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Abstract. The healthcare industry has a wealth of data that can be
used by researchers and medical professionals to infer a patient’s con-
dition and intention to receive treatment using machine learning mod-
els. However, this line of research generally suffers from some limita-
tions: (1) struggling to leverage structural interactions among patients;
(2) attending to learn patient representations from electronic medical
records (EMRs) but rarely considering supplementary contexts; and (3)
overlooking EMR data imbalance issue. To address these limitations, in
this paper, we propose a hierarchical graph neural network for patient
treatment preference prediction. Doctors’ information and their viewing
activities are first integrated as external knowledge with EMRs to con-
struct the hierarchical graph, where a dual message passing paradigm
is then devised to perform intra- and inter-subgraph aggregation to en-
rich patient representations and advance label propagation. To mitigate
patient data imbalance issue, a community detection method is further
designed to better prediction. Our experimental results demonstrate the
state-of-the-art performance on patient treatment preference prediction.

Keywords: Hierarchical graph neural network · Oncology treatments ·
Preference prediction · Healthcare · Community detection.

1 Introduction

In many oncology treatments, doctors and patients generally adopt watch-and-
wait strategy [12]. After confirmed diagnoses, patients can wait for a long time
to take aggressive treatment. For example, it takes 5 to 10 years on average for
a Chronic Lymphocytic Leukemia (CLL) patient before taking treatment. But
the treatment decision is highly dependent on patient condition and doctors’
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scrutiny. Some patients may only take a short period of time on watch-and-wait.
Estimating and predicting if a patient has been ready to take a treatment can
serve as reminders and assist doctors and patients to make the right decisions.
However, due to the high variation of treatment patterns in oncology area, pre-
dicting the likelihood for a patient to take treatment is a challenging problem.

With the rapid development in machine learning and deep learning [19], the
healthcare industry has started to exploit these data-driven concepts and the-
ories into practical products and applications to predict patient conditions and
propensity for treatment and medication [10, 29, 22], which in turn facilitate doc-
tors’ analyses and decisions to plan treatments for patients. One of the widely
used data for such tasks is electronic medical record (EMR), which maintains
rich and important patient information, and keeps growing in its volume and
diversity. This has thus attracted researchers in the healthcare industry to take
EMRs as inputs to train machine learning models and make patient-specific pre-
dictions through them [32, 31, 37, 35]. Though with the promising performance,
these models trained on EMRs provide the successful principles to solve the
high variation issues in patients, their inputs are inherently self-contained, and
struggle to leverage structural interactions with other patients.

Graph neural networks (GNNs) have recently emerged as one of the most
powerful techniques for graph mining [16, 18, 5]. These GNNs perform informa-
tion aggregation to extract high-level features from the nodes and their neigh-
borhoods [4], which have boosted the performances for various tasks over graphs.
Therefore, a surge of effective research works build GNNs to learn structural se-
mantics from EMRs and advance patient-specific models [8, 9, 26, 24, 3]. For ex-
ample, GRAM [8] and KAME [26] constructed the knowledge graph over EMRs
to depict the hierarchy of medical concepts in the form of a parent-child rela-
tionship and utilized GNNs to embed medical code to characterize each patient.
Liu et al. [24] analyzed EMR using heterogeneous GNN to capture more di-
verse patient information (e.g., profile, symptoms, and visit history). However,
these structured approaches still suffer from two limitations. (1) While attend-
ing to depict patients and learn higher-level patient representations from EMRs,
this line of research rarely utilizes any supplementary contexts. As indicated by
some surveys and case studies [7], the doctor-patient relationship may essentially
impact on patients’ treatment preferences; in other words, the external knowl-
edge (e.g., doctor information) can be extracted to further assist in predicting
if a patient would like to take treatment or not. (2) EMR data imbalance issue
has been completely overlooked by current researches as well. Due to laborious
process and delay effect on data annotation, the imbalance issue exists across
common and rare diseases, and the downstream patient treatment distribution,
which naturally enforces data-driven models to favor the majority class over the
minority class and degrade their prediction performances. With this in mind, our
goal here is to investigate how much patient treatment preference prediction can
benefit from a structured imbalanced learning model with external knowledge.

To this end, in this paper, we propose a novel hierarchical graph neural
network model with external knowledge for patient treatment preference predic-
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tion that can effectively mitigate the impact of data imbalance as well. More
specifically, we introduce the doctors’ information and their viewing activities
(captured by website topics) as external knowledge to be integrated with EMRs
to enrich patient representations and advance the structured learning model
for better prediction performance. The hierarchical graph is first constructed to
abstract the interactions of patients, doctors, and topics, where a dual message
passing paradigm is devised to perform intra-subgraph and inter-subgraph neigh-
borhood aggregation for node representation refinement and label propagation.
To cope with imbalanced patient data, a community detection method is fur-
ther designed to cluster the higher-level embeddings of negative and unlabeled
patients to derive community-preserving patient graph, where the treatment
preference predictions for patients are produced through communities.

2 Problem Statement

EMRs contain the medical and treatment history of the patients in different
practices, which allow us to predict the propensity of patients to take treat-
ments for different diseases. In this paper, we focus on the prediction of pa-
tient oncology treatments. Without loss of generality, we represent our data as
X = {(xpi, yi)}li=1 ∪ {xdi}mi=1 ∪ {xti}ni=1 consisting l+m+ n samples, where l is
the number of patient records, m is the number of doctor records, and n repre-
sents the number of topics retrieved from website data. Unlike existing works [3,
11, 25] that merely use EMRs to train the models for performing patient-specific
tasks, we constructively consider doctor information out of EMRs to interact
with patients and facilitate our prediction. Each patient record xp is annotated
with a ground truth y ∈ {0, 1} for a specific treatment preference, where y = 1
indicates that the patient prefers to take the treatment and y = 0 denotes that
the patient has no such intention. Note that, positives are much smaller than
negatives in our data and also in the real-world scenario. We initially map X in-
cluding patients, doctors, and topics into k-dimensional feature vectors and learn
a patient representation function ϕ through hierarchical graph neural network to
aggregate information from patients, doctors, and topics to obtain higher-level
Xp = ϕ(Xp,Xd,Xt), Xp ⊆ Rl×k. Resting on patient representations, we aim to
learn a classification model f : Xp → Y to perform our prediction task. Thus,
the treatment preference label for a given patient data x can be predicted as:

y∗ = argmax
y∈{0,1}

fy(xp) (1)

where fy(xp) is the confidence score of predicting patient xp as treatment pref-
erence label y using the classification model f . From Eq. (1), we can see that
the final label assigned to the input is the one with the highest confidence score.

3 Proposed Model

In this section, we present the technical details of our proposed model as follows,
the overview of which is illustrated in Figure 1.
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Fig. 1. The overview of our proposed model.

3.1 Hierarchical Graph Construction

To proceed with patient representation learning using GNNs, the first step is
to construct the graph. As we introduce doctors’ information and the website
topics they have viewed as external knowledge, here we design a hierarchical
graph to integrate patients, doctors, and topics.
Hierarchical graph notations. This hierarchical graph can be formalized as
G = (V,E,X), where V is the node set (i.e., patients, doctors, and topics), E is
the edge set to connect the node pairs, and X is the initial feature matrix. More
specifically, G can be further refined into three subgraphs: G = {Gp, Gd, Gt}.
Gp is the patient graph with nodes Vp and edges Ep, Gd is the doctor graph
with nodes Vd and edges Ed, and Gt is the topic graph with nodes Vt and edges
Et. In addition, Epd connects patient graph and doctor graph when patients and
doctors are associated with national patient identifiers (NPIs), and Edt connects
doctor graph and topic graph when doctors view the website topics.
Node representations. The node feature matrixX is composed of three matri-
ces Xp, Xd, and Xt such that X = {Xp,Xd,Xt}, where Xp, Xd, and Xt embed
the feature spaces for patients, doctors, and topics respectively. Each patient fea-
ture vector xp is initialized as xp = ⟨xp1, xp2, xp3, · · · , xpk⟩, where xpi ∈ {0, 1}
is a binary value indicting the absence or presence of a disease symptom i in
patient xp. Each doctor xd is represented as a set of profile attributes, where
each attribute is directly converted into numerical feature values using one-hot
encoding. Each topic xt is represented as either a word or a phrase; in this re-
gard, we leverage SBERT [28] to derive a fixed-size embedding for each topic.
In order to keep the dimensionality of all nodes consistent for message passing
yet the dimension of xd and xt is smaller than xp, we zero-pad xd and xt to be
k-dimensional, and hence the node feature matrix X ⊆ R(l+m+n)×k.
Patient graph. Given a set of patient records Xp, we construct a fully-connected
graph Gp = (Vp, Ep,Xp) to associate patients (both labeled and unlabeled).
Manifold learning [23] is non-linear dimensionality reduction process which re-
veals the low-dimensional manifold embedded in the high-dimensional space,
which can be feasibly exploited to build up the intrinsic neighborhood among
patient representations. Thus, we formulate each edge ep ∈ Ep between vpi and
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vpj in Gp by a layerwise non-linear combination of distance between xpi and xpj :

ep = gΘ(xpi,xpj) = σ(· · ·σ(|xpi − xpj |Θ(0)) · · ·Θ(L−1))Θ(L) (2)

where σ(·) is a non-linear activation function (e.g., ReLU), and Θ is learnable
weight matrix for each layer. As the constructed structure behaves differently
regarding different patient representations, the learned edges do not specify a
fixed patient graph, suggesting the graph can be refined when the embedding
space across patient nodes is updated.
Doctor graph. In addition to doctors’ profile attributes, our collected doctor
data Xd also record the numbers of patients shared with other doctors, which can
be directly exploited to build the doctor graph. To be specific, if two doctors vdi
and vdj share greater than or equal to one patient in common, we create an edge
ed ∈ Ed between vdi and vdj in Gd, such that the doctor graph Gd = (Vd, Ed,Xd)
can be easily derived with fixed structure. Afterwards, the doctor nodes Vd are
further associated with the patient nodes Vp through epd ∈ Edp when the doctor
vd is the patient vp’s primary care doctor identified by NPI.
Topic graph. To better characterize doctors, we integrate doctors’ viewing
activities into their profile attributes for doctor presentation learning, where
these activities are captured by the website topics viewed by doctors. To this end,
we build a topic graph Gt = (Vt, Et,Xt) to model this data. As demonstrated
in Figure 2, all the topics are organized through layer-wise dependency; for
example, a topic may contain another one or more subtopics, where some other
topics may be listed under a subtopic. An edge et ∈ Et between vti and vtj in
Gt can be thus formulated when vtj is vti’s subtopic. Naturally, the topic nodes
Vt can be associated with the doctor nodes Vd through their viewing records.

3.2 Hierarchical Graph Neural Network with Dual Message Passing

Considering the constructed hierarchical graph with intra-subgraph and inter-
subgraph neighborhood structures, we propose a hierarchical graph neural net-
work to perform the dual message passing for node representation refinement and
label propagation, including intra-message passing and inter-message passing.
Intra-message passing. Intra-message passing is the propagation mechanism
that aggregates the information from neighbors inside the patient graph, doctor
graph, and topic graph, respectively, the data flow paths of which are specified
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as black lines in Figure 1. A regular graph convolutional network (GCN) [16] is
implemented for a single subgraph. Specifically, given a subgraph (i.e., patient
graph, doctor graph, or topic graph), we build the adjacency matrix A(h) us-
ing its edge information (edge matrix needs to be normalized first for patient
graph). The message passing can be then formalized as multi-layer neighborhood
information aggregation, which receives an input X(h) and produces X(h+1):

X(h+1) = σ(Ã(h)X(h)W
(h)
intra) (3)

where at layer h, Wintra is weight matrix, Ã = D− 1
2 ÂD− 1

2 , Â = A+ I, and D
is the diagonal degree matrix defined on Â, i.e., Dii =

∑n
j=1 Âij .

Inter-message passing. Inter-message passing mechanism is used to propagate
the information between two subgraphs, including patient-doctor and doctor-
topic neighborhoods in our hierarchical graph, the data flow paths of which
are specified as red lines in Figure 1. Similarly, a GCN is implemented for a
single inter-subgraph neighborhood, where an adjacency matrix A(h) is first
constructed based on the node set from both subgraphs and the edge set (i.e.,
Epd or Edt) connecting subgraphs, and then the message passing is performed:

X(h+1) = σ(Ã(h)X(h)W
(h)
inter) (4)

where at layer h, Winter is weight matrix for inter message passing. Different
from intra-message passing, we do not add self-loops to the adjacency matrix in
Eq. (4) to allow better aggregation of heterogeneous information.
Optimization. With dual message passing from topic graph to doctor graph,
and then from doctor graph to patient graph, the output of the final GCN layer
for intra-message passing over the patient graph can be defined as:

Z = fW(A,Xp) = softmax(X(H)
p ) (5)

where W refers to the complete trainable weights raised by intra- and inter-
message passing. Therefore, the optimization of hierarchical GNN model can be
formulated to minimize the training loss as follows:

W∗ == argmin
W

L(Z,y) + λ∥W∥22 (6)

where L is the cross-entropy loss, and λ is the regularization parameter. This
model can be applied under inductive and transductive settings. In this paper,
we focus on transductive patient treatment preference prediction where all node
connections and features are accessible during training.

3.3 Community Detection for Data Imbalance

As discussed in Section 1, another significant challenge for patient treatment
preference prediction is the EMR data imbalance issue. This enforces GNN mod-
els to aggregate information from majority-class nodes and become less sensitive
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to under-represented positive samples, which leads to less-accurate prediction
performance. Accordingly, different paradigms have been presented to address
this issue, such as oversampling [1, 14], undersampling [2, 17], and cost-sensitive
learning [21, 13]. Due to the fact that sampling techniques tend to generate mod-
els with relatively low generalizability that either overfit on oversampled data or
underperform for discarding potentially useful data, and cost-sensitive learning
is easily impacted by weights, making it hard to select optimal cost values, these
methods are still limited for our task.

In this paper, we explore a community detection method to cope with imbal-
anced patient data. The motivations behind this choice are that: (1) community
detection [34, 27] is one of the widely used approaches to analyze complex net-
works involving social interactions, which is perfectly applicable to the patient
graph; (2) individuals are known by the community they keep, while patients in
EMRs are natural individuals whose treatment behaviors and preferences can be
represented by a group of others with very similar symptoms; and (3) commu-
nity detection works as undersampling but can effectively mitigate the impact
of information loss [20]. More specifically, the proposed community detection
method to address data imbalance consists two steps:

– Detecting communities. If we start community detection over the graph
using the initial patient representations, we need to traverse the graph to re-
veal the community structure using algorithms such as infomap [30]. Instead,
here we follow the strategy to first learn the higher-level patient representa-
tions using hierarchical GNN with dual message passing to embed semantics
from patients and doctors, and abstract graph structure, such that we can
then simply apply standard clustering algorithm such as k-means to cluster
the embeddings of negative patients into K distinct communities, where K
is equal to the number of positive patients, and cluster the embeddings of
unlabeled patients into N communities, where N is dependent on test data
size (we evaluate the impact of N on prediction performance in Section 4.4).
Afterwards, all the edges ending with the patient nodes in a community are
adjusted to be connected with this community as one node.

– Training GNN using community-preserving patient graph. With
the new community-preserving patient graph, we continue performing dual
message passing over hierarchical graph and train the hierarchical GNN by
minimizing the cross-entropy loss in Eq. (6). During testing, the prediction
label of a community node will be assigned to all patients in this community.

4 Experiments and Results

4.1 Experiment Setup

Datasets. Our experiments are tested on EMRs for CLL patients with doctor
data and website topics provided by IQVIA. The patient data retain patients’
records including their different symptom features and NPIs for their primary
care doctors. The doctor data include doctors’ profiles (e.g., age, gender, location,
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Table 1. Statics of datasets

Dataset #Distinct data #Features #Positives #Negatives

Patients 93,474 2,016 773 92,701
Doctors 2,134 112 - -
Website Topics 300 - - -

etc.) and the number of patients shared with other doctors. The topic data
contain topics of websites viewed by doctors. The data statistics are shown in
Table 1, illustrating that there are 93,474 patients (773 positives and 92,701
negatives), 2,134 valid doctors, and 300 website topics, respectively.
Baselines. To the best of our knowledge, we are the first to predict patient
treatment preference; no previous work can thus be used as baselines. We select
rare disease prediction models, traditional classification models, GNN models,
and imbalanced learning models as our baselines. Note that, for GCN, GRAM,
and RA-GCN designed for single graph, we only use the patient graph as input.

– Support Vector Machine (SVM): This is one of the supervised learning
methods which can be used to find a hyperplane for classification.

– Random Forest (RF): This is an ensemble learning method for classifica-
tion by constructing a number of decision trees.

– Multi-Layer Perceptron (MLP): This is a fully connected class of arti-
ficial neural network, which is a traditional supervised classification model.

– Graph Convolutional Network (GCN) [16]: This is a semi-supervised
learning model on graph-structured data with graph convolutional layers.

– GRAM [8]: GRAM is a graph-based attention model for healthcare repre-
sentation learning, which leverages graph attention network [33] to get the
information from neighbors with different importance. We use their attention
mechanism to build the graph neural network and set it as our baseline.

– HSGNN [24]: Heterogeneous similarity GNN is designed for heterogeneous
graphs with healthcare data. We reconstruct the graph with our patient and
doctor data and set their model as our baseline.

– Oversampling [14]: This is an approach to deal with imbalanced data by
increasing the minority class in the dataset. In our experiments, we simply
add the minority class repeatedly for oversampling.

– Undersampling [17]: This is an approach to deal with imbalanced data by
randomly removing the data from the majority class in the dataset.

– XGBoost [6]: It is one of the state-of-the-art and widely used machine learn-
ing models. It becomes the powerful machine learning model of many data
scientists and can deal with irregularities of data, which has been justified
as one of the most popular methods for dealing with imbalanced data.

– Pseudo-labeling [36]: This approach generates pseudo-labels from unla-
beled data, which are injected into training data to address data imbalance.

– RA-GCN [15]: It sets different weights to different classes to address the
data imbalance problem with GCN for disease prediction.
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Table 2. Evaluation results with different baselines

Model Precision (%) Recall (%) F1-score

Support Vector Machine 45.60 50.00 0.4769
Random Forest 45.73 50.10 0.4781
Multi-Layer Perceptron 46.30 50.24 0.4818

GCN 45.64 49.88 0.4744
GRAM 46.70 50.00 0.4952
HSGNN 46.58 48.20 0.4738

Oversampling 75.28 50.21 0.6024
Undersampling 23.40 50.03 0.3188
XGBoost 52.28 59.24 0.5554
Pseudo-labeling 53.41 51.86 0.5262
RA-GCN 47.22 42.46 0.4471

Our Model 77.72 59.80 0.6759

4.2 Data Preprocessing and Setting

We preprocess the data by filtering out those patient records whose primary
doctors cannot be found in the doctor data and removing doctors whose profiles
are missing, which leads to 19,176 patients (351 positives) and 2,134 doctors
left, respectively. Due to resource limitation, we select all positives and 3,510
negatives as experimental data and randomly split it by 8:2 for training and
testing. We use precision, recall, and F1-score as evaluation metrics, which are
typically used for healthcare data. All the GCNs used for intra- and inter-message
passing are set as a two-layer structure with 16 hidden units.

4.3 Comparisons with Baselines

In this section, we compare our model with the selected baselines. The compet-
itive result is illustrated in Table 2. We can observe that among baselines, the
traditional models (i.e., SVM, RF, and MLP) have the worst performance on
the patient treatment preference prediction with single patient data input. GNN
models perform slightly better than traditional ones with the precision increases
by around 1%, which is limited for data imbalance issue. Most of the models
dealing with imbalanced data achieve better performance than others, where
oversampling delivers the best results, XGBoost also provides some promising
performance boost, but undersampling significantly underperforms for informa-
tion loss. Obviously, our model completely outperforms baselines with a large
improvement margin of precision (2% - 30%), recall (0.6% - 11%), and F1-score
(0.07 - 0.36). This confirms that (1) doctor information and viewing activities
can serve as external knowledge to enrich patient representations; (2) community
detection performed on negatives and unlabeled patients can effectively mitigate
the data imbalance issue and better prediction performance.
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4.4 Impact of Community Number over Test Data

The community number K over negatives is decided by the number of positives,
but the community number N over test data is adjustable. In this section, we
analyze the impact of N on prediction performance. The results are shown in
Figure 3(a): the prediction results increase when N falls in the range of [40,70],
then keep stable at [70,90], and decrease drastically whenN rises to 110. The rea-
son behind this could be that when N ∈ [70, 90], the positive data and negative
data are in a relative equilibrium, which alleviates the data imbalance impact
and prevents the model from favoring any majority class; when N is too small,
some unique patients tent to get misrepresented by communities; when N is too
large, the imbalance issue may emerge to degrade the predictions.

4.5 Ablation Study

In this section, we conduct the ablation study to evaluate the performance con-
tributed by different design parts. As our model proceeds with (1) hierarchical
graph construction and (2) community detection, we construct three alternative
models: (1) MLP: feeds patient features directly to MLP without any graph
or community detection; (2) Graph Model: applies the hierarchical graph with
dual message passing; (3) Graph + Community Detection (Graph + CD): lever-
ages community detection to build community-preserving graph and trains the
hierarchical GNN over that. The results are reported in Figure 3(b).

As shown in Figure 3(b), the performance becomes better with the compo-
nents added to the model. The graph model increases the precision, recall, and
F1-score from multi-layer perceptron by about 8%, 1%, and 4% respectively.
Our model with hierarchical graph and community detection is able to further
improve precision, recall, and F1-score to a higher level, which are around 77%,
60%, and 67% respectively. This reaffirms that the hierarchical graph enables
doctor information and activities to be propagated to patients through dual mes-
sage passing and increases the expressiveness of patient representations, while
community detection successfully alleviates the effect of data imbalance and
makes the model more effective on patient treatment preference prediction.
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5 Conclusion

In this paper, we propose a novel hierarchical GNN for patient treatment pref-
erence prediction. We first leverage external knowledge (i.e., doctor information
and their viewing activities) in addition to EMR patient records to construct the
hierarchical graph, where a dual message passing paradigm is then devised to
perform intra- and inter-subgraph neighborhood aggregation to enrich patient
representations and advance label propagation. We further introduce community
detection to alleviate patient data imbalance issue. The state-of-the-art results
validate its effectiveness and superiority to the current widely used baselines.

References

1. Ando, S., Huang, C.Y.: Deep over-sampling framework for classifying imbalanced
data. In: ECML-PKDD. pp. 770–785. Springer (2017)

2. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance
problem in convolutional neural networks. Neural networks 106, 249–259 (2018)

3. Cai, D., Sun, C., Song, M., Zhang, B., Hong, S., Li, H.: Hypergraph contrastive
learning for electronic health records. In: SDM. pp. 127–135. SIAM (2022)

4. Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

5. Chen, L., Li, X., Wu, D.: Enhancing robustness of graph convolutional networks
via dropping graph connections. In: ECML-PKDD. pp. 412–428. Springer (2020)

6. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: SIGKDD.
pp. 785–794 (2016)

7. Chipidza, F.E., Wallwork, R.S., Stern, T.A.: Impact of the doctor-patient relation-
ship. The primary care companion for CNS disorders 17(5), 27354 (2015)

8. Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., Sun, J.: Gram: graph-based
attention model for healthcare representation learning. In: SIGKDD (2017)

9. Choi, E., Xu, Z., Li, Y., Dusenberry, M., Flores, G., Xue, E., Dai, A.: Learning
the graphical structure of electronic health records with graph convolutional trans-
former. In: AAAI. vol. 34, pp. 606–613 (2020)

10. Chu, J., Dong, W., Wang, J., He, K., Huang, Z.: Treatment effect prediction with
adversarial deep learning using electronic health records. BMC MIDM (2020)

11. Cui, L., Biswal, S., Glass, L.M., Lever, G., Sun, J., Xiao, C.: Conan: complementary
pattern augmentation for rare disease detection. In: AAAI (2020)

12. Dossa, F., Chesney, T.R., Acuna, S.A., Baxter, N.N.: A watch-and-wait approach
for locally advanced rectal cancer after a clinical complete response following neoad-
juvant chemoradiation: a systematic review and meta-analysis. The lancet Gas-
troenterology & hepatology 2(7), 501–513 (2017)

13. Elkan, C.: The foundations of cost-sensitive learning. In: IJCAI. vol. 17, pp. 973–
978. Lawrence Erlbaum Associates Ltd (2001)

14. Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: Smote for learning from
imbalanced data: progress and challenges, marking the 15-year anniversary. Journal
of artificial intelligence research 61, 863–905 (2018)

15. Ghorbani, M., Kazi, A., Baghshah, M.S., Rabiee, H.R., Navab, N.: Ra-gcn: Graph
convolutional network for disease prediction problems with imbalanced data. Med-
ical Image Analysis 75, 102272 (2022)



12 Li et al.

16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

17. Lee, W., Seo, K.: Downsampling for binary classification with a highly imbalanced
dataset using active learning. Big Data Research 28, 100314 (2022)

18. Li, Q., Li, X., Chen, L., Wu, D.: Distilling Knowledge on Text Graph for Social
Media Attribute Inference. In: SIGIR. pp. 2024–2028 (2022)

19. Li, X., Chen, L., Wu, D.: Turning attacks into protection: Social media privacy
protection using adversarial attacks. In: SDM. pp. 208–216. SIAM (2021)

20. Lin, W.C., Tsai, C.F., Hu, Y.H., Jhang, J.S.: Clustering-based undersampling in
class-imbalanced data. Information Sciences 409, 17–26 (2017)

21. Ling, C.X., Sheng, V.S.: Cost-sensitive learning and the class imbalance problem.
Encyclopedia of machine learning 2011, 231–235 (2008)

22. Liu, R., Wei, L., Zhang, P.: A deep learning framework for drug repurposing via
emulating clinical trials on real-world patient data. Nature machine intelligence
3(1), 68–75 (2021)

23. Liu, Y., Lee, J., Park, M., Kim, S., Yang, E., Hwang, S.J., Yang, Y.: Learning to
propagate labels: Transductive propagation network for few-shot learning. arXiv
preprint arXiv:1805.10002 (2018)

24. Liu, Z., Li, X., Peng, H., He, L., Philip, S.Y.: Heterogeneous similarity graph neural
network on electronic health records. In: IEEE Big Data (2020)

25. Ma, F., Wang, Y., Gao, J., Xiao, H., Zhou, J.: Rare disease prediction by generating
quality-assured electronic health records. In: SDM. pp. 514–522. SIAM (2020)

26. Ma, F., You, Q., Xiao, H., Chitta, R., Zhou, J., Gao, J.: Kame: Knowledge-based
attention model for diagnosis prediction in healthcare. In: CIKM (2018)

27. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detec-
tion in social media. Data mining and knowledge discovery 24(3), 515–554 (2012)

28. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084 (2019)

29. Ross, M.K., Yoon, J., van der Schaar, A., van der Schaar, M.: Discovering pediatric
asthma phenotypes on the basis of response to controller medication using machine
learning. Annals Of The American Thoracic Society 15(1), 49–58 (2018)

30. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal
community structure. Proceedings of the national academy of sciences (2008)

31. Saqib, M., Sha, Y., Wang, M.D.: Early prediction of sepsis in emr records using
traditional ml techniques and deep learning lstm networks. In: EMBC (2018)
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