser-
tion, function inlining, etc., that commit changes to the code
[30], [32] are very likely to destroy or submerge fea-
tures important to compiler identification, hence decreas-
ing the detection accuracy. One possible solution to this
problem is to deobfuscate the binaries first with deobfus-
cation techniques [22], [44], [49] before enforcing compiler
identification. Another possible way is to adopt the idea of
adversarial training [40], which trains the compiler iden-
tification model with adversarial examples (i.e. obfuscated
samples), to improve the resistance against code obfuscation

81t differs slightly from the standard 10-fold cross validation in that

we construct 10 random subsets, each of which contains 100,000 samples
randomly selected from the whole dataset.
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TABLE 8. Performance Comparison with Existing Compiler Identification Methods.

Task Metric NeuralCI IDM GRA IDM-GRA
Accuracy 98.7 % 93.9% 84.2% 94.0%
Compiler Precision 0.987 0.943 0.845 0.944
Recall 0.987 0.939 0.842 0.940
Fl 0.987 0.938 0.838 0.939
-Level Accqrgcy 98.8% 97.0% 94.0% 97.2%
Optimization Level Precision 0.988 0.971 0.941 0.973
(GCC) Recall 0.988 0.970 0.940 0.972
F1 0.988 0.970 0.941 0.972
2-Level Acct}rgcy 91.8% 86.5% 85.8% 87.1%
Optimization Level Precision 0.918 0.864 0.854 0.870
(Clang) Recall 0.918 0.865 0.858 0.871
Fl 0.918 0.855 0.849 0.862
2-Level Accqrz.icy 95.9% 97.2% 97.0% 97.6%
Optimization Level Precision 0.960 0.972 0.970 0.976
(ICC) Recall 0.959 0.972 0.970 0.976
F1 0.959 0.972 0.970 0.976
3Level Accqrgcy 98.9 % 96.6% 92.0% 96.8%
Optimization Level Precision 0.989 0.967 0.922 0.969
(GCC) Recall 0.989 0.966 0.920 0.968
Fl 0.989 0.966 0.920 0.968
3-Level Accqrz.;lcy 92.5% 85.7% 82.5% 86.4%
Optimization Level Precision 0.927 0.862 0.829 0.868
(Clang) Recall 0.925 0.857 0.825 0.864
F1 0.926 0.849 0.821 0.858
3-Level Accqr{acy 96.3% 97.0% 95.2% 97.4%
Optimization Level Precision 0.965 0.970 0.953 0.974
(ICC) Recall 0.963 0.970 0.952 0.974
F1 0.963 0.969 0.952 0.974
3-Level Accqrz}cy 84.2% 81.9% 78.0% 83.8%
Compiler Version Precision 0.844 0.827 0.775 0.845
(Clang) Recall 0.842 0.819 0.780 0.838
F1 0.839 0.806 0.762 0.828
3 Level Accqr;}cy 94.4% 89.2% 85.5% 90.5%
Compiler Version Precision 0.944 0.895 0.858 0.908
(GCC Major) Recall 0.944 0.892 0.855 0.905
F1 0.944 0.890 0.852 0.903
3 Level Accqrgcy 77.8% 74.0% 62.9% 75.9%
Compiler Version Precision 0.782 0.770 0.635 0.778
(GCC Minor) Recall 0.778 0.740 0.629 0.759
Fl 0.779 0.741 0.630 0.760
Family and Accqrgcy 95.0% 87.8% 77.3% 88.3%
Optimization Level Precision 0.950 0.879 0.787 0.884
(2-Level) Recall 0.950 0.878 0.773 0.883
F1 0.950 0.872 0.772 0.878
Family and Accqrgcy 95.1% 87.2% 75.8% 87.7%
Optimization Level Precision 0.952 0.875 0.771 0.880
(3-Level) Recall 0.951 0.872 0.758 0.877
Fl 0.951 0.867 0.753 0.873
Accuracy 83.2% 73.1% 64.4% 74.2%
Precision 0.833 0.750 0.661 0.761
All 2-Level) Recall 0.832 0.731 0.644 0.742
F1 0.832 0.724 0.634 0.736
Accuracy 83.8% 72.9% 63.2% 74.4%
Precision 0.842 0.757 0.654 0.771
All 3-Level) Recall 0.838 0.729 0.632 0.744
F1 0.835 0.726 0.629 0.744

attacks. Overall, how to achieve robust compiler identifi-
cation in the face of code obfuscation is a challenging yet
important research topic, and we leave it as our future work.

To facilitate other researchers conducting experiments and
presenting their findings, we have made public the dataset and
NeuralCI’s source code on github. To construct a relatively
reliable dataset, the compilation itself is a challenging task,
as the source files usually have numerous dependencies that
complicates the compilation process. Worse still, we must
ensure the projects are correctly compiled with the specified
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compiler settings. Finally, 19 projects with relatively com-
plete compilation environments are processed, which costs
us a massive of time reading the guidelines accompanied
by each project for configuring and compiling them with
the specified compiler settings, so as to produce correctly
labeled samples. One concern as to the dataset is its diversity
that correlates to the generalization ability of the trained
models. For this issue, we try to select projects that involve
different program types and application domains. Another
concern is the effectiveness of NeuralCI on other compilers
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or compiler settings. For example, as the projects used to
construct our dataset are widely used open source projects
that work under the linux system, it’s difficult to successfully
compile them with the msvc compiler that generally works
under the windows system. Thus we did not test NeuralCI on
identifying msvc compiled binaries. Besides, there are other
compilers that can produce binaries, such as the IBM XL
compiler [5]. Covering all of them apparently will promote
the usability of the compiler identification researches, but
it is a non-trivial task that requires lots of human efforts.
We made public our constructed dataset as the first step,
with the expectation for more researchers of participating
in the compiler identification and related investigations, and
together with other researchers we can gradually refine and
enrich the dataset with more samples involving more kinds of
compilers and programs.

We did not perform a systematic hyper-parameter tun-
ing, but rather adopt either the default or the commonly
used empirical values for the hyper-parameters. As illus-
trated by the evaluation results, NeuralCI trained with cur-
rent parameter setting achieves very promising detection
accuracy. A systematic or exhaustive grid search based
hyper-parameter tuning may further improve the NeuralCI’s
performance, meanwhile consuming a lot more computing
resources and time. We leave it as our future work as well.

VIl. RELATED WORK

In general, existing works on compiler identification can be
divided into two categories: signature matching based meth-
ods and learning based methods.

A. SIGNATURE MATCHING BASED METHODS

The signature matching based methods [6]-[8] search the
binary program against a corpus of generic and rigid signa-
tures, and attribute to the whole program the compiler label
corresponding to the matched signature string. This kind of
method has been implemented in several reverse engineer-
ing tools, such as IDA Pro [6], PEiD [8] and LANGUAGE
2000 [7], with its high detection efficiency and low cost.
Their drawbacks lie in the stringent expertise in constructing a
good enough compiler-specific signature, as well as the easily
affected accuracy due to slight differences between signa-
tures. Besides, the signatures usually depend on the metadata
or details of program headers, which can be easily altered
or become unavailable in stripped binaries. Moreover, these
tools identify compilers on the whole binary, while a program
can be produced with multiple compilers in scenarios such
as statically linking library code to produce the final binary
program.

B. MACHINE LEARNING BASED METHODS

This type of method formulates compiler identification as
a machine learning task performed on (in most instances
stripped) binaries, based on the belief that the implicit
features of the resulting binaries reflect design and imple-
mentation decisions of a certain compiler that is used to pro-
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duce the binaries. Specifically, they train models that capture
compiler-specific patterns, further with which to infer the
compiler provenance on previously unseen binaries.

The pioneering work [29] adopting this type of approach
was conducted by Rosenblum et al. that defined a set of
idioms (short sequences of instructions with wildcards) and
utilized mutual information calculation to capture and select
significant patterns indicative of the source compiler for the
program binaries. High accuracy was observed for inferring
the compiler families, but we have no idea of its perfor-
mance on optimization levels identification as no evaluation
was conducted. ORIGIN [28] achieved superior accuracy
in recovering the compiler details by introducing graphlets
(small and non-isomorphic subgraphs within the CFG) in
addition to idioms so as to capture additional structural fea-
tures. Hidden Markov models were learned via observing
the differences in the type and frequency of instructions
comprising the binaries compiled with different compilers,
and proved to be accurate in identifying the compiler family
for a whole program [12], [39]. However, for each individual
compiler family, a corresponding separate model needs to be
learned. Also, these models do not extract information regard-
ing the optimization levels. To improve efficiency in terms
of computational resources and detection time, BinComp
[11], [27] adopted a stratified approach to infer different
compiler details on different granularity. It identifies com-
piler family for the whole program via matching of signa-
tures, and conducts compiler version and optimization level
detection for compiler-related functions. However, as the
compiler-related functions usually constitute a small portion
of all functions in real-world programs where user-defined
functions hold the principal status, the method does not solve
the function-level compiler identification problem which
we are targeting in this paper. Basically, accuracy of these
machine learning based methods greatly depends on the qual-
ity of expert-defined feature extraction templates and feature
selection strategies, where more potential human bias exists,
resulting in capturing lots of irrelevant or redundant features
for the compiler provenance task meanwhile failing to capture
closely relevant ones.

In recent years, significant successes have been witnessed
of applying deep learning techniques to the domain of binary
program analysis [16], [23], [34], [45], [48], [51]. Bin-
Eye [45] is one of the few works that utilize neural network
models to implement compiler identification. It combines
word embedding and position embedding to encode the raw
bytes of an object file, and then utilizes CNN to learn a
model that supports optimization level recognition on each
individual object file. Our work differs in that we achieve
finer grained identification of both compiler family and opti-
mization level for each individual function by adopting an
abstraction strategy that operates on assembly instructions
rather than the raw bytes. o-glassesX [25] designs an attention
augmented CNN-based model for compiler identification,
where positional encoding is also applied to capture features
of instruction orders. Structure2Vec [23] utilizes a graph
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embedding network to transform the function CFGs into
vectors, which are then fed into a dense layer to train a
classifier for compiler family identification. Compared to this
work, we operate directly on the instructions comprising a
function with a lightweight abstraction strategy, and adopt
the much faster sequence-oriented neural networks to train
models for comprehensive detection of the optimization level,
the compiler version, and the compiler setting combination in
addition to the compiler family as done by Structure2Vec.

VIIl. CONCLUSION

In this work, we model functions as normalized instruction
sequences using a lightweight abstraction strategy, which
are then fed to well-designed neural networks to solve the
problem of fine-grained acompiler identification. We imple-
ment the methods in a prototype tool NeuralCI, and get
its performance evaluated on a large dataset consisting of
totally 854,858 unique functions. As the experimental eval-
uation shows, NeuralCI outperforms existing function level
compiler identification methods. The outstanding accura-
cies reported on detecting the compiler family, optimization
level, compiler version and the compiler setting combination
strongly suggest that deep neural networks are capable of
capturing subtle yet significant features indicative of com-
piler settings, and sever as a promising and reliable way to
reveal these compiler settings in a less-human-and-domain-
knowledge-involving manner.

Despite several popular attention mechanisms that work
well on NLP tasks are adopted to enhance our models, limited
advances are observed. This indicates that the subtle clues
implied in a sequence has already been fully tapped by our
models. Besides the instructions and their orders, different
compiler settings can also cause significant changes to the
binary functions’ structures. In consideration of that, we plan
to model a function with more comprehensive representa-
tion forms such as CFG that preserves both syntactic and
structural information, and resort to graph neural networks
to achieve the performance enhancement for compiler identi-
fication task. The explicability of the models is another work
we are planning to focus on, with which we may find some
interesting patterns to provide heuristics for researchers in the
domain. There exist some candidate techniques [21], [35],
[36] such as the gradient based saliency map, the regression
model based LEMNA etc. that can be referred to. Also,
the well designed neural networks that show advanced per-
formance on tasks such as video deblurring [47] are promis-
ing to be applied on compiler provenance task after proper
adjustment.

ACKNOWLEDGMENT
This work extends their previous conference paper published
at SEKE.

REFERENCES

[1] ANGR. Accessed: Mar. 27, 2021. [Online]. Available: https://github.
com/angr

49174

[2]
[3]
[4]
[51

[6]

[7]
[8]

9

—

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

Binaryninja. Accessed: Mar. 27, 2021. [Online]. Available: https://binary.

ninja/

Dyninst. Accessed: Mar. 27, 2021. [Online]. Available: https://www.
dyninst.org/

GenSim. Accessed: Mar. 27, 2021. [Online]. Available: https:/

radimrehurek.com/gensim/models/word2vec.html

IBM C and C++ Compiler Family. Accessed: Mar. 27, 2021. [Online].
Available:  https://www.ibm.com/products/c-and-c-plus-plus-compiler-
family

IDA. Accessed: Mar. 27, 2021. [Online]. Available: https://www.hexrays.
com/products/ida/index.shtml

(2000). Language. [Online]. Available: https://farrokhi.net/language/
Peid. Accessed: Mar. 27, 2021. [Online]. Available: https://www.aldeid.
com/wiki/PEiD

Radare2. Accessed: Mar. 27,2021. [Online]. Available: https://github.com/
radareorg/radare2

ToolChain-Origin. Accessed: Mar. 27, 2021.
https://github.com/dyninst/toolchain-origin

S. Alrabaee, M. Debbabi, P. Shirani, L. Wang, A. Youssef, A. Rahimian,
L. Nouh, D. Mouheb, H. Huang, and A. Hanna, Compiler Provenance
Attribution. Cham, Switzerland: Springer, 2020, pp. 45-78.

T. H. Austin, E. Filiol, S. Josse, and M. Stamp, ““Exploring hidden Markov
models for virus analysis: A semantic approach,” in Proc. 46th Hawaii Int.
Conf. Syst. Sci., Jan. 2013, pp. 5039-5048.

S. Banescu, C. Collberg, V. Ganesh, Z. Newsham, and A. Pretschner,
“Code obfuscation against symbolic execution attacks,” in Proc. 32nd
Annu. Conf. Comput. Secur. Appl., Dec. 2016, pp. 189-200.

Y. Chen, Z. Shi, H. Li, W. Zhao, Y. Liu, and Y. Qiao, “HIMALIA: Recover-
ing compiler optimization levels from binaries by deep learning,” in Proc.
SAI Intell. Syst. Conf. Cham, Switzerland: Springer, 2018, pp. 35-47.

K. Cho, B. van Merriénboer, C. Giilgehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ““Learning phrase representations using RNN
encoder—decoder for statistical machine translation,” in Proc. Conf. Empir-
ical Methods Natural Lang. Process. (EMNLP), 2014, pp. 1724-1734.

Z. L. Chua, S. Shen, P. Saxena, and Z. Liang, “Neural nets can learn
function type signatures from binaries,” in Proc. USENIX Secur. Symp.,
2017, pp. 99-116.

J. Chung, C. Giilgehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” in Proc. NIPS
Workshop Deep Learn., 2014, pp. 1-9.

S. Datta, “DeepObfusCode: Source code obfuscation through sequence-
to-sequence networks,” CoRR, vol. abs/1909.01837, pp. 1-11, Sep. 2019.
[Online]. Available: http://arxiv.org/abs/1909.01837

S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2vec: Boosting static
representation robustness for binary clone search against code obfuscation
and compiler optimization,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 472-489.

M. Gaudesi, A. Marcelli, E. Sanchez, G. Squillero, and A. Tonda, “Mal-
ware obfuscation through evolutionary packers,” in Proc. Companion
Publication Annu. Conf. Genetic Evol. Comput., Jul. 2015, pp. 757-758.
W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “LEMNA: Explaining
deep learning based security applications,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Oct. 2018, pp. 364-379.

Z. Kan, H. Wang, L. Wu, Y. Guo, and D. X. Luo, “Automated deobfusca-
tion of Android native binary code,” CoRR, vol. abs/1907.06828, pp. 1-14,
Jul. 2019. [Online]. Available: http://arxiv.org/abs/1907.06828

L. Massarelli, G. A. Di Luna, F. Petroni, L. Querzoni, and R. Baldoni,
“Investigating graph embedding neural networks with unsupervised fea-
tures extraction for binary analysis,” in Proc. Workshop Binary Anal. Res.,
2019, pp. 1-11.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Proc. ICLR Workshop Poster,
2013, pp. 1-12.

Y. Otsubo, A. Otsuka, M. Mimura, T. Sakaki, and H. Ukegawa, “o-
glassesX: Compiler provenance recovery with attention mechanism from
a short code fragment,” in Proc. Workshop Binary Anal. Res., 2020,
pp. 1-12.

B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 701-710.

A.Rahimian, P. Shirani, S. Alrbaee, L. Wang, and M. Debbabi, “BinComp:
A stratified approach to compiler provenance attribution,” Digit. Invest.,
vol. 14, pp. S146-S155, Aug. 2015.

N. Rosenblum, B. P. Miller, and X. Zhu, ‘“Recovering the toolchain prove-
nance of binary code,” in Proc. Int. Symp. Softw. Test. Anal. (ISSTA), 2011,
pp. 100-110.

[Online]. Available:

VOLUME 9, 2021



Z. Tian et al.: Fine-Grained Compiler Identification With Sequence-Oriented Neural Modeling

IEEE Access

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

N. E. Rosenblum, B. P. Miller, and X. Zhu, “Extracting compiler prove-
nance from program binaries,” in Proc. 9th ACM SIGPLAN-SIGSOFT
Workshop Program Anal. Softw. Tools Eng. (PASTE), 2010, pp. 21-28.

K. A. Roundy and B. P. Miller, “Binary-code obfuscations in prevalent
packer tools,” ACM Comput. Surveys, vol. 46, no. 1, pp. 1-32, Oct. 2013.
S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against static and
dynamic reverse engineering,” in Proc. Int. Workshop Inf. Hiding. Berlin,
Germany: Springer, 2011, pp. 270-284.

S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik, and
E. Weippl, “Protecting software through obfuscation: Can it keep pace
with progress in code analysis?”” ACM Comput. Surveys, vol. 49, no. 1,
pp. 1-37, Jul. 2016.

M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation,” in Network and Distribted
Systems Security. San Diego, CA, USA: Internet Society, 2008, pp. 1-13.
E. C. R. Shin, D. Song, and R. Moazzezi, “Recognizing functions in
binaries with neural networks,” in Proc. USENIX Secur. Symp., 2015,
pp. 611-626.

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 3145-3153.

K. Simonyan, A. Vedaldi, and A. Zisserman, ‘“Deep inside convolutional
networks: Visualising image classification models and saliency maps,” in
Proc. 2nd Int. Conf. Learn. Represent. (ICLR), Banff, AB, Canada, 2014,
pp. 1-8.

Z. Tian, T. Liu, Q. Zheng, E. Zhuang, M. Fan, and Z. Yang, “Reviv-
ing sequential program birthmarking for multithreaded software plagia-
rism detection,” IEEE Trans. Softw. Eng., vol. 44, no. 5, pp. 491-511,
May 2018.

Z. Tian, Q. Zheng, T. Liu, M. Fan, E. Zhuang, and Z. Yang, “Software
plagiarism detection with birthmarks based on dynamic key instruction
sequences,” IEEE Trans. Softw. Eng., vol. 41, no. 12, pp. 1217-1235,
Dec. 2015.

A. H. Toderici and M. Stamp, ““Chi-squared distance and metamorphic
virus detection,” J. Comput. Virol. Hacking Techn., vol. 9, no. 1, pp. 1-14,
Feb. 2013.

F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
2018, arXiv:1705.07204. [Online]. Available: http://arxiv.org/abs/
1705.07204

X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, ““SoK: Deep
packer inspection: A longitudinal study of the complexity of run-time
packers,” in Proc. IEEE Symp. Secur. Privacy, May 2015, pp. 659-673.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 5998-6008.

P. Wang, Q. Bao, L. Wang, S. Wang, Z. Chen, T. Wei, and D. Wu, “Soft-
ware protection on the go: A large-scale empirical study on mobile app
obfuscation,” in Proc. 40th Int. Conf. Softw. Eng., May 2018, pp. 26-36.
B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in Proc. IEEE
Symp. Secur. Privacy, May 2015, pp. 674-691.

S. Yang, Z. Shi, G. Zhang, M. Li, Y. Ma, and L. Sun, “Understand code
style: Efficient CNN-based compiler optimization recognition system,” in
Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1-6.

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., 2016,
pp. 1480-1489.

X. Zhang, R. Jiang, T. Wang, and J. Wang, ‘‘Recursive neural network for
video deblurring,” IEEE Trans. Circuits Syst. Video Technol., early access,
Nov. 3, 2020, doi: 10.1109/TCSVT.2020.3035722.

G. Zhao and J. Huang, “DeepSim: Deep learning code functional similar-
ity,” in Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., Oct. 2018, pp. 141-151.

Y. Zhao, Z. Tang, G. Ye, D. Peng, D. Fang, X. Chen, and Z. Wang,
“Semantics-aware obfuscation scheme prediction for binary,” Comput.
Secur., vol. 99, pp. 1-20, Dec. 2020.

G. Zheng, S. Mukherjee, X. L. Dong, and F. Li, “OpenTag: Open attribute
value extraction from product profiles,” in Proc. 24th ACM SIGKDD Int.
Conf. Knowl. Discovery Data Mining, Jul. 2018, pp. 1049-1058.

F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang, “Neural machine
translation inspired binary code similarity comparison beyond function
pairs,” in Proc. Netw. Distrib. Syst. Secur. Symp. San Diego, CA, USA:
Internet Society, 2019, pp. 1-15.

VOLUME 9, 2021

4
s

software engineering, and programming languages.

ZHENZHOU TIAN was born in Shandong, China,
in 1987. He received the B.S. and Ph.D. degrees
in computer science and technology from Xi’an
Jiaotong University, China, in 2010 and 2016,
respectively. He is currently a Lecturer with the
School of Computer Science and Technology,
Xi’an University of Posts and Telecommunica-
tions. His research interests include software and
system security, program similarity analysis, and
software behavior analysis.

YAQIAN HUANG was born in Anhui, China,
in 1997. She is currently a Master Student with
the Xi’an University of Posts and Telecommuni-
cations. Her research interests include deep learn-
ing based program analysis and smart contract
analysis.

BORUN XIE was born in Shaanxi, China, in 1996.
He is currently a Master Student with the Xi’an
University of Posts and Telecommunications. His
research interests include binary code analysis and
program provenance analysis.

YANPING CHEN was born in Shaanxi, China,
in 1979. She received the Ph.D. degree in com-
puter science and technology from Xi’an Jiaotong
University, China, in 2007. She is currently a
Professor with the School of Computer Sci-
ence and Technology, Xi’an University of Posts
and Telecommunications. Her research interests
include software service computing, big data anal-
ysis, and cybersecurity.

LINGWEI CHEN received the Ph.D. degree in
computer science from West Virginia University,
in 2019. He is currently a Postdoctoral Scholar
with the College of Information Sciences and
Technology, The Pennsylvania State University.
Prior to that, he was a Software Engineer with the
Software Development Center, Agricultural Bank
of China. He also got internship experience at
Tencent and Yahoo! for research and development.
His research interests include machine learning
and cybersecurity.

DINGHAO WU (Member, IEEE) received the
Ph.D. degree from Princeton University, in 2005.
He is currently an Associate Professor with the
College of Information Sciences and Technology,
The Pennsylvania State University. Prior to join-
ing Penn State, he was a Research Engineer with
Microsoft in the Center for Software Excellence
and the Windows Azure Division. His research
interests include software systems, including soft-
ware security, software analysis and verification,

49175


http://dx.doi.org/10.1109/TCSVT.2020.3035722

