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ABSTRACT 

 

 
Effective Energy Efficient Buildings (EEB) design requires the use of Building 

Information Modeling (BIM) design authoring tools, along with various simulation tools to 

support decision making for optimized building solutions. This requires frequent interactions 

between computational tools. Traditionally, people have been using a point-to-point model for 

data exchange between those tools, which is complex and inefficient. An integrated data-centric 

model can reduce the communication cost and improve the interoperability. By setting up a BIM 

data hub in the center, both BIM design authoring tools and simulation tools only need to talk 

with the data hub. In this way, the communication interface among those tools is improved.  

However, even in this model, each tool still requires an interface to connect to the BIM 

data hub. If part of those tools have the same kind of interface, and part of them are supported by 

one single tool, the data exchange model could be further simplified. In this case, the building 

lifecycle is divided into two modes: design and simulation. The lack of a unified interface to 

support information exchange and interoperability among different building design and 

simulation tools has become a bottleneck of the EEB design process. Therefore, a link between 

design mode and the simulation mode is required for the whole simulation process.  

In this thesis, two existing infrastructures are leveraged to build a connected workflow 

using this simplified approach. The open source BIMserver is used as the information retrieval 

center, and OpenStudio is used as the information exchange and simulation platform. BIMserver 

can support the storage, maintenance, and query of Industry Foundation Classes (IFC) based 

building information models, and OpenStudio is a platform supporting whole building energy-

related modeling and simulations. The main contribution of this thesis is to build an information 

exchange bridge between BIMserver and OpenStudio, which enables different design authoring 
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tools and simulation tools that are connected to either of them to interoperate and exchange 

needed data.  

This thesis describes the integrated approach at the data level, connecting BIMserver and 

OpenStudio to build a unified EEB data exchange model. The challenges of the seamless 

integration due to the dependency on both BIMserver and OpenStudio are also discussed in the 

thesis. The system, which organizes the data flow in a unified model, enabling effective exchange 

of data, has been open source released. 
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Chapter 1  
 

Introduction 

This chapter introduces the concept of Energy Efficient Buildings (EEB) and the critical 

phases in the EEB project. After an overview of the current situation in the AEC/FM Industry, the 

chapter describes the research objectives and strategy. The outline of the thesis is discussed at the 

end of this chapter.  

Introduction to Energy Efficient Buildings (EEB) Project 

Recently, the U.S. and rest of the world have devoted more attention to reducing energy 

consumption when new buildings are constructed (Foley, 2012). In the Architecture, Engineering, 

Construction and Facilities Management (AEC/FM) Industry, energy efficient buildings design is 

becoming more critical, especially as it relates to energy retrofit projects. In the process of energy 

efficient building design, decision-making in the very early stages can significantly influence the 

energy consumption (Pollock et al., 2009). The decision-making process should be built upon a 

channel, which connects the computational representation of a building’s energy elements and the 

corresponding economic considerations (Jones et al., 2010). Energy modeling is such a channel 

providing designers with an outlook of potential energy consumption of varieties of designs prior 

to constructing the building (Fleming et al., 2012) to eliminate arbitrary decisions from the 

simulation process (Bazjanac, 2009). 

During the building design lifecycle, EEB design depends on the collaboration of project 

participants using a variety of design tools and simulation tools to make decisions for the 

optimized building solutions. Building design authoring tools provide the data required by the 
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simulation tools to conduct energy modeling and simulation. In this process, the data preparation 

for different simulation tools often reproduce already existing data created by design authoring 

tools (O'Donnell et al., 2013), which results in data fragmentation and inconsistency. 

Accordingly, seamless data exchange between building design authoring tools and simulation 

tools for building design, construction, and operation has been a goal of the AEC/FM Industry for 

decades (Hitchcock and Wong, 2011). Furthermore, different simulation tools running in different 

"energy simulation views" (Bazjanac, 2008) determine the varieties of data sets and data formats 

(Bazjanac & Kiviniemi, 2007) even in the simulation phase. It is quite necessary to agglomerate 

all energy simulation views into an integrated whole-building simulation methodology with the 

intent of exchanging data seamlessly (Guglielmetti et al., 2011). However, one of the most 

common shortcomings in the current industry practice is the lack of an integrated information 

exchange workflow. This causes fragmented connections and delays resulting in the inefficiency 

and ineffectiveness in the energy efficient building design process. Therefore, retrieval and 

exchange of building information in a timely and standard manner plays a major role in assuring 

efficient building energy simulation during the building design process. From the above 

discussion, we conclude that information retrieval and seamless information exchange are two 

core issues in the AEC/FM Industry for both the communication between building design 

authoring tools and simulation tools, and the communication amongst the simulation tools. 

Research Objectives 

It is difficult to retrieve 'knowledge' in the AEC/FM Industry (Redmond and Smith, 

2011), and even harder to exchange data in different building lifecycle phases. To facilitate 

interoperability between design authoring tools and simulation tools for efficient information 

exchange, this research aims to provide an interoperable and integrated platform based on an 
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open standards-based data format. The objectives include improving the software and data 

interoperability among the existing and new building design and simulation tools, and helping 

implement building design and simulation workflows using standards-based information 

exchanges. The final goal is to simplify, automate and integrate the information exchange 

processes among different tools, and develop enabling technologies and platforms to facilitate 

and establish an integrated eco-system around a BIM server with many tools and users. 

Research Strategy 

The strategy is to leverage existing infrastructure, where available, instead of starting 

from scratch. In the proposed workflow, Revit is used as the design modeling tool; Building 

Information Modeling (BIM) server platforms, such as ‘BIMserver’ implemented by 

bimserver.org (Beetz el al., 2010) as the information retrieval center; and OpenStudio as the 

information exchange and simulation platform. Revit is an application including features for 

architectural design, Mechanical-Electrical-Plumbing (MEP) and structural design using BIM 

(Autodesk, 2014). BIMserver supports the storage, maintenance, and query of Industry 

Foundation Classes (IFC) based building information models. OpenStudio, an interface to support 

whole building energy-related modeling and simulations, has another set of building energy 

modeling (BEM) representations (Weaver et al., 2012). Disconnect between different models 

prevents architects, engineers, and researchers from easily conducting integrated whole-building 

energy analysis (Guglielmetti et al., 2011). Accordingly, this thesis explores an integrated 

approach to leverage BIMserver and OpenStudio to enable open data exchange and 

interoperability among different building design and simulation tools. With the integrated 

approach, the inherent data inconsistency and mapping problems can also be solved. 
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Thesis Organization 

The remaining of the thesis is organized as follows. Chapter 2 provides the background 

information about the concepts and representations in the AEC/FM Industry. Chapter 3 

introduces several approaches to exchanging information among different simulation tools. Based 

on existing research results, this thesis proposes an integrated workflow to improve the software 

interoperability and building energy analyses efficiency. The validation tests are described in 

Chapter 4, followed by the limitations in Chapter 5. The last chapter summarizes the conclusion 

and discusses the future work. 



 

 

Chapter 2  
 

Background and Related Work 

This research ventures into the complex realm of using BIM to support energy efficient 

building design. Data interoperability has long been a perplexing issue in the AEC/FM Industry. 

Tools and data formats are booming in their respective fields, such as the design phase and 

simulation phase, which makes the connection between BIM design authoring tools and 

simulation tools a tough mission. This chapter introduces the most commonly used tools and data 

representations in different views. At last, the chapter states the challenges of seamless 

information exchange between BIM design authoring tools and simulation tools. 

BIM for Energy Efficient Buildings Design 

The AEC/FM Industry shows increasing interest in adopting information technology in 

building designs (Bazjanac & Kiviniemi, 2007). In the U.S., there is around 5 billion square feet 

of new construction, 5 billion square feet of renovation, and 1.75 billion square feet of demolition 

every year. It is predicted that $400 billion will be saved annually if BIM is universally adopted 

(iwmsnews, 2009). BIM acts as a bridge between the AEC/FM Industry and information 

technology (Eastman et al., 2008), which makes the entire building lifecycle more efficient and 

effective, also leads to greater integration of AEC/FM stakeholders at the project design stage 

(Khalili and Chua, 2013). For effective exchange of information, the import and export of 

relevant information must be compatible with other tools (Bazjanac, 2007; O’Donnell et al., 

2011). BIM is a shared digital representation of a building and its physical and functional 

characteristics, on the basis of open standards for software interoperability (O'Donnell et al., 
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2013). It serves as a process and an interoperable building model, which enables bi-directional 

data service for building design authoring tools and various simulation tools.  

Current Simulation Tools for Building Energy Analysis 

Building energy performance simulation leverages computer-based building energy 

analysis to quantitatively validate the correctness of decisions on building design and operations 

(Bazjanac et al., 2011). High-performance buildings require an integrated analysis, including 

whole-building energy, daylighting, airflow, among others. Traditionally, different simulation 

tools only concentrate on their respective domains. For instance, CONTAM is a multi-zone 

airflow and contaminant transport analysis software (Walton & Dols, 2010), EnergyPlus performs 

whole-building energy analysis, Radiance is used for daylighting and electric lighting simulation 

(Guglielmetti & Scheib, 2012), and Retrofit Manager Tool (RMT) is the most comprehensive 

building energy simulation web tool (Heidarinejad et al., 2014). Each of those tools in different 

simulation views requires the abstraction of the original data created by the design authoring tools 

in different granularities. Typically, designers adopt a point-to-point data exchange model 

(O’Donnell et al., 2011) between building design authoring tools and simulation tools, which is 

usually very complicated and inefficient. With the intent of facilitating information flow from an 

architectural design model to an energy model, Bazjanac and Kiviniemi (2007) developed a tool 

called the Geometry Simplification Tool (GST), superseded by Space Boundary Tool (SBT) 

(O'Donnell et al., 2013), which extracts a valid IFC geometric model and its construction 

properties, and transforms the original data into specific data structure and format required by 

EnergyPlus
1
. 

                                                      
1
 http://apps1.eere.energy.gov/buildings/energyplus/ 
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Building Information Representations 

One of the essential barriers preventing seamless data exchange is the different building 

information representations. Each representation offers a range of proprietary file formats used in 

modeling and simulation tools. Revit (RVT) and Industry Foundation Classes (IFC) are two kinds 

of modeling representations in the design phase; EnergyPlus Input Data File (IDF), Green 

Building XML (gbXML), OpenStudio Model (OSM) and DXF are data representations and input 

file formats used in energy-related simulation tools. Though there exists so many proprietary data 

models of buildings, the IFC model, developed by buildingSMART who promote open BIM 

throughout the building lifecycle (buildingSMART, 2014a), is the only open specification that 

covers the entire lifecycle (O'Donnell et al., 2013). IFC provides EEB project participants and 

users of BIM with an open standard for sharing consistent, accurate building information amongst 

all computational tools used throughout a building's whole lifecycle (Hitch and Wong, 2011). It 

serves as a universal data exchange platform and eliminates the building model dependency from 

any specific tool (Khalili and Chua, 2013). Although IFC is the most mature open standard to 

represent building objects, it is only widely used in the building design phase. The simulation 

tools often adopt different data structures to represent different “views” of the building (IAI, 

2006), which requires data format transformation, sometimes also content translation, of original 

data to form valid input for the simulation tools (Bazjanac, 2009). Due to the difference between 

the information representations, the transformation among them introduces human intervention, 

which also makes the process inefficient and ineffective. 
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Gap between BIM Design authoring Tools and Various Simulation Tools 

BIM design authoring tools are used to create the building product design models, which 

describe the physical characteristics of building elements via their geometric and topological 

information (Khalili and Chua, 2013). EEB designers need enhanced methods to extract the 

geometry and topology from building design models to conduct various analyses (e.g. airflow 

analysis, energy analysis, and daylighting analysis). However, seamless information exchange 

between different BIM design authoring tools and various simulation tools has many challenges, 

such as heterogeneous requirements, different data formats and fragmented connections. The vast 

amount of diversity of project teams and stakeholders determines varying sets of needs of a BIM. 

This demands the provision of diverse independent tool functionality, features and operations, 

which makes it difficult to master them all. Most of the analysis and simulation software have 

been developed for different domains, and their formats are different in nature. Also, 

organizations tend to develop and use their internal standards and formats, which all limit model 

reuse, and information exchange and sharing among tools and stakeholders. Furthermore, 

specialized systems or application tools, which are often heterogeneous and disjoint, are required 

for individual domain specific activities, and include the use of information and models of 

varying scale and sources. The fragmentation creates integration and interoperability difficulties 

between the applications in the AEC/FM Industry (Liu et al, 2013). There are critical drivers for 

the widespread adoption of BIM in order to bridge the fragmentation which characterizes the 

industry and to facilitate effective management of information. Therefore, a highly integrated 

platform is of critical importance to facilitate interoperability and seamless information exchange. 

  



 

 

Chapter 3  
 

Approach 

This research focused on building a bridge between BIM design authoring tools and 

simulation tools to facilitate seamless information exchange. In this thesis, Revit is used as the 

design modeling tool; BIMserver as the information retrieval center; and OpenStudio as the 

information exchange and simulation platform. The geometric information is very important in 

describing physical characteristics of building elements. A core challenge is the difference 

between a physical geometric representation of the object and an analytical geometric 

representation, e.g., the space boundary. Most of the simulation tools require enhanced methods 

to transform geometric representations from building design models. This research focuses on the 

extraction of geometry from IFC model and the transformation of the extracted data into the 

OpenStudio Model (OSM). In brief, the workflow consists of two basic tasks: geometric 

information extraction and geometric data transformation.  

Before introducing the proposed approach, two other models are presented first and 

compared with the third simplified data exchange model. 

The Traditional Point-to-Point Model 

From the perspective of the Architecture, Engineering, Construction and Facilities 

Management (AEC/FM) Industry, the design of EEB is the panoramic motivation including not 

only the optimized solution of energy, but also other factors, such as daylighting, and airflow. As 

mentioned in Chapter 2, building information has various representations and simulation tools 

usually work in different simulation views. Therefore, direct data exchange between BIM design 
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authoring tools and simulation tools, and the data exchange amongst simulation tools are 

required. Traditionally, people have been using the point-to-point interface for data exchange, as 

shown in Figure 3-1.  

Simulation
Tool A

Authoring
Tool A

Authoring
Tool B

Simulation
Tool B

Simulation
Tool C

Simulation
Tool D

 

Figure 3-1. The Traditional Point-to-Point Model. 

 

This point-to-point information exchange model is very simple and trivial for a small 

communication group. The complexity of this model increases dramatically as the number of 

simulation tools increases. As more factors are taken into account, more interactions will occur 

among those tools. In this approach, each pair needs to communicate once. Assuming this model 

has n nodes, after all nodes completing interactions with other nodes, it makes O(n
2
) interactions. 

The Data-Centric Model 

To reduce the communication cost, a data-centric model is illustrated in Figure 3-2. With 

a BIM data hub in the center, all computational tools that want to interact with others must 

communicate with the BIM data hub first, and then the BIM data hub transfers the interaction 

between two nodes. The advantage of the BIM data hub is even more obvious when the number 
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of nodes increases. For the point-to-point method, each newly added node has to set up 

communication interfaces with all the existing nodes. For the BIM data hub, it only needs to set 

up one communication line for any newly added node and the interaction number is O(n). In this 

way, the need for data modeling and service management at the individual tool level is reduced.    

Simulation
Tool A

Authoring
Tool A

Authoring
Tool B

Simulation
Tool B

Simulation
Tool C

Simulation
Tool D

BIM
Data
Hub

 

Figure 3-2. A Data-Centric Model. 

 

The data-centric model has reduced the communication cost significantly; however, even 

in this model, each computational tool still requires one interface to connect to the BIM data hub. 

Whenever any interface changes, the BIM data hub has to adapt to the new interface. It is 

possible that BIM data hub becomes the bottleneck of the information exchange model. To 

leverage the existing building energy simulation eco-systems around OpenStudio, OpenStudio is 

added in the data-centric model. Some simulation tools, such as EnergyPlus and Radiance, are 

supported by OpenStudio. In this case, OpenStudio partakes in the data management of the BIM 

data hub. If Authoring Tool A and Authoring Tool B in Figure 3-2 have the same kind of 

interface, and the other simulation tools are supported by OpenStudio, this data-centric model 

could be further simplified. In practice, this is the common case. The computational tools are 

aggregated into two groups: design and simulation. 
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A Further Simplified Data Exchange Model 

Figure 3-3 illustrates the simplified data exchange model. BIM data hub serves as a 

bridge between building design mode and simulation mode. In the design mode, BIM design 

authoring tools could be either Revit or ArchiCAD. In this thesis, Revit is selected as the BIM 

design authoring tool. The architectural designers create the building design model in Revit, and 

import the model into the BIM data hub in IFC format. The BIM data hub consists of two 

components: BIMserver and the transformation module. In the model, BIMserver is adopted as 

the implementation of a BIM server which takes charge of building information management and 

selective building information retrieval. It accepts the IFC format exported from BIM design 

authoring tools such as Revit or other tools that support IFC exporting, as input data. The input 

IFC data contains overall and original building geometric information and is loaded into the 

memory of BIMserver. In the advanced query mode, BIMserver executes the query code to 

selectively retrieve required building information. The transformation module links the 

BIMserver and OpenStudio, which enables different design and simulation tools to connect to 

either of them to interoperate and exchange needed data. The output of the BIM data hub is the 

transformed output file in OSM format. At last, OpenStudio reads the OSM file and perform 

supported simulation analyses. Currently, OpenStudio can support EnergyPlus for energy analysis 

and Radiance for daylighting analysis, and will support CONTAM for airflow analysis in the 

future.  

 According to Figure 3-3, the core work in this model includes using BIMserver for 

building information management and selective information retrieval, and using OpenStudio as a 

possible solution to perform various simulations. The remaining part states the implementation 

details about the two modules. 
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Figure 3-3. The Simplified Integrated EEB Data Exchange Model. 

 

BIMserver for building information management and selective retrieval 

As an application for building information management and information retrieval, 

BIMserver provides the users with a simple graphic user interface (GUI) to input Java query code 

manually. After successfully compiling and running, BIMserver retrieves the building 

information according to requirement specified in the query code. This query mechanism requires 

end-users to compose Java codes with deep knowledge of programming and IFC implementation, 

which creates a barrier that prevents the experts in the AEC/FM Industry from conducting 

information query unless they either learn programming skills or hire IT engineers with 

background knowledge in the AEC/FM Industry. It is desirable to generate the Java query code 

automatically for the BIMserver users, especially in the simplified data exchange model (Figure 

3-3). BIM data hub accepts the IFC as the input data format, and exports OSM as the output data 

format. However, it is almost impossible for any server to extract or even interpret the geometric 

and topological information from the data design model implicitly or explicitly (Borrmann and 

Rank, 2009; Dominguez et al., 2011). The current practice of collecting building information 

from IFC and exporting the specific input required by the simulation tools is still manual 

transformation, which is not very efficient. The implicit and automatic extraction of geometric 
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information from IFC has been a goal for decades in the AEC/FM Industry (Hitchcock and Wong, 

2011). 

On the basis of Model-View-Definition (MVD), Jiang et al. (2012) proposed that it is 

possible to automate the query process by generating queries from a MVD automatically. 

Following their work, a tool named Query Generator is developed to extract the geometric 

information of some building elements from IFC and transform the result into the format accepted 

by OpenStudio automatically. Through this automated process, human intervention in query 

generation is eliminated.  

Query Generator 

The Query Generator takes a MVD or an extended MVD as input, and then automatically 

generates queries that extract the needed information from IFC models. MVD is a subset of the 

IFC schema which is necessary to fulfill an information exchange requirement, and establishes 

the connection between domain description and IFC (buildingSMART, 2014b). The first step is 

to parse the input lexically. In this step, the whole content of the file is divided into meaningful 

segments. The second step is to parse it semantically to know what attributes are required by the 

MVD that users need to define. BIMserver maintains all the information. According to the sample 

codes given by BIMserver, all the codes contain a huge proportion of routine code and follow 

some patterns, which could be summarized and generalized. These features show the feasibility 

of generating the Java code automatically. The design fits the following primary principle: the 

Query Generator should finish the work automatically and in batch. In brief, the tool consists of 

three parts: the input parser, the intermediate representation generator, and the query exporter. 

The input parser identifies the keywords that represent the IFC elements, and tokenizes 

those keywords. For each word, it invokes the IFC Extractor to extract the properties of the IFC 
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elements, and store the data in the memory of BIMserver. The intermediate representation 

generator is actually composed by the Transformer and the OSM Generator in the transformation 

module. All the modules within BIM data hub are not isolated, but rather integrated together as a 

mixture. The last part is query exporter, which records the generated query code, saves it in the 

file system, and exports the generated query code into BIMserver. Eventually, the Java query 

code is inserted and run in the advanced query mode in the GUI of BIMserver, which searches the 

memory to extract required data and displays the query result in the console. 

IFC Extractor 

IFC Extractor is a sub-module in Query Generator. It keeps the IFC data structure for the 

original data and extracts the properties of building elements according to IFC specification. The 

extraction based on the IFC specification prevents arbitrary and manual data exchange, and 

preserves the integrity and standard of original data (Bazjanac, 2009). 

BIMserver creates a Java class for each IFC element. The IFC specification states the 

relationship amongst the classes, such as inheritance, composition, and etc., as well as the 

properties and inverse properties of IFC elements. By means of the IFC Extractor, it is possible to 

extract building information in the level of elements or properties of elements. IFC Extractor also 

prepares extracted data for the following transformation.  
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Figure 3-4. Space-Elevation Relation. 

 

 

The geometry of building elements is extracted in this module. For IfcBuildingElement 

including IfcWallStandardCase (a derived subclass of IfcWall), IfcWindow, IfcDoor, and IfcSlab, 

the geometric information is represented in the 'ObjectPlacement' and 'Representation' properties. 

The property of 'ObjectPlacement' is used for translating different local coordinate systems; the 

property of  'Representation' is the boundary information of the elements. Besides these two 

properties, the relationship among the elements is also required. For example, the building storey 

elevation is needed for the extraction of the space boundary information. Figure 3-4 demonstrates 

a simple case about how to get the elevation from the IfcSpace.  

As a preparation of transformation from IFC to OSM, the relationship between IfcSpace 

and IfcWall/IfcSlab, and the relationship between IfcWall and IfcWindow/IfcDoor have to be 

extracted in advance. The space to wall connection in IFC model is illustrated in Figure 3-5.  
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Figure 3-5. Space to Wall Connection (Hietanen, 2000). ©2000 VTT Building Technology. All 

rights reserved. Reproduced here for educational purposes only. 
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Figure 3-6. Wall-Window/Door Relation. 
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Figure 3-7. Space-Wall/Floor/Roof Relation. 

 

 

Figure 3-6 and Figure 3-7 are two simplified version of Figure 3-5, which illustrate the 

relation link in IFC representation. The solid line shows the relation specified in IFC model, and 

the dashed line displays how the two elements are connected in OpenStudio model.  

Integration through OpenStudio as a possible solution 

BIMserver is an open-source vendor-independent module for information management 

and retrieval. Through the Query Generator and IFC Extractor, it extracts the building 
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information according to the information exchange requirement in different granularities, such as 

elements level or properties level, and exports the retrieved result as plain text from its memory. 

The only issue is the repeated actions, such as parsing information exchange requirement and 

extracting building information, for any prospective simulation tools. The integration with 

OpenStudio solves this issue effectively. The required information is only extracted once, and 

OpenStudio processes the information for further analyses. The following section introduces the 

characteristics of OpenStudio which make it a possible solution as an information exchange and 

simulation platform, and the implementation details about other two sub-modules invoked by the 

Query Generator. 

OpenStudio as an information exchange and simulation platform 

The AEC/FM Industry experts and IT professionals are pursuing integrated models to 

reduce data remodeling and management for each simulation tool. Yu et al. (2013) propose that 

the integration of BIMserver and OpenStudio might be a potential solution for information 

exchange. Based on this assumption, the feasibility to choose OpenStudio as an interface platform 

is discussed. 

OpenStudio is designed to establish an object-oriented framework for Building Energy 

Models (BEM), which is compatible with existing work (Guglielmetti, 2011). BIMserver is an 

object-oriented framework for building information and transforms all semi-structured 

information presented in IFC into building objects with corresponding attributes and relationships 

stored in memory. In view of the object-oriented characteristic, it is possible for data to flow from 

the BIMserver to OpenStudio and build an information exchange bridge for building simulations. 

Second, OpenStudio and EnergyPlus are bound together in the initial design (Ellis et al., 2008). 

Accordingly, EnergyPlus leverages OpenStudio to conduct whole-building energy analysis 
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without extra effort. OpenStudio also supports Radiance to perform daylighting analysis besides 

conducting whole building energy analysis through EnergyPlus. OpenStudio is planning to 

support CONTAM to conduct airflow analysis in the near future. It is desirable to adopt a single 

tool to facilitate analyses from different perspectives. 

OpenStudio is designed to overcome the shortage of user-friendliness of EnergyPlus and 

Radiance. Lack of an intuitive GUI for the tools creates a high entry barrier which prevents novel 

users from using the tools (Weaver et al., 2012). Other software applications such as 

DesignBuilder, IES, and eQuest try to present a state-of-the-art GUI to users. However, some of 

these software applications are commercial software, which are developed based on the internal 

standards. Users are constrained by the specialized GUI to make limited analyses. In contrast, 

OpenStudio is open-source, cross-platform and cross-language. Last but not least, OpenStudio 

provides a rapid development mode and open application programming interface (API), which 

makes it highly extensible and customizable. It is rather simple for developers to either build on 

existing applications or create completely new ones to perform customized building energy 

analysis (Weaver et al., 2012). All of these aspects suggest OpenStudio as a suitable platform for 

initial targeting to support the data exchange needs of building simulation modeling. 

Transformer 

According to the discussion in Chapter 2, there is a big gap between the IFC model and 

the OpenStudio model, not only the fragmented data formats, but also the fragmented connections 

and heterogeneous requirements. Therefore, the functionalities of the Transformer include both 

the format transformation and the content translation. Specifically, it transforms the format from 

IFC to OSM, translates different local coordinate systems for geometry extraction of building 

elements, transforms the geometry from the physical representation to the analytical 
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representation, converts unit measurement, and approximates close boundary points of building 

elements.   

(1) Format Transformation from IFC to OSM 

Before transforming format from IFC to OSM, the corresponding relationship between 

them has to be figured out. Table 3-1 demonstrates the element mapping from RVT to IFC to 

OSM.  

 

Table 3-1. Revit-IFC-OSM Element Mapping. 

AutoDesk Revit 

(.rvt) 

BIMserver 

(.ifc) 

OpenStudio 

(.osm) 
Note 

Areas 

IfcSpace OS:Space   Rooms 

Spaces 

Walls IfcWall 

OS:Surface 

Surface Type: Wall 

Roofs IfcRoof Surface Type: RoofCeiling 

Floors IfcSlab Surface Type: Floor 

Windows IfcWindow 
OS:SubSurface 

Sub Surface Type: FixedWindow 

Doors IfcDoor Sub Surface Type: Door 

Site IfcSite  -- Group 1 

Levels IfcBuildingStorey  -- Group 1 

Stairs IfcStair   -- Group 2 

Railings IfcRailing   -- Group 2 

Ramps IfcRamp   -- Group 2 
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This thesis focuses on the geometry extraction from IFC model, so the three most critical 

OSM elements are OSM:Space, OSM:Surface, and OSM:SubSurface. OSM:Space corresponds to 

IfcSpace in IFC model, which corresponds to three types of Revit elements: areas, rooms, and 

spaces. It is easy to find the space type of Revit element in IFC model through the property of 

'Long Name' in IfcSpace. OSM:Surface corresponds to IfcWall, IfcRoof, and IfcSlab in IFC 

model, which corresponds to walls, roofs, and floors in Revit model respectively. The three kinds 

of surfaces are distinguished by the property of surface type in OSM. Particularly, most of the 

properties of flat roofs are extracted from IfcRoof, but the geometry of the flat roofs is extracted 

via the relation with IfcSlab. OSM:SubSurface corresponds to IfcWindow and IfcDoor in IFC 

model, which corresponds to windows and doors in Revit model respectively, and the types are 

distinguished by the property of sub surface type. The remaining elements occur in Revit model 

and IFC model, but not in OSM are divided into two groups. Group 1 contains the elements that 

are used to calculate the geometry of OSM:Space, OSM:Surface, or OSM:SubSurface. The 

elements in group 2 are omitted in OSM.   

OSM requires the relationship between OSM:Space and OSM:Surface, and relationship 

between OSM:Surface and OSM:SubSurface to link the building elements together. Those 

relationships have already been extracted by the IFC Extractor module. 

(2) Local Coordinate Systems Translation 

IFC model uses relative coordinate systems to representation the geometry of building 

elements to remove the dependency amongst different layers, whereas OSM uses a unified global 

coordinate system. Therefore, the building elements in IFC model represented in their respective 

local coordinate systems need to be translated into the global system to keep the consistency in 

different models.  
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IFC model adopts the composition/decomposition to represent the relationship among the 

building elements. The aggregation relationship 'IfcRelAggregates' is a special type of the general 

composition/decomposition (or whole/part) relationship. Each 'IfcRelAggregates' relationship 

introduces a layer of relative coordinate system. Figure 3-8 denotes the aggregation relationship 

from the very top 'IfcProject' to a common element such as 'IfcWallStandardCase' of a very 

simple office building. In this figure, there are 4 times of local coordinate system translation 

(LCST). Each LCST is a 3D translation as shown in Figure 3-9. The 'ObjectPlacement' of IFC 

elements determines the translation for the coordinate systems. In most cases, the origin point of 

the coordinate system, the x axis, y axis, and z axis all change. The translation leverages the 

matrix translation to relocate the origin and the directions of the axes, and then calculates the 

vector components of each direction. The tricky part is that the IFC specification only specifies 

the x axis and z axis in the 3D coordinate system, which requires the calculation of y axis. The 

aggregation relationship starts from the top to the bottom, but the translation process should 

reverse from the bottom to the top.   
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Figure 3-8. Aggregation Relationship amongst Building Elements. 
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Figure 3-9. 3D Local Coordinate System Translation. 

 

 

The translation above is the external 3D translation for a building element and its related 

elements. Some elements require an extra internal 2D translation. As mentioned in IFC Extractor, 

the geometry of building elements is represented in the property of 'Representation'. While within 

this element, some properties contain an internal relative coordinate system. For example, the 

'IfcSweptAreaSolid' is a derived class for the geometric property of IfcSlab, which contains a 

property named 'Position' denoting the coordinate system for the swept area. After the internal 2D 

LCST and the external LCSTs, the geometry of IFC elements is translated into a unified global 

coordinate system. 

(3) Geometric Representation Transformation 

IFC model contains the physical geometry of building elements in detail, but energy 

analysis requires an analytical geometric representation which is expressed in a reduced and 

simplified data set. Therefore, the extracted geometry has to be transformed from the physical 
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representation to the analytical representation before transmitting to OpenStudio. There are two 

approaches to transform the geometry: bottom-up and top-down. The bottom-up methods extracts 

the geometry of physical objects, and then the relation between surfaces and spaces to get the 

spaces. In the geometry extraction process, the thickness of materials is ignored for the geometry 

transformation. To avoid information loss, the thickness is stored along with the building objects 

in case inverse transformation is required. This thesis focuses on the information flow from 

building design tools to simulation tools. However, the inverse flow is also critical. It can be used 

to manage changes for energy efficient retrofit project (Liu et al., 2014).  

To take a wall as an example, only four black points on the central axis of an 

IfcWallStandardCase are extracted, as shown in Figure 3-10. For IfcSlab, all points are in the 

same 2D plane. They are extracted and translated into 3D with the elevation of the building storey 

of the slab. The thickness of the slab is ignored. In OpenStudio, building designers often focus on 

the area ratio between walls and the attached windows/doors. Therefore, this thesis only extracts 

the peripheral points of IfcWindows and IfcDoors. The window sills, the frames and other 

complicated structures are all ignored. 

X

Y

Z

A

B
C

D

 

Figure 3-10. The Simplification of IfcWallStandardCase. 
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The top-down approach starts from spaces, along with the relationship between spaces 

and surfaces. For each attached surface, the space boundary geometry is extracted and 

transformed. The boundary information is the required analytical geometric representation for the 

building objects. According to the result, the top-down approach is more accurate.  

(4) Units conversion 

OpenStudio reads the geometry of OSM files in inch and foot by default, whereas IFC 

model uses the unit measurement according to its definition. There is a unit measurement 

convertor within the Transformer module. It analyzes the unit measurement adopted in the IFC 

model, and stores the conversion ratio in the Transformer's memory. After extracting all geometry 

points from IFC model, the convertor converts the units according to the conversion ratio. 

(5) Close Points Approximation 

The geometry transformation transforms the physical representation into an analytical 

representation, which results in gaps in the corners in Figure 3-11. To remove the gaps, a simple 

and naive approximation function is developed to group the close points and replace them with 

one point in the Transformer module. First, all the points on the surfaces and sub-surfaces are 

saved in a list, and sorted according to the x axis value, y axis value, and z axis value respectively. 

Then a reasonable threshold is set to represent the normal thickness of the building elements after 

several tentative experiments. As long as the distance between two points is less than the 

threshold, the two points are considered identical, and replaced using the smaller value. After the 

close points approximation, the gaps amongst building elements are eliminated in Figure 3-12.  
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Figure 3-11. Gaps in Corners. 

 

 

 
 

Figure 3-12. No Gaps in the Corners. 

 

OSM Generator 

Query Generator invokes the IFC Extractor to extract required IFC elements, and the 

Transformer module to transform both the format and content into a representation accepted by 
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OpenStudio. BIMserver executes the generated query code, and outputs the query result as plain 

text, which cannot be used by OpenStudio directly. Therefore, the OSM Generator module 

reorganizes the data structure of the query result, and generates an additional intermediate output 

in OSM. Figure 3-13 presents the components of a simple and standard OpenStudio model. The 

components in solid lines are the most important elements in OSM and have been implemented. 

Because designers often do not include the dashed components in the original IFC model, and 

energy engineers often focus on the geometry extraction first, those components in dashed lines 

are not covered in the current version. 

OSM

OSM:SubSurface

OSM:Surface

OSM:Space

OSM:Materials

OSM:Construction

OSM:Schedule

Space Name

Surface Name

 

Figure 3-13. OSM Components. 

 

 

There are three possible methods to generate the OSM objects from IFC model: (1) 

constructing OSM objects within a text file, and outputting the text file in '.osm' suffix, (2) re-

creating the OSM objects through OpenStudio API, and (3) IFC to OSM through JSON. The first 

two methods are on the basis of a clear understanding of a standard OSM structure. In Method 1, 

three inner classes are constructed in OSM Generator to simulate the data structure of 
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OSM:Space, OSM:Surface, and OSM:SubSurface, along with an output generation function to 

generate the output file. They are demonstrated in code snippets of OSM Generator 1 in 

Appendix. In Method 2, the OpenStudio API (Application Programming Interface) is invoked to 

create the OSM objects. It avoids the potentially incorrect or nonstandard data structures of OSM 

objects, and builds the relationships between the objects such as OSM:Space and OSM:Surface 

according to the link specified in the program. The only concern for method 2 is the 

incompatibility between BIMserver and OpenStudio API. BIMserver is implemented in Java, 

while OpenStudio provides API in C#, Ruby, but no Java support currently. Therefore, for 

method 2, either a native programming interface or a separate module to run the OSM generator 

is needed. Both of the first two methods are customized for integration with OpenStudio. If 

BIMserver is going to integrate with other information exchange platforms, new customized 

output format generator is required.  

The last method is accomplished via JSON format. JSON (JavaScript Object Notation) is 

a lightweight open data-interchange format (http://www.json.org). All the data which passes 

through BIMserver is object-oriented so that it can organize the data as building objects and 

export the query result in JSON format. The data in the JSON format needs to be parsed and re-

organized into OSM format, which is the required and accepted input format by OpenStudio. This 

can be implemented by a programming script in either Ruby or C#. This method involves an 

additional transformation to JSON, which seems to be more complex. However, this method 

increases the flexibility of the data exchange model. The current exchange model leverages 

BIMserver and OpenStudio. If the BIM data hub plans to integrate with other information 

exchange platforms, which are similar as OpenStudio but requires different input formats, the 

unified intermediate transformation can avoid the embarrassment of the first two methods.  
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With the link between BIMserver and OpenStudio, the integrated model enables data 

exchange and the pipeline of whole-building simulation. The pipeline refers to a chain of building 

information processing stages. For example, data processed in a design model is exported from 

Revit into the IFC format and taken by BIMserver, which selectively transforms the needed data 

for OpenStudio. Other tools linked with OpenStudio can run whole-building simulations to 

perform various analyses. With the integrated data exchange model, it is possible to pipeline the 

data flow in a unified interface and therefore enable effective exchange of data. 

Open-Source Release 

The prototype implementation has been released with an open source license at Github 

(QueryGeneratorforBIMserver2.0, 2014). BIMserver users can download the application and 

extract the information from BIMserver for various analyses. The objective of this version is to 

integrate the BIM Datahub and OpenStudio to potentially facilitate more effective information 

exchange among different simulation tools and platforms. At present, this version supports query 

generation of data preparation for OpenStudio for energy related analysis. The application also 

defines several query templates for different Information Exchange Requirement (IER). It 

contains the following steps to run the application and conduct analysis using OpenStudio: 

1. Users provide the Query Generator with the IER, which specifies the required data for 

BIMserver.  

2. The application generates the query code automatically according to the IER. 

3. Users open the generated query code, copy the content and paste it in the advanced 

query block of BIMserver. 

4. BIMserver shows the queried result, and outputs the intermediate file for OpenStudio. 

5. OpenStudio conduct energy related analysis. 



 

 

Chapter 4  
 

Validation Tests 

To validate the accuracy and potential benefits of the simplified workflow, as well as the 

Query Generator presented in the thesis, three case studies are conducted. The first case is to 

examine the functionalities of the Query Generator by means of extracting information for 

CONTAM to conduct airflow analysis; the second case is to verify the accuracy of the extracted 

geometry of some building elements for a simple office building; the last case is to check the 

feasibility of the approach via a real building (Building 101) located in the Navy Yard in 

Philadelphia. 

Case Study 1: Using CONTAM to Conduct Airflow Analysis 

Before the simplified data exchange model proposed, some initial work to investigate 

information exchange between BIM design authoring tools and simulation tools was performed 

using airflow analysis (Jiang et al., 2014). It is the direct information extraction and exchange 

from an IFC model to CONTAM. Figure 4-1 shows an airflow analysis model development 

workflow using BIM. The horizontal level in the top part stands for the simulation process inside 

CONTAM, including zoning, specifying flow path, connecting HVAC (Heating, Ventilating, and 

Air Conditioning),  to zones and running the simulation. It is of critical importance to build a tool 

to collect building information specified by the requirements and connect CONTAM with 

BIMserver. During the information collection process, a subset of building geometric information 

would be extracted via a query function according to MVD (model-view-definitions). In this case, 

four steps are adopted to collect the required building information. The first step is to design the 
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information exchange requirement (IER) and abstract it to a standard MVD. The MVD defines 

the data set required by CONTAM. Step 2 is to generate the query code automatically on the 

basis of the MVD, followed by the execution of the query code. The last step is to translate the 

query result into JSON format that CONTAM understands. 
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Figure 4-1. Airflow Analysis Model Development Using BIM (Jiang et al, 2014). 
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Figure 4-2. A Representative Workflow. 
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Figure 4-2 illustrates the testing workflow from Revit to the final airflow analysis result 

to test the functionality of Query Generator. BIMserver accepts the IFC file exported from Revit, 

and executes the automatically generated query code from Query Generator based on the 

information exchange requirement to query the partial input file. The partial input file for 

CONTAM is in JSON format. There is some missing information from the IFC model, so it 

requires the data from users or other sources. Combined with the missing information, the partial 

input file is changed into a relatively complete input file, also in JSON format. Then, a piece of 

Python script transforms the file in JSON format into .prj input file for CONTAM. Eventually, 

the airflow analysis result is generated by CONTAM. 

Case Study 2: Accuracy of Extracted Geometry 

Precision and correct modeling conventions are of the utmost importance for process. 

Therefore, this case is targeted to examine the accuracy of extracted and transformed geometry, 

which is implemented in the inner module: Transformer. The building design model contains 4 

external walls, one of which is attached with a window and a door, 1 internal wall with a door, a 

roof, and a floor. As shown in Figure 4-3, all building elements are visualized in SketchUp. 

Compared with the original model, the location, direction are all correct. In terms of the 

relationship between spaces and surfaces, one space is shifted away from its original location, the 

related walls, floors and roofs are also moved together with the space in Figure 4-4. Accordingly, 

the accuracy of extracted geometry for the simple office building is checked.  
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Figure 4-3. Simple Office Building—Original Model. 

 

 

 

 

Figure 4-4. Simple Office Building—Separated Spaces. 
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Case Study 3: Basic Outline of Building 101 Identified by OpenStudio 

Among all the building elements, IfcWalls, IfcWindows, IfcDoors, and IfcSlab (floor) 

have been successfully extracted transformed into OSM:Surfaces and OSM:SubSurfaces. It 

works well for simple office building as shown in case study 2. This case aims at testing the 

feasibility of complex buildings in real world. Figure 4-5 is a real picture of Building 101 in the 

Navy Yard in Philadelphia from the aerial perspective, and Figure 4-6 is the extracted 

OpenStudio model visualized in SketchUp of the same building. Constrained by technical 

transformation problem, roofs in complicated shape have not been transformed till now, so the 

uppermost level is missing in Figure 4-6. With additional effort, it is possible to further extract 

and transform the remaining elements. 

 

Figure 4-5. Building 101 in the Navy Yard in Philadelphia (EEB Hub, 2013). All rights reserved. 

Reproduced here for educational purposes only. 
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Figure 4-6. Approximate Geometry Information Extracted from a Building 101 IFC Model. 



 

 

Chapter 5  
 

Limitations and Discussions 

Although achievement in building a bridge between BIM design authoring tools and 

simulation tools has been achieved, the work is still a preliminary result which contains some 

limitations in real practice. First of all, the initial goal is to automate the whole process of data 

exchange from design to simulation, but to date, the process still involves some manual work, 

such as data import from or export to different tools. Secondly, IFC model contains all the 

necessary building information throughout the whole building lifecycle, but the data exported 

from Revit to BIMserver does not include the whole data set. It results in some missing 

information in OSM. Last but not least, the simplified data exchange model is based on the 

assumption that the input IFC file is a correct and valid model. To guarantee this assumption, an 

IFC model checker before BIMserver is necessary for the whole process. 

Integrating Query Generator into BIMserver 

Currently the Query Generator and BIMserver are running in their respective isolated 

workspaces. Users still need to copy and paste the automatically generated Java query code from 

the Query Generator into the GUI provided by BIMserver. It would be more efficient to eliminate 

human intervention completely by integrating the Query Generator into BIMserver as a plug-in. 

BIMserver is an open-source project that allows open access, universal distribution, and 

subsequent improvement on top of it. The source code of BIMserver is organized by Eclipse 

Modeling Framework (EMF), which makes it possible to add customized modules within the 

framework to serve for the integrated data exchange model. The Query Generator is implemented 
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in Java with the SWING GUI support package. At present, the Query Generator is designed 

independent from BIMserver deliberately because BIMserver keeps releasing new versions and 

the Query Generator is still under progress. The change of the interface of BIMserver would bring 

great impact to the Query Generator. Once the functionalities are all accomplished, the next step 

is to integrate the Query Generator into BIMserver as a plug-in, and automate the information 

extraction process. 

Missing Information Required by OpenStudio 

Simulation tools require the definition of input data. Simulation for a whole building 

simulation program such as EnergyPlus includes three distinct major parts: "the definition of 

building geometry and data related to it, the definition of Heating, Ventilating, and Air 

Conditioning (HVAC) equipment, systems and plant and data related to them, and definition of 

internal loads as well as use and operating schedules for the building" (Bazjanac, 2009, p. 1). The 

commercially available BIM design authoring applications do not include the HVAC system or 

operation schedules within the IFC export. Therefore, there is missing information extracted and 

transformed from IFC model to OSM. The missing information has a potential influence on the 

simulation analyses. For example, airflow analysis software requires HVAC systems to ensure 

thermal performance and design quality. Energy-related analysis with OpenStudio requires users 

to add construction layers to all surfaces, assign occupants/lighting/plug loads designed power 

and schedules to zones, add building location information and weather file, and assign basic 

HVAC systems and set points to the zones. All the information mentioned in the two cases are 

missing. Some of them, such as construction layers, and building location information can be 

extracted from the IFC model, but have not been extracted till now. The remaining part is not 

included in the original design model.  
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There are two solutions to solve this problem. Firstly, the Query Generator provides the 

users with a simple GUI to input the missing value for simulation analyses. The missing 

information should be able to dynamically adapt to different building design models. This 

solution does not apply to complex building models. For instance, if a building contains 

thousands of elements, users have to input the missing data for each element in the GUI. The 

second solution is to fill in the missing data offline. Instead of inputting data in the GUI, the 

application creates files for missing data for the building models. After completing the files, the 

application combines the user input with the previous partial input to generate a complete input 

file for simulation software.  

These two approaches are comprised solutions. A simpler and better solution is to export 

the missing information that cannot be extracted from the current IFC model from the design 

authoring tools to the BIM data hub. This solution relies on third-party applications that support 

complete exporting from the design authoring tools.    

Lack of Model Checkers 

This thesis starts from the IFC model, and focuses on the transformation between the IFC 

model and the OpenStudio model. The information is extracted from the IFC model for 

simulation tools without any verification, and the transformed OpenStudio model is exported to 

OpenStudio directly. Once the simulation result is not reasonable, or any modules changes in the 

workflow, the whole process runs again. It is desirable to have some model checkers within the 

data exchange model to guarantee the appropriateness of both the IFC model and the OpenStudio 

model. 
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IFC Model Checker 

The practice in this thesis assumes that the input IFC model exported from Revit to 

BIMserver is correct and valid. Base on that assumption, the required information is extracted and 

transformed into OpenStudio model. If the IFC model is not correct, the extraction from 

BIMserver and the transformation to OSM is wrong as well. In that case, adding an IFC model 

checker before importing the IFC model to BIMserver is a good way to guarantee the correctness 

and validity of the IFC model. 

OpenStudio Model Checker 

Currently, the OpenStudio model is imported into SketchUp for visualization view to 

check the transformed analytical geometric representation. If SketchUp fails to load the model 

with a list of warnings or errors, it is difficult to identify the corresponding elements with 

problems. Even if SketchUp succeeds in loading the model, errors can still occur during the 

simulation processes. Accordingly, an OpenStudio model checker can set up a set of rules to 

check the validity of the OpenStudio models. The following rules are listed as examples to 

support the checking of model correctness. 

1. All spaces must be closed. Basically, a space includes attached walls, floors and roofs. The 

three building elements compose a space. 

2. The space - surface relationship is stated by the space name in the OS:Surface; the surface - 

subsurface relationship is stated by the surface name in the OS:SubSurface. 

3. A space cannot contain two identical surfaces. In other words, two surfaces having the same 

set of geometric vertices cannot exist in one space at the same time. 

4. A surface or a subsurface must have at least 3 vertices. 
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5. All the vertices for this planar surface have to be in the same plane. 

6. The subsurface cannot miss its base surface. 

7. The subsurface have to have a face polygon. 

8. For a shared wall, the model has to create two surfaces sharing the same location. 

9. The construction layers have to be added to all surfaces. 

10. Occupants/lighting/plug loads designed power and schedules have to be assigned to zones. 

11. Building location information and weather file have to be added. 

12. Basic HVAC systems and set points have to be assigned to the zones. 

With the above rules, the OpenStudio model checker eliminates those errors before 

importing the generated model to OpenStudio.    



43 

 

Chapter 6  
 

Conclusions and Future Work 

This chapter summarizes the research questions in the AEC/FM Industry. It then presents 

the contribution of the work in this thesis, and closes with some discussions on the future work.  

Summary 

A high-performance building requires comprehensive whole-building simulation analyses 

to optimize energy consumption. The AEC/FM Industry experts often leverage information 

technology and various simulation tools to conduct analyses to assist with their decision-making 

in the whole building lifecycle. In the simulation data preparation process, the fragmented 

connection between BIM design authoring tools and simulation tools causes the difficulty for the 

domain experts to obtain the original building data in the design phase. Therefore, this process 

involves human intervention, which is inefficient and ineffective. BIM, as a bridge between the 

AEC/FM Industry and information technology, integrates the whole process throughout the 

building lifecycle. To build an integrated BIM data hub and combine more simulation tools to the 

system, this thesis presents a solution to connect BIMserver and OpenStudio together. In such 

architecture, OpenStudio manages the simulation tools and conducts various analyses; 

meanwhile, BIMserver offers the transactional query and data persistence service. Currently both 

OpenStudio and BIMserver have opened their programmable interfaces, which make it possible 

to integrate the two platforms. A data exchange model has been developed to build an 

information exchange bridge between BIMserver and OpenStudio, which enables different design 

and simulation tools that are connected to either of them to interoperate and exchange needed 

data. This thesis introduces the data exchange model in detail, along with the validation of the 
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model. As preliminary work, the model has some limitations, which are also discussed in this 

thesis.  

Contributions 

The work from this thesis focuses on the data management services for the Energy 

Efficient Buildings (EEB) design, the goal of which is to develop and deploy to the building 

industry a state-of-the-art modeling platform that will integrate design, construction, 

commissioning, and operation. 

In this thesis, the data exchange model builds a bridge between BIM design authoring 

tools and simulation tools. Although it is only preliminary work, the unified model shows the 

potential of supporting domain experts to easily conduct various energy-related analyses without 

reproducing the same building information. In the past, energy engineers spent most of their time 

on generating geometric representation from building design models for simulation data 

preparation. It takes only several minutes to extract the geometric representation using the data 

exchange model. Compared with manual generation in hundreds of hours, the automated 

extraction in several minutes increases the productivity and efficiency of energy engineers 

dramatically. 

The data exchange model leverages two open-source platforms. It has been open-source 

released, which provides users with the opportunity to customize their requirement, and develop 

new functionalities on top of this model.  
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Future Work 

The future work includes three main streams: (1) working out a complete geometric 

representation transformation model, (2) breaking through the limitations, and (3) further 

automating the process from BIM design authoring tools to simulation analyses.  

The current progress only contains geometric information. Other information such as 

construction layers, HVAC systems, and operation schedules, is also required to generate a 

complete simulation model. Therefore, the extraction of the missing information, either from the 

original design models or from user input, is the first next step. As mentioned in Chapter, model 

checkers reduce errors before simulation running in OpenStudio. Accordingly, the IFC model 

checker and OpenStudio model checker are going to be implemented based on the set of rules 

listed in Chapter 5. After completing the missing information and the model checkers, the Query 

Generator can be integrated into BIMserver as a plug-in.  

To further automate the simulation process, a new idea is brought up—Revit to 

OpenStudio in Two Clicks. The first click is a button in Revit to export the IFC model and start 

the process; the second click is a button in OpenStudio to import and create the OpenStudio 

model. According to this idea, another stream is to develop or find a Revit plug-in to upload IFC 

model to BIMserver, and to develop the BIMserver query for the OpenStudio 'Create Model' 

function. The objective is to establish an integrated eco-system around BIMserver with many 

tools and users. 



 

 

References

Bazjanac, V. & Kiviniemi, A. (2007). Reduction, simplification, translation and interpretation in 

the exchange of model data. In Proceedings of the 24th Conference. Bringing ITC 

knowledge to work, 163–168.  

 

Bazjanac, V. (2008). IFC BIM-based methodology for semiautomated building energy 

performance simulation. In Proceedings of the 25th International Conference on 

Information Technology in Construction. Santiago, CL, 292–299.  

 

Bazjanac, V. (2009). Implementation of semi-automated energy performance simulation: building 

geometry. In Dikbas, A., E. Ergen and H.Giritli (eds.), CIB W78, Proc. 26th conf., 

Managing IT in Construction. Istanbul, TK 595–602.  

 

Bazjanac, V., Maile, T., O’Donnell, J., Rose, C., Mrazovic, N. (2011). Data Enviroments and 

Processing in SemAutomated Simulation with EnergyPlus. In CIB W078–W102: 

Proceedings of the 28th International Conference. Sophia Antipolis, France. 

 

Beetz, J., Berlo, L., Laat, R., and Helm, P. (2010). Bimserver.org—An Open Source IFC Model 

Server. In Proceedings of the CIP W78 conference. Cairo. 

 

Borrmann, A., and Rank, E. (2009). Topological analysis of 3D building models using a spatial 

query language. Advanced Engineering Informatics, 23(4), 370–385. 

 

buildingSMART, 2014a. Industry Foundation Classes (IFC) Homepage [WWW Document]. 

Retrieved March 12, 2014, from http://buildingsmart.org/. 

 

buildingSMART, 2014b. Model View Definitions (MVD) Homepage [WWW Document]. 

Retrieved March 12, 2014, from http://www.buildingsmart.org/standards/mvd. 

 

Domínguez, B., García, á. L., and Feito, F. R. (2011). Semantic and topological representation of 

building indoors: an overview. CNKI Proc. China. 

 

Eastman, C., Teicholz, P., Sacks, R. and Liston, K. (2008). BIM Handbook, Wiley & Sons. 

 

 

 

 

http://buildingsmart.org/
http://www.buildingsmart.org/standards/mvd


47 

 

EEB Hub. (2013). Building 101 in the Navy Yard in Philadelphia. Retrieved December 31, 2014, 

from http:// www.eebhub.org/projects-list/navy-yard-building-101.  

 

Ellis, P.G., Torcellini, P.A., Crawley, D.B. (2008). Energy Design Plug-in: An EnergyPlus Plug-

in for SketchUp. In Proceedings of the IBPSA–USA SimBuild Conference. Berkeley, 

California. 

 

Fleming, K., Long, N. & Swindler, A. (2012). The  Building Component Library: an Online 

Repository to Facilitate Building Energy Model Creation. In Proceedings of the 2012 

ACEEE Summer Study on Energy Efficient Buildings. Pacific Grove, Calif. 

 

Foley, H.C. (2012). Challenges and opportunities in engineered retrofits of buildings for 

improved energy efficiency and habitability. AIChE Journal, March, 58(3), 658–667. 

 

Guglielmetti, R., Macumber, D., Long, N. (2011). OpenStudio: an open source integrated 

analysis platform. In Proceedings of the 12th Conference of International Building 

Performance Simulation Association. Sydney, Australia. 

 

Guglielmetti, R., Scheib, J. (2012). Challenges to Integrated Daylighting and Electric Lighting 

Simulation Methods in a Whole-building Energy Simulation Context. In Proceedings of 

the 2012 Simbuild Conference. August 2012, Madison, WI. 

 

Heidarinejad, M., Wentz, J., Dahlhausen, M., Wang M., Yu, N., Lee, S., Benne, K., Macumber, 

D., Srebric, J., Wu, D., and Messner, J.I. (2014). A Hierarchy of Geometry Needs for 

Building Energy Models: Used for Bimserver and Openstudio Web Integration. 

Submitted to the 2014 ASHRAE/IBPSA-USA Building Simulation Conference. Atlanta, 

Georgia. September 12–14, 2014. 

 

Hietanen, J. (2000). IFC R2.0 Object Diagram-Space to Wall connection. Retrieved March 12, 

2014, from http://www.blis-project.org/private/objectdiagrams/IFCR2_SpaceToWallCon 

nection_991026_jh.PDF. 

 

Hitchcock, R.J., and Wong, J. (2011). Transforming IFC architectural view BIMS for energy 

simulation. In Proceedings of the 12th International IBPSA conference. Sydney, 

Australia.  

 

International Alliance for Interoperability (IAI). (2006). IFC Model View Definition. Retrieved 

March 12, 2014, from http://www.blis-project.org/IAI-MVD/.  

http://www.eebhub.org/projects-list/navy-yard-building-101
http://www.blis-project.org/private/objectdiagrams/IFCR2_SpaceToWallCon%20nection_991026_jh.PDF
http://www.blis-project.org/private/objectdiagrams/IFCR2_SpaceToWallCon%20nection_991026_jh.PDF
http://www.blis-project.org/IAI-MVD/


48 

 

 

iwmnews (2009). A/E/C Industry Could Save $400B+ Annually with Building Information 

Modeling (BIM) Technology Says buildingSMART Alliance CEO. Intelligent Workplace 

Management News. Retrieved December 18, 2009, from  

http://www.iwmsnews.com/2009/12/aec-industry-could-save-400b-annually-with-

building-information-modeling-bim-technology-says-buildingsmart-alliance-ceo/. 

 

Jiang, Y., Ming, J., Wu, D., Yen, J., Mitra, P., Messner, J.I., and Leicht, R. (2012). BIM Server 

Requirements to Support the Energy Efficient Building Lifecycle. In Proceedings of the 

2012 ASCE International Conference on Computing in Civil Engineering. Clearwater 

Beach, FL. 

 

Jiang, Y., Ming, J., Wu, D., DeGraw, J., Lee, S., Jallow, A.K., Yen, J., Mitra, P., and Messner, 

J.I. (2014). BIM Enabled Energy Efficient Building Analysis: Improving Software 

Interoperability in the AEC Community. Manuscript in preparation. 

 

Jones, B., Bogus, S.M. (2010). Decision Process for Energy Efficient Building Retrofits: The 

Owner's Perspective. Journal of Green Building: Summer 2010, 5(3), 131–146. 

 

JSON.org. Introducing JSON. Retrieved March 12, 2014, from http://www.json.org/. 

 

Kangaraj, G., Mahalingam, A. (2011). Designing energy efficient commercial buildings—A 

systems framework. Energy Buildings, 43, 2329–2343. 

 

Khalili, A. and Chua, D. (2013). An IFC-Based Graph Data Model (GDM) for Topological 

Queries on Building Elements. J. Comput. Civ. Eng. 10.1061/(ASCE)CP, 1943–

5487.0000331 (Jun. 5, 2013). 

 

Klotz, L. (2011). Cognitive biases in energy decisions during planning, design and construction 

of commercial buildings in the United States: An analytical framework and research 

needs. Energy Efficiency. 4, 271–284.  

 

Liu, F., Jallow, A.K., Anumba, C.J., Wu, D. (2013). Building Knowledge Modeling: Integrating 

Knowledge in BIM. In Proceedings of the 30th International Conference on Applications 

of IT in the AEC Industry (CIB W78 2013). Beijing, China, October 9–12, 2013. 

 

Liu, F., Jallow, A.K., Anumba, C.J., Wu, D. (2014). A Framework for Integrating Change 

Management with Building Information Modeling. In Proceedings of the 15th 

http://www.iwmsnews.com/2009/12/aec-industry-could-save-400b-annually-with-building-information-modeling-bim-technology-says-buildingsmart-alliance-ceo/
http://www.iwmsnews.com/2009/12/aec-industry-could-save-400b-annually-with-building-information-modeling-bim-technology-says-buildingsmart-alliance-ceo/
http://www.json.org/


49 

 

International Conference on Computing in Civil and Building Engineering (ICCCBE 

2014). Orlando, FL, June 23–25, 2014 

 

O’Donnell, J., See, R., Rose, C., Maile, T., Bazjanac, V., Haves, P. (2011). SimModel: A domain 

data model for whole building energy simulation. In IBPSA Building Simulation. Sydney, 

Australia. 

 

O'Donnell, J., Maile, T., Rose, C., Mrazovic, N., Morrissey, E., Reginier, C., Parrish, K., and 

Bazjanac, V. (2013). Transforming BIM to BEM: Generation of Building Geometry for 

the NASA Ames Sustainability Base BIM. LBNL-6033E. 

 

Pollock, M., Roderick, Y., McEwan, D. & Wheatley, C. (2009). Building simulation as an 

assisting tool in designing an energy efficient building: A case study. In Proceedings of 

the 11th international conference of building simulation Glasgow, 1191–1198. 

 

QueryGeneratorforBIMserver2.0. (2014). Retrieved April 1, 2014, from https://github.com/ 

triangelfish/QueryGeneratorforBIMserver0.2. 

 

Redmond, A and Smith, B. (2011). Exchanging Partial BIM Information through a Cloud-Based 

Service: testing the efficacy of a major innovation. In Proceedings of the IBEA 

Conference. South Bank University, London. 

 

Revit. (2014). Retrieved March 12, 2014, from http://www.autodesk.com/products/autodesk-

revit-family/overview. 

 

Walton, G., Dols, W. (2010). CONTAM User Guide and Program Documentation. Retrieved 

December 25, 2010 from http://www.bfrl.nist.gov/IAQanalysis/docs/CWHelp30.pdf.  

 

Weaver, E., Long, N., Fleming, K., Schott, M., Benne, K. and Hale, E. (2012). Rapid Application 

Development with OpenStudio. 2012 ACEEE Summer Study. Pacific Grove, California. 

 

Yu, N., Jiang, Y., Luo, L., Lee, S., Jallow, A.K., Wu, D., Messner, J.I., Leicht, R., Yen, J. (2013). 

Integrating BIMserver and OpenStudio for Energy Efficient Building. In Proceedings of 

2013 ASCE International Workshop on Computing in Civil Engineering (IWCCE). Los 

Angeles, CA. 

 

https://github.com/triangelfish/QueryGeneratorforBIMserver0.2
https://github.com/triangelfish/QueryGeneratorforBIMserver0.2
http://www.autodesk.com/products/autodesk-revit-family/overview
http://www.autodesk.com/products/autodesk-revit-family/overview
http://www.bfrl.nist.gov/IAQanalysis/docs/CWHelp30.pdf


50 

 

Appendix 

A. Code Snippets of OSM Generator 1 

class Point{} 

class OSMSurface{} 

class OSMSubSurface{} 

class OSMSpace{} 

 

private void generateOutput(){ 

    for(OSMSpace osmSpace: allSpaces){ 

        outputContent.append("OS:Space,\n  "); 

        outputContent.append(osmSpace.getSpaceName()); 

        outputContent.append(",               ! Name\n  "); 

        outputContent.append(osmSpace.getTypeName()); 

        outputContent.append(",                         ! Space Type Name\n  "); 

        outputContent.append(osmSpace.getDefaultConstructionSetName()); 

        outputContent.append(",                         ! Default Construction Set Name\n  "); 

        outputContent.append(osmSpace.getDefaultScheduleSetName()); 

        outputContent.append(",                         ! Default Schedule Set Name\n  "); 

        outputContent.append(osmSpace.getDirectionOfRelativeNorth()); 

        outputContent.append(",                         ! Direction of Relative North {deg}\n  "); 

        outputContent.append(osmSpace.getxOrigin()); 

        outputContent.append(",                         ! X Origin {m}\n  "); 

        outputContent.append(osmSpace.getyOrigin()); 

        outputContent.append(",                         ! Y Origin {m}\n  "); 

        outputContent.append(osmSpace.getzOrigin()); 

        outputContent.append(",                         ! Z Origin {m}\n  "); 

        outputContent.append(osmSpace.getBuildingStoreyName()); 

        outputContent.append(",                         ! Building Story Name\n  "); 

        outputContent.append(osmSpace.getSpaceName()); 

        outputContent.append(" ThermalZone;  ! Thermal Zone Name\n\n"); 

    } 

     

    for(OSMSurface osmSurface: surfaceList){ 

        outputContent.append("OS:Surface,\n  "); 

        outputContent.append(osmSurface.getSurfaceName()); 
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        outputContent.append(",                     ! Name\n  "); 

        outputContent.append(osmSurface.getTypeName()); 

        outputContent.append(",                     ! Surface Type\n  "); 

        outputContent.append(osmSurface.getConstructionName()); 

        outputContent.append(",                         ! Construction Name\n  "); 

        outputContent.append(osmSurface.getSpaceName()); 

        outputContent.append(",             ! Space Name\n  "); 

        outputContent.append(osmSurface.getOutsideBoundaryCondition()); 

        outputContent.append(",                 ! Outside Boundary Condition\n  "); 

        outputContent.append(osmSurface.getOutsideBoudaryConditionObject()); 

        outputContent.append(",                         ! Outside Boundary Condition Object\n  "); 

        outputContent.append(osmSurface.getSunExposure()); 

        outputContent.append(",               ! Sun Exposure\n  "); 

        outputContent.append(osmSurface.getWindExposure()); 

        outputContent.append(",              ! Wind Exposure\n  "); 

        outputContent.append(osmSurface.getViewFactorToGround()); 

        outputContent.append(",                         ! View Factor to Ground\n  "); 

        outputContent.append(osmSurface.getNumberOfVertices()); 

         

        int size = osmSurface.getPointList().size(); 

        if(size <= 0){ 

            outputContent.append(";                         ! Number of Vertices\n  "); 

        } 

        else{ 

            outputContent.append(",                         ! Number of Vertices\n  "); 

            for(int i = 0; i < size; i ++){ 

                Point point = osmSurface.getPointList().get(i); 

                outputContent.append(point.getX()); 

                outputContent.append(","); 

                outputContent.append(point.getY()); 

                outputContent.append(","); 

                outputContent.append(point.getZ()); 

                if(i < size - 1){ 

                    outputContent.append(",  ! X,Y,Z Vertex "); 

                } 

                else{ 

                    outputContent.append(";  ! X,Y,Z Vertex "); 

                } 

                outputContent.append(i+1); 

                outputContent.append(" {m}\n  "); 

            } 
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        } 

        outputContent.append("\n"); 

         

        List<OSMSubSurface> subSurfaceList = osmSurface.getSubSurfaceList(); 

        for(OSMSubSurface osmSubSurface: subSurfaceList){ 

            outputContent.append("OS:SubSurface,\n  "); 

            outputContent.append(osmSubSurface.getSubSurfaceName()); 

            outputContent.append(",                     ! Name\n  "); 

            outputContent.append(osmSubSurface.getTypeName()); 

            outputContent.append(",                     ! Surface Type\n  "); 

            outputContent.append(osmSubSurface.getConstructionName()); 

            outputContent.append(",                         ! Construction Name\n  "); 

            outputContent.append(osmSubSurface.getSurfaceName()); 

            outputContent.append(",                  ! Surface Name\n  "); 

            outputContent.append(osmSubSurface.getOutsideBoudaryConditionObject()); 

            outputContent.append(",                         ! Outside Boundary Condition Object\n  "); 

            outputContent.append(osmSubSurface.getViewFactorToGround()); 

            outputContent.append(",                         ! View Factor to Ground\n  "); 

            outputContent.append(osmSubSurface.getShadingControlName()); 

            outputContent.append(",                         ! Shading Control Name\n  "); 

            outputContent.append(osmSubSurface.getFrameAndDividerName()); 

            outputContent.append(",                         ! Frame and Divider Name\n  "); 

            outputContent.append(osmSubSurface.getMultiplier()); 

            outputContent.append(",                         ! Multiplier\n  "); 

            outputContent.append(osmSubSurface.getNumberOfVertices()); 

             

            size = osmSubSurface.getPointList().size(); 

            if(size <= 0){ 

                outputContent.append(";                         ! Number of Vertices\n  "); 

            } 

            else{ 

                outputContent.append(",                         ! Number of Vertices\n  "); 

                for(int i = 0; i < size; i ++){ 

                    Point point = osmSubSurface.getPointList().get(i); 

                    outputContent.append(point.getX()); 

                    outputContent.append(","); 

                    outputContent.append(point.getY()); 

                    outputContent.append(","); 

                    outputContent.append(point.getZ()); 

                    if(i < size - 1){ 

                        outputContent.append(",  ! X,Y,Z Vertex "); 
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                    } 

                    else{ 

                        outputContent.append(";  ! X,Y,Z Vertex "); 

                    } 

                    outputContent.append(i+1); 

                    outputContent.append(" {m}\n  "); 

                } 

            } 

            outputContent.append("\n"); 

        } 

} 

} 

 

B. Code Snippets of OSM Generator 2 

private void btnCreateModel_Click(object sender, EventArgs e) 

{ 

    SaveFileDialog sfd = new SaveFileDialog(); 

 

    sfd.FileName = "in"; 

    sfd.DefaultExt = "osm"; 

    sfd.Filter = "OpenStudio Model (*.osm)|*.osm"; 

    sfd.CheckPathExists = true; 

    sfd.OverwritePrompt = true; 

 

    if (sfd.ShowDialog() == DialogResult.OK) 

    { 

        string fname = sfd.FileName; 

 

        // Get user inputs from form 

        double bldgLength = double.Parse(txtLength.Text); 

        double bldgWidth = double.Parse(txtWidth.Text); 

        double bldgHeight = double.Parse(txtHeight.Text); 

 

        OpenStudio.Model model = new OpenStudio.Model(); 

 

        OpenStudio.Space space = new OpenStudio.Space(model); 

        space.setName("MySpace"); 
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        // Create the Floor 

        OpenStudio.Point3dVector floorPoints = new OpenStudio.Point3dVector(); 

        floorPoints.Add(new OpenStudio.Point3d(0, 0, 0)); 

        floorPoints.Add(new OpenStudio.Point3d(0, bldgWidth, 0)); 

        floorPoints.Add(new OpenStudio.Point3d(bldgLength, bldgWidth, 0)); 

        floorPoints.Add(new OpenStudio.Point3d(bldgLength, 0, 0)); 

         

        OpenStudio.Surface floor = new OpenStudio.Surface(floorPoints, model); 

        floor.setName("Floor"); 

        floor.setSpace(space); 

        floor.setSurfaceType("Floor"); 

        floor.setConstruction(construction); 

 

        // Create the front wall 

        OpenStudio.Point3dVector fwallPoints = new OpenStudio.Point3dVector(); 

        fwallPoints.Add(new OpenStudio.Point3d(0, 0, 0)); 

        fwallPoints.Add(new OpenStudio.Point3d(bldgLength, 0, 0)); 

        fwallPoints.Add(new OpenStudio.Point3d(bldgLength, 0, bldgHeight));  

        fwallPoints.Add(new OpenStudio.Point3d(0, 0, bldgHeight)); 

         

        OpenStudio.Surface fwall = new OpenStudio.Surface(fwallPoints, model); 

        fwall.setName("Front Wall"); 

        fwall.setSpace(space); 

        fwall.setSurfaceType("Wall"); 

        fwall.setConstruction(construction); 

 

        // Create the right wall 

        OpenStudio.Point3dVector rwallPoints = new OpenStudio.Point3dVector(); 

        rwallPoints.Add(new OpenStudio.Point3d(bldgLength, 0, 0)); 

        rwallPoints.Add(new OpenStudio.Point3d(bldgLength, bldgWidth, 0)); 

        rwallPoints.Add(new OpenStudio.Point3d(bldgLength, bldgWidth, bldgHeight)); 

        rwallPoints.Add(new OpenStudio.Point3d(bldgLength, 0, bldgHeight)); 

         

        OpenStudio.Surface rwall = new OpenStudio.Surface(rwallPoints, model); 

        rwall.setName("Right Wall"); 

        rwall.setSpace(space); 

        rwall.setSurfaceType("Wall"); 

        rwall.setConstruction(construction); 

 

        // Create the back wall 
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        OpenStudio.Point3dVector bwallPoints = new OpenStudio.Point3dVector(); 

        bwallPoints.Add(new OpenStudio.Point3d(0, bldgWidth, 0)); 

        bwallPoints.Add(new OpenStudio.Point3d(0, bldgWidth, bldgHeight)); 

        bwallPoints.Add(new OpenStudio.Point3d(bldgLength, bldgWidth, bldgHeight));  

        bwallPoints.Add(new OpenStudio.Point3d(bldgLength, bldgWidth, 0)); 

         

        OpenStudio.Surface bwall = new OpenStudio.Surface(bwallPoints, model); 

        bwall.setName("Back Wall"); 

        bwall.setSpace(space); 

        bwall.setSurfaceType("Wall"); 

        bwall.setConstruction(construction); 

 

        //Create the left wall 

        OpenStudio.Point3dVector lwallPoints = new OpenStudio.Point3dVector(); 

        lwallPoints.Add(new OpenStudio.Point3d(0, 0, 0)); 

        lwallPoints.Add(new OpenStudio.Point3d(0, 0, bldgHeight)); 

        lwallPoints.Add(new OpenStudio.Point3d(0, bldgWidth, bldgHeight));  

        lwallPoints.Add(new OpenStudio.Point3d(0, bldgWidth, 0)); 

         

        OpenStudio.Surface lwall = new OpenStudio.Surface(lwallPoints, model); 

        lwall.setName("Right Wall"); 

        lwall.setSpace(space); 

        lwall.setSurfaceType("Wall"); 

        lwall.setConstruction(construction); 

 

        // Create the roof 

        OpenStudio.Point3dVector roofPoints = new OpenStudio.Point3dVector(); 

        roofPoints.Add(new OpenStudio.Point3d(0, 0, bldgHeight)); 

        roofPoints.Add(new OpenStudio.Point3d(0, bldgWidth, bldgHeight)); 

        roofPoints.Add(new OpenStudio.Point3d(bldgLength, bldgWidth, bldgHeight)); 

        roofPoints.Add(new OpenStudio.Point3d(bldgLength, 0, bldgHeight)); 

 

        OpenStudio.Surface roof = new OpenStudio.Surface(roofPoints, model); 

        roof.setName("Roof"); 

        roof.setSpace(space); 

        roof.setSurfaceType("Roof"); 

        roof.setConstruction(construction); 

         

        if (model.save(new OpenStudio.Path(fname), true)) 

        { 

            MessageBox.Show("Model saved to: " + fname); 
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            MainForm.ActiveForm.Close(); 

        } 

        else 

        { 

            MessageBox.Show("Error saving model to: " + fname); 

        } 

    } 

} 

 


