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ABSTRACT
Social media generates a rich source of text data with intrinsic user
attributes (e.g., age, gender), where different parties benefit from dis-
closing them. Attribute inference can be cast as a text classification
problem, which, however, suffers from labeled data scarcity. To ad-
dress this challenge, we propose a data-limited learning model to dis-
till knowledge on adversarial reprogramming of a visual transformer
(ViT) for attribute inferences. Not only does this novel cross-modal
model transfers the powerful learning capability from ViT, but also
leverages unlabeled texts to reduce the demand on labeled data. Ex-
periments on social media datasets demonstrate the state-of-the-art
performance of our model on data-limited attribute inferences.

CCS CONCEPTS
• Computing methodologies → Natural language processing; •
Information systems → Document representation.
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1 INTRODUCTION
Social media has drastically changed our everyday lives, which
allows us to effortlessly post personal ideas for social engagements
[14]. This generates a mass of text data reserving basic yet rich
user information, which, more importantly, often implies intrinsic
user attributes, such as age, gender, location, and political view.
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Different parties have been thus attracted to reveal user attributes
from their text data, either conscientiously (e.g., for assessing risks
and analyzing social behaviors [17, 32]) or opportunistically (e.g.,
for promoting advertisements and tracking users [14, 33]).

In this paper, we put aside the intents of user attribute inferences,
and focus on the investigation of how we can generalize the attribute
inference model into a more challenging setting. Due to privacy
concerns, most social media websites and apps limit the access to
some personal information [16]; thus, user attribute labels, especially
for those private attributes, may only be available on few texts. In
other words, when we cast user attribute inference on social media
as a text classification problem, we face the challenge that the model
needs to have the ability to learn from limited text examples.

To address data-limited learning challenge, meta-learning has
been proposed to leverage a distribution of tasks to learn a shared
initialization that adapts to new task [6, 27, 29]. The classes for
meta-training and meta-testing are disjoint, but the data are typically
obtained from the same domain [13], which, however, is infeasible
in many real-world settings such as social media attribute inference,
since annotations for any class are difficult. This leads data-limited
attribute inferences to training a single model. Posterior inference
using message passing with neural networks over graphs [7, 15, 19,
28, 31] is a promising paradigm of this kind for label propagation,
but high memory consumption is in need, especially for large graphs.
Another alternative is transfer learning on pretrained models [22, 23],
where the prevalent fine-tuning strategy still requires a good amount
of labeled samples to yield good results [30].

Adversarial reprogramming [5] shares the same objective as trans-
fer learning that repurposes a neural network pretrained in a source
domain to perform a target-domain task, with an additional advan-
tage: only a universal perturbation is learned to the input data, while
the pretrained model architecture and parameters keep untouched.
Hence it takes less labeled samples for training and copes better
with labeled data scarcity issue [1, 2]. To this end, in this paper, we
introduce a novel adversarial reprogramming model for our data-
limited attribute inferences. As domains and tasks can be completely
different in reprogramming, we propose to adversarially reprogram
a visual transformer (ViT) [4] for text classification task. The moti-
vations behind this model choice are: (1) ViT enables transformer to
capture contexts among patches, but does not necessarily work as
language models (e.g., BERT [3]) that are pretrained using masked
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language modeling to introduce extra training layers for output trans-
formation [8], and (2) ViT has been undergoing vibrant study, which
delivers better learning capability than traditional ImageNet models
[9, 12] to extract more expressive patterns from subtle embeddings.

Specifically, given a pretrained ViT and a host image randomly
selected from ImageNet, our cross-modal model proceeds by embed-
ding words from each text in order into patches of the host image,
and learning a universal perturbation to be added to all inputs, such
that the outputs of the ViT can be mapped to the final inference
results regarding a specific attribute. These operations are simple
and computationally inexpensive. To further leverage unlabeled texts
to improve data-limited performance, knowledge distillation is de-
vised to optimize the adversarial reprogramming model for attribute
inferences. The overview of our model is illustrated in Figure 1.

2 NOTATIONS AND PROBLEM DEFINITION
Data-limited attribute inference. Without loss of generality, social
media text data is presented as X = {(𝑥𝑖 , 𝑦𝑖 )}𝑚𝑖=1 ∪ {𝑥𝑖 }𝑛𝑖=1 with
𝑚 +𝑛 sample texts.𝑚 of them have attribute labels and𝑚 ≪ 𝑛. Each
labeled text has a ground truth 𝑦 ∈ Y for a specific attribute (e.g.,
Y = {0:male, 1:female} regarding gender). We map discrete text
data into 𝑑-dimensional feature vectors 𝜙 : X → X ⊆ R(𝑚+𝑛)×𝑑 . A
text classification model 𝑓 : X → Y can thus leverage few labeled
texts and large unlabeled texts to infer the attribute label of a given
text x as 𝑦∗ = argmax𝑦∈Y 𝑓𝑦 (x), where 𝑓𝑦 (x) is the confidence
score of predicting x as attribute label 𝑦.

Adversarial reprogramming. To repurpose a pretrained model for a
new task, adversarial reprogramming relies on nonlinear interactions
of the input and the perturbation [2]. A visual transformer 𝑣 (·) of
nonlinear deep structure can satisfy this requirement. We define x
as texts, 𝑓 (x) a text classification model, X̃ images, and 𝑣 (X̃) ViT.
The input transformation ℎ𝑣 (·;𝜽 ) comprises embedding x to a host
image X̃, and learning a universal perturbation 𝜽 added to X̃ such
that X̃ = ℎ𝑣 (x;𝜽 ); the output transformation ℎ𝑓 (·) maps ImageNet
classes to attribute classes such that 𝑓 (x) = ℎ𝑓 (𝑣 (X̃)). During model
optimization, only the perturbation 𝜽 is trainable.

3 PROPOSED MODEL
3.1 Word Representations
ViT splits an image into patches and takes their linear embedding
sequence as an input to a transformer [4]. In other words, the patches
of an image are processed in the same way as words of a text in ViT.
To proceed with input transformation for adversarial reprogramming
of ViT, the first step is to initialize each word 𝑤𝑖 of a text 𝑥 into a
feature vector w𝑖 ∈ R𝑑 , and each of them can be used for conver-
sion from word to image patch. Pretrained word embeddings are
easily accessible, such as GloVe [21], counter-fitting [20], and BERT
[3]. As ViT further elaborates transformer to attend patches, learn
context-aware information among them, and derive higher-level rep-
resentations for classifications, here we can simply use any of these
embeddings for initialization.

3.2 Input Transformation
Input transformation is to convert a sequence of words from each
text x = {w1,w2, . . . , w𝑙 } to image data X̃ = {P̃1, P̃2, . . . , P̃𝑙 } for
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Figure 1: The overview of our proposed model.

ViT classification (𝑙 is sequence length), which includes image con-
struction and perturbation formulation.

Image construction. If w𝑖 is derived from BERT (𝑑 = 768), it
can be reshaped directly into P̃𝑖 ∈ R16×16×3, which satisfies the
patch setting of pretrained ViTs. If we use GloVe or counter-fitting
embedding (𝑑 = 300), w𝑖 needs to be zero-padded before converting
to P̃𝑖 . Afterwards, these patches are embedded to a host image in
order from top left to bottom right. The maximum number of patches
or words that can be fitted into the host image is decided by its width
𝑊 and height 𝐻 : 𝐿 = (𝑊 /16) × (𝐻/16). When 𝑙 > 𝐿, we remove
words with indices larger than 𝐿 from the sequence.

Perturbation formulation. The perturbation to be added to all new
image inputs can be defined as 𝜽 = 𝜖 · tanh(𝜽 ) ∈ R𝐻×𝑊 ×3, where
tanh(·) bounds the perturbation to be in (−1, 1), and 𝜖 is a hyperpa-
rameter to govern the magnitude of the perturbation. Accordingly,
the input transformation function ℎ𝑣 (x;𝜽 ) can be finalized as:

X̃ = ℎ𝑣 (x;𝜽 ) = clip(X̃ + 𝜖 · tanh(𝜽 ) ) (1)

where clip(·) performs per-pixel clipping of the image to limit each
pixel value to [−1, 1]. As input transformation only involves matrix
additions to a host image, it is significantly time-efficient.

3.3 Output Transformation
Output transformation is to map ImageNet classes back to attribute
classes to derive inference results. ViT outputs 𝑦 ∈ {0, 1, · · · , 999},
while attribute inference model outputs 𝑦 ∈ Y. Given an attribute
to infer, |Y| is generally smaller than 1, 000. Hence we leverage a
simple hard coded mapping method to build output transformation
function ℎ𝑓 (·), which assigns |Y| random class outputs of ViT to
predict individual attribute classes. Let z = 𝑣 (X̃), and ℎ𝑓 (𝑣 (X̃)) can
be specified as:

𝑓 (x) = ℎ𝑓 (𝑣 (X̃) ) = ⟨z𝑖1 , z𝑖2 , . . . , z𝑖 |Y| ⟩ (2)

This mapping is non-parametric that can avoid extra training effort.

3.4 Knowledge Distillation for Optimization
ViT provides powerful learning capability, while reprogramming
ViT alone delivers promising inference results. To further leverage
unlabeled texts to improve data-limited performance, we devise
knowledge distillation [10] to reinforce model optimization. We
divide the labeled texts into teacher texts X𝑇 and student texts X𝑆 .
A teacher model is first trained on X𝑇 , and then used to perform
inference on X𝑆 . The knowledge distilled by the teacher is defined
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Table 1: Comparing statistics of the two datasets

Dataset Attribute #Post #Class #Vocabulary
Twitter Gender 13,926 2 21k
Blog Gender, Age 25,176 2 30k

as inference probability for text x𝑆 ∈ X𝑆 :

𝑝 (x𝑆 |X𝑇 ) =
exp

(
𝑓𝑦 (x𝑆 )/𝜏

)∑
𝑦∈Y exp

(
𝑓𝑦 (x𝑆 )/𝜏

) (3)

where 𝜏 is distillation temperature. Similarly, a student model is
trained on X𝑆 by generating inference probability 𝑝 (x𝑆 |X𝑆 ) and
computing the loss between predictions and hard attribute labels:

L𝑆 = − 1
|X𝑆 |

∑︁
x𝑆 ∈X𝑆

𝑦 log𝑝 (x𝑆 |X𝑆 ) (4)

Meanwhile, the student can also learn the distilled knowledge from
the teacher by optimizing the loss:

L𝑇 = − 1
|X𝑆 |

∑︁
x𝑆 ∈X𝑆

𝑝 (x𝑆 |X𝑇 ) log𝑝 (x𝑆 |X𝑆 ) (5)

𝑝 (x𝑆 |X𝑇 ) is predicted by teacher model on student texts, which are
unlabeled data to the teacher. It can be considered soft attribute
label with the same distribution as 𝑝 (x𝑆 |X𝑆 ) from the student. This
advances the model to learn from unlabeled texts. The final loss
function can be formalized as:

L = (1 − 𝜆)L𝑆 + 𝜆L𝑇 (6)

where 𝜆 is a balance parameter to trade off L𝑆 and L𝑇 . By minimiz-
ing L using gradient descent, the only trainable perturbation 𝜽 can
be easily derived.

4 EXPERIMENTAL RESULTS AND ANALYSIS
4.1 Experimental Setup
Datasets. We use two real-world social media datasets to perform
experimental evaluations: Twitter dataset1 and Blog dataset [25]. For
the Twitter dataset, we filter out those with gender confidence score
less than 0.5, and obtain 13, 926 tweets with two genders (female and
male). For Blog dataset, it consists 25, 176 blogs with two attributes:
(1) gender (female and male), and (2) age (teenagers (age between
13-18) and adults (age between 23-45)). The statistics of the dataset
are shown in the Table 1.

Baselines. We choose single-training baselines for comparisons,
including SBERT [24], text-graph classification models: TL-GNN
[11], TextGCN [31], TextING [34], and HGAT [18], GNN-based
few-shot models: FSGNN [7] and TPN [19], and ViT fine-tuned via
transfer learning ViT𝑇𝑟𝑎𝑛 . We also compare adversarial reprogram-
ming of ViT with other backbones: ResNet-50 [9], DenseNet-161
[12], and Inception-V3 [26].

Parameter setting. We select 15 labeled instances per class as train-
ing data and randomly select 20% instances from the remaining as
test data, and report mean accuracy of 3 runs for each task. We use
vit_base_patch16_384, and set learning rate as 0.001, knowledge dis-
tillation temperature 𝜏 = 5, balance parameter 𝜆 = 0.3, perturbation

1https://www.kaggle.com/crowdflower/twitter-user-gender-classification
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Figure 2: Evaluation on different model parameters.

Table 2: Comparisons of baselines with small data (accuracy %)

Model Twitter-gender Blog-gender Blog-age

SBERT 51.20 50.93 54.59

TL-GNN 50.49 51.26 56.10
TextGCN 49.36 53.43 52.30
TextING 51.36 52.76 58.28
HGAT 52.41 51.69 58.56
FSGNN 57.37 53.61 62.10
TPN 55.20 52.17 53.20

ViT𝑇𝑟𝑎𝑛 51.98 51.48 57.67

DenseNet-161 55.88 52.94 60.78
ResNet-50 54.90 53.92 61.76
Inception-V3 59.80 53.58 62.74

Our Model (ViT) 60.78 54.90 63.72

magnitude 𝜖 = 0.2, host images size 384 × 384 × 3, and word embed-
ding as BERT. Evaluations are performed on 4 NVIDIA TITAN Xp
GPUs with 12GB of RAM each.

4.2 Evaluation of Our Model
Effectiveness. We test our model with three training sizes: small
(2 × 15), medium (2 × 100), and large (2 × 2500), and distillation
temperatures 𝜏 ∈ {2, 3, 5, 7, 9} when data is small. As shown in
Figure 2, our model achieves promising inference results when only
30 labeled texts are available: the inference accuracy is 60.78%,
54.90%, and 63.72% for three inference tasks respectively.

Impact of training size, temperature and host image. As illus-
trated in Figure 2, larger data leads to better inference accuracy. Also,
as many more labeled texts are used and performance is closer to
the upper bound, our model seems yielding less data-limited learn-
ing advantage. For distillation temperature, when 𝜏 is enlarged, the
accuracy first rises to a stable high level at 𝜏 = 5, and then drops
afterwards. When 𝜏 is small, the soft labels distilled from the teacher
are significant for student model optimization; when 𝜏 is large, the
distilled knowledge is ambiguous and in turn smooths the student’s
inference ability. As for host image, the evaluation results slightly
vary in five host images (i.e., terrier, toucan, theater, cellphone, and
trimaran), but the standard deviations of accuracy are less than 0.5,
implying that our model is loosely coupled with host images.

4.3 Comparisons with Baselines
We compare our model with baselines listed in Section 4.1, which
are trained on 30 samples. We can observe from Table 2 that our
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model outperforms non-reprogramming baselines with a large mar-
gin, which confirms that (1) text-graphs built on word co-occurrence
barely learn from few labeled texts; (2) FSGNN with message pass-
ing on text graph addresses much better data scarcity issue while
TPN significantly underperforms; (3) transfer learning still suffers
from limited data to fine-tune the whole ViT (about 80M parameters)
with accuracy as poor as SBERT; (4) our model benefits from only
updating perturbation tensor and enables a better solution for data-
limited attribute inference. Most of pretrained models adversarially
reprogrammed yield better accuracy than other baselines, which
indicates the feasibility of adversarial reprogramming. As ViT uses
transformer to process image patches, offering powerful capability
to process input texts, and thus our model performs better than other
pretrained models.

4.4 Ablation Study
We also conduct ablation study to investigate the component contri-
butions to our model performance. We formulate three models here:
(1) Embedding: feed BERT representations to a shallow MLP; (2)
ViT𝐴𝑅 : adversarial reprogramming of ViT; (3) ViT𝐴𝑅+𝐾𝐷 : the com-
plete design of our model. As illustrated in Figure 3, we can see that
reprogramming ViT delivers the greatest contribution to our model,
which significantly improves the accuracy from embedding model
by (3.0, 8.6)%. Knowledge distillation is able to further advance the
state-of-the-art performance to a higher level, which implies that this
operation provides an additional advantage for data-limited learning.

5 CONCLUSION
In this paper, we generalize attribute inferences over social media
text data into the more challenging yet more realistic setting with
limited labels on texts, and design a novel model that distills knowl-
edge on adversarial reprogramming of ViT to address this challenge.
We conduct extensive experiments over two social media datasets
to evaluate this model. The promising results validate its attribute
inference effectiveness, and its feasibility to cope with data-limited
learning in practice.
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